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Abstract

Technological and industrial advances allows for biological and non-biological
epidemics to spread faster than the world has ever seen. The analysis of epi-
demiological models and uncertainty quantification represents one of the
best strategies for the control and management of infectious diseases.

The main contributions of this project are a comparison between simu-
lated and analytically derived measures (mean, variance, skewness) regard-
ing the infected counts of an epidemic and a parallelised tool that can pro-
vide the user with a quick visualisations of the particularities of their chosen
compartmental model. The report will detail the approach taken in deriving
both analytical and simulated measures along with a discussion regarding
the implementation of the Parallel Simulator Tool.

This project provides valuable insight regarding the potential of using an-
alytically derived measures to accurately characterise compartmental mod-
els. However, the methods described have limitations due to the approxima-
tions made while deriving the mathematical formulas of the aforementioned
analytical measures. Further work in this area could provide a considerable
reduction in the computational costs currently associated with epidemiolog-
ical analysis. In addition, the Parallel Simulator Tool can be improved to
further assist these investigations.
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Chapter 1

Introduction

1.1 Motivation

In a world where travelling across the globe is increasingly quicker and more
accessible, the potential of infectious diseases to become pandemics is a
frightening reality. The most recent outbreak of Middle East Respiratory
Syndrome (MERS) has been mainly reported in Saudi Arabia and South
Korea but has also been imported by travellers to at least 25 countries
worldwide. Figure 1.1 shows the current effect of the epidemic on the pop-
ulation of South Korea. The unexpected dynamics of an epidemic shows
that uncertainty quantification should be considered an effective outbreak
management.

Figure 1.1: MERS quarantine status in South Korea 2015

Epidemic modelling is a research area that looks into analysing, predict-
ing and studying the spread of infectious diseases. Advances in this field
can lead to exciting results like predicting the evolution of an epidemic in
real time or controlling the way epidemics evolves by using syndemic and
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counter-syndemic effect to control their course. We call this predictive ana-
lytics.

Research in this area can help produce new policies for the control and
prevention of epidemic diseases that can save the lives of thousands of people
every year. The Global Health Policy Center estimates that 16% of yearly
deaths are caused by infectious diseases[1].

Recently, these types of mathematical models have also been used to ex-
plain Internet-based phenomenons such as viral videos or songs. In a time
where social platforms and other media can potentially reach hundreds of
millions people overnight, we are faced with the biggest information pan-
demics the world has ever seen. For example, if we consider Facebook as an
infectious disease, it is the largest epidemic with a recent estimation that
1.44 billion ’infectives’ are active monthly[2].

1.2 Objectives

The main objectives of the project are advances into analytical analysis and
behaviour of epidemics modelled by compartmental processes. The project
is designed to produce both theoretical and practical results. Firstly, we aim
to accurately approximate moments of infected counts through an analytical
approach and compare the results against synthetic data sets. Secondly, we
aim to produce a quick and intuitive tool that can run user customised
simulations of compartmental models through a parallelised approach.

These findings would be applicable to both biological and non-biological
epidemics, so we are also interested in applying these finding to internet-
based phenomenons such as viral videos or business phenomenons such as
retail sales.

1.3 Contributions

This project makes the following contributions:

• an analytical derivation of mean, variability, skewness of infected counts
in compartmental models

• a comparison between the approximation of moments (mean, variance,
skewness) derived analytically and through simulations

• a tool that allows for the visualisation of thousands of stochastic sim-
ulations of compartmental models

• a parallelised approach to speed-up the simulation process and produce
results in a timely manner
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1.4 Report outline

Chapter 2 presents background information regarding epidemic modelling,
starting with a short history of epidemics throughout human history and the
methods used to combat them. Furthermore, we present the most widely
used deterministic mathematical model in the field followed by a stochastic
approach to modelling compartmental processes. Next, we present the math-
ematical foundation of our analytical derivations together with the main
sources of uncertainty that compartmental models have to account for. We
conclude the chapter by presenting the importance of media analytics and
an overview of the tools and libraries used to run experiments.

Chapter 3 presents the details of both analytical and stochastic ap-
proaches to studying compartmental processes including the models used,
the approximations made by both methods and the result of combining the
techniques.

In Chapter 4 we present the server-side architecture of the Parallel Sim-
ulator along with design and implementation details of both the frontend
and the backend.

Chapter 5 presents the results of our analytical derivations and time
speed-ups with a discussion of their interpretation.

Finally, in Chapter 6 we conclude the goals achieved and discuss future
work.
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Chapter 2

Background

2.1 Epidemics throughout history

Human populations have been swept throughout history by waves of diseases
and biological epidemics. The theories behind the spread and evolution of
infectious diseases have evolved over time as well as the control and predic-
tion of disease outbursts. Hippocrates, the father of medicine, believed that
a disease infects the human body because of an imbalance in the four humors
(air, fire, water and earth). It was believed that to restore health and cure
the sickness, the balance of the humors needs to be restored through prac-
tices like bloodletting and dieting. However, there is evidence that, at the
time, basic sanitation and prescriptive medicine were also common practices
for treating diseases[17].

During the Dark and Middle Ages the world saw a regression of rational
theories regarding hygiene and diseases lead by the re-emergence of super-
stitions and beliefs that diseases are caused by God’s wrath. During this
time, the world experienced one of the worst pandemics in human history,
the bubonic plague, which killed around 25 million people in Europe alone.
In an effort to stop the disease, prevention methods such as separating the
infected population from the susceptible population came into effect. Later
in the 16th century, the theory of small live particles that can spread through
water, air or contact was developed. With it, methods were developed to
stop the spread of infectious diseases through hygiene. However, until the
late 19th century people did not truly understand the nature and spread of
bacteria and viruses and hence their efforts to control epidemics were not
always successful. Even in recent history, the world has seen deadly epi-
demics that spread throughout large populations. In Table 2.1 we identify
the largest epidemics since the beginning of the 19th century.
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Year Disease

1817 – 1875 AD Pandemics of cholera

1918 The Spanish Influenza

1940 – now Lung cancer epidemic

1957 The Asian Influenza

1983 - now AIDS

1997–now Obesity pandemic

2003 SARS

2007 Influenza

2014 Ebola

Table 2.1: Major epidemics that killed millions across the world in recent
history (19th century - present time).

2.1.1 Traditional control methods

An epidemic is defined as a widespread occurrence of an infectious disease
in a community at a particular time. Traditionally, control of epidemic
diseases involved a lot of manual effort to collect data on infected patients,
their medical history, their interactions, symptoms, treatments they may
have received, lab works etc.

A key answer to the evolution of an epidemic is the index case, com-
monly known as patient zero. This is the first individual that contacted the
disease and eventually spread it within a susceptible population. Tracing
the medium (air, fluids, direct contact etc.) that facilitated the spread of the
disease is another important component of post-epidemic control. Scientists
can then create a network of infected individuals linked by the interactions
between them that spread the disease, eventually linking all cases to patient
zero. Traditional methods used to collect the data are contact tracing and
diary-based studies:

• Contact tracing - This is the process of identifying and diagnosing
the people that came into contact with an infected person. The circle
of contact depends on the type of contact required to spread the disease
(eg. casual contacts for virulent diseases like Ebola). The methodology
is laborious and prone to errors as it relies on individuals to recall day
to day interactions.

• Diary-based studies - This method assumes that each subject records
their interactions in real time. This means that it combats the dis-
advantages of contact tracing as the work load is shifted onto the
subjects rather than onto the scientists. Also, recording interactions
as they happen reduces the error rates significantly. However, the
methodology introduces other disadvantages. The recordings of indi-
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viduals might not be consistent or scientists may have difficulties in
organising the data due to the fact that patients will make subjective
recordings.

2.1.2 Mathematical modelling of epidemics

In order to use mathematical modelling to solve well posed problems, the
right model has to be chosen. Factors that influence the choice of model vary
from the definition of the problem, the available data, the time available to
solve the problem and so on. Initially, research is required to extract the
particularities of the problem. In epidemiology, these might be the duration
of the infection, the populations susceptible, the length of the incubation
period and so on. Next, we choose a model that we consider appropriate
for the problem at hand and initialise it with input parameters that are
either approximated or derived from data. Finally, we set up the model and
perform validation against synthetic and real-life data. If the problem was
correctly approximated by the model, we can use it to predict the behaviour
of the disease and take appropriate actions.

Modelling has become increasingly more powerful over the last century
and is now used in a wide range of fields including epidemiology. Below
we mention notable landmarks of mathematical modelling being used in
epidemiology.

Bernoulli’s Smallpox model Bernoulli’s model is the first account of
mathematical modelling used to monitor and analyse the spread of an in-
fectious disease. Bernoulli’s main interest was to predict the increase in life
expectancy if smallpox is ruled out as a cause of death. Using his model,
he predicted that the average life expectancy would increase from 26 years
and 7 months to 29 years and 9 months[12].

Reed-Frost model This model was developed in the 1920s by Lowell
Reed and Wade Hampton Frost and was later published in the 1950s[8]. It
is considered to mark the beginning of modern mathematical modelling. It
is a simple, iterative deterministic model which predicts how an epidemic
will behave over time. Using a set of initial parameters, it can predict how
many individuals will be infected and how many will be immune in the next
time step.

Kermack-McKendrick model The development of this model was one
of the biggest achievements in epidemiology in the 20th century. It assumed
that the population can be divided in compartments based on their state
(ie. susceptible, infected, recovered etc.) and that individuals are equally
likely to transit from one compartment to the other. Mathematical analysis
of this model can approximate important information like the duration of an
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epidemic, the total number of infectives, the maximum number of infective
at any particular time point etc.

2.2 Deterministic Compartmental Models

The deterministic model was first defined by Kermack-McKendrick in 1927.
In such a model we know with certainty the initial values of the parameters
(ie. the number of individuals in each compartment) and the values of the
variables in the model (ie. infection rate, recovery rate etc.).

A deterministic model assumes that each state of the system depends
on a fixed set of equations and parameters that will be used to decide the
transition into the following state. Once the initial conditions have been
specified, the system is completely defined. This leads to a deterministic
result as multiple runs of the model will yield the same results. This type of
model is one of the most used models in epidemiology. When using such a
model we make a strong assumption that the population is homogenous[11].
This means that we treat all individuals the same, the only thing differen-
tiating them is the state (compartment) they are in.

In a compartmental model we assume that the population is split into
a number of different compartments, each individual belonging to exactly
one compartment at any point in time. An individual can change state by
moving from one compartment to another.

2.2.1 SIR model

The most common compartmental model is the SIR model, developed in the
1900s by Kermack and McKendrick. In this model, the population is divided
into three compartments: susceptible, infected and recovered, defined as
followed:

• susceptible - labelled S(t) - This represents the population that is not
infected but is susceptible to getting infected if they get in contact
with an infectious person.

• infected - labelled I(t) - This represents the set of people that are
infected and infectious.

• recovered - labelled R(t) - This represents the individuals that recov-
ered from the disease.

The model assumes a constant population size at all times ie.

S(t) + I(t) +R(t) = N ∀t

and does not include vital dynamics (births or natural deaths), migration or
disease-induced deaths. An individual can change state from susceptible to

8



infected (S → I) or from infected to recovered (I → R). Once an individual
has reached the recovered compartment, he/she gains permanent immunity
to the disease.

Parameters

• β - the transmission coefficient - This represents the infectiousness of
the disease and it determines the number of susceptible individuals
that get infected at each time step. More precisely, at a time step,
an individual infects β ∗ S(t) susceptibles. Hence, the total number of
new infectives is β ∗ S(t) ∗ I(t).

• γ - the recovery rate - This represents the rate at which infected in-
dividuals recover and move into the R compartment. If the average
infection duration is 1

γ units of time, we can make a valid assumption
that γ ∗ I individuals will recover within a time unit.

The above parameters are used to illustrate the movement of the population
using the flow diagram in Figure 2.1.

Figure 2.1: Flow diagram of the SIR model. The boxes are the compart-
ments of the model and the values on the arrows represent the population
transition rates from one compartment to the other.

We consider that S(t), I(t) and R(t) are differentiable functions of time.
Hence, we can now represent the model by the a set of Ordinary Differential
Equations (ODEs)[15]:

dS

dt
= −βSI (2.1)

dI

dt
= βSI − γI (2.2)

dR

dt
= γI (2.3)

The system represents the movement of individuals between the states of
the model. These equations coupled with the initial values of the population
in each compartment, the transmission coefficient β and the recovery rate γ
define the specifics of the epidemic.

9



The set of initial values in an SIR model must satisfy the following
conditions:

S(0) = S0 > 0 (2.4)

I(0) = I0 > 0 (2.5)

R(0) = 0 (2.6)

S(0) + I(0) +R(0) = S(t) + I(t) +R(t) = N ∀t (2.7)

When using differential equations to model disease transmission we as-
sume that the events are occurring continuously. If difference equations are
used, then the assumption is that events are taking place at discrete time
intervals. Table 2.2 compares the rate of change in the number of indi-
viduals in each compartment at time t described by differential equations
with the number of individuals in each compartment described by difference
equations.

Differential equations - rate Difference equations - count
dS
dt = −βS(t)I(t) St+1 = St − βStIt

dI
dt = βS(t)I(t)− γI(t) It+1 = It + βStIt − γIt

dR
dt = γI(t) Rt+1 = Rt + γIt

Table 2.2: Comparison of differential equations and difference equations at
time t for the SIR model

When modelling an SIR epidemic with difference equations we can en-
counter accuracy issues in modelling the behaviour of the epidemic. The
reason for this problem is that the predicted curve of infected counts be-
comes less and less smooth with the increase of the time step (e.g. a time
step of 2 days). On the other hand, the curve will be closer to the solution
of the differential equation as the time step decreases (e.g. a time step of
0.05 days).

An example of an SIR epidemic model with parameters β = 0.001, γ =
0.1 and initial population spread S0 = 499, I0 = 1 and R0 = 0 over a time
period of 100 days is shown in Figure 2.2.

2.2.2 Epidemic threshold

Transforming the equations 2.1 and 2.2 and letting ρ = γ
β we obtain the

following equation:

dI

dS
= −1 +

ρ

S
(2.8)

The solutions to the Equation 2.8 in the SI phase plane are shown in Figure
2.3. The curves determined by I(S) reach maximum when S = ρ. This
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Figure 2.2: Simple SIR model with parameters β = 0.001, γ = 0.1 and
initial values S0 = 499, I0 = 1, R0 = 0 over a period of 100 days.

shows that there is a threshold for S(0) = S0, the initial number of suscep-
tibles, for which we have the following: if S0 > ρ the number of infective
increases and if S0 < ρ the number of infective decreases. Define R0 as:

R0 =
β

γ
∗ S0 =

S0
ρ

(2.9)

Then it follows that the epidemic will spread if R0 > 1 and it will die
out if R0 < 1. Hence, to control an epidemic a key factor would be the
estimation of R0 and it’s reduction to < 1. The ratio ρ = β

γ can be measured
clinically (which is a hard task in practice) and together with an observation
of the recovery rate γ, we can determine the transmission coefficient β of
the epidemic by β = γ

ρ .
The number R0 represents the average number of secondary infections

produced by one infected individual during the mean course of infection in
a completely susceptible population, and is called the basic reproductive
number[15].

Measuring the ratio ρ is not always feasible as parameters β or γ might
not be known or might not be easily measurable. We can approximate ρ by
solving the equation 2.8 with initial value (S0, I0):

I − I0 = −S + S0 + ρ · ln S
S0

(2.10)

However, the basic reproductive ratio depends on the disease, the pop-
ulation, the difference in demographic or contact rates, hence estimates of
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Figure 2.3: Solution orbits of Equation 2.8 for β = 1 and γ = 4, reproduced
from [15]

Disease Transmission R0

Ebola (2014 outbreak) Bodily fluids 1.5 - 2.5

Influenza (1918 pandemic strain) Airborne 2 - 3

SARS Airborne 2 - 5

HIV/AIDS Sexual contact 2 - 5

Smallpox Airborne 5 - 7

Diphtheria Saliva 6 - 7

Measles Airborne 12 - 18

Table 2.3: R0 values for well-known infectious diseases

R0 for the same disease can yield different values. Table 2.3 presents values
of reproductive ratio R0 of several well-known infectious diseases:

2.2.3 Epidemic burnout

For the SIR model it has been observed that there will always be a certain
number of susceptible individuals that do not get infected. This result can be
derived mathematically by dividing equation 2.1 by equation 2.3 to obtain:

dS

dR
= −βS

γ
= −S

ρ
= −R0

S0
· S (2.11)

12



After integration with respect to R we obtain:

S(t) = e
−R0

S0
·R(t)

(2.12)

This shows that the value of the susceptible count is always positive.
Hence, we can conclude that the chain of transmission eventually breaks
down due to the lack of number of infected, not lack of number of susceptible,
which is a counter-intuitive argument[13].

2.2.4 SIR model with vital dynamics

This model preserves the same compartmental split within the population as
for the simple SIR but allows for vital dynamics (births and natural deaths).
These types of models can have constant or varying population size and can
allow for vertical transmission or not. With vertical transmission, the par-
ents could pass the disease to their children at birth. We will look at an SIR
model with constant population size and without vertical transmission.

SIR without vertical transmission
In order to model this system we need new parameters that represent

the birth rate b and natural death rate µ. The following assumptions are
made about the system:

• The population size in our closed environment is constant during the
epidemic period, hence the birth and natural death rates are equal
(b = µ) and there are no disease-induced deaths.

• There is no vertical transmission, meaning that parents cannot trans-
mit the disease to their children (unlike AIDS for example). Therefore,
all newborns enter the susceptible compartment.

We represent the system using an ODE system with initial conditions as
follows:

dS

dt
= bN − βSI − µS (2.13)

dI

dt
= βSI − γI − µI (2.14)

dR

dt
= γI − µR (2.15)

S(0) > 0, I(0) > 0, R(0) = 0 (2.16)

b = µ (2.17)

S(0) + I(0) +R(0) = S(t) + I(t) +R(t) = N ∀t (2.18)
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(a) Flow chart of the SIR model with vital dynamics and no vertical trans-
mission

(b) SIR model with vital dynamics, no vertical transmission, with intial
conditions S0 = 499, I0 = 1, R0 = 0 and parameters β = 0.001, γ = 0.1
and b = µ = 0.03

Figure 2.4: SIR with vital dynamics flow-chart and plot
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2.2.5 SIR model with time-varying parameters

Practice has shown that some types of epidemics are more accurately mod-
elled by time dependent parameters. For example, it has been shown that
the spread of measles in the UK during 1948-1966 was driven by school
contact and peaked during school terms[21].

We assume that the time-dependent parameters are continuous and
bounded functions of time. In our example, we considered the transmis-
sion rate as a function of time shown below:

β(t) = K1 +K2 ∗ sin(θt) (2.19)

This could, for example, model the spread of flu which peaks during the
winter. The equation 2.19 will yield a nonautonomous differential system
as the actual time t and starting time t0 are more important than just the
difference between them[3]. This model has proven more difficult to analyse
and has been less studied than models without time-variant parameters.

The ODEs representing the system are presented below. Figure 2.5
shows the evolution of this type of epidemic when K1 = 0.001, K2 = 0.002
and θ = 2 in equation 2.19.

dS

dt
= −β(t)SI (2.20)

dI

dt
= β(t)SI − γI (2.21)

dR

dt
= γI (2.22)

2.2.6 Other types of models

In order to accurately model different behaviours of an epidemic, variations
of the SIR model have been developed. The systems used to model the
epidemic are chosen to best describe the characteristics of the disease, the
environment or the population. We can include the effects of partial im-
munity, vaccination, migrations etc. However, these models still assume a
homogeneous population in which individuals are only differentiated by their
state.

SIS model This model is used for diseases in which individuals do not gain
immunity after recovering from the disease (e.g. flu). Hence, the infectives
become immediately susceptible after recovery. The model is described by
the following ODE system:

15



Figure 2.5: SIR model with time-dependent transmission rate β(t) = 0.001+
0.002∗ sin(2t), recovery rate γ = 0.1 and initial values S0 = 499, I0 = 1 and
R0 = 0.

dS

dt
= −βSI + γI (2.23)

dI

dt
= βSI − γI (2.24)

The parameters are the same as in the previous sections and the popu-
lation size is constant at all times, S(t) + I(t) = N ∀t.

SEIR model In this model we introduce a new compartment, E, repre-
senting the individuals that were exposed and are infected but are not yet
infectious. We model the system with the following set of ODE, where 1

ω is
the latent period.

dS

dt
= −βSI (2.25)

dE

dt
= βSI − ωE (2.26)

dI

dt
= ωE − γI (2.27)

dR

dt
= γI (2.28)
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Figure 2.6: SEIR model with no vital dynamics with intial conditions S0 =
499, I0 = 1, R0 = 0 and parameters β = 0.001, γ = 0.1 and ω = 0.05

Figure 2.7: Flow chart for MSEIR with vital dynamics

We call ω the progression rate coefficient. We assume that the population
is constant, so S(t) + E(t) + I(t) + R(t) = N ∀t. The new compartment
E introduces a delay in the spread of the epidemic because it takes longer
for an individual to move from susceptible (S) to infective (I). Comparing
Figure 2.6 with Figure 2.2 we can observe that the peak of the epidemic was
delayed by almost 50 time units.

MSEIR model This model incorporates passive immunity for newborns.
More precisely, we assume that newborns in this compartment have con-
genital immunity from maternal antibodies for a few months after they are
born, after which they become susceptible. The model does not assume a
constant population size as it includes vital dynamics and disease-related
deaths. The Figure 2.7 represents the flow chart of the model characterised
by the following ODEs:
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dM

dt
= pbN − δM − µM (2.29)

dS

dt
= (1− p)bN + δM − βSI − µS (2.30)

dE

dt
= βSI − ωE − µE (2.31)

dI

dt
= ωE − γI − αI − µI (2.32)

dR

dt
= γI − µR (2.33)

We assume only a fraction p of the newborns have passive immunity,
the rest are born susceptible. The parameter δ represents the fraction of
newborns becoming susceptible at each time period, hence the mean period
of immunity is 1

δ . The rest of the parameters are as follows: b - birth rate
coefficient, µ - natural death coefficient, α - disease death coefficient and
β, γ, ω as explained above.

2.3 Stochastic Compartmental Models

Deterministic models are useful in deriving certain properties about a sys-
tem, however they cannot express the randomness needed to model epi-
demics. More precisely, deterministic models consider individuals to be
identical, the only thing differentiating them is their state. This is a very
strong assumption which, for example, imposes the rate of infectiousness to
be the same for every individual.

Stochastic models attempt to be as close as possible to the actual sys-
tems by capturing random elements of the population. This is achieved by
associating probabilities with transitions instead of rates (as in deterministic
models)[18].

There are different types of stochastic models including Reed-Frost model,
discrete time Markov chain, continuous time Markov chain and stochastic
differential equations. We are using stochastic models because we are in-
terested in analysing systems that incorporate properties unique to these
models, like probability of disease extinction, probability of disease out-
break and expected duration of an epidemic [10]. More precisely, we are
using the continuous time Markov chain (CTMC) model in which time is
continuous, but the state variable is discrete.

A simulation of an SIR model with no vital dynamics is presented in
Figure 2.8. We performed a number of 100 rounds all starting with initial
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parameters:

S0 = 490, I0 = 1, R0 = 0

β = 0.001, γ = 0.1
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Figure 2.8: 100 stochastic simulation for an SIR model with S0 = 490,
I0 = 1, R0 = 0, β = 0.001, γ = 0.1. Note that the S count is in green the I
count is in red and the R count is in blue.

We can observe slightly different outcomes for different rounds of the
stochastic simulation. Analysing this model instead of a deterministic one
leads to more accurate results. This is due to the fact that performing a
large number of rounds starting from the same parameters and injecting
randomness into the model will most likely capture the true state of the
epidemic. The generation of these data sets was done using the GillespieSSA
package in R (see Section 2.9.1).

Gillespie SSA algorithm The Gillespie Stochastic Simulation Algorithm
(SSA) is a procedure for generating statistically correct trajectories of finite
well-mixed populations in continuous time[19]. The trajectory that is pro-
duced is a stochastic version of the trajectory that would be obtained by
solving the corresponding stochastic differential equations. The algorithm
has an exact slow version and and three accelerated approximate methods:
Explicit tau-leap (ETL), Binomial tau-leap (BTL) and Optimised tau-leap
(OTL). We are using the ETL method, see Section 3.3 for more details.
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2.4 First and higher order moment calculation from
data sets

.
Let X = x1, x2...xn be a discrete random variable. We define moments

as follows:

• Mean or expected value

µ = E[X] =
1

n

n∑
i=1

xi

• Variance or second central moment

V ar[X] = E[X2]− E[X]2 =
1

n

n∑
i=1

(xi − µ)2

where µ is the mean as defined above. We also note the use of standard
deviation, which is the square root of variance.

• Skewness or third standardised moment

Skew[X] =

1
n

n∑
i=1

(xi − µ)3

[ 1
n−1

n∑
i=1

(xi − µ)2]3/2

where µ is the mean as defined above.

2.5 Paired t-test and the Null Hypothesis

A paired t-tests is used to compare two population means where we have two
samples in which observations in one sample can be paired with observations
in the other sample. This might occur in comparing two different methods
of measurement. To set up the t-test we have to set the Null Hypothesis
and the Alternative Hypothesis and the significance level:

• Null Hypothesis - H0: µ1 − µ2 = 0

• Alternative Hypothesis - Ha: µ1 − µ2 6= 0

• Significance Level - 95%

We are omitting the step-by-step details of the test as it can be performed
with any statistical application such as R, Matlab, Excel etc. The outcome
of these tests is the acceptance or rejection of the Null Hypothesis H0. The
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null hypothesis generally states that: “Any differences, discrepancies, or
suspiciously outlying results are purely due to random and not systematic
errors”. The alternative hypothesis Ha states exactly the opposite. We
accept the Null Hypothesis if the p-value reported by the t-test is ≥ 0.05
and it is rejected otherwise.

2.6 ODE analysis of epidemic models

2.6.1 Dynkin’s Formula

Eugene Dynkin[4] is one of the founders of the modern theory of Markov
processes. His theorem allows for the calculation of the expected value for
any suitable function. It is also seen as stochastic generalization of the
(second) fundamental theorem of calculus[5].

Theorem 2.6.1 (Dynkin’s Formula) Let f be a twice differentiable func-
tion with continuous second derivative and ~X = Xm1

1 ...Xmn
n be a suitably

smooth statistic of an Itō diffusion. Then the following formula will hold at
time t:

dEt[X
m1
1 · · ·Xmn

n ]

dt
=
∑
τ∈T

Et[fτ ( ~X)
( n∏
j=1

(Xj + vτ,j)
mj −Xm1

1 · · ·Xmn
n

)
]

For example, using the equation (2.2) of the SIR model, we calculate the
second-order moment of the susceptibles to be:

dEt[S
2]

dt
= Et[βSI((S − 1)2 − S2)]

= Et[βSI − 2βS2I]

= βEt[SI]− 2βEt[S
2I]

The SIR model is a non-linear quadratic model and hence the equation for
a moment of order k depend on moments of order k + 1. In general, for
polynomial rates of maximum degree m, the moments of order k depend on
moments of order k +m− 1.

2.6.2 Moment Closure

In compartmental models, Dynkin’s formula results in a non-linear infinite
system of moment approximating ODEs [6]. For example, in compartmental
models like the ones presented in Section 2.2, a second-order moment de-
pends on a third-order moment, a third-order moment depends on a fourth-
order moment and so on. In order to solve this system numerically it needs
to be closed by approximating higher-order moments in terms of lower-order
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moments. The approximation will transform the infinite system of ODEs
into a non-linear closed system of ODEs that can now be solved numerically.
This is called moment closure.[22].

To approximate higher-order moments in terms of lower-order moments,
moment closure approaches assume that the population at each time point
is drawn from a particular family of probabilities. We describe below two
types of moment closure: normal and log-normal which draw their name
from the distributions they come from.

Normal Closure Normal moment closure can be applied to any sys-
tem of ODEs deduced from Dynkin’s equation (2.6.1) for which we want to
find higher-order moments. For this type of moment closure it is assumed
that the populations are approximately multivariate normal at each point
in time. It is based on Isserlis’ Theorem which allows the computation of
higher-order moments of a multivariate normal distribution in terms of its
covariance matrix. Hence, higher-order moments from the third onwards
can be expressed in terms of mean (first-order) and covariance (second-
order)[16].

Theorem 2.6.2 (Isserlis’ Theorem) If X1, X2...X2n+1 are multivariate
normal with mean ~µ and covariance matrix (σij) then:

E[(X1 − µ1)(X2 − µ2)...(X2n+1 − µ2n+1)] = 0

E[(X1 − µ1)(X2 − µ2)...(X2n − µ2n)] =
∑∏

E[(Xi − µi)(Xj − µj)]

=
∑∏

COV (Xi, Xj)

where
∑∏

sums through all the distinct partitions of 1...2n into disjoint sets
of pairs (i, j). If some of the variables appear multiple times then certain
pairs will subsequently appear multiple times in the resulting sum.

To obtain the raw moment, we expand the central moment in equation
2.6.2. For example in order to close a system of ODEs at the second-order
moment we need the approximation for the joint moment E[X2

1 (t)X2(t)] as
shown below:

E[X2
1 (t)X2(t)] ≈ 2E[X1(t)] · E[X1(t)X2(t)] + E[X2

1 (t)] · E[X2(t)]

− 2E[X1(t)]
2 · E[X2(t)]

which yields E[(X1 − µ1)2(X2 − µ2)] = 0 as required since the normal dis-
tribution has skewness zero.
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2.7 Uncertainty Sources

We model epidemics using discrete or stochastic compartmental models
that try to approximate the real world situation as accurately as possi-
ble. Through this, we introduce uncertainty sources at every step of the
modelling process. We identify three main types of uncertainty explained
below:

Measurement Uncertainty When collecting data about an epidemic we
perform a variety of measures such as how many individuals became infected
during the entire epidemic, how many new infectives per time unit or how
many deaths were caused by the infection. These measures are all incomplete
and not entirely reliable because we cannot guarantee that we can identify
every individual that was affected by the epidemic. Factors like spikes in
the number of deaths, general panic among the population, fear of admitting
that you are infected, distrust in the medical system, remote populations
etc. prevent us from getting an accurate measurement of important data
about the epidemic. Figure 2.9 shows the prediction made by The World
Health Organisation (WHO) on the number of Ebola infected individual
by the end of November 2014. The actual count of infected individuals at
that date was around 6.000 cases, far less than the 9.800 predicted. In the
context of internet-based phenomenons these measurements are a lot more
precise.

Figure 2.9: WHO prediction of Ebola infected population in Sierra Leone
in the context of the 2014 Ebola outbreak.

Parameter Uncertainty In all the models presented so far we required a
set of parameters to describe certain features of the epidemic (transmission
rate, recovery rate etc.). These parameters introduce uncertainty into the
system as they are usually based on observation and hence are objective
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measures of the disease’s characteristics. Also, measurements themselves
introduce uncertainty by means of completeness and correctness. For exam-
ple, hospital records could be lost or patients might die before even reaching
the hospital. We can estimate the level of uncertainty by looking at the
sample sizes or variance of observations for the epidemic.

Stochastic Uncertainty Stochastic models introduce uncertainty by the
randomness injected in the evolution of the epidemic. Computationally,
stochastic uncertainty can be simulated using Gillespie’s discrete-event sim-
ulation algorithm (SSA)[18]. A large number of runs of the stochastic algo-
rithm can define confidence levels for the epidemic model but cannot accu-
rately approximate the level of uncertainty introduced by the system.

2.8 Epidemiological models in non-biological phe-
nomenons

With the rise of technology and social media, epidemiological models have
been applied to non-biological phenomenons such as viral videos, shared
events on social media platforms, computer viruses, business strategies and
so on.

We are going to look at how to apply a compartmental model to two
non-biological phenomenons:

Viral videos This can be modelled by an SIR process where the popula-
tion split is as follows:

• Susceptible compartment (S) - every individual that has access to tools
that can reproduce the video (eg. YouTube).

• Infected compartment (I) - individuals that have seen the video and
decide to share it (ie. they are infected and infectious).

• Recovered compartment (R) - individuals that have seen the video and
are no longer sharing it.

Computer viruses Certain computer viruses have a latent period in
which they infect the host machine but are not infectious yet. In this case,
an SEIR model is more appropriate:

• Susceptible compartment (S) - the set of vulnerable machines that can
be accessed directly or through the network.

• Exposed compartment (E) - the machines that are currently infected
but are not spreading the virus.
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• Infected compartment (I) - the set of infected machines that are now
infectious and are trying to spread the disease (as we assume computer
viruses are malicious in nature).

• Recovered compartment (R) - the machines that have removed the
virus from the system and are no longer infected or infectious.

In both cases, the rates defining the model (ie infection rate, recovery
rate) can be approximated through mathematical calculations or from data,
similarly to an epidemic modelled by an SIR process.

The advantage of using compartmental models to look at viral phe-
nomenons driven by technology is that data is cheap and widely more avail-
able. For example, if we want to trace the popularity of a video on YouTube,
we can gather accurate data on the number of views, the number of shares,
daily breakdown of views etc. This obviously does not map directly to the
number of people that have been ’infected’ by the video. However, it is
a good approximation, certainly better than traditional methods used to
collect data on infectious diseases, mentioned in Section 2.1.1.

2.8.1 Media Analytics

Business analytics are used to make smarter decisions that lead to better
business outcomes[9].

A similar approach is applicable to media analytics. The four stages are
described below, increasing in value and complexity also represented by the
Figure 2.10

Figure 2.10: Media analytics - correlation between value and complexity

• Monitoring - This consists of gathering data and information from
events in the past. This is the simplest and cheapest task but it is
also the one that gives the least returns in terms of value. We are
currently able to gather huge amounts of data and information using
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very little resources. However, having this information does give any
insights except the fact that the data exists.

e.g. We can collect information that can tell us how many units Apple
sold within a certain time period, when sales have increased, or that
what the evolution of the Apple share price was during the last few
years.

• Descriptive - This consists of characterising the data available to
explain and understand past events. This task answers the question
‘What has happened?’. Therefore, it consists mainly of analysing data
and fitting it to a certain model. The task is slightly more complex
and adds value to the information but is still only looking at past
phenomenons. This means we can only reflect at the conclusions of
our analysis without being able to change anything.

e.g. We can fit the data of the spread of a YouTube video views to an
SIR epidemic model.

• Predictive - This task answers the question ‘What could happened?’.
It is a considerably harder and a more expensive task that has been
extensively researched but not yet mastered. However, in certain sit-
uations, we can accurately predict the future based on mathematical
models.

e.g We can predict the peak of popularity of a new album release by
approximating its evolution to an multimodal SIR.

• Prescriptive - With this task we want to answer the question ‘What
should happen?’. This is the hardest and most complex task that
looks at when certain triggers should be released in order to obtain a
certain desired outcome. For example, when is the best time to release
a counter-syndemic disease in order to minimise the initial epidemic.
There is a high value obtained from being able to solve the problem
of when/where to act in order to control the evolution of an epidemic.

eg. We could figure out when is the best time for Apple to release a
new iPhone in order to maximise profits for the new product and the
returns from the previous generation products.

2.9 Development Environment

The programming languages most suitable for this project are MATLAB
and R as they are both powerful and widely used tools for mathematical
modelling and analysis. I decided to use both programs in order to comple-
ment their advantages and disadvantages. Also, it was a good opportunity
to get a better understanding of both pieces of software and compare their
ease of usability and coverage of libraries.
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R R is a open-source software supported by a community of over 2
million people [7]. It is built by statisticians which makes it ideal for solving
mathematical and statistical problems like the ones we are looking at. It
has the disadvantage of being less documented and hence the learning curve
is steeper than for MATLAB. However, there are a number of tutorials that
can be used as resources along with the support of the active community
behind the software. As it was built with extensibility in mind, it has a lot
of packages built specifically for certain statistical tasks. This includes a
package that can perform the exact type of stochastic simulation we require
for our epidemic models. It is believed that R is the most complete piece
of statistical software so far. We chose to perform most of our computa-
tional tasks using R because it provided us with all the tools needed for
computation, plotting and integration with a NodeJS app.

MATLAB The main disadvantage of MATLAB is that it is a commer-
cial application that would be expensive to use under normal circumstances.
However, it is very well documented and widely used in the mathematical
community. This means that it has a smaller learning curve than R. We
chose to use Matlab in certain situations for plotting and solving ODE sys-
tems.

Node.js Node.js is a platform built on Chrome’s JavaScript runtime
for easily building fast, scalable network applications. Node.js is lightweight
and efficient and allows for easy extensibility through npm, a package man-
ager for JavaScript. It has modules integrating with R, the Unix shell,
embedded JavaScript templates (EJS) and much more. This allows for easy
integration with R over the worker cloud of machines. It has the advantage
of automated installation, setup and deployment through npm which makes
it ideal for the type of app we are building.

2.9.1 Additional libraries

R GillespieSSA The GillespieSSA package provides a simple and intu-
itive interface to various stochastic simulations for generating simulated tra-
jectories of finite population continuous-time models. Currently, it imple-
ments a few Monte Carlo procedures for Gillespie’s Stochastic Simulation
Algorithm (SSA), including direct and approximate methods [20]. One of the
models that is currently included in this package is the Kermack-McKendrick
SIR model, which we used to generate thousands of rounds of the SIR pro-
cess. Similarly, it is easily extendible to be able to run simulations for any
type of compartmental model including SEIR, SIRS etc. by simply defining
the ODE system that characterises the epidemic system.
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R deSolve This package contains the function that solves initial value
problems of ordinary differential equations (ODEs), partial differential equa-
tions (PDEs), differential algebraic equations (DAEs) and delay differential
equations (DeDEs). It uses the function ode which is the default integra-
tion routine with user specified model parameters, state variables and model
equations.

R doParallel The doParallel library was built for time-consuming compu-
tations or large number of similar tasks that can be run independently[14].
An example of such a problem is running multiple Markov Chain Monte
Carlo (MCMC) chains simultaneously. Natively, R will not take advantage
of the multi-core underlying architecture and hence the doParallel library
was built to exploit this resource. In order to use this package, initial setup is
required and therefore the communication overhead of setting up the cluster
is not justified when dealing with simple problems.

R Rserve Rserve acts as a socket server (TCP/IP or local sockets) which
allows binary requests to be sent to R. It provides a fast binary transport as
no R initialisation is required. The package is persistent as each connection
has a separate workspace and working directory. Rserve supports remote
connection, user authentication and file transfer between the client and the
server, hence it can be used as a remote server for tasks such as generating
plot images.

ExpressJS This is a minimal NodeJS web application framework. It in-
cludes hooks for commonly used functionality such as session storage, route
management and security. It acts as an HTTP server, allowing us to serve
our website’s static assets as well as an API to process data.

NodeJS R Input Output (RIO) module RIO connects an app to
Rserve, a TCP/IP server which allows other programs to use facilities of R.
It supports a wide range of R objects, including double, integer, string and
arrays of these types, along with raw vectors i.e. images or files. Using this
module, we can call R scripts using JSON objects as parameters, perform the
desired R functions and serialise the response before returning it to NodeJS.

R rJson This small library is used to perform conversion from R objects
to JSON objects and vice-versa. Coupled with the Node RIO module and
Rserve library, it facilitated the data transfers between R scripts and the
JavaScript backend in our system.
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Chapter 3

Analytical and stochastic
approximations

We model epidemics using compartmental models defined by a set of ODEs
that express the rates at which the populations move from one compartment
to the other. Solving the system deterministically is computationally cheap
and gives a quick idea of the behaviour and some particularities of the model.
However, this approach assumes the rates of transfer between compartments
is identical for every individual, which hides vital information that gives the
model accuracy. To overcome this issue, stochastic modelling is used to
generate thousands of trajectories that behave slightly different in order to
capture the true nature of the model. These computations are expensive,
especially when we consider that the desired number of simulations lie within
105 - 107. Hence, we are looking at a way of capturing some features of the
stochastic simulations with analytical computations.

We are interested in estimating the moments of the infected count for
different compartmental models. In the first section of this chapter, we
present the details of the analytical computation of the mean, variance and
skewness based on solving ODE systems and moment closures. Next, we
show the computations of the same moments using stochastic simulations of
the compartmental models. Chapter 5 presents a comparison between the
results of the two approaches.

3.1 Analytical calculation of variability

Any compartmental model is characterised by a set of ODEs that define the
rates and the movements of the populations from one compartment to the
other. The system can be solved analytically with any ODE solver package.
Below we have an illustration of the SIR model trajectory for parameters
β = 0.001, γ = 0.1 and initial populations S0 = 250, I0 = 5, R0 = 0 during
a period of 100 days in a closed population:
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Figure 3.1: Deterministic trajectory prediction for the SIR model with pa-
rameters β = 0.001, γ = 0.1 and initial conditions S0 = 250, I0 = 5, R0 = 0

To compute the variability of the infected count we use the following
formula:

V art(I) = Et[I
2]− Et[I]2 (3.1)

This means that an expression for the expected value of I2 and I respectively
is required. We are using Dynkin’s formula to obtain expressions of this
values.

Applying Dynkin’s formula Starting from an SIR model, we can find
an expression for the derivative of the expected value of I as shown below:
From the initial ODE

dI

dt
= βSI − γI

we obtained the following expressions for dEt[I]/dt and dEt[I
2]/dt respec-

tively:
dEt[I]

dt
= βEt[S]Et[I]− γEt[I]

dEt[I
2]

dt
= Et[βSI((I + 1)2 − I2) + γI((I − 1)2 − I2)]

= Et[βSI((I + 1)2 − I2)] + Et[γI((I − 1)2 − I2)]
= 2βEt[SI

2] + βEt[SI]− 2γEt[I
2] + γEt[I]
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We observe that the expressions depend on the expected values of S, I,
R, the expected value of second-order joined moments like Et[SI] and higher-
order moments like Et[SI

2]. More precisely, the equations for a moment of
order k depend on moments of order up to k + 1 due to the fact that the
SIR model is quadratic non-linear. In general, if we have polynomial rates of
maximum degree m, then moments of order k depend on moments of order
k +m− 1.

This suggests that expressions for first and second order moments for S
and R are required. We obtained them in a similar manner using Dynkin’s
formula:

dE[S]

dt
= −kIEt[I]Et[S] (3.2)

dE[R]

dt
= kREt[I] (3.3)

(3.4)

dE[S2]

dt
= βEt[SI]− 2βEt[S

2I] (3.5)

dE[R2]

dt
= 2γEt[IR] + γEt[I] (3.6)

along with expressions for all second-order joined moment.
In general, for an initial ODE system with n equations we obtain n

equations for first-order moments, n equations for second-order moments
and

(
n
2

)
= n(n−1)/2 equations for second-order joined moments. Therefore,

for our SIR model with 3 ODEs we obtain 9 equations. However, these
equations depend on third-order moments. If we were to express the third-
order moments we would obtain a system which includes moments up to
fourth order. Expanding this further will lead to an infinite ODE system
that we cannot solve. Hence, to solve the system we need to close it through
what it is known as moment closure.

Moment Closure After applying Dynkin’s formula, we obtain a system
of n(n + 3)/2 equations for a compartmental model with n equations. For
an SIR model, the system of equations depend on third-order moments. We
use normal moment closure, explained in Section 2.6.2 to express third-order
moments in terms of first and second order moments.

The expression of Et[S
2I] in equation 3.5 will be replaced by the approx-

imation:

Et[S
2I] = 2Et[S]Et[SI] + E[S2]Et[I]− 2Et[S]2Et[I] (3.7)

The resulting system will now have 9 equations containing moments up
to second order and can be solved to find numerical values of Et[I] and
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Et[I
2] at a time point t. Using equation 3.1 we can derive the numerical

expression of the variance of infected count at different time points.

3.2 Analytical calculation of skewness

Skewness is the third standardised moment and is calculated in terms of
non-central moments as follows:

Skew[X] = E

[(X − µ
σ

)3]
=
E[X3]− 3µE[X2] + 3µ2E[X]− µ3

σ3

=
E[X3]− 3µ(E[X2]− µE[X])− µ3

σ3

=
E[X3]− 3µσ2 − µ3

σ3

where µ is the mean of the distribution and σ is the standard deviation.

Similarly to the calculation of variability, we apply Dynkin’s formula to
obtain an expression for dEt[I

3]. This will increase the size of our ODE
system, adding 3 equations for third-order moments for S, I and R respec-
tively. Also, we have to include third-order joined moments for SI2, SR2,
S2I, IR2, RS2, RI2 and SIR. We again use normal moment closure to
close the system to equations up to and including third-order moments.

3.3 Stochastic simulation of epidemic models

In this section we will define our model used for stochastic simulations fol-
lowed by details of the data analysis performed on the resulting synthetic
data sets.

3.3.1 Model

In order to calculate first, second and third order moments for the syn-
thetic data set, we perform a large number of simulations using the ETL
approximated method of the Gillespie algorithm at different time steps. In
Figure 3.2 we performed 1,000 runs of an SIR model with initial popula-
tions S0 = 250, I0 = 5, R0 = 0 and parameters β = 0.001 and γ = 0.1
at a simulation time step of 0.3. As we are interested on the trajectories
of infected counts, we omitted the trajectories for susceptible and recovered
populations for visibility.
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We can observe why stochastic simulations of a compartmental model
are more appropriate than a deterministic approach because it does not
assume that all individuals are equally likely to change state. Hence, some
trajectories simulating the epidemic may finish early having infected a very
small population. Performing multiple runs increases the confidence that
the true nature of an epidemic will be captured.

Figure 3.2: 1,000 simulations of an SIR model with parameters S0 = 250,
I0 = 5, R0 = 0, β = 0.001 and γ = 0.1 at a time step of 0.3 days
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Below we present the function used to generate the data sets which we
collect for analysis:

generateData SIR <− function ( numberOfRuns , s u s c e p t i b l e ,
i n f e c t ed , recovered , beta , gamma) {

sequence <− seq (1 , numberOfRuns ) ;
params <− c ( beta=beta , gamma=gamma) ;
x0 <− c (S=s u s c e p t i b l e , I=i n f e c t e d , R=recovered ) ;
a <− c ( ” beta∗{S}∗{ I }” , ”gamma∗{ I }” ) ;
nu <− matrix ( c(−1 , 0 , 1 , −1, 0 , 1 ) , nrow=3, byrow=T) ;
a l lData <− l i s t ( ) ;

for ( i in sequence ) {
out <− s sa ( x0 , a , nu , params , t f =100 , method=”ETL” ,

i gnoreNegat iveSta te=TRUE) ;
a l lData [ [ i ] ] <− out$data ;

}
return ( a l lData ) ;

}

3.3.2 Data analysis

After the simulation step is finished and all the data is received, we proceed
to calculate mean, variance and skewness at each time point t using the
formulas presented in Section 2.4.

In addition, we calculate the 95% confidence intervals around the simu-
lated mean using the following formula:

LowerEndpoint = µ− 1.96
σ√
n

UpperEndpoint = µ+ 1.96
σ√
n

where µ is the mean value of the distribution at time t, σ is the standard
deviation, n is the sample size and 1.96 is the value corresponding to a 95%
confidence interval from the z-table.

The interpretation of the confidence interval is that if we repeat the sim-
ulation, in 95% of the cases the new mean µ′ will be between the endpoints
calculated for our current mean µ. Even if the distribution of infected counts
at time t is not normally distributed, this formula is valid as we have a large
sample data.
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Chapter 4

The Parallel Simulator Tool

The parallel variability simulator is a web app tool built to efficiently sim-
ulate large data sets and visualisations for compartmental models. The
frontend is a simple interface that allows the user to customise the com-
partmental modal to fit his/her needs. The backend is responsible for par-
allelising the user’s request and for collecting the data from which statistics
and graphs are drawn. We are now going to discuss implementation de-
tails of both components and justify the reasons for our architectural and
implementation choices.

4.1 Backend

In this section we describe the implementation details and decisions made
for the backend of the parallel simulator. In Section 4.1.2 we describe the
system architecture and illustrate the work-flow using a detailed example of
a possible user request.

4.1.1 Implementation decisions

The backend of our parallel simulator is written in JavaScript using the
NodeJS web framework Express. Express is a minimal web application
framework that provides us with a robust set of features without obscuring
NodeJS functionalities. Below we can see the lines of code needed to start
a server using Express and NodeJS.
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var express = require(‘express’);

var app = express();

var server = app.listen(3000, function () {

var host = server.address().address;

var port = server.address().port;

console.log(‘Example app listening at http://%s:%s’,

host, port);

});

NodeJS has numerous self-contained modules that have been developed
for the platform. The RIO module described in Section 2.9.1 is an easy to
install module that facilitates connections between R and NodeJS. Since our
stochastic simulations are performed exclusively in R, the existence of this
module made us decide that the NodeJS platform was the right tool for the
job. Next, we have an example of a call to an R function from the main
server using the RIO module:

var r i o = r e q u i r e ( ’ r i o ’ ) ;
var s ta t sArgs = { . . . }
r i o . sourceAndEval ( path . j o i n ( ’ . /R/ c a l c u l a t e S t a t s .R ’ , {

entryPoint : ’ c a l c u l a t e S t a t s ’ ,
data : s tatsArgs ,
c a l l b a c k : func t i on ( er ror , r e sponse ) {

i f ( ! e r r o r ) {
. . .

} else {
. . .

}
}

} ) ;

Parallel problem and speed-ups Our tool is designed to perform
tens of thousands of stochastic simulations and render the result to the user
in a friendly and timely mater. However, these simulations are time con-
suming and computationally heavy and hence would considerably slow down
the response time of a user request. In order to increase our performance
and due to the fact that the simulations are independent we decided that
this problem is perfect for a parallel approach.
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We launched a cluster of worker servers on the Imperial College Cloud-
Stack. Here we can create and customise a large number of virtual machines
that can take the load off our main server. Once the first worker machine
was set up with the right configuration to be able to communicate with the
main server, we installed all the necessary tools and libraries needed to run
the stochastic simulations. Using CloudStack’s administrative interface, we
were able to transform our worker into a template from which we could
create numerous other worker servers which are ready to start processing
requests without additional setup. The details of the system architecture
are presented in Section 4.1.2.

For an increase speed-up we took advantage of R’s own parallel package
that can utilise the underlying architecture of the worker machines. For our
current cluster of workers, we are using dual core machines. Hence, using this
package can offer up to a 50% improvement in the actual simulation time.
This is extremely beneficial as it means that we can achieve the a better
performance with half the number of machines. A better performance can
be achieved due to the overhead of using map-reduce over the network. For
example, a single quad-core machine will have better performance than a
cluster of 4 single-core worker servers. In Section 5.2 you can see our analysis
of the speed improvements achieved using the parallel approach and the R
parallel package. Below is an example of the set up required for the cluster
of cores used by R’s parallel library:

c l <− makeCluster (2 )
r e g i s t e r D o P a r a l l e l ( c l )

out <− f o r each ( i =1:numberOfRuns , . i no rde r=FALSE,
. packages=’ Gi l l e sp i eSSA ’ ) %dopar% {

s sa ( x0 , a , nu , params , t f =100 , method=”ETL” ,
i gnoreNegat iveSta te=TRUE) ;

}

s topClus t e r ( c l )

4.1.2 Architecture

The high-level view of the backend architecture is presented in Figure 4.1.
Figure 4.2 shows the setup for each individual machine.

We are implementing the master-slave architectural patter. The main
server acts as a coordinator and also performs some relatively small compu-
tational tasks. The machine cluster is formed by worker servers who only
communicate with the coordinator to serve its requests. More precisely, to
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perform the time-consuming computations. If the user chooses to perform
only analytical calculations for a certain model, the main server will perform
all the computations and no requests are passed to the cluster of machines.

We are going to explain the details of an end-to-end user request flow
involving simulations through the system with the following example:

10,000 simulations of an SIRS model on 8 machines with parameters
β = 0.001, γ = 0.1, δ = 0.02 and initial conditions S0 = 300, I0 = 1, R0 = 0

1. First, the user request containing all the parameter customisation is
received by the main server as a result of the user submitting the
filled-in form for the SIRS model.

2. The coordinator calculates the analytical mean, variance and skew-
ness for the given parameters and splits the task of 10,000 simulations
(roughly) even between the 8 machines selected by the user. When
this is completed, the server now has the complete set of parameters
needed by a worker machine to performs its task.

3. Each of the 8 workers receives the HTTP request from the server and
starts the simulation. Each machine has an Rserve daemon which
processes the R requests in parallel if the R parallel library is enabled.
While the workers are busy, the coordinator is waiting for individual
replies from the machines. If a machine fails, the coordinator will
try to recover by sending the request for the failed machine to a free
worker, if one exists, or waits until one becomes available.

4. When the coordinator receives all the responses from the workers it
proceeds by processing the data received using its own copy of a par-
allelised R program. This includes calculating statistics such as mean,
variance and skewness at each point time and plotting the trajectories
from the simulation. The data is now returned to the user to save,
review or analyse further.

If the user chooses to perform an analytic only calculation, then the
coordinator will not perform part of step 2, more precisely splitting the
number of simulations chosen, and step 3 in its entirety. Also, step 4 will
proceed without the server waiting for worker responses.
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Figure 4.1: Backend architecture overview

Figure 4.2: Local architecture overview
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4.2 Frontend

The frontend was built using the EJS Javascript templating system and
Bootstrap. The user is prompted with a simple form that allows him to
choose what type of model he would like to generate data for, see Figure
4.3.

Figure 4.3: Snapshot of parallel simulator request form

Currently, there are 3 implemented models: SIR, SIRS, SEIR. Once the
desired form-tab is chosen, the user is prompted with a form personalised
to the type of model chosen. For example, in the SIRS model we have an
additional parameter δ, representing the rate of the recovered population
that loses immunity and will join the susceptible pool. Also, for the SEIR
model, we have an additional compartment of exposed individuals for which
the user has to give an initial population count. In addition, the user has
the following options: the time step used in the stochastic simulation, the
number of machines used for simulation and the possibility of getting only
the analytical calculations for the model.

Once they submit the form, the main server processes the request and
splits the work accordingly, as we described above. Once the computation
is finished along with the post-processing of data the user is prompted with
the results of the simulation, see Figure 4.4.

This includes a plot of the simulated data, plots that illustrate the dif-
ference between the analytical and simulated mean, variance and skewness
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Figure 4.4: Snapshot of parallel simulator response

along with statistics performed at each time point t.
From here, the user has the possibility of re-running the simulation with

the exact same parameters or return to the initial form and change the
parameters and/or the model. Also, we considered that the results from
the simulations might be useful in a downloadable format so we made the
feature available to the user.
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Chapter 5

Evaluation

In this section we will evaluate the accuracy of the analytical moment ap-
proximations against synthetic data and the efficiency of parallelising the
simulation web tool.

5.1 Moment approximation

We are going to look at the accuracy of our analytical calculations compared
to the simulations for our three measures: mean, variance and skewness.

We analyse the data sets by performing unpaired t-test for each measure.
The Null Hypothesis H0 states that the mean of the two data sets are the
same. We are setting the confidence level CL at 95%. Hence, for a p-
value ≥ 0.05 we will accept the null hypothesis and reject it otherwise.
Furthermore, we are looking at the average difference between the two data
sets over the course of the epidemic.

5.1.1 Mean

We perform an unpaired t-test for our two data sets, the analytical mean and
the simulated mean, at each time point t for an SIR model with parameters
S0 = 250, I0 = 5, R0 = 0, β = 0.001 and γ = 0.1 at a timestep of 0.3 and 1
for 10,000 simulations.
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Results for a timestep of 0.3 days The average difference is -0.255.
The result to the t-test is shown below:

Welch Two Sample t−t e s t

data : mean and meanLevels
t = −0.1621 , df = 537 .988 , p−value = 0.8713
a l t e r n a t i v e hypothes i s : true d i f f e r e n c e in means

i s not equal to 0
95 percent con f idence i n t e r v a l :
−3.347185 2.836787

sample e s t imate s :
mean o f x mean o f y

27.40813 27.66333

Results for a timestep of 1 days The average difference is 0.001. The
result to the t-test is shown below:

Welch Two Sample t−t e s t

data : mean and meanLevels
t = 4e−04, df = 159 .914 , p−value = 0.9997
a l t e r n a t i v e hypothes i s : true d i f f e r e n c e in means

i s not equal to 0
95 percent con f idence i n t e r v a l :
−5.777219 5.779517

sample e s t imate s :
mean o f x mean o f y

27.67039 27.66924

As the p-value of both unpaired t-tests is ≥ 0.05 we accept the null
hypothesis, that is the means of the two data sets are the same. So, we
can conclude that both methods provide the same analytical results. The
interpretation of the differences observed (if any) is that they are purely
due to random errors. Figure 5.1 shows the distribution of the two data
sets - the analytical mean and simulated mean - for the SIR model with
the parameters mentioned above, which agrees with the result of the t-test
and the average difference. We note that the statistics presented above will
differ slightly for each run due to the stochastic nature of our simulations.
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(a) Timestep 0.05 (b) Timestep 0.3

(c) Timestep 1

Figure 5.1: Comparison between simulated mean and calculated mean at
different time steps for an SIR model with parameters S0 = 250, I0 = 5,
R0 = 0, β = 0.001 and γ = 0.1

5.1.2 Variance

Similarly to Section 5.1.1, we perform an unpaired t-test for our two data
sets, the analytical variance and the simulated variance, at each time point
t for an SIR model with parameters S0 = 250, I0 = 5, R0 = 0, β = 0.001
and γ = 0.1 at a timestep of 0.3 and 1 for 10,000 simulations.
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Results for a timestep of 0.3 days The average difference is 21.306.
The result to the t-test is shown below:

Welch Two Sample t−t e s t

data : varSim and var i anceAna ly t i c
t = 2 .3317 , df = 532 .99 , p−value = 0.02009
a l t e r n a t i v e hypothes i s : true d i f f e r e n c e in means

i s not equal to 0
95 percent con f idence i n t e r v a l :

3 .356018 39.256549
sample e s t imate s :
mean o f x mean o f y

138.0449 116.7386

Results for a timestep of 1 days The average difference is 26.716. The
result to the t-test is shown below:

Welch Two Sample t−t e s t

data : varSim and var i anceAna ly t i c
t = 1 .5684 , df = 157 .519 , p−value = 0.1188
a l t e r n a t i v e hypothes i s : true d i f f e r e n c e in means

i s not equal to 0
95 percent con f idence i n t e r v a l :
−6.928338 60.361153

sample e s t imate s :
mean o f x mean o f y

143.4183 116.7019

The t-tests performed for the two different time steps give conflicting
results. At a time step of 1 we should accept H0, while at a time step of
0.3 we should reject H0. Calculations are more precise with the decrease
of the time step, hence we are inclined to believe the output of the t-test
performed for time step 0.3. This, together with the differences observed
in Figure 5.2 suggest that we should reject the Null Hypothesis. Therefore,
we conclude that the analytical calculation of variance does not agree with
the simulated variance. This discrepancy is introduced most likely by the
approximation performed in the moment closure.
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(a) Timestep 0.05 (b) Timestep 0.3

(c) Timestep 1

Figure 5.2: Comparison between simulated variance and calculated variance
at different time steps for an SIR model with parameters S0 = 250, I0 =
5, R0 = 0, β = 0.001 and γ = 0.1. The segments represent 2 standard
deviations from the mean.
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5.1.3 Skewness

Results for a timestep of 0.3 days The average difference is -0.019.
The result to the t-test is shown below:

Welch Two Sample t−t e s t

data : skewness and skewLevels
t = −0.327 , df = 437 .301 , p−value = 0.7438
a l t e r n a t i v e hypothes i s : true d i f f e r e n c e in means

i s not equal to 0
95 percent con f idence i n t e r v a l :
−0.13532919 0.09672104

sample e s t imate s :
mean o f x mean o f y
0.6004772 0.6197813

Results for a timestep of 1 days The average difference is -0.095. The
result to the t-test is shown below:

Welch Two Sample t−t e s t

data : skewness and skewLevels
t = −0.8944 , df = 134 .364 , p−value = 0.3727
a l t e r n a t i v e hypothes i s : true d i f f e r e n c e in means

i s not equal to 0
95 percent con f idence i n t e r v a l :
−0.3068925 0.1157557

sample e s t imate s :
mean o f x mean o f y
0.5143321 0.6099006

Here, we again accept the Null Hypothesis that the simulated and analyti-
cally calculated skewness are correlated. However, these results are not as
strong as the ones obtained for the mean in Section 5.1.1. Again, we believe
that the approximations made within moment closure are the cause for a
less precise fit of the analytical skewness onto the simulated skewness.
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Figure 5.3: Comparison between simulated skewness and calculated skew-
ness at time steps 1 for an SIR model with parameters S0 = 495, I0 = 5,
R0 = 0, β = 0.001 and γ = 0.1 at 10,000 runs

Figure 5.4: Comparison between simulated skewness and calculated skew-
ness at time steps 0.3 for an SIR model with parameters S0 = 495, I0 = 5,
R0 = 0, β = 0.001 and γ = 0.1 at 10,000 runs
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5.2 Performance

The Parallel Simulator was designed to be a time-efficient tool that can
perform a large number of stochastic simulations. Below we present data
regarding simulation time for different numbers of runs, different numbers
of worker machines in the cloud and different simulation time steps. In
addition, we present the time improvement achieved using R’s parallelising
capabilities.

Simulation time for different runs of the SSA algorithm In Table
5.1 we can see that the simulation time increases linearly with the number
of simulations. The data was obtained using a single worker at 1,000, 10,000
and 50,000 simulation runs at a timestep of 1. From this we can approximate
the time needed for n thousand simulations as n times the simulation time
for 1,000 simulations.

No. of simulations Time(s)

timestep = 0.05 timestep = 0.3 timestep = 1

1,000 23.9 4.12 1.49

10,000 250.2s 40.75 16.1

50,000 1205.34 210.5 85.32

n x 1,000 approx. n x 24 approx. n x 4.2 approx. n x 1.5

Table 5.1: Simulation time for an SIR model running on 8 worker machines

Simulation time for distinct sizes of the worker cloud of machines
For our comparison between moments of infected counts calculated analyt-
ically and from simulations we require a large number of simulation runs
to be performed. Figure 5.5 shows the time improvement achieved using
different numbers of worker machines across distinct simulation time steps
for 10,000 runs of stochastic simulations of an SIR model. We can also ob-
serve that the simulation time is inverse proportional with the time step.
This is expected as a decrease in timestep means a proportional increase in
calculations for each simulation.

R parallel package time improvement The servers used to host the
Parallel Simulator are dual core machines. Hence, using R parallel package
for the more intensive operations resulted, on average, in a 50% time reduc-
tion. However, we observed that the overhead of setting up the clusters is
bigger than the time speed up for less intensive operations.
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Figure 5.5: Simualtion time for different timesteps on the cloud for 10,000
simulations of the SSA algorithm
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Chapter 6

Conclusion

For the most part, we consider this project a success. We detailed the process
of analytically deriving the mean, variance and skewness of the infected
counts in compartmental models and compared it against synthetic data.
However, our investigations showed that the approximations made were, at
times, to coarse for the aforementioned measures to correctly describe the
epidemiological processes.

In addition, we successfully implemented a parallelised visualisation tool
that allows for a speed-up of up to 16 times when using a cluster of 8
worker servers. The tool achieved its goal of providing users with quick
realisations of stochastic simulations along with analysis and statistics of
the particularities of the epidemiological model.

6.1 Future Work

In this section we discuss improvements that could be made to the work
presented in this project:

• Further investigation into the errors generated by the higher-moments
approximation (or otherwise) to rigorously justify the differences be-
tween analytical and simulated calculations for variance and skewness.

• Perform a comparison between different types of moment closures (nor-
mal, log-normal, min-normal etc.) to establish if they could yield bet-
ter analytical moment approximations.

• Make the Parallel Simulator support user defined compartmental mod-
els. We think that the tool will become more useful if the user could
define its own model through simply inputting the ODEs that define
it. This would allow for additional testing of the ideas discussed in
this project.
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• Another extension to the simulation tool could be the ability of per-
forming simulations in real time, allowing the user to see the output
changing instantly as they modify the input parameters.
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