
Department of Computing
Imperial College London

Loupe – Discovering the Impact of Program
Patches

Author: Artur Spychaj

Supervisor: Sophia Drossopoulou

Co-supervisor: Timothy Wood

Second marker: Alastair Donaldson

June 16, 2015

2

Abstract

Programmers write code patches in order to make an application better, some of which change
behaviour of the application. Sometimes these behaviour changes are unexpected and not what
the programmer expected. A tool called SVM combines two techniques – symbolic execution and
trace equivalence analysis – to find scenarios where unexpected behaviours are introduced. SVM
does not scale with the size of the application as larger applications have more paths and each of
the paths takes more time to execute.

We present our tool loupe that extends SVM by abstracting a user provided list of classes making
the application we are analysing simpler. Loupe processes the original source code and creates an
a class that approximates the sequence of method calls and return values of the non abstract
class.

We evaluated the performance gain achieved by the use of abstractions. We show that by making
abstractions over-approximate branch and loop conditionals symbolic execution explores scenarios
30 times faster. We show that this results in loupe being able to discover unexpected behaviour
changes for twice as many benchmark examples within the same time limit. Furthermore we
show that the presence of abstractions does not generate many false positives.

3

4

Acknowledgements

I would reallt like to thank Prof. Sophia Drossopoulu and Tim Wood for their guidance and
thoughtful feedback throughout the project. Finally I would also like to thank my parents for all
of their support and help.

5

6

Contents
1 Introduction 10

1.1 Motivating example . 11
1.2 Objectives . 13
1.3 Contributions . 13
1.4 Report outline . 14

2 Background 15
2.1 Core concepts . 15

2.1.1 Java internals . 15
2.1.2 Behaviour equivalence analysis . 16
2.1.3 Symbolic execution . 17
2.1.4 Affected and unaffected objects . 20
2.1.5 Trace equivalence . 21
2.1.6 Control flow graph . 23
2.1.7 Code flow analysis . 25
2.1.8 Points-to analysis . 25
2.1.9 Dominators . 27
2.1.10 Most general context . 28
2.1.11 Decompilation of code . 28

2.2 Libraries used in this project . 29
2.2.1 Soot framework . 29
2.2.2 CodeModel . 29
2.2.3 IntelliJ plugin framework . 29

2.3 Alternative approach used to run Java programs 30
2.4 Alternative approaches to code simplification . 30

2.4.1 Method summaries . 30
2.4.2 Uninterpreted functions . 31

2.5 Alternative approaches to equivalence analysis 31
2.5.1 Overview . 31
2.5.2 Dependency graph . 33
2.5.3 Reverse refactoring . 34
2.5.4 Analysis through unit testing . 35
2.5.5 Control flow analyses . 36
2.5.6 Symbolic diff . 37

3 Implementation of Loupe 38

4 Using Loupe 38
4.1 IntelliJ plugin for Loupe . 38

4.1.1 Running the loupe tool in IntelliJ . 39
4.1.2 Running the CLI tool . 40
4.1.3 Processing loupe IntelliJ plugin output . 40

5 Loupe architecture 41
5.1 Architecture overview . 41
5.2 Specification . 43

5.2.1 Creating and using a behaviour difference specification 43

7

6 Generating abstractions 45
6.1 Abstracting behaviours . 46

6.1.1 Retained behaviours . 46
6.1.2 Abstraction API . 47
6.1.3 Using the abstraction API to build abstractions 49
6.1.4 Running abstractions inside of svm . 49
6.1.5 Implementing abstraction API . 49

6.2 Improving abstraction precision by code analysis 51
6.2.1 Dealing with parameters . 53
6.2.2 Mirroring method calls and dealing with new 54
6.2.3 Points-to analysis . 55
6.2.4 Keeping the control flow . 56

6.3 Generating Java code . 57
6.3.1 Overview of the algorithm . 58
6.3.2 Branch structuring . 60
6.3.3 Loop structuring . 60
6.3.4 Simplifying structured graph . 62
6.3.5 Generating Java from structured graph 62

7 Svm 64
7.1 Svm overview . 64
7.2 Svm performance . 64
7.3 Search strategy . 65
7.4 Contributions to svm library . 66

7.4.1 Caching SMT results . 66
7.4.2 Caching of data . 67
7.4.3 Memory sharing . 67

8 Limitations 68
8.1 Project integration . 68
8.2 State explosion . 68
8.3 Abstraction performance . 68
8.4 Parallelism . 69
8.5 Svm Java support . 69
8.6 Specification language . 69
8.7 Retaining object properties . 70

9 Evaluation 71
9.1 Testing environment . 71
9.2 Data collected . 71
9.3 Svm configurations . 72
9.4 Choice of benchmarking examples . 73
9.5 Results . 74

9.5.1 Automatic generation of abstractions . 74
9.5.2 Overhead of abstraction instrumentation 74
9.5.3 Effect of abstraction policy on performance 76
9.5.4 Effect of search strategy on performance 76
9.5.5 Effect of abstractions on false negative rate 81
9.5.6 Effect of abstractions on false positive rate 81

8

9.5.7 Summary . 82

10 Conclusions 82
10.1 Future work . 83

10.1.1 More lenient trace equivalence . 84
10.1.2 Easier generation of partitions . 85
10.1.3 Path merging . 86

A Appendix: Code examples 89
A.1 Package Manager . 89
A.2 Web app example . 92

A.2.1 Router abstractions . 92
A.3 Even change example . 95

A.3.1 Shallow abstraction . 97

B Appendix: Raw results 98

9

1 Introduction

Software is engineered through a continuous and joined effort of developers. As new features are
required, code is modified over and over again. However, as the project gets large it also gets
more brittle – changes which seem to solve one problem usually end up causing many more. In
fact 15-25% of bug fixes do not completely fix the issue and often introduce new bugs [1].

Unit and integration tests are used in order to prevent bugged code changes. Nevertheless, while
they give a rough estimate of what works, they are insufficient to catch subtle bugs [2].

These testing methods do not find all bugs because writing tests that catch all bugs takes a lot
of effort. It would require writing tests that specify the entire behaviour of an application. It
seems that a technique that looks specifically for unexpectedly introduced behaviours could do
better. The problem of catching bugs introduced by code changes could be solved by running
tools that allow us to express and verify in code whether what we though we changed is
what actually changed.

We call such testing/specification methods which compare two versions of a program, equivalence
analysis. The goal of this project is to investigate techniques to enhance performance of an
existing equivalence analysis tool called SVM. The tool SVM takes two versions of a program and
a specification of the maximum behavioural difference between the versions, and then checks
that the actual behavioural difference is indeed at most the behavioural difference specified. The
behavioural difference specification (bds) is given as a predicate which partitions all the objects
that are instantiated during execution into the ones whose behaviour is allegedly affected by the
modification and the ones whose behaviour is allegedly unaffected by the modification.

This bds predicate induces a partition of the program stack and heap at each execution step.
Objects that are allegedly unaffected by the modification and any stack frames with a this
pointing to such an object are said to be in the unaffected part of the program state, the rest of
the objects and stack frames are said to be in the affected part of the program state.

The bds-specification is valid, if, for all program scenarios, at each execution step, the unaffected
part of both versions are indeed equivalent. Equivalence means that the only difference between
the unaffected parts of the state is the exact memory location that each object is allocated at –
the shape of the pointers and the values of any primitives in stack variables or fields must be the
same.

From the programmer’s perspective such bds are useful for the following reason: If the bds is
satisfied then the allegedly unaffected objects will indeed behave identically in each version. If
the bds is violated then some allegedly unaffected object changed its behaviour.

However, checking whether bd-specifcations are violated is computationally expensive: it requires
to search across a potentially infinite number of program scenarios, and for each scenario, compute
differences between the two program versions. SVM reduces the number of scenarios that need to
be considered though the employment of symbolic execution, and the complexity of comparison
by only comparing frames (i.e. the receiver and arguments of method calls) rather than frames
and heaps. The latter reduction has been shown sound in [3].

Because programs can have an infinite number of states SVM will scan through as many scenarios
as it can given a time limit. This makes the tool unsound: if the tool does not find a violation
within a time limit, violations may or may not be present in unexplored scenarios.

In this project we investigated whether it is possible to improve performance of SVM without

10

excessively affecting its accuracy. We adapted ideas from mock objects [4], and replaced some
objects by their approximations.

We called our new tool loupe. Loupe automatically generates approximations for unaffected
objects indicated by a programmer. When run by SVM these approximations have the same
behaviour.

Our hypothesis was that a) by carefully choosing the objects that we approximate, and the
approximation that we use, that we can decrease the time to detect a bds violation compared to
precisely symbolically executing everything, b) that since we introduce the same extra behaviour
into the unaffected objects of both programs, both programs should respond in an equivalent way
without violating a bds and thus the rate of incorrectly detected bds violations would be limited.

Indeed, we have applied our ideas to a test suite of 6734 lines and have deduced that approximations
can bring a speedup of up to 30 times and introduced only a single false positive. Furthermore,
by using abstractions we were able to reduce false negative rate from 66% to 33%.

1.1 Motivating example

The motivation example is an adapted example from the Program Equivalence through Trace
Equivalence paper[3]. Listings 1 to 3 shows different versions of an application which was given
the following setting:

The program awards three prizes to the top three eligible students ordered by grade,
and also logs which students were considered for prizes. Users complain that it is hard
to see who was and was not considered for a prize in a list ordered by grade. The
modified program logs students in name order instead. Unfortunately the programmer
makes a mistake and the modified program award prizes to the wrong students.

Using SVM it is possible for the programmer find this unexpected behaviour change. Given this
patch the programmer would proceed to define the bds. The affected objects include all instances
of Logger since it now sorts the students. However, while other classes’ source code was not
changed the following instances of classes are also affected: PrintStream since it now prints
an ordered list and List1 because its items get reordered. It is important to note that the
programmer would expect the Prizes class instance to remain unaffected.

However, this bds would be violated. Listing 2 changes the behaviour of the Prizes class. In
particular Prizes expects to receive the same top students to award. Since the list gets sorted
under some scenarios the returned students change.

The modification in listing 3 corrects the problem. This version copies the list before sorting it,
and so the Prizes object will receive an equivalent list of students to reward as in version 1.

The main issue comes from the fact that the Main method makes a call to the StudentsDb class
(orderedByGrade method). Because SVM uses symbolic execution this can cause the following
troubles. Firstly some instructions might be overly complex to explore – for instance the program
might compute checksums of packets in order to verify the validity of received data. Secondly
tests become dependent on the state of the environment – for instance the database would return
a list of students for which the violation does not occur. Thirdly many database queries are
irreversible making it impossible to explore all possible scenarios.

1Also internal classes used in the representation of Lists

11

1
in

te
rf

ac
e

Pr
oc

es
sD

at
aS

et
{

2
vo

id
pr

oc
es

s
(L

is
t
<
St

ud
en

t
>

st
ud

en
ts

);
}

3 4
cl

as
s

Ma
in

{
5

St
ud

en
tD

b
db

=
ne

w
St

ud
en

tD
b
()

;
6

Lo
gg

er
lo

gg
er

=
ne

w
Lo

gg
er

()
;

7
Pr

iz
es

pr
iz

es
=

ne
w

Pr
iz

es
()

;
8 9

vo
id

ma
in

()
{

10
db

.
or

de
re

dB
yG

ra
de

(
st

ud
en

ts
->

{
11

lo
gg

er
.
co

ns
id

er
ed

(
st

ud
en

ts
);

12
pr

iz
es

.
aw

ar
dT

o
(
st

ud
en

ts
);

})
}}

13 14
cl

as
s

Pr
iz

es
{

15
vo

id
aw

ar
dT

o
(L

is
t
<
St

ud
en

t
>

st
ud

en
ts

)
{

16
aw

ar
d
(
st

ud
en

ts
.g

et
(0

))
;

17
aw

ar
d
(
st

ud
en

ts
.g

et
(1

))
;

18
aw

ar
d
(
st

ud
en

ts
.g

et
(2

))
;}

19
vo

id
aw

ar
d
(
fi

na
l

St
ud

en
t

st
ud

en
t
)

{
20

/*
..

.
*/

}}
21 22

cl
as

s
St

ud
en

t
{

23
St

ri
ng

na
me

()
{

/*
..

.
*/

}}
24 25

cl
as

s
St

ud
en

tD
b

{
26

vo
id

or
de

re
dB

yG
ra

de
(
Pr

oc
es

sD
at

aS
et

pd
s)

{
27

/*
ta

lk
to

DB
*/

}}
28 29

cl
as

s
Lo

gg
er

{
30

vo
id

co
ns

id
er

ed
(L

is
t
<S

tu
de

nt
>

st
ud

en
ts

)
{

31 32 33 34
fo

r
(
St

ud
en

t
s

:
st

ud
en

ts
)

{
35

pr
in

tl
n
("

co
ns

id
er

ed
:␣

"
+

s.
na

me
()

);
}}

}

Li
st
in
g
1:

Ve
rs
io
n
1.

T
hi
s
Ja
va

pr
og

ra
m

aw
ar
ds

pr
iz
es

to
to
p

st
ud

en
ts
.

It
al
so

lo
gs

w
hi
ch

st
ud

en
ts

w
er
e

co
ns
id
er
ed

fo
r
a
pr
iz
e.

1
in

te
rf

ac
e

Pr
oc

es
sD

at
aS

et
{

2
vo

id
pr

oc
es

s
(L

is
t
<
St

ud
en

t
>

st
ud

en
ts

);
}

3 4
cl

as
s

Ma
in

{
5

St
ud

en
tD

b
db

=
ne

w
St

ud
en

tD
b
()

;
6

Lo
gg

er
lo

gg
er

=
ne

w
Lo

gg
er

()
;

7
Pr

iz
es

pr
iz

es
=

ne
w

Pr
iz

es
()

;
8 9

vo
id

ma
in

()
{

10
db

.
or

de
re

dB
yG

ra
de

(
st

ud
en

ts
->

{
11

lo
gg

er
.
co

ns
id

er
ed

(
st

ud
en

ts
);

12
pr

iz
es

.
aw

ar
dT

o
(
st

ud
en

ts
);

})
}}

13 14
cl

as
s

Pr
iz

es
{

15
vo

id
aw

ar
dT

o
(L

is
t
<
St

ud
en

t
>

st
ud

en
ts

)
{

16
aw

ar
d
(
st

ud
en

ts
.g

et
(0

))
;

17
aw

ar
d
(
st

ud
en

ts
.g

et
(1

))
;

18
aw

ar
d
(
st

ud
en

ts
.g

et
(2

))
;}

19
vo

id
aw

ar
d
(
fi

na
l

St
ud

en
t

st
ud

en
t
)

{
20

/*
..

.
*/

}}
21 22

cl
as

s
St

ud
en

t
{

23
St

ri
ng

na
me

()
{

/*
..

.
*/

}}
24 25

cl
as

s
St

ud
en

tD
b

{
26

vo
id

or
de

re
dB

yG
ra

de
(
Pr

oc
es

sD
at

aS
et

pd
s)

{
27

/*
ta

lk
to

DB
*/

}}
28 29

cl
as

s
Lo

gg
er

{
30

vo
id

co
ns

id
er

ed
(L

is
t
<S

tu
de

nt
>

st
ud

en
ts

)
{

31 32 33
so

rt
(
st

ud
en

ts
,

co
mp

ar
eS

tu
de

nt
sB

yN
am

e
()

);
34

fo
r

(
St

ud
en

t
s

:
st

ud
en

ts
)

{
35

pr
in

tl
n
("

co
ns

id
er

ed
:␣

"
+

s.
na

me
()

);
}}

}

Li
st
in
g
2:

Ve
rs
io
n
2.

T
hi
s
Ja
va

pr
og
ra
m

is
a
m
od

ifi
-

ca
tio

n
of

th
e
pr
og

ra
m

in
1.

St
ud

en
ts

ar
e
no

w
lo
gg

ed
in

na
m
e
or
de

r.
H
ow

ev
er
,t

hi
s
ve
rs
io
n
aw

ar
ds

pr
iz
es

to
th
e
w
ro
ng

st
ud

en
ts

be
ca
us
e
th
e
so
rt

in
Lo

gg
er

un
in
-

te
nt
io
na

lly
m
ut
at
es

th
e
lis
t.

T
he

m
od

ifi
ed

pa
rt
s
ar
e

hi
gh

lig
ht
ed

.

1
in

te
rf

ac
e

Pr
oc

es
sD

at
aS

et
{

2
vo

id
pr

oc
es

s
(L

is
t
<
St

ud
en

t
>

st
ud

en
ts

);
}

3 4
cl

as
s

Ma
in

{
5

St
ud

en
tD

b
db

=
ne

w
St

ud
en

tD
b
()

;
6

Lo
gg

er
lo

gg
er

=
ne

w
Lo

gg
er

()
;

7
Pr

iz
es

pr
iz

es
=

ne
w

Pr
iz

es
()

;
8 9

vo
id

ma
in

()
{

10
db

.
or

de
re

dB
yG

ra
de

(
st

ud
en

ts
->

{
11

lo
gg

er
.
co

ns
id

er
ed

(
st

ud
en

ts
);

12
pr

iz
es

.
aw

ar
dT

o
(
st

ud
en

ts
);

})
}}

13 14
cl

as
s

Pr
iz

es
{

15
vo

id
aw

ar
dT

o
(L

is
t
<
St

ud
en

t
>

st
ud

en
ts

)
{

16
aw

ar
d
(
st

ud
en

ts
.g

et
(0

))
;

17
aw

ar
d
(
st

ud
en

ts
.g

et
(1

))
;

18
aw

ar
d
(
st

ud
en

ts
.g

et
(2

))
;}

19
vo

id
aw

ar
d
(
fi

na
l

St
ud

en
t

st
ud

en
t
)

{
20

/*
..

.
*/

}}
21 22

cl
as

s
St

ud
en

t
{

23
St

ri
ng

na
me

()
{

/*
..

.
*/

}}
24 25

cl
as

s
St

ud
en

tD
b

{
26

vo
id

or
de

re
dB

yG
ra

de
(
Pr

oc
es

sD
at

aS
et

pd
s)

{
27

/*
ta

lk
to

DB
*/

}}
28 29

cl
as

s
Lo

gg
er

{
30

vo
id

co
ns

id
er

ed
(L

is
t
<S

tu
de

nt
>

st
ud

en
ts

)
{

31
Li

st
<
St

ud
en

t
>

st
ud

en
ts

Co
py

=
32

ne
w

Ar
ra

yL
is

t
<>

(
st

ud
en

ts
);

33
so

rt
(
st

ud
en

ts
Co

py
,
co

mp
ar

eS
tu

de
nt

sB
yN

am
e
()

);
34

fo
r

(
St

ud
en

t
s

:
st

ud
en

ts
Co

py
)

{
35

pr
in

tl
n
("

co
ns

id
er

ed
:␣

"
+

s.
na

me
()

);
}}

}

Li
st
in
g
3:

Ve
rs
io
n
3.

T
hi
s
Ja
va

pr
og

ra
m

is
a
m
od

ifi
ca
-

tio
n
of

th
e
pr
og

ra
m

in
1.

St
ud

en
ts

ar
e
no

w
lo
gg

ed
in

na
m
e
or
de

r.
T
hi
s
ve
rs
io
n
aw

ar
ds

pr
iz
es

to
th
e
rig

ht
st
ud

en
ts

by
co
py

in
g
th
e
lis
t
of

st
ud

en
ts

be
fo
re

so
rt
in
g

it.
T
he

m
od

ifi
ed

pa
rt
s
ar
e
hi
gh

lig
ht
ed

.

12

Loupe solves those issues. If a programmer decides that StudentDb should be abstracted loupe
would generate a class that has the same interface as StudentDb. However, instead of performing
IO it would invoke methods or return symbolic values. In this example, we could approximate the
effect of calls to the method StudentDb.orderedByGrade by returning a noop. However, given
such an approximation no bds violation would be found. An abstraction generated by loupe
would call the ProcessDataSet.process method passing it a symbolic List of Student objects,
allowing us to find the bds violation without having to execute complex library code or perform
IO operations.

The approximated objects behave the same in executions of both versions, so error states
introduced by the approximation are often introduced into both versions. In this example a List
of Student objects with less than 3 elements will cause an IndexOutOfBoundsException in the
Prizes.awardTo method of each version. However, since both versions exhibit this same extra
behaviour no additional spurious bds violations will be reported.

1.2 Objectives

The objective of this project is to generate abstractions given their concrete implementations.

1. Automatic generation of code abstractions - Make a tool that automatically generates
abstractions that closely resemble the concrete implementation. The abstractions need to
be able to deal with IO interactions.

2. Validate performance improvement - Evaluate whether or not abstracting the program
increases the speed with which bugs can be found.

3. Validate accuracy - Evaluate whether or not abstracting a program generates false positives
compared to using just a concrete version.

1.3 Contributions

1. Created a tool that makes it easy to perform equivalence analysis between the two versions.

2. Created library that generates abstractions. This library over approximates classes in order
to increase the rate with which unexpected behaviour changes are found.

• The most prominent feature is an efficient abstraction API used to express non
deterministic behaviours. Being designed with performance in mind it minimises the
number of SMT queries made during symbolic execution. As a result for several
examples unexpected behaviours were detected faster whilst abstractions were used.

3. Made several optimisations to the SVM library in order to handle more complex examples.

4. Verified the effect of using abstractions on performance and accuracy of the tool. I show
that using abstractions results in loupe being able to find violations in twice as many
benchmark examples.

13

1.4 Report outline

• Background (page 15) covers the concepts necessary in order to understand how a trace
equivalence engine works and how abstractions fit into checking of partition violations.

• Implementation section (page 38) discusses the implementation details that went into
building of the abstraction generation. The section gives a general introduction to the
front facing UI of the tool. Later the architecture section (page 41) details the general
architecture of the tool that performs the abstraction and does trace equivalence analysis
while generating abstractions section (page 45) details the process in which the abstractions
are generated automatically.

• Limitations section (page 68) discusses some limitations that the current version of the
analyser has and discusses ways in which some of these limitations could be mitigated.

• Evaluation section (page 71) discusses the methodology in which the hypothesis whether
abstractions are useful in a multiple version analysis tool was evaluated and discusses the
collected results.

• Conclusion section (page 82) gives the insights summarising the entire project. In addition
it includes the future work section which contains ideas worth pursuing in order to make
the tool scale even better and make it more approachable to the general user.

14

2 Background

This section gives a detailed introduction to techniques and approaches taken that are used in
equivalence analysis. Each subsection will also mention the extent to which each technique is
applied in this specific task and will summarize its benefits as well as limitations.

Section 2.1 discusses all of the core concepts on which this project is based.

Section 2.2 lists the main libraries that are used in this project.

Sections 2.3 to 2.5 discuss different alternative techniques and approaches that are applicable to
the project.

2.1 Core concepts

2.1.1 Java internals

Java is a high level language. It tries to give the capability of writing source code that can be run
on any platform. Making this goal achievable is possible since every Java program runs inside of
a VM that interprets and executes Java code called Java Virtual Machine (JVM).

To minimise the complexity that would be necessary to port all Java semantics to each platform
JVM interprets a lower level instruction set called Java bytecode. Bytecode is a stack based
instruction set which is much less complicated compared to Java. For the JVM’s instruction set
does not have a notion of variables. Instead it requires objects to be stored at specific locations.
For instance an operation STORE 3 which means store at stack location 3.

The JVM instruction set in called Java bytecode and in some cases differs from Java. A few
important to note differences are:

1. Bytecode has no notion of generics – since Java 1.5 Java allows code to be annotated with
additional type information that allows to express such data structures as lists of objects of
type T. The type system then verifies that the method calls satisfy the type and makes the
language safer. However when the code gets compiled types get erased. Because of that
they cannot be accessed when reading bytecode.

2. Bytecode contains goto statements – in Java all branch instructions are expressed with
different control flow statements such as if/then/else, while, do-while or switch statements.
However, in bytecode all of these are unified into a GOTO instruction.

3. Bytecode does not have complex instructions – it is common in Java to write a single
instruction which makes multiple method calls that take multiple parameters. For instance
it is not uncommon to see code like System.out.printf("SomeText%s", text). However,
such a complex operation is simply not permitted in bytecode. Instead, each argument is
pushes onto a stack in a separate instruction. Once all parameters are pushed to the stack
the method is called.

4. Bytecode has NEW and <init> methods instead of the constructor – in Java constructors
are defined by creating a method named just like a class. In bytecode that method is
renamed to <init>. Furthermore, in bytecode object construction is split into two bytecode
instructions NEW and <init>. The NEW instruction allocates memory for the new object.

15

The <init> method called the constructor methods. Thus in the example below the Java
code on the left would translate to the bytecode on the right.

new ArrayList (5); NEW java/util/ArrayList
DUP
ICONST_5
INVOKESPECIAL ArrayList.<init > (I)V

2.1.2 Behaviour equivalence analysis

An execution of a program can be expressed as a sequence of instructions. However, many
programs depend on external input or non deterministic choices. Therefore, if we are interested in
comparing the behaviours of a program we need to take into account all of the possible scenarios2

and behaviours that these scenarios give rise to. These are represented by a tree for example
fig. 1.

Consider the following code in listing 4. This application writes the Hello World! message.
Under a scenario when it is not passed any command line arguments it prints the message to
stdout. However when it is passed at least one command line argument it prints the message to
the specified file.

1 public class WriteSomeLogsMain {
2 public static void main(String [] args) throws IOException {
3 if (args.length > 1) {
4 System.exit (1);
5 }
6 PrintStream w = args.length == 0
7 ? System.out
8 : new PrintStream(args [0]);
9
10 w.println("Hello␣world!");
11 }
12 }

Listing 4: WriteSomeLogs main application.

Start

Prints to stdoutexit(1) Prints to file

Program exits

args=“”
args=“<filename>”args=“<arg1> <arg2>”

Figure 1: A simplified set of python executable behaviours.

Suppose a programmer would like to print Hello World! message in colour. This can be done
by printing an escape code. For instance printing \e[0;31m will colour the text red. Thus the
new version could look like listing 5.

2A scenario describes the set of inputs under which a program is executed.

16

1 public class WriteSomeLogsMain {
2 public static void main(String [] args) throws IOException {
3 if (args.length > 1) {
4 System.exit (1);
5 }
6 PrintStream w = args.length == 0
7 ? System.out
8 : new PrintStream(args [0]);
9
10 w.println("\e[0;31 mHello␣world!");
11 }
12 }

Listing 5: WriteSomeLogs application. The new version makes the output coloured.

When comparing the behaviour of applications we need to consider all possible scenarios and
see how the first application compares relative to the other. Behaviour analysis allows us to
compare behaviours and check if they are equivalent. When comparing two versions the behaviour
differences can be classified in three ways:

• Preserved behaviours – in this case both versions behave in the same way. For example
when two arguments are passed both versions preserve the same behaviour – they exit with
System.exit(1).

• Expected behaviour change – in this case the applications behave in a different way. However,
the difference has been expected by a programmer. For instance in the WriteSomeLogsMain
the programmer wanted to colour the “Hello World!” message.

• Unexpected behaviour change – in this case the applications behave in different ways.
However, the programmer did not expect such change. For example the new version will
print \e[0;31mHello world! to a file. It is up to the programmer to decide whether this
change was unintended.

There are two goals of this project. The first goal is to provide a specification format that allows
to differentiate between expected and unexpected changes. The second goal is to efficiently find
unexpected behaviour changes between the two program versions.

2.1.3 Symbolic execution

In order to build an equivalence analysis tool it needs to be able to explore different program
scenarios and find the scenario for which the unexpected behaviour change occurs.

It is possible to use just the source code in order to find places where the behaviour is different3.
Nevertheless, inferring information from the code is a difficult process as a lot of the contracts
established by the source code are not written explicitly.

Symbolic execution is a technique which explores different program scenarios by simulating the
source code. One of the earliest systems were the EFFIGY and SELECT systems [5][6]. Authors
of EFFIGY describe symbolic execution in the following way:

3This is done by static analysis which infers properties from code. Code analyses are later explained in
section 2.1.7.

17

Instead of executing a program on a set of sample inputs, a program is “symbolically”
executed for a set of classes of inputs. [. . .] The class of inputs characterized by each
symbolic execution is determined by the dependence of the program’s control flow on
its inputs. [. . .] If the control flow of the program is dependent on the inputs, one
must resort to a case analysis.

In order to express what this means let’s consider the program from listing 5 again. Args is
user provided, hence it could potentially be anything. Thus, it is treated as a symbolic variable.
Instead of defining args with a single value args is defined in terms of a set of values.

When the program reaches line 3 the choice of whether it takes the then branch or the else branch
depends on the symbolic input. At this point a case analysis needs to be performed, i.e. a symbolic
execution must explore the case where args.length > 1 and case where !(args.length > 1).
To do this a symbolic execution forks the program and explores both cases separately.

Executing the case where args.length > 1 leads to a termination condition. On the
other hand executing the case where !(args.length > 1) leads to another instruction
which has its effect depend on the symbolic value of args. This is the instruction on
lines 6-8. Thus both cases when !(args.length > 1) && (args.length == 0) and when
!(args.length > 1) && (!args.length == 0) have to be explored.

As a result all possible behaviours for this program can be explored by checking 3 cases for
the args value:

1. args.length == 0
2. args.length == 1
3. args.length > 1

It is not always the case that every branch can be taken. Consider the code in listing 6. In order
to consider all program executions we have to consider the following cases:

1. args.length < 0
2. !(args.length < 0)

1 public void main(String args []) {
2 int x = args.length;
3 if (x < 0) {
4 assert false: "x␣should␣not␣be␣smaller␣than␣0";
5 }
6 }

Listing 6: Program with an unreachable body.

What is important to note is Java semantics make arrays length always positive. Effectively
the first case will never occur when executing a program. In order for the symbolic execution
program to make such a deduction it sends the query to an SMT solver4. An SMT solver parses
the query and returns whether a scenario is feasible. For this example the symbolic execution
would have to augment the query with information about array length. Augmented query shown
in fig. 2 would then be sent to the SMT solver.

4An SMT solver is a program that takes a query with a set of linear constraints and returns whether such
constraints are satisfiable.

18

&&args.length < 0 args.length >= 0
case condition Java arrays cannot have negative size

Figure 2: SMT query sent in order to check if one branch is feasible. Branch forms a part of the
query. Since the condition concerns an array length symbolic execution must add a common fact
that the length is non negative.

This fact that symbolic execution must send a query to an SMT solver to check if parts of the
code are feasible is the first limitation of the technique. In general solving a constraint set is
an undecidable problem. While the SMT solvers have improved in the past [7] solving complex
constraint sets still takes a lot of time. Moreover, symbolic executors still spend most of their
time querying the SMT solvers. A more modern symbolic execution program KLEE has made
several improvements in order to make such queries more efficient [7].

Firstly KLEE checks for feasibility of getting to any branch. Because of this it does not waste
CPU cycles exploring paths which could not happen in reality. For instance it would never
simulate the line 4 as it cannot be reached.

Secondly KLEE caches SMT queries and simplifies them making. In effect it both sends less
queries to the SMT solver and makes the queries simpler.

Thirdly it treats many variables concretely. For instance in this example by concretising the args
variable the SMT query is no longer needed. The length of a concrete array is not smaller than 0.
Hence, the branch condition would be equal to false.

The second limitation that symbolic execution needs to deal with is path explosion. Path explosion
occurs because the number of cases increases exponentially with the number of branches through
which the code goes through.

Consider the code in listing 7. It shows a program that prints all non null arguments in main.
Unlike the array example there is no universal rule that would enforce array elements to be non
null. Therefore at each branch the condition and its negation are both possible. The problem
rises due to the fact that the program iterates 200 times. Because at each branch it can both
take and not take the branch in total it will end up with 2200 unique paths. In effect the program
will no longer be able to explore the entire program within any reasonable timeout. Furthermore
most programs contain loops and have an infinite number of paths.
public static void main(String [] args) {

if (args.length < 200) {
return;

}
for (int i = 0; i < 200; i++) {

if (args[i] != null) {
System.out.println(args[i]);

}
}

}

Listing 7: An example program for which the number of paths explode.

In order to deal with the path explosion problem symbolic execution engines are equipped with
heuristic algorithms that choose the paths to explore. A good heuristic increases the likelihood of
exploring paths that contain the interesting scenario (for KLEE a scenario which contains a bug).

19

2.1.4 Affected and unaffected objects

When a programmer makes a change in the code most of its behaviour is often preserved. As
explained previously in section 2.1.2 we can classify behaviour changes in three different ways:
preserved behaviours, expected behaviour changes and unexpected behaviour changes. However
in that section we defined behaviour difference in terms of the observable output generated by
the tool.

In general it is not necessary for the tool to generate different output in order to classify its
behaviours as different. Thus we need a more general way of expressing code behaviours. A way
that allows us to express the behaviour at the level of object instances classifying them as either
affected or unaffected.

Unaffected objects are these objects which preserve their correspondence between two versions.
At every execution point their correspondence holds and they will be in the same state. This
might not hold for the affected objects. Thus for the WriteSomeLogsMain shown below we can
classify objects in the following way:

1. args object (line 2) – unaffected since the arguments for any scenario correspond between
each other.

2. System.out object (line 8) – affected since executing the line 11 by both versions causes
the correspondence to be lost.

3. new PrintStream(args[0]) object (line 9) – affected since executing the line 11 by both
versions causes the correspondence between the objects to be lost.

1 public class WriteSomeLogsMain {
2
3 String MSG = "Hello␣World!";
4
5 static void main(String [] args)
6 throws IOException {
7 if (args.length > 1) {
8 System.exit (1);
9 }
10 PrintStream w = args.length == 0
11 ? System.out
12 : new PrintStream(args [0]);
13
14 w.println(MSG);
15 }
16 }

Listing 8: WriteSomeLogs main application.
Code differences with the second version
have been highlighted.

1 public class WriteSomeLogsMain {
2 String RED = "\e[0;31m";
3 String MSG = "Hello␣World!";
4
5 static void main(String [] args)
6 throws IOException {
7 if (args.length > 1) {
8 System.exit (1);
9 }
10 PrintStream w = args.length == 0
11 ? System.out
12 : new PrintStream(args [0]);
13
14 w.println(RED + MSG);
15 }
16 }

Listing 9: WriteSomeLogs application. The
new version makes the output coloured.

Given this classification it is possible to differentiate between preserved behaviours, expected and
unexpected behaviour changes. To do this a programmer making a patch would classify object
instances as either affected and unaffected. A behaviour under a given scenario is preserved if all
objects are unaffected for that particular scenario. A behaviour has made an expected change if
there are affected objects however the programmer has classified all of them as such. Moreover, a
behaviour change is unexpected if there are affected objects but they were not classified by the
programmer as affected.

20

2.1.5 Trace equivalence

In object oriented programming code is split into classes that contain their own data and define
methods. Methods can manipulate their data of a class instance. Furthermore a method can call
a method on other objects.

To see how can we tell affected and unaffected objects apart consider the code below. Is the
Rectangle object an affected or unaffected object? On the first glance you might think that
Rectangle should be an unaffected object since we print its area() and size(). However
methods can have arbitrary code. This would not be the case if area() method would be defined
like in listing 11.

public class Shape {
static void main(String [] args) {

Rectangle shape =
new Rectangle (25);

System.out.println(shape.size ());
}

}

public class Shape {
static void main(String [] args) {

Rectangle shape =
new Rectangle (25);

System.out.println(shape.area ());
System.out.println(shape.size ());

}
}

public class Rectangle {
private size = 12;
public Rectangle(int size) {

this.size = size;
}
public int size() {

return size;
}
public int area() {

// Some implementation.
}

}

Listing 10: Rectangle example.

public class Rectangle {
private size = 12;
public Rectangle(int size) {

this.size = size;
}
public int size() {

return size;
}
public int area() {

size /= 2;
return size * size;

}
}

Listing 11: A possible rectangle implementation.

Objects cannot lose their correspondence if they are called with the same sequence of method
calls. Thus affected from unaffected objects can be distinguished from each other by comparing
the sequence of method calls they receive along with parameters passed and values they return.
Such a sequence of method calls is called a program trace.

21

Consider the listings 12 and 13. Until line 3 we can make say that the Rectangles are equivalent
under an equivalence {(Rectangle@1, Rectangle@2)}. This means that if Rectangle@1 is
equivalent to Rectangle@2 then all method calls performed on the Rectangle are equivalent.
This is true since both Rectangles get constructed with the same value (25) and both return an
equivalent address.

1 new Rectangle (25)
2 return Rectangle@1
3
4
5 Rectangle.size(Rectangle@1)
6 return 25

Listing 12: Possible trace of method calls
on the Rectangle object of the first version
of the Shape.main method. Each object is
defined in terms of a unique address (Rect-
angle@1).

1 new Rectangle (25)
2 return Rectangle@2
3 Rectangle.area(Rectangle@2)
4 return 625
5 Rectangle.size(Rectangle@2)
6 return 12

Listing 13: Possible trace of method calls on
the Rectangle object of the second version
of the Shape.main method.Each object is
defined in terms of a unique address (Rectan-
gle@2). The method calls that are different
from the first version are highlighted.

We can no longer make a correspondence between objects if two versions do not make an
equivalent method call. An equivalent method call would mean that the instance gets mutated in
an equivalent way preserving the correspondence. However, when a different method is called
then the object may get mutated in an inequivalent way, losing the correspondence. The latter
case is shown in listing 13 where the Rectangle.size() returns a different value.

What Wood et al have shown is that in order to detect whether a behaviour is preserved with
classification of objects as affected and unaffected it is only necessary to trace all method calls
at the partition boundary [3]. This means that only method calls made from affected objects
to unaffected objects and unaffected to affected objects need to be traced. This works because
in order for an unaffected object to lose correspondence it must either receive a not equivalent
value in the other version or be the receiver of a non equivalent method. By definition unaffected
objects never will make non equivalent method, thus do not need to be considered.

However this technique has a major limitation. It becomes very restrictive and reports objects
as affected even if they have the same behaviour. Take a look at a different implementation of
the rectangle. The trace of method calls receiver by the Rectangle object is shown in listings 14
and 15. It can be noticed that the behaviour of the Rectangle is preserved despite the fact that
the Rectangle.area method is called. However, without checking the source code it is impossible
to tell if the rectangles correspond to each other after line 4.
public class Rectangle {

private size = 12;
public Rectangle(int size) {

this.size = size;
}
public int size() {

return size;
}
public int area() {

return size * size;
}

}

22

1 new Rectangle (25)
2 return Rectangle@1
3
4
5 Rectangle.size(Rectangle@1)
6 return 25

Listing 14: Possible trace of method calls
on the Rectangle object of the first version
of the Shape.main method. Each object is
defined in terms of a unique address (Rect-
angle@1).

1 new Rectangle (25)
2 return Rectangle@2
3 Rectangle.area(Rectangle@2)
4 return 625
5 Rectangle.size(Rectangle@2)
6 return 25

Listing 15: Possible trace of method calls on
the Rectangle object of the second version
of the Shape.main method.Each object is
defined in terms of a unique address (Rectan-
gle@2). The method calls that are different
from the first version are highlighted.

2.1.6 Control flow graph

Programs written by programmers are stored in files. They form a sequence of characters
that combined with the semantics of a language define a behaviour of a program. However
when programs need to process source code, control flow graphs serve a much more convenient
representation.

Check the program in listing 16. In order to process the source code a program would store a 179
character long string. However, this representation is very difficult to comprehend. For instance
the string does not have any semantics attached to it. Compilers or IDEs convert then the source
code into an AST, a tree structure that represents the source code. An example of an AST is
shown in figure fig. 3. However the AST representation is not the most convenient. To process an
AST a program needs to specially handle every AST node corresponding to any statement such
as an if statement, while loop or a switch statement.

To deal with that issue a more generalised control flow graph structure is used. When CPU
executes a program it executes a sequence of instructions. A control flow graph is a directed
graph which defines the order in which these instructions are executed by a program. Because
of this it abstract over all control flow statements. The program from listing 16 would have a
control flow graph given in fig. 4.

1 public static void main(String [] args) {
2 String command;
3 if (args.length == 0) {
4 command = "run";
5 } else {
6 command = args [0];
7 }
8 System.out.println(command);
9 }

Listing 16: Simple application

23

Program

method name = Main
arguments = [String[] args]

Instruction sequence

condition = args.length == 0name = command
type = String println(command)

value = "run"
to = command

value = args[0]
to = command

Declaration IfThenElse MethodCall

Assignment Assignment

Figure 3: AST of the listing 16.

Start args.length

command = "run" command = args[0]

print(command)

End

args.length == 0

args.length != 0

Figure 4: Control flow graph of the listing 16.

24

2.1.7 Code flow analysis

Source code is a text representation of a program behaviour. Since Java follows an imperative
paradigm the method bodies define a sequence of instructions that the machine should execute.
Each instruction then makes a corresponding change to the memory of the application.

Code flow analysis is a standard method of inferring properties of code represented by a control
flow graph. In a code flow analysis the properties about the execution are propagated along the
graph and combined during branch joins. Consider an analysis that would compute the set of
variables with an even value. Take as an example the control flow graph shown in fig. 5.

x = 2

y = 4 x = x + 1

return

1

2 3

4

Figure 5: An example control flow graph. Circle nodes denote labels of statements.

From code inspection we could conclude with the following analysis. At statement 1 x is known
to be even. At all other statements y is known to be even.

Code analysis is performed by splitting all statements into entry and exits. The analysis at the
statement entry defines properties of the program that are reached when the program reaches a
given statement. Analysis at statement exits defines properties of the program once the statement
is executed. For instance the analysis of entry of statement 2 will return the set of variables that
are even when the statement 2 is reached, i.e. right after statements 1 or 3 execute. However the
statement exit states the properties after the assignment y = 4 is made.

In order to compute the analysis at statement entries the results of the predecessors are merged.
Consider statement 2. In statement 1 only x is even. In statement 3 x is not even. In order to be
certain that x is even at the entry to statement 2 it would need to be even when reached from all
predecessors. Thus at the entry no statement is known to be even.

In order to compute the analysis at statement exits the analysis result at statement entry is
processed with respect to the statement. In the case of statement 2 the entry returns no set of
even variables. On the other hand after y = 4 is executed the set of variables to be even is { y }.
This is the result of the analysis at the exit.

2.1.8 Points-to analysis

One of code flow analysis extensively used by this project is the points-to analysis. Points-to
analysis is a technique which “tries to compute an accurate information about the behaviour
of pointers” [8]. While Java does not have pointers per se it has references which are assigned
dynamically and so require the same computation.

25

When creating programs Java uses a concept of variables in order to assign data to certain names.
This allows programs to later refer to data by a previously defined name. Because of this for
more complex algorithms variables get assigned values constructed in many places.

Consider the WriteSomeLogsMain program again. The example is shown below. In this example
a variable w is created. It holds the object responsible for printing to the output. What
we expect the points-to analysis to compute is to define the mapping from variables to the
places where they get located. For instance we expect it to tell us that w can either be a file
(new PrintStream(args[0])) or stdout.
public class WriteSomeLogsMain {

public static void main(String [] args) throws IOException {
if (args.length > 1) {

System.exit (1);
}
PrintStream w = args.length == 0

? System.out
: new PrintStream(args [0]);

w.println("\e[0;31 mHello␣world!");
}

}

Points-to analysis works just like any code flow analysis and propagates the assignments in order
to find the sources of variables. For each variable, array, field assignment it adds a constraint
adding the value to the variable mapping. It unions all of the computations and results with all
possible locations for the variable definitions. This allows for instance to check if two variables
might refer to the same object.

It is possible to apply the points-to analysis either locally and find all of the places within the
context of the method body where the variable can be defined. On the other hand it is possible
to perform a whole program analysis and check for variable assignments coming from the entire
program. The advantage of the first analysis is that it is far faster than the second one. The
advantage of the second analysis is that it is far more precise in defining the mappings.

A limitation of the points-to analysis just like any other static analysis is that it often over
approximates the results and does not check for context. For instance consider the code below. A
points-to analysis will infer that s can either be defined at lines 7 or 8. Furthermore it will infer
that w can be defined either at lines 10 or 11. However it will be unable to distinguish the fact
that whenever s is defined by line 7 then w is defined by line 10.

1 public class WriteSomeLogsMain {
2 public static void main(String [] args) throws IOException {
3 if (args.length > 1) {
4 System.exit (1);
5 }
6 Scanner s = args.length == 0
7 ? new Scanner(System.in)
8 : new Scanner(new File(args [0]));
9 PrintStream w = args.length == 0
10 ? System.out
11 : new PrintStream(args [0]);
12
13 System.out.println(s.next ());
14 w.println("\e[0;31 mHello␣world!");
15 }
16 }

26

2.1.9 Dominators

The dominator is defined in a control flow graph in the following way:

Let the flow graph contain the starting node r. A vertex v dominates another version
w such that v != w if every path from r to w contains v [9].

In programs this means as much as an instruction v dominated w if the following holds: whenever
w executes v must have already been executed. What is important is not always equal to the
predecessor. Consider the WriteSomeLogsMain example again (listing 4). Its control flow graph
is defined by fig. 6. In this example the w.println statement is dominated by the program start
and both if statements. However it is not dominated by either the w assignments.

Such a definition allows us to detect branches and loops inside of the code. Branches can be
detected by checking if the predecessor is the dominator. If not then the dominator defines the
branch instruction. Loops can be detected by checking if an instruction is dominated by its
successor.

Start args.length

args.length

w = System.out w = new PrintStream(args[0])

w.println("Hello World!")

End

Figure 6: Control flow graph of the WriteSomeLogs example.

27

2.1.10 Most general context

A good analyser should provide only true positives and true negatives. Therefore it should not
find “problems” that cannot happen in a real program’s execution. However it also should not
miss any problems (false negatives) that will occur in a real program.

Static driver verifier (SDV) tries to verify that a windows driver will not violate the assertions
made by the OS APIs [10]. In order to deal with false negative issues SDV models the OS APIs
and implements a hostile model. The hostile model defines all behaviours that the API calls
could cause, both the common ones as well as the uncommon ones.

A model deals with the fact that concrete execution (against the OS) is costly. Also it allows
SDV to find rare bugs that do not occur often.

The approach introduced by Welsch generalises the approach by which models can be generated
[11]. Welsch et al introduce a notion of a most general context that defines all possible behaviours
of the environment. The most general context is being defined as a simple non deterministic loop.
On every iteration it perform the following iterations:

1. Create new objects
2. Interact with existing objects it has access to
3. Return any objects it has access to

While the most general context allows to compare two libraries behaviour extensively it checks
for far more than the observable behaviour. This is because actual behaviour of a class does not
create arbitrary objects or call arbitrary method on them.

This is why other researchers usually take a far more cautious approach where the contexts
are either generated manually (for instance in case of SDV) or some real contexts (such as
the application main code or unit tests) are modified in order to generate the contexts for the
application.

However, this limitation applies mainly to analysers that verify only a behaviour of a single
version. When comparing two versions between each other the fact that both versions in most
cases will respond in the same way when executed under the most general context.

2.1.11 Decompilation of code

A technique that reverses the compilation procedure is called a decompilation. Dava is one of
decompilers for Java and is part of the Soot framework [12].

A decompiler needs to perform many transformations on the sources in order to produce high-level
code. It needs to be able to interpret the low-level code into an internal representation. Then
the decompiler needs to replace simple stack based operations with instructions. For instance it
needs to be able to retrieve variable information.

The second stage is the restructuring state. This is the only decompilation stage that is performed
by the loupe tool. Restructuring converts a code which can contain arbitrary flow statements
(such as goto and break) into structured statements (such as if/else, switch).

The fundamental relation used by code structuring algorithms is a dominators relation. It is used
to detect both loops and branch successors. Loops are detected by checking when a statement

28

can jump to a statement it is dominated by. The fact that it is dominated by a statement means
that at the same time it had to come from that statement. Branch successors are detected by
finding a node which is dominated by the branch entry. In case if/else statements some of
these nodes will overlap. These are the nodes which follow the branch and should not be a part
of the then code block or the else code block.

The Dava decompiler uses generates Structured Encapsulation Trees (SETs) in order to create an
initial structure on top of bytecode [12]. It performs step by step structure detection. Initially it
detects and created do-while nodes. Then it locates try/catch blocks and finally if/else statements.

What normally limits the decompiler is the fact that compilation is not a reversible procedure.
Thus decompiled code might not look like code written by a programmer. Despite this flaw
decompiled code is still more readable than binary encoded bytecode.

2.2 Libraries used in this project

This section lists the most important libraries used by loupe.

2.2.1 Soot framework

Soot framework is a framework designed to process Java bytecode [13]. This framework provides
many different transformations and analyses that can be applied to Java bytecode representations.
It allows to represent Java code with multiple representations (jimple, grimp and shimp) all of
which are defined in terms of control flow graphs.

The most important features of Soot for this project are:

1. Computes the control flow graph from bytecode.
2. Compute dominators of a control flow.
3. Compute the loops of a control flow.
4. Contains a common framework for creating and performing control flow analyses.

2.2.2 CodeModel

Code model is a library that allows programmatic creation of source code [14]. It provides a
simple API to define modules, classes, methods making it easy to generate good looking Java
code without having to do String manipulation manually.

2.2.3 IntelliJ plugin framework

IntelliJ is a Java IDE which allows to code, refactor and run Java applications from a single
interface. It provides a set of plugin APIs that allow programmers to extend it with additional
functionality. It this project these APIs are used in order to allow the analysis to be run from
within the IDE.

29

2.3 Alternative approach used to run Java programs

Build tools such as maven or gradle allow the programmer to define the dependencies of the
project, as well as the way in which it should be built, run and tested. This allows to install, run
and test with a single command. For instance mvn test will run all tests in a maven project.
This allows other tools able to automatically detect the entry point of a Java application without
the necessity for the programmer to manually write it down.

This project does not support build tools. However, in order to make the setup effortless it
integrates with IntelliJ “run configurations” that also define the way in which Java programs are
run. Therefore if a Java project is run using a “run configuration” it can also be run by loupe.

2.4 Alternative approaches to code simplification

Class abstraction is a technique which allows to reduce the complexity of a class. There are
however other techniques which also make methods less complex and allow thorough exploration
of other bits of code.

These are method summaries (section 2.4.1) and uninterpreted functions (section 2.4.2). Method
summaries describe how methods bodies can be replaces with a much less computationally complex
summaries. On the other hand uninterpreted functions are functions that are not run at all.

2.4.1 Method summaries

Method summary is a technique which deals with the scalability issues for the programs by
computing a disjunction of input effect pairs and has been used by Person et al [15]. It needs to
be noted that the effect can in general also include object mutations.

∨
i

(preconditioni ∧ effecti)

The preconditions (preconditioni) define the conditions that the input variables and the envi-
ronment must pass for the program to have a certain effect while the effects (effecti) state the
statements which should be executed. In a complete method summary the union of preconditions
would have to cover all possible input cases. However, it might be difficult to compute therefore
we are often interested only in partial summary that only explores some input values.

The approach highlighted by Person computes complete method summary [15]. To decrease the
initial overhead of summary computation Godefroid computes the method summaries lazily [16].

For example a factorial function shown below could be replaced by the following partial summary:

summary = {n = 1 ∧ result = 1, n = 2 ∧ result = 2, n = 3 ∧ result = 6, . . .}

public int fact(int n) {
return n == 1 ? 1 : n * fact(n-1);

}

30

2.4.2 Uninterpreted functions

An uninterpreted function is a function that returns itself and the arguments passed instead of a
value. Both Anand and Currie have discussed the use of uninterpreted functions in order so that
they do not have to be executed [17] [18].

Later in order to compare the behaviours of the two program executions the uninterpreted
function return values are equal if they were called with the same parameters.

It is similar to the way that symbolic values are treated in a symbolic execution. For instance
consider an expression args[0].length() + 1 == (args[0].length() + 2) / 2 the example
below. If args is symbolic and the length function is pure then the expression always returns
true. However, the expression args[0].length() == args[1].length() would not since the
length method was called on a different receiver5.

The disadvantage of this method is that it only allows to approximate objects that do not have
side effects.

2.5 Alternative approaches to equivalence analysis

Trace equivalence analysis validates checks for behaviour differences against a specification. This
section describes alternative approaches which also try to find the behavioural differences between
the two versions of code.

2.5.1 Overview

Known under many names: incremental testing[19], differential analysis[20], differential static
analysis[21], incremental program testing[22] differential analysis was being studied for at least 25
years.

There are many uses of differential testing, all of them with a goal to improve the testability of
software. Lahiri et al lists more uses [21]:

Although regression test generation has often been thought of as the ultimate goal
of differential analysis, we highlight several other applications that can be enabled
by differential static analysis. This includes equivalence checking, semantic diffing,
differential contract checking, summary validation, invariant discovery and better
debugging.

The two most largely tackled use cases are differential equivalence checking and behaviour diffing
because they give a quick insight on the code change and do not require contracts to be written.
Equivalence checking is an approach which validates if the behaviours of two programs are
equivalent. In effect the result can be summarised by a single boolean (equivalent, not equivalent).
Semantic diffing on the other hand should show the inputs for which the program has a different
output.

The table 1 lists the different problems as well as already proposed solutions.
5This holds as long as args variables cannot alias one another.

31

Problem Technique - How it works
Verify code changes Reverse refactorings [23] - generate dependency graphs.

Find atomic changes and detect if they were correctly applied
Trace equivalence [3] - generate traces. Validate that
they are not violating the change specification.

Compute adequacy of tests Control flow graph [24] - An example of static analysis.
Compute the affected paths. Using code coverage determine
if the tests cover the affected paths well

Prioritize tests Symbolic execution and control flow graph [24] -
Call graphs [24] - split the changes into smaller atomic
changes. For each atomic change construct the call graph
and find affected tests.

Generate regression tests Automatic test input generation [25] - get the changed
classes. Create test inputs for these classes.
Symbolic execution [26] - create a wrapper and use it
somewhere else
Symbolic execution [27] - use symbolic execution to
guide the program into the branches which were not ex-
ecuted before.

Compute changed outputs Method summaries [15] - use symbolic execution in order
to explore potential method executions. Use the executions
to build partial summaries and compare them across ver-
sions.
Automatic test input generation [25] - get the changed
classes. Create test inputs for these classes.
Use automatic test generation [28, 20] - the authors
check how well do the automatic test generators handle
regressions. In how many mutations do they fail.
Dependency graph [29, 22] - for each variable assign-
ment a mapping from the variable name to free variables in
the expression is made.

Improve efficiency of testing Method summaries [15] - inline all method calls and
loops to make these methods execute in O(1) time.
Uninterpreted functions [16] - do not execute unnamed
functions. Instead log their method calls and compare such
logs (or traces) to detect equivalence.

Table 1: Summary of alternative techniques and their use cases.

Even though the technique exploits the fact that a code patch constitutes only a small portion of
the source code all of these cases have a problem with scalability - they cannot run for programs
with a few thousand lines of code.

32

2.5.2 Dependency graph

One of the main ways in which a program behaviour can be defined is in terms of how data flows
through the program. Assignment expressions can be used to define the dependencies between
the variables where the assigned to variable depends on all of the free variables in the expression.
This approach has been used by Jackson and Bates [29] [22]. For example in the expression
var1 = a + b - c the variable var1 depends on a, b and c.

In listings 17 to 19 the return value depends on x and y. In the first and the second program x
depends on ints[0] and y depends on ints[1]. However in listing 18 the value of y depends on
ints[2].

void run(int[] ints) {
int x = ints [0];
int y = ints [1];
return x + y;

}

Listing 17: First program

void run(int[] ints) {
int x = ints [0];
int y = ints [1];
return y + x;

}

Listing 18: Second program

void run(int[] ints) {
int x = ints [0];
int y = ints [2];
return x + y;

}

Listing 19: Third program

After having a list of dependencies we can construct a directed graph where the nodes are variables
and the edge would represent that variable depends on another variable. This approach can be
used to explain the data flow [29] [22].

This graph is easy to compute and allows to capture basic program behaviours and find the
outputs which have a new behaviour. For instance it can detect the difference between the first
two programs and the last one.

A problem with this naïve approach is that variables can depend on external inputs such as file
reads as well as variables can be redefined. Also x = a; x = x + y has a different behaviour
than x = x + y; x = a which will not be caught if we use a naïve notion of a dependency. In
order to deal with that Bates et al use different sorts of dependencies to model the data flow
including the read dependency that models the variable dependency on file content, def-order
dependency which models a variable override and flow dependency to model simple assignments.

Even with this change there are potential flows of describing program behaviour using dependencies.
Firstly this approach cannot deal with aliases. For example if we knew that ints[1] and ints[2]
actually aliased the same value then the dependency graph will falsely show a behaviour difference.
In addition Jackson et al have noticed that when two graphs have the same dependencies they
do not necessarily have the same behaviour. Both x = x + y and x = x * y have the same
dependency graph but they compute two different things [21].

2.5.2.1 Concolic execution Concolic execution is a technique closely related to symbolic
execution. Both try to explore all program scenarios. However a concolic engine initialises
variables to concrete values and then explores the code. It then collects branch constraints and
uses them to generate a new set of inputs. It sends SMT queries to check if it can cover new
branches.

The concolic executor uses a few techniques in order to make sure that a lot of states are being
explored efficiently. Programs are explored in a bounded depth-first search so that the paths of
boundless depth are not explored forever [30]. On each if statement the outcome of the branch
condition is predicted. If the prediction is incorrect the program is restarted with a fresh input

33

[30]. This makes the symbolic executor guide the execution of the program by guessing the inputs
for which a program would be executing a certain path.

Just like symbolic execution this approach also suffers the problem of path explosion as the
number of feasible paths in the program is the same.

However it can be more opportunistic as it can simply create a random assignment to the variables
and see in what state does the program end up. This is especially useful when the branch would
have a condition like hash(x) == 0. In this case an SMT solver would be unable to find an
answer and would potentially block the execution of the analyser.

2.5.3 Reverse refactoring

Many code changes only refactor code. A reverse refactoring technique validates if the programmer
completed a refactoring change successfully. [23]. For example this technique checks if a
programmer renamed all instances of a variable. Consider the following code:
public class Barometer {

public void value() {}
}
public abstract class Valuable {

public abstract int value ();
}
public class HundredPounds extends Valuable {

@Override
public int value () { return 100; }

}
public class TwoHundredPounds extends Valuable {

@Override
public int value () { return 200; }

}
public class Pocket extends Valuable {

private Valuable [] valuables;

@Override
public int value () {

return valuables.stream (). mapToInt(v -> v.value ()). sum ();
}

}

The method value() has been mentioned in multiple places. There are two definitions of the
method. One definition is made in Barometer. A second definition is made in Valuable and is
then implemented in HundredPounds, TwoHundredPounds and Pocket. In addition there is also
the call to a value method namely v.value() which refers to Valuable.value.

It is safe to rename the first method as there is only one instance referring to this definition.
However for the second method there are 5 places which all need to be renamed atomically for
the refactoring to be correct. More formally if we rename a method foo to bar we need to ensure
that:

1. All overriding methods must be accordingly changed to bar.
2. All methods which it overrides must be renamed accordingly.
3. Any places where the method foo was called must be replaced with a call to bar.

34

Having this set of rules and two versions it is possible to find and validate such refactorings. With
the example of the rename refactoring the presence of a method foo being removed and another
method named bar being added both having the same code it is a valid assumption that this
method was renamed [23].

In case the software finds any places where one of the rules above is violated it can raise warnings
that the change is not a pure refactoring change. Of course there are limitation of analysing
reverse refactorings. One is that finding refactorings does not always work [23]. Another limitation
is caused by reflection.

For example a programmer can write the following code:
public static void main(String command) {

Program p = new Program ();
Method method = p.getClass (). getMethod(command , null);
method.invoke(p, null);

}

This method takes the name of the command to be run and then calls a function named this way
in the program.

So if we call the program with the argument run then the run(null) method could be
called. Because the method call is dynamic, static analysis will be unable to directly link
method.invoke(p, null) to the command method. This would most likely fail even in the case
if we would call this by main("run") command. Under such circumstances the IDE would most
likely fail to rename the method safely as well as validate if a manually done refactoring was
indeed correct.

This limitation also applies to other types of static analysis and is one of the major problems
because of which such analysis could omit invalid code changes. The upside is that most of the
software being written does not need to make use of reflections in order to be implemented.

Another limitation of this approach is that usually code changes are not pure, i.e. many refactorings
are applied to the code at the same time. For example a method can be renamed and its body may
be changed. In this case the static analysis tool may be unable to determine what refactorings
have been applied and in effect cannot validate their correctness.

2.5.4 Analysis through unit testing

An alternative to checking whether code adheres to bd-specs is to generate bd-specs out of code
changes. Approaches in this section generate tests that demonstrate different behaviour. These
tests therefore create a list of properties which hold true for some version of the application. Such
tests are named Characterisation Tests [20] as they can be used to characterise what the program
is doing. Evans proposes a method where these tests can be generated for the version before and
after the patch is applied [20]. This results in a series of properties that the application is checked
for. The properties which are passing for both versions are properties that the program preserves.
What is useful in regression testing however are the newly passing and newly failing properties.

Newly passing or failing properties are used as the output for the differential tests. In addition
this technique can validate if unit tests cover these properties. Of course running the test suite
methods once poses a challenge for programmers to ensure that their tests cover different software
behaviour. The challenging problem here is that the accuracy of the analysis will depend on how
many tests have been written.

35

Bacchelli shows a study that compares the accuracy of such automated test generators [28].
In the paper a couple of programs are examined: Randoop, JUnit factory, JCrasher that can
automatically generate unit tests for a program. The paper has shown that the unit test generators
(in particular JUnit factory) was able to generate useful tests. In case when the code would be
mutated to have a different behaviour from the original one the at least one of the tests would
fail in 70% of the cases.

Jin created regression tests tailored to the code change being made [25]. This allows the approach
to make tests execute faster; most unit tests pass as code patches are expected to preserve
behaviour. Just like in the previous example, the refactoring tests are being run on the original
and the new version in order to show which tests started failing or passing since the original
version.

A similar approach has been shown by Ren where the entire code change is first analysed and
split into smaller changes [24]. The tool assumes an existing test suite and for each atomic change
the tests that might have been affected by such change.

The major disadvantage of automated test generation is that these techniques pre-compute a
sequence of tests results. Ideally the test generation techniques would generate tests most likely to
show the behaviour change. However if inadequate tests would be produced they could generate
more.

2.5.5 Control flow analyses

2.5.5.1 Coverage analysis A method that tries to deal with the problem of how extensively
the code is tested is control flow coverage analysis [31].

Dinh-Trong [31] looked at how can we measure the adequacy of tests and proposed to use the
test code coverage as a good metric. Because different behaviours occur when the program
takes different code paths, checking whether the unit tests have checked a lot of paths allows to
determine if they have checked a lot of behaviours.

For instance if the program contained an assertion assert(x > 0) then the test suite should
contain an input where x <= 0. If the test suite did not have such a test then the test suite
would be inadequate not covering all behaviours.

Being able to measure how well are the regression tests cover the new behaviours helps to assure
the programmer that introduced behaviours will not surprise him.

In order to be complete, the tests should cover all possible path interleavings. Under such
circumstances we would try any combination of branches taken which allows us to simulate
potential code behaviours. By decreasing the way in which code coverage is measured, we could
potentially get behaviours faster.

The simplest coverage criterion is by Blocks on Scoped Impacted Paths coverage (BSIPC). With
this criterion coverage is defined in terms of blocks which have been covered. This is equivalent
to line coverage which is a widely used metric for determining the accuracy of test suites.

The next criterion is Branches on Scoped Impacted Paths coverage (BrSIPC). This criterion
requires all of the paths within the affected code to be taken.

The final criterion is Scoped Impacted Paths coverage (SIPC). This criterion is the strictest of
them all. In order for tests to pass this criterion they must explore all feasible program executions
that also execute modified code. Such tests have potential to find all different behaviours.

36

2.5.5.2 Finding affected tests One of the problems of large regression test suites is that
they take a long time to run. Having to run all of the tests can be very painful especially given
that most of them are not impacted by the code change and will therefore still be passing.

Ren et al try to deal with this issue by computing the control flow graph for each of the tests and
then determining which of the tests can be potentially affected by the change [24]. This tests
what methods did a test depend on.

In the end, only the tests which depend on modified code need to be re-run. This control flow
analysis can also be used to detect poorly tested new behaviours in the case where the number of
tests which depend on modified code would be suspiciously small.

2.5.6 Symbolic diff

Symbolic execution can be used to compare the program behaviours. This method is called
symbolic diffing [15] [27]. The method tries to find a set of inputs for which the behaviours will
be different between the two program versions. Symbolic execution is used in order to explore
different paths that programs can execute.

Technique used by Person computes method summaries (a technique outlined in section 2.4.1).
As a result methods can be summarised by a number of precondition effect pairs. Symbolic diffing
is then performed by comparing these pairs in order to find some precondition for which the first
version would have a different effect to the second version.

On the other hand Taneja uses symbolic execution to find externally visible behaviour difference.
It uses the assumption that in order for there to exist a visible difference a new version of the code
must be executed and then must infect the state and become externally visible [27]. Symbolic
execution is thus a tool that guides the program in order to go though the affected code sooner.
This generates tests for which the inputs which are more likely to have been affected by the code
change.

37

3 Implementation of Loupe

Loupe is a tool created in this project that performs equivalence analysis. The following sections
detail the implementation details of the Loupe tool. The sections discuss the current design,
architecture, performance considerations and limitations of the tool.

Loupe is split into an IntelliJ plugin and a CLI application. In this report the IntelliJ plugin will
be referred to as an IntelliJ plugin while the CLI program will be simply referred to as loupe.

The IntelliJ plugin acts solely as a front end interface for the CLI application. Its main purpose
is to make loupe easier to use. Loupe itself is not tied to IntelliJ and could be integrated with
other IDEs. Screenshots of the IDE plugin and details of its design are discussed in section 4.1.

The underlying CLI application is explained in section 5.1. Loupe takes the behaviour difference
specification and looks for any partition violations between two program versions. Loupe is
expected to return a JSON formatted output with the findings it made. Loupe relies on a
symbolic execution library called SVM that explores the paths of both versions of the program [32].

4 Using Loupe

4.1 IntelliJ plugin for Loupe

Loupe is designed to analyse Java programs. Java programs are predominantly developed inside
of an IDE which takes care of dependency handling, finding code sources and setting up command
line arguments. Therefore, in order to make loupe fit right into the workflow of Java developers
the IntelliJ plugin was made.

Running the analysis as part of the IntelliJ plugin is very simple. The programmer is expected to
perform the following steps:

1. Open IntelliJ with your project.
2. Load both versions of your code. One

before and after the change you want
to analyse.

3. Create a Java class for specification
class. It’s format is explained in sec-
tion 5.2. So far the project structure
should look similarly to the one in
fig. 7.

4. Create a run configuration. How to do
that is explained in section 4.1.1.

5. Run the analysis in the same way as
Java programs or JUnit tests are run
in IntelliJ.

Figure 7: Example IntelliJ project setup re-
quired to run behaviour difference analysis.

38

4.1.1 Running the loupe tool in IntelliJ

Any program that a programmer wants to run needs to be configured. In a terminal this is done
by passing command line arguments. In an IDE an analogous operation is done by creating a run
configuration. Run configurations encapsulate all information necessary to run a program. They
contain type of program to be run (for instance Java application or a JUnit test) as well as the
parameters required to run it. This allows IDEs to run the program without any further set up.
Hence, it is possible to start running or debugging a program with a single keyboard shortcut.

To make it convenient to run the loupe analysis the IntelliJ plugin provides its own run configu-
ration6. The configuration has a Differential Run type and contains all information necessary
to run the analysis.

A necessary prerequisite required to run the equivalence analysis is that an IntelliJ project must
contain both versions of the program that needs to be analysed.

The run configuration is created by opening the configuration editor, creating a new
Differential Run configuration and specifying the analysis options. Opening the configuration
editor can be done by selecting the Run > Edit configurations... menu option. Creating a
new Differential Run configuration can be done by clicking on the + button and selecting the
Differential Run from options. This creates a fresh configuration for analysis which needs to
be configured. The configuration options are explained below and an example of a configured
configuration is shown in fig. 8.

1

2

3

4

Figure 8: An example run configuration.

1. main class and main method – these fields define the entry point to the program.
Typical programs execute public static void main(String[] args) method and do
not require a main method field. However loupe can execute any static method as an entry
point. The only requirement is that the main class should only have a single method with
that name.

2. bds class – this field should include a full name of a class that defines the partitioning.
loupe will try to find a scenario for both programs that violates this specification. The
specification format is explained in greater detail in section 5.2.

6The configuration is simplified by using project settings provided by IntelliJ. For instance loupe extracts
project’s classpath and module information.

39

3. vm options/program arguments/working directory/environment variables –
these are standard settings that configure the running program.

4. modules for both programs – this fields should be set with the modules for the first
and second version as well as the specification. These are used in order to determine the
exact classpath that should be used in order to run each version.

4.1.2 Running the CLI tool

To run it as a CLI program simply invoke the java loupe.inspector.Inspector command.
The application accepts the options described below. What is worth noting is that these options
correspond directly to the configuration options required by the IntelliJ plugin.
--className Name of the main class to execute.
--mainMethod Name of the main method to execute.
--methodSignature Signature of the method to execute.
--specification Class name of change specification.
--cpSpecification Classpath of the change specification.
--cpV1 Classpath of the first program version.
--cpV2 Classpath of the second program version.
--help

4.1.3 Processing loupe IntelliJ plugin output

Once the analysis completes the IntelliJ plugin will display the output. An example output is
shown in fig. 9.

The UI consists of the following areas:

1. Summary – shows whether or not any violations were found.
2. Traces – whenever a specification violation is found it might be useful to see the method

call that caused a violation.
3. Trace selection – in case many trace pairs were found the selection box allows to navigate

between them. However since the analysis terminates as soon as it finds a bug not all
correct trace pairs might be explored.

40

1

2

3

Figure 9: Screen shot of the ‘loupe’ application.

5 Loupe architecture

5.1 Architecture overview

Loupe’s design is split into multiple stages to make the process modular. To prepare for the
analysis it performs a sequence of transformations and analyses on the source code. Loupe makes
it easy to add or modify the existing filters in order to tweak its behaviour. For example it is
possible to disable abstraction in order to see its effect on the performance. All stages are enabled
by default and are highlighted in fig. 10. These stages are:

Partition building (section 5.2) – the first stage of the application converts the bds provided
in a user format into object classifiers that are actually used by SVM.

Abstraction generation (section 6) – the second stage is the main concern of the project. It is
responsible for automatic generation of abstractions of concrete classes. Abstraction generation
makes use of the Soot framework in order to generate and process control flow of method bodies.
The stage is expected to analyse these method bodies in order to generate accurate summaries.
The resulting summaries are then used to generate Java code for the abstractions which are used
in their compiled form by SVM.

Equivalence analysis – at this stage loupe prepares the SVM symbolic engine to run both
versions of the program and check for any partition violations. This is done by doing the following

41

steps:

• load both versions of the program into SVM.
• load all of abstraction classes. Instrument SVM classloader to use abstractions instead of the

original classes (section 6.1.4).
• load the partition classifier so that SVM will generate the relevant trace.
• set the maximum time for which SVM should be running. This is necessary since most

programs have infinite paths and so will never terminate.

After this is done, the loupe starts the SVM. It then waits until SVM times out or finds a violation.

Output processing – at this stage the result of the analysis is printed to the standard output.
Since the result of the application is mainly used by other plugins the output of the application
is generated in a machine readable format. To do so the results from SVM are converted into a
data structure that is later serialized into JSON using Jackson serialization library7.

loupe processinputs temporary outputs

Partition builder

Abstraction generation

Equivalence analysis

analysis results

Output JSON

Specification Partitioning

Version 2 Abstractions

Version 1

Pipeline process Data

Figure 10: Overview of ‘Loupe’ architecture. Since behaviour of classes to be abstracted is equal
only version 2 is required by abstraction generation.

7http://jackson.codehaus.org/

42

5.2 Specification

User provided specification Partition builder Svm partition
input output

Figure 11: High level overview of partition builder.

When adding code behaviours programmers want to ensure that the program behaves correctly.
As stated in the background section 2.1.2 whenever code is changed some behaviours are preserved,
some changes are expected and some are unexpected. It’s up to the programmer to decide which
changed behaviours are expected and which ones are not.

When making unit tests a programmer can test the behaviour of the new version by making
expectations about program behaviour in form of test suites8. A programmer can write multiple
scenarios and add assertions he believes that the code should pass.

In loupe behaviour difference specification (bds) serves the same purpose for equivalence analysis
as the test suite as unit testing. A programmer may write the assertions made on the behaviour
difference. By doing so he can specify what behaviour changes he expects to happen. An
unexpected behaviour is discovered if the specification is violated for some program scenario.

This section explains the format of a user provided specification.

5.2.1 Creating and using a behaviour difference specification

The bds’s design mirrors that one of the JUnit tests. Each specification is defined in a single
Java class file. The class needs to implement the ChangeSpecification interface. In addition it
must provide the expected classification of objects on the heap, i.e. which objects are expected to
be affected and which ones are expected to be unaffected.

In order to find any specification violations it is only necessary to check the behaviour of objects
at the boundary between affected and unaffected objects. Therefore the main intention of the
ChangeSpecification class is to form that boundary.

To add a classifier that tags an object on the partition boundary as either affected or unaffected it
is necessary to write a method that returns a predicate. In order to distinguish between unaffected
and affected predicates the unaffected predicate should be annotated with @BehaviourUnchanged
while the affected predicate should be annotated with @BehaviourChanged. An advantage of this
approach is that reclassifying an object requires just an annotation change.

An example use of predicates is shown in listing 20. For any constructed object o if
packageManagerChanged().match(o) returns true then the object is tagged as affected and
when upToDatePackagesShouldNotChange.match(o) returns true then the object is tagged as
unaffected.

By default SVM tags all objects created by an affected object as affected and all unaffected objects
created by an unaffected object as unaffected. With such a default behaviour only objects on the
partition need to be classified. This makes specifications much smaller and easier to write.

8In Java a commonly used library is JUnit. Tests are created by making methods that assert behaviour of the
code. The test methods are then annotated with a @Test annotation

43

public class Change implements ChangeSpecification {
@BehaviourChanged
public Matcher <? super CallContext > packageManagerChanged () {

return receiver(klassIn(PackageManager.class));
}

@BehaviourUnchanged
public Matcher <? super CallContext > upToDatePackagesShouldNotChange () {

return allOf(
receiver(klassIn(Package.class)),
anyOf(

calleeParameter (2, value (0)),
calleeParameter (3, value (1))

)
);

}
}

Listing 20: Example change specification. It expresses a classification where every PackageManager
instance is affected. Moreover every instance of Package which gets passed 0 as the second
parameter or 1 as the third parameter is unaffected.

Predicates are represented as Hamcrest matchers9. SVM provides the following predicates:

1. receiver(Matcher<Receiver> matcher) – this predicate returns true if the receiver of
the method call matcher the matcher predicate.

2. klassIn(String... classes) – with this matcher we can classify certain classes. This is
a commonly used matcher as usually we want to limit the impact of our code change to a
certain class(es). this predicate returns true if the receiver’s class is one of the classes.

3. calleeParameter(int index, Matcher<Value> matcher) – with this matcher we can
differentiate affected from unaffected objects based on constructor parameters. This predi-
cate returns true if the index parameter of the method (where 0 is the index of the receiver)
matches a matcher predicate.

4. value(Matcher<? super Object> matcher) – with this matcher we match against an
actual value on the heap according to the matcher predicate.

Figure 12 shows a possible heap classification, based on a program run from appendix A.1.

PMA

P

PM

P2

Figure 12: Example heap. Package Manager (PM) and Package (P2) are tagged as affected
objects. PMA stands for PackageManagerApp. PM stands for PackageManager. P stands for
Package.

9The wiki page contains the list of common matchers including anyOf and allOf http://hamcrest.org/
JavaHamcrest/javadoc/1.3/org/hamcrest/core/package-summary.html

44

http://hamcrest.org/JavaHamcrest/javadoc/1.3/org/hamcrest/core/package-summary.html
http://hamcrest.org/JavaHamcrest/javadoc/1.3/org/hamcrest/core/package-summary.html

6 Generating abstractions

Automatic generation of abstractions is necessary in order to make the tool more usable for the
programmer. Manually written abstractions are known as models and have been often used in
order to model the effect of IO method calls [7]. The main problem with such an approach is
that for every new model an abstraction needs to be written manually. Another problem is that
the models mock the non abstract implementation precisely. In effect the implementations might
turn out to be just as complex as the non abstract counterparts.
This section explains the automatic abstraction generation algorithm. The overview of the
algorithm is shown in fig. 13. From a high level the abstraction generation takes the bytecode of
classes to abstract and produces bytecode with their abstractions that can be run by SVM.

Soot CFG

AnalysisAnnotated CFG

Graph restructuring Structured graph

Java generatorJava abstractions

javac Abstraction bytecode

Equivalence analysis

Partition builder

Bytecode of
classes to abstract

input

output

Pipeline process Data

Abstraction generation

Figure 13: Overview of the abstraction generation pipeline.

To run abstractions under SVM they need to be generated in the form of bytecode. Abstracting
behaviours section (section 6.1) specifies the output necessary in order to generate bytecode
capable of expressing abstract behaviours. The section goes into detail how abstractions are
implemented in SVM. The most noteworthy section is section 6.1.5. It discusses the implementation
of abstract APIs which has the largest impact on the performance of svm.
In order to produce a valid Java output the original bytecode must go through multiple stages.
The remaining sections describe these stages in more detail.

45

The first stage of the algorithm transforms the bytecode using the Soot library into a CFG. A
CFG is a more general way to reason about code and makes it easy to apply several analyses
over the code.

The second stage of the algorithm annotates the CFG with information that is not present
directly in the source code as discussed in section 2.1.6. In particular all variables in the CFG
are annotated using points-to analysis. Each variable is tagged with all places where objects
they get assigned are constructed. The annotations make it possible to over approximate the
code. Section 6.2 discusses code analyses that are incorporated into loupe in order to improve
the accuracy of abstractions.

At this point the tool produces an annotated CFG. However, the CFG must still be converted
into Java bytecode. This meant either directly generating bytecode or generating Java code and
then compiling it. Loupe does the latter. It is difficult to generate valid Java code from the CFG.
This is because CFG contains unstructured GOTO jumps while Java requires structures statements
such as if/then/else, switch or branch statements. In order to convert GOTO statements to their
structured equivalent loupe applies a restructuring transformation explained in section 6.3. By
doing so it creates a structured graph where if/then/else, switch and loop statements are expressed
as graph nodes.

The final stage takes the structured CFG and generates valid Java code. How it is done is
explained in section 6.3.5.

6.1 Abstracting behaviours

Under symbolic execution the program is being explored for all of the possible behaviours.
Thus, given enough time, symbolic execution will try to explore all paths of every method
body. Abstractions are classes that approximate method definitions provided by the non abstract
versions.

Non abstract implementations have different behaviours on inputs they receive. However because
abstract classes do not hold onto the concrete state they need to choose between different
behaviours non-deterministically. Sections 6.1.1 and 6.1.2 discuss an API designed in order to
write method definitions that perform non-deterministic choices.

Section 6.1.3 discusses how abstractions can be defined in Java using the abstractions API.

Section 6.1.5 discusses how abstraction API was implemented in SVM.

6.1.1 Retained behaviours

Abstractions are over-approximations of concrete classes. In many cases an unexpected behaviour
might only occur when the non abstract class exhibits a certain behaviour. To do that abstractions
need to be able to perform the following actions:

1. Create objects – It is possible that the abstraction needs to create new objects on the heap.
For example factories create new instances of object.

2. Call methods – Some classes invoke methods on other objects which can potentially mutate
their state. While in some cases like calling IO methods this can be replaced by a no op,
sometimes bds violations occur only if the class makes a relevant method call.

46

3. Perform non-deterministic actions – Some actions can be performed deterministically
only given knowledge of the state. Take for example the following method call
new Scanner(System.in).nextLong(). Its return value is dependent on user input.
Therefore, the next method should non deterministically return a symbolic long or throw
an InputMismatchException.

These actions were chosen as they are akin to the concept of the Most General Context (MGC)
introduced by Welsch et al [11] (explained in background section 2.1.10). The only interaction
missing in this project are field writes. Nevertheless Java promotes encapsulation where all fields
are kept private. Since an abstraction does not contain any state, it does have to set any fields
either.

The first two of these actions are common to concrete implementations. To make an abstraction
which fulfils these actions it is only necessary to make it capable of making the same method
calls. We later call this mirroring of method calls. However behaviour that cannot be expressed
by concrete objects is a non-deterministic choice for which the symbolic execution will take many
paths. For example when Math.random() is called the symbolic execution will return one random
result and finish the execution. However what an abstraction needs is to be able to simulate all
possible results, i.e. return a symbolic double in the range [0, 1].

This creates a requirement for an API supporting non-deterministic choices. Programs running
under JVM cannot have non-deterministic actions for which all behaviours are explored. Therefore,
abstractions cannot run outside of a symbolic execution engine.

6.1.2 Abstraction API

The abstraction API contains functions that allow the program to perform non-deterministic
choices. The main considerations when designing the API was to make the abstract version fast
and readable. Therefore the API exposes a “standard library” for expressing non-deterministic
behaviours.

The SymbolFactory class contains the following methods:

1. newIntSymbol and newBooleanSymbol

these methods create new symbolic values. In cas the concrete integer value of the object is
not known it can always be approximated by a symbol which can have take any integer
value. For instance we can over-approximate Math.random() > 0.5 by exploring the case
when it is true and when it is false.
boolean booleanSymbolExample () {

return Math.random () > 0.5;
}

boolean booleanSymbolExample () {
return newBooleanSymbol ();

}

2. randomChoice and selectState

sometimes the code requires us to take a branch. For example the code block
if (*) { A(); } else { B(); } will either call A() or B(). randomChoice allows us to
fork the state of the program in which the first state will take the then branch and the other
will take the else branch. selectState generalises this approach to n different branches.

47

void main(String [] args) {
if (args.lenght == 0) {

System.out.println("Args!");
} else {

System.out.println("None!");
}

}

void main(String [] args) {
if (randomChoice ()) {

System.out.println("Args!");
} else {

System.out.println("None!");
}

}

void main(String [] args) {
switch (args.length) {

case 0:
System.exit (2);
break;

case 1:
System.exit (1);
break;

default:
break;

}
}

void main(String [] args) {
int choice = selectState (3);
if (choice == 0) {

System.exit (2);
} else if (choice == 1) {

System.exit (1);
} else {
}

}

3. getArgument

sometimes we cannot be sure of the argument a given variable might have. To
return one of possibilities getArgument is called. For example running the abstract
version of the getArgumentExample method below would result in two states. In
the first state getObject1().isInstalled() would be called and in the second state
getObject2().isInstalled() would be called.

boolean getArgumentExample () {
Package o = getObject1 ();
if (o == null) {

o = getObject2 ();
}
return o.isInstalled ();

}

boolean getArgumentExample () {
Package o = getArgument(

getObject1 (),
getObject2 ());

return o.isInstalled ();
}

4. getPassedParameter

the getArgument method is useful when the instances which could be passed as arguments
are known statically in advance. However this is not always the case. Take for example
the code snippet below. Without knowing how the HashMap is implemented the best over-
approximation of the map.get(key) call would return one of the values passed into the
object. Thus whenever an addPackage method is called the set of possible return values of
getPackage increases.
Calling getPassedParameter returns any instance from a list. Therefore it allows objects
to keep track and return all instances of a specific type when passed into a class.
public class PackageManager {

private HashMap <String , Integer > map;
public void addPackage(String key , Integer value) {

map.put(key , value);
}
public Integer getPackage(String key) {

return map.get(key);
}

}

48

public class PackageManager {
private ArrayList <String > strings = new ArrayList <>();
private ArrayList <Integer > integers = new ArrayList <>();

public void addPackage(String key , Integer value) {
strings.add(key);
integers.add(value);

}

public Integer getPackage(String key) {
strings.add(key);
return getPassedParameter(integers);

}
}

6.1.3 Using the abstraction API to build abstractions

The abstraction API allows to define methods that have abstract behaviour. The API itself is
written as a Java class akin to a Java interface. Because of this, any bytecode that calls the API
will trigger non-deterministic behaviour. Hence, if need be (for instance loupe cannot generate
an abstraction automatically) a programmer could write it by hand and use in SVM.

There are many ways in which the behaviours can be implemented. Loupe generates abstractions
as Java code and calls the abstraction API. It could, however also compile the abstractions directly
into bytecode or it could even create data structures which combine abstract class definitions
with abstraction API implementation. The main reason why loupe does the former is that it
allows programmers to look directly at the code of abstractions. It also makes abstractions less
brittle to any svm changes.

6.1.4 Running abstractions inside of svm

Once a Java class with an abstraction is created it needs to be provided to SVM in order to execute
its method bodies. In order to provide a seamless experience loupe ensures that no code changes
are required in order to load the abstractions. In particular programmers are not required to
replace the concrete implementation with an abstraction.

This seamless experience is possible as loupe dynamically modifies the SVM class loading behaviour.
Normally during method calls or new instructions a class definition needs to be loaded. Whenever
that happens SVM calls the loadKlassFor(className) method in order to find the relevant class
definition. This makes a class loader fetch the .class file from a disk and process class’s bytecode.

When abstractions are enabled before SVM starts loupe loads all abstraction .class files and creates
a map with abstraction definitions. Loupe then adds an abstraction instrumentation and wraps
each bytecode operation into an abstraction operation. For non abstract classes the abstraction
operation proxies the loadKlassFor method to the default classloader. For abstract method
abstraction operation returns the initially loaded abstraction definitions instead.

6.1.5 Implementing abstraction API

Since abstractions are written in Java they behave just like any other classes. When one of their
methods is called the object class is loaded and the called method is fetched executing instruction

49

one by one.

They behave non deterministically by calling the abstraction APIs. These APIs expose
static native methods, methods which need to be implemented by the VM that interprets the
code. Thus whenever a native method is called SVM looks up its own list of definitions for native
methods and executes custom code.

The project has added to SVM a method definition for each abstract API method. The way in
which the method affect the program state are explained below:

1. newIntSymbol and newBooleanSymbol

Both of these instructions push a new Symbol to the stack. However, in order to be synchronised,
equivalent symbols need to be named in the same way across versions. To do this both of these
methods keep count of the number of created symbols and name each symbol by the counter.

2. randomChoice() and selectState(n)

This is the most performance critical of the non deterministic instructions. Using
this instruction makes abstraction classes outperform non abstract classes.

randomChoice() is equivalent to the call selectState(2) == 0. Both of these instructions
fork the execution state. To each state they push one of the return values. A randomChoice()
instruction will create two states, with false and true values pushed to the states respectively.
selectState(n) creates n states with values from 0 to n - 1 pushed to the states. What the
selectState() method must ensure is that only states that made the same choice are compared.

An initial implementation of the selectState() method added disjoint path constraints to each
of the forked states. This ensured that only paths with the same selection would be compared.
At the same time it made abstractions really slow as SVM had compare all states pairwise to check
which ones made the same choice. This required O(n2) SMT queries where n is the number of
states.

The improved implementation of selectState() improves the speed by removing SMT queries
entirely. Furthermore exploration of abstractions became faster compared to non abstract versions
due to the fact that SMT queries take substantial time during regular symbolic execution.

In order to avoid any SMT queries the implementation indexes each selection. The abstraction
will have the same behaviour if the index is equal. selectState() groups states based on this
index and ensures that paths are only compared if they belong to the same group. Because of
that extra constraints no longer need to be added to different paths.

To see why this method outperforms the non abstract execution look below at the comparison of
a code that uses a newBooleanSymbol() vs code that uses selectState method. Both versions
end up in two states, one calling doA() and another calling doB(). However, the first version forks
at line 3 during the if statement. To do this is needs to verify the feasibility of path constraints
s == false and s == true making expensive calls to the SMT solver. On the other hand version
that uses selectState(2) method will fork at line 2 on the selectState(2) method. Since the
value of s will be equal to a concrete integer 0 or 1 the branch condition will evaluate to true or
false respectively. As a result both lines 4 and 6 are reached without making an SMT query.

50

1 public void main() {
2 boolean s = newBooleanSymbol ();
3 if (s) {
4 doA ();
5 } else {
6 doB ();
7 }
8 }

1 public void main() {
2 int s = selectState (2);
3 if (s == 0) {
4 doA ();
5 } else {
6 doB ();
7 }
8 }

3. getArgument(argsList)

This instruction is a syntax sugar operation that makes it easy to pick one element
from a list of objects. It is implemented by selecting an arbitrary array index by calling
selectState(argsList.length). Then to each of the states it pushes a list element.

4. getPassedParameter(list)

This instruction is implemented exactly like the getArgument list except that it works for lists
instead of arrays.

6.2 Improving abstraction precision by code analysis

CFG Analysis Annotated CFG
input output

Figure 14: High level overview of the code analysis stage.

Using the abstraction API makes it possible to simply write Java code by hand that replaces
concrete implementations of classes with their abstract counterparts. Take for example the Safe
class defined below.
class Alarm {

public void ring() {
System.out.println("Intruder␣tries␣to␣steal␣your␣money.");

}
}
class Safe {

private ArrayList <Integer > cash = new ArrayList <>();
private Alarm alarm;
private int pin;

public Safe(int coins , int pin , Alarm alarm) {
this.alarm = alarm;
this.pin = pin;
addCoins(coins);

}

public void addCoins(int coins) {
this.cash.add(coins);

}

public int getCash(int code) {

51

if (code != pin) {
alarm.ring ();
return 0;

}

int total = 0;
for (int i = 0; i < cash.length; i++) {

total += cash[i];
}
return total;

}
}

Without the automatic loupe abstraction generation a programmer could write the following
abstraction:
class Alarm {

public void ring() {
System.out.println("Intruder␣tries␣to␣steal␣your␣money.");

}
}
class Safe {

public Safe(int coins , Alarm alarm) { }
public void addCoins(int coins) { }
public int getCash(int code) { return SymbolFactory.newIntSymbol (); }

}

While the abstracted version simplifies the complexity of the getCash method and would make
the tests run faster it is very imprecise. In particular with this abstraction the alarm is never
rung. This means that some partition violations that would occur when an alarm is rung would
not be found.

The problem with the naïve implementation is that it does not over-approximate the behaviours.
In this example it does not capture the alarm.ring() call.

This section explains how this project infers information about the method code in order to
generate abstractions that capture the behaviours and are capable of making the same method
calls. For the rest of the section the process of making the abstraction make equivalent method
calls is called mirroring. In order to achieve this method body is analysed. The following section
summarises strategies that are executed in order to make abstractions closely resemble their
concrete counterpart.

Section 6.2.1 discusses the first strategy which creates a generic abstract state for all abstractions.
In case of the Safe example this means ensuring that the alarm parameter passed in the
constructor will be available in the getCash method without the presence of an alarm field.

Section 6.2.2 discusses the second strategy which mirrors the method calls and new instructions.
In particular it discusses different options in which new could be mirrored and the trade-off
between accuracy and complexity it creates.

Section 6.2.3 discusses the third strategy which uses points-to analysis. This analysis is used to
ensure that as methods are mirrored their parameters are also accurately over approximated.
For instance in the example above the Safe constructor calls the addCoins(coins) method.
Points-to analysis will ensure that points-to variable can only refer to the first parameter of the
method call.

52

Section 6.2.4 discusses the fourth strategy which mirrors the control flow of the method body.
This ensures that the method calls executed by a method body will reflect the ones that could
feasibly be executed.

6.2.1 Dealing with parameters

In object oriented programming class instances contain both data (instance state) and code. As
parameters are passed into a class method they are often stored in a field or a container (for
instance a HashMap) for future use. Look at the example below. When the main method is run it
constructs the configuration. Config uses the configuration field to store the mapping from
configuration names to configuration values.

When abstractions are created they no longer use concrete fields. However, abstractions still need to
access parameters that might have been stored for future use. For example the Config.getConfig
method is called the abstraction should be able to return one of the passed values by the
Config.setConfig method.
public class Config {

private Map <String , String > configuration = new HashMap <>();
public Config(String [] args) {

for (int i = 1; i < args.length - 1; i+= 2) {
c.setConfig(args[i], args[i+1]);

}
}

public void setConfig(String key , String value) {
configuration.put(key , value);

}
public String getConfig(String key) {

return configuration.get(key);
}

}

public class Program {
public static void main(String [] args) {

Config c = new Config(args);
System.out.println(c.getConfig("verbose"));

}
}

We can store all parameters entering a class by using a getPassedParameter(list) method. In
order to ensure that all possible instances of a class instance can be returned the list variable
must be populated with all instances entering a class. Hence in the example above the Config
class would be abstracted by the code below.
public class Config {

private ArrayList <String[]> strings = new ArrayList <>();

public Config(String [] args) {
strings.add(args);
for (randomChoice ()) {

c.setConfig(getArgument(args), getArgument(args));
}

}

public void setConfig(String key , String value) {
strings.add(key);

53

strings.add(value);
}
public void getConfig(String key) {

strings.add(key);
return getPassedParameter(strings);

}
}

This approximation is very imprecise as it allows many more parameters to be returned than
possible. Nevertheless, it ensures that the abstraction over approximates the original class
behaviour. It is possible to make more complex analyses which specialise some cases and deal
with them accordingly. For instance in case of getters and setters it might be beneficial to keep
the field instead of the abstraction state.

6.2.2 Mirroring method calls and dealing with new

Besides reusing the already passed in parameters non abstract objects often create new objects.
However this means that abstractions also need to mirror object construction. Take a look at the
ClassRoom class below. The addGrade method adds a grade to a student. However if a Student
for a given name did not exist then a new Student is created. In addition the class creates a
new HashMap on initialisation. Thus those two constructions need to be mirrored in order to
accurately abstract away the behaviour.
public class Student {

private List <Integer > grades = new ArrayList <>();
public void addGrade(int grade) {

grades.add(grade);
}

public int getGPA () {
if (grades.length == 0) {

return 0;
}

int total = 0;
for (int grade: grades) {

total += grade;
}
return total / grades.length;

}
}

public class ClassRoom {
private Map <String , Student > students = new HashMap <>();

public Iterable <String > getStudentNames () {
return students.keySet ();

}

public void addStudent(String name , Student student) {
students.put(name , student);

}

public void addGrade(String name , int grade) {
Student student = students.get(name);
if (student == null) {

student = new Student ();

54

addStudent(name , student);
}

student.addGrade(grade);
}

}

Listing 21: Students grading system example.

To deal with new method calls we have to decide whether to treat the objects abstractly or not.

If the object is not treated abstractly then the new method call is exactly mirrored. This creates
a requirement for all method calls to be mirrored as well.

If the object is treated abstractly the new method call instead of creating a concrete object should
create an abstraction instead. However in some cases the method calls do not need to be mirrored.
This is especially true in case of container classes such as HashMap, Set or List. In this it is not
necessary to create an actual HashMap. Instead it can become lazy and when any methods are
called on a HashMap it can return an abstract value corresponding to the type.

In the example above (listing 21) the getStudentNames method returns students.keySet(). If
the method would be mirrored then the HashMap instance would need to be actually created.
However if the methods are not mirrored then the students.keySet() call is allowed to return
an abstract instance of Set<String> instead.

6.2.3 Points-to analysis

Concrete implementation of a class can call methods that have parameters. While in a concrete
implementation the parameter can have a single source this is no longer the case in an abstraction.
In listing 21 in order to create an accurate abstraction we need to reflect the method calls. In
case of addStudent method the abstraction would have to call HashMap.put method. In case of
addGrade method the abstraction would have to call HashMap.get, ClassRoom.addStudent and
Student.addGrade methods.

What points-to analysis provides are all possible locations where a variable was defined. The
points-to analysis in this project is implemented as a forwards analysis that propagating the Map
from variables to their assignments. For each assignment a new mapping is added to the map.
The analysis returns a mapping from each local variable to the constants, fields, parameters and
complex expressions that could define it.

Other points-to analysis techniques exist as well. They all provide a trade-off between performance
and accuracy. The complexity of local points-to analysis used in this project depends only on the
size of code to be abstracted. On the other hand the complexity of a full program control flow
analysis provided by Soot depends on the size of the entire program.

The points-to analysis result is used in order to decide the closest overapproximation for a
method call parameter. In order to decide which approximation should be chosen the following
heuristics are used:

• In case if the parameter is concrete or has been passed around as a parameter of the callee
method then this parameter is used. For instance abstraction of the grade variable in
student.addGrade(grade) is the grade variable.

55

• In case if the parameter is passed from a variable then all of the instances it could be
passed around are determined. For instance abstraction of the student receiver in the
student.addGrade(grade) method can either be a student found in a HashMap or a newly
created student. Thus we could approximate the student.addGrade(grade) call with the
following code block.
public void addGrade(String name , int grade) {

Student s1 = students.get(name);
Student s2 = new Student ();
getArgument(s1 , s2). addGrade(grade);

}

• In case if the parameter has a primitive type – the parameter is replaced by a sym-
bol. For instance if we would abstract the statement return total / grades.length in
Student.getGPA() method then it would be replaced by return newIntSymbol().

• In case if the parameter is not a primitive and has a type T – it is replaced by any instance of
T passed into the class. This can be done by calling getPassedParameter(listOfTypeT)
method.

6.2.4 Keeping the control flow

Precision of abstractions can be highly improved by keeping the control flow. Loupe does this by
making analysis annotations directly on top of the bytecode CFG. As a result an annotated CFG
will have the same control flow.

Without keeping the control flow the abstract method definition would no longer precisely
replicate the same sequences of method calls. A possible abstraction of the addGrade method in
the ClassRoom example (listing 21) that completely disregards the control flow is shown below.
public void addGrade(String name , int grade) {

Student student = null;
while (randomChoice ()) {

switch (selectState (4)) {
case 0:

student = students.get()
break;

case 1:
student = new Student ();
break;

case 2:
addStudent(name , students)
break;

default:
student.addGrade(grade);
break;

}
}

}

While this abstraction clearly has can execute any sequence of instruction that non abstract
object. However, the non abstract class can only execute two method call sequences shown in
fig. 15. On the other hand the abstraction has an infinite number of sequences of method calls.

56

students.get(name);
new Student ();
addStudent(name , student);
student.addGrade(grade);

students.get(name);
student.addGrade(grade);

Figure 15: Two possible method call sequences that addGrade method can generate.

6.3 Generating Java code

Annotated CFG Graph restructuring Structured graph

Java printerJava abstractions

input

output

Figure 16: High level overview of code generation stages.

Abstractions are expected to be expressed as Java code. This is problematic since static analysis
produces an annotated CFG. Thus, lower level bytecode needs to be restructured into valid Java
code. For instance goto operations need to be converted into if/else, switch, loop statements.

The problem of reverse engineering the original code from compiled code is known as decompilation.
Doing so is a challenge on its own however loupe only needs to perform the restructuring phase of
decompilation. In addition loupe does not need to extract branch and loop conditionals making
the algorithm simpler.

A CFG contains arbitrary GOTO statements and many statements can be reached from multiple
paths. This we cannot generate code by recursively traversing the graph. The result of restructur-
ing creates nodes representing branch and loop statements. Thus, after restructuring the graph
has a tree structure and can be converted into Java by recursive traversal.

Consider that we would try to generate abstractions for the Router example appendix A.2. The
source code is shown by listing 22, which by this stage would be represented by the CFG10 shown
in fig. 17 and a dominator graph shown in fig. 18.
public void route(Request req , Response res) {

for (int i = 0; i < routeCount; i++) {
RouterItem item = items[i];
if (req.getPath (). equalToString(item.format)) {

item.route.route(req , res);
return;

}
}
LOG.warning("Route␣not␣found␣%s", req.getPath ());

}

Listing 22: Original route method taken from appendix A.2.

10Actually this is a simplification of the graph as some instructions would get compiled to multiple Java
instructions.

57

i = 0start

if (i < routeCount)

LOG.warning item = items[i]

path

route item

i++

Figure 17: Control flow graph of listing 22.

i = 0start

if (i < routeCount)

LOG.warning item = items[i]

path

route item

i++

Figure 18: Dominators graph. An arrow from
one node to another means that one node is
dominated by the other node. For instance i++
is dominated by path.

Algorithm that performs reconstruction of the code uses the unstructured graph (as the
one in fig. 17) and a dominators tree (fig. 18). It produces a structured graph where the nodes
represent the Java structure (such as fig. 19). The structured graph consists of the following node
types:

• Branching nodes – these nodes represent any branching statements such as if/else statements
or switch statements. Because an over-approximation is allowed to take any of the branches
branch node does not contain the condition.

• Loop nodes – these nodes contain the loop instructions. Equivalent to do while statements.

• Exit nodes – these nodes are equivalent to break statements and allow jumping out of the
loop.

• Block nodes – these nodes represent a sequential computation.

• Statement nodes – these nodes contain the actual statement being executed. Represented
by a statement name. Empty statements represent noops.

With these node types the expected structured graph for the method would look like fig. 19. This
closely resembles original method except that the while statement was changed into a do while
statement. Nevertheless given the structured graph it is very easy to create the final Java code as
explained in section 6.3.5.

6.3.1 Overview of the algorithm

The main idea behind the algorithm it to create the structure as shown in fig. 19.

58

item = items[i]

route item

i++

i = 0start

LOG.warning

block
block

loop
loop

branch

exit

loop

block

block

Figure 19: Structured control flow of the method.

When the algorithm is initialised it creates the initial structure of the graph. In this structure
each statement is wrapped in a block where the successor of a statement is a branch node. The
idea being it is that all instructions which should follow a given statement should become one of
the branches of the branch node.

The initial structure for each node would look like fig. 20. However for larger graphs it becomes
difficult to understand the graph. A branch node with three choices would be represented by a
fig. 21. Because the choices themselves would also be made of a block a statement and a branch
node. To make the graphs more readable in sections explaining branch and loop restructuring a
simpler notation will be used as shown in fig. 22. The complex statements will be styled in bold.

The algorithm then proceeds to do a breadth first traversal of the control flow graph starting
at program exits. Then for each node being visited restructuring algorithms are applied. The
restructuring algorithms connect the node to its predecessor in a structured way.

The first step of the restructuring algorithm retrieves the dominator of the node and based on
the dominator decides whether loop or branch structuring should be applied. If the dominator
is a loop header or the dominator is a part of the loop while the process node isn’t then loop
structuring is used11. A loop header is a node which starts a loop and other statements will jump
back to it. A loop exit is a node from which the loop can be exited.

In order to ensure that such loops do not cause the breadth first traversal to loop infinitely the
11The case when the node has a successor that leaves a loop is also called a loop exit. However in this report an

exit node is a structured AST node type and has a class ExitNode.

59

S1start

Choices

block

Figure 20: Structured graph after initialisation.

S1start

C2C1 C3

block

Figure 21: Simplified representation of a struc-
tured graph after initialisation.

S1start

C2C1 C3

Figure 22: Simplified representation of a struc-
tured graph after initialisation.

algorithm keeps a set of all traversed nodes and visits each node just once.

6.3.2 Branch structuring

The main outcome of branch structuring is to convert the paths in the control flow graph into
branches (if (*) { S1 } else { S2 }) and sequential execution (S1 S2).

Look at the simplest if/else statement shown in fig. 23. Intuitively we can see that the statement
path can either branch to route item or can exit the branch. Thus the statements route item
and a noop statement should be nested inside a branch node while i++ should follow the branch
node.

In the example in fig. 23 after initialisation the first item to process i++. In branch structuring
processing is done by looking up this node’s dominator. In this case the dominator is the path
node. Then we create a branch node and connect all nodes together. To do this the branch node
is added as one of dominators choices and process node follows the branch node. This is shown
in fig. 24. Furthermore, because i++ is also the successor of path a noop is added as one of the
choices.

Then we add the predecessors of a node to the traversal queue. However the desire of the algorithm
is to put all paths between the dominator and a process node into the branch node. Such a
structure is shown in fig. 25. To do this the dominator graph is modified to add the branch node
and make it dominate the initial instructions of branching paths. In our example this would
mean making the branch node dominate route item instruction.

6.3.3 Loop structuring

Loupe uses the LoopNestTree class in order to perform loop detection which is part of the Soot
library. From the LoopNestTree is retrieves an iterator of loops. In the Router example we have

60

path

route item

i++

Figure 23: If/else unstruc-
tured flow.

path

i++

Figure 24: Partial restructur-
ing of the branch by adding
an branch path.

path

route item

i++

Figure 25: Completed re-
structuring by adding branch
paths into the branch node.

to restructure the for loop. The if condition is both the loop header and a loop exit12.

Loupe uses the Loop class instances in order to structure the loops accurately. These instances
are able to return both the loop header and its exits. From this information loupe classifies the
dominator.

If the processing node is not in the loop but the dominator is then two things happen. Firstly an
exit node is added as one of dominator’s choices. Secondly the process node is added as one of
loop header’s choices. This is illustrated with fig. 26.

If the processing node is a loop header then a loop node is attached as a choice of the dominator
node. In addition the processing node is attached as a loop body of a loop node. This is illustrated
with fig. 27.

if (i < routeCount)

LOG.warning

Figure 26: Loop structuring in case process-
ing node exits the loop.

if (i < routeCount)

item = items[i]

loop

Figure 27: Loop structuring in case domina-
tor is the loop header.

if (i < routeCount)

LOG.warning item = items[i]

if (i < routeCount)

item = items[i]

LOG.warning

loop

loop

Figure 28: Loop structuring before (left) and after (right) of LoopVisitor execution.

Once the algorithm that performs the breadth first traversal a LoopVisitor is executed. The
12In bytecode the if condition would actually take multiple instructions. We use a single node to simplify the

diagram.

61

LoopVisitor creates the final loop that encapsulates the loop header. The transformation is
illustrated by fig. 28.

6.3.4 Simplifying structured graph

The structured graphs generated by the technique outlined above contains a lot of redundant
nodes. The transformations in the previous section represented the graph using a simplified
representation shown in fig. 22. For instance the actual representation of fig. 25 is shown in fig. 29.

path

route item

i++

path

route item

i++

block

Figure 29: Simplified structured if/else node from fig. 25 (shown on the left) and actual represen-
tation (shown on the right).

The representation above allowed the code to be generalised. However to make handling of the
structured graph easier for the remaining algorithms the graph is simplified using two steps.
First step of graph simplification creates a block structure. It ensures that the branch node and
the following node are added to the same code block. For our example this will result in the inner
branch node being inlined making path, branch and i++ nodes in the same block.
Second step of graph simplification removes redundant nodes. It performs the following transfor-
mations.

1. Removes no ops from code blocks.
2. Replaces a code block with a single statement or a branch with a single choice statement

by that statement.
3. All statements in the nested code block are added to the parent code block.
4. Removes any empty choices from branches.

After these simplifications the graph has a very compact structure making it very easy to process
it further.

6.3.5 Generating Java from structured graph

Structured graph Java printer Java abstractions
input output

Figure 30: High level overview of Java code generation.

62

The structured graph that is generated by code restructuring has a one-to-one mapping to Java
code. The block node corresponds directly to a sequence of statements, loop node corresponds
directly to a loop statement, exit node to a break statement. Thus we can generate Java code
by applying the following transformation recursively (graph is shown on the left side while the
generated code is shown on the right side):

• Statement node

i++ i++;

• Block node

S1 S2 S3

block S1;
S2;
S3;

• Loop and exit nodes – loop nodes are converted into do while loops. Exit nodes are converted
into break statements. Both of these transformations are shown below.

SLoop

loop do {
SLoop;

}

break;

By combining these two it is possible to generate loops that can be exited. An example is shown
below.

S1

S2

loop do {
S1;
if (randomChoice ()) {

S2;
} else {

break;
}

}

• Branch node

S2S1 S3

int choice = selectState (3);
if (choice == 0) {

S1;
} else if (choice == 1) {

S2;
} else {

S3;
}

63

7 Svm

This section discusses the symbolic execution library used in the project called SVM. It goes into
detail about how it works.

Section 7.4 describes the performance improvements that this project contributes to svm in order
to simulate Java bytecode faster.

7.1 Svm overview

Svm is an open source symbolic execution engine. Its source can be found on github [32]. It
works like a typical symbolic execution engine and explored all possible scenarios that can be
produces by an application under analysis. The overview is shown in fig. 31.

The vm is a Java bytecode interpreter. It provides its classloader, operations that simulate
bytecode instructions and provides implementation for native methods. Furthermore in order
to support some bytecode instructions SVM tags each state with meta information that is not
accessible from within a jvm. For example it tags each state with information about its path
constraints.

Since a program can exhibit multiple scenarios SVM keeps track of all program states and then
executes instructions separately for each one of them. Whenever the execution could follow
different paths under different program scenarios is forks the program state and specifies the
constraints that would lead to either of these states.

Heap
Stack Vm

Meta state

Program states
svm

get instruction

execute instruction

Figure 31: svm execution.

7.2 Svm performance

SVM was designed with equivalence analysis in mind. It comes with support for running multiple
versions of a program at the same time. Moreover it can use information from execution of a
single version to guide the exploration of another version. In effect it is expected to find violations
faster. For instance whenever a program adds a trace item SVM checks whether it violates with
traces created by another version.

7.2.0.1 In flight equivalence checking An already existing feature of SVM extends search
strategies by checking for equivalence of traces on the fly. Doing so can potentially guide the
exploration better. However it also ensures that the partition violation is found as soon as two
traces which cause the violation are executed. This limits the complexity of equivalence checking
afterwards.

64

7.2.0.2 Parallelism An intrinsic feature of symbolic execution is that it is a problem that can
be highly parallelised. Therefore performance limitations can always be addressed by increasing
the amount of hardware on the machine. This gives possibility to explore the entire code by
running it on a large machine cluster. Machines would be allocated disjoint code paths.

Exploration of different code paths is a problem that can be parallelised. Consider the following
method body:
public static void main(String [] args) {

if (randomChoice ()) {
A();

} else {
B();

}
}

When an if branch is taken the code will either execute the A() method or the B() method.
Symbolic execution will fork the state of the program. This makes A() and B() method calls
independent of one another. In effect both of these paths could be run in parallel.

7.3 Search strategy

One of the main configuration parameters that affect the performance of a symbolic execution
tool is the choice of a search strategy. If a specification violation exists then it is only necessary
to explore two paths to find it (one per program version). However, many programs have an
infinite number of paths and only a few paths might actually cause a violation.

Since it is impossible for a program to explore all code paths it needs to use a heuristic by which
it will pick the paths which are most likely to contain the violation.

The two simple strategies would include going breadth first search and depth first search.

In the depth first search SVM would execute a single path until it terminates and then would
proceed with other paths. However if the path itself does not terminate then SVM would also not
terminate.

In breadth first search in order to explore a path which took n branches all paths which took
n-1 branches would have to be explored. This removes the possibility of not exploring one path
because another does not terminate. However this algorithm also suffers from path explosion as
the algorithm would have to always try all possible paths with n branches.

Better strategies include heuristics that guide the program towards breaking paths. SVM uses two
strategies for which the performance is evaluated in this report. However, due to time constraints
this project does not include any new strategies.

The first strategy prioritises the states based on their trace. This is because states that make
additional trace elements are more likely to violate with others.

Another strategy uses lines of code to guide the algorithm. The reason for this choice is that it is
more likely that the violation will be found by exploring not yet explored code. In addition this
heuristic also handles with infinite loops and will try to escape from the loop as soon as possible.

What is important to note is that most strategies highly benefit from randomisation. The main
reason to add randomisation is due to time constraints. A good search strategy might be able to
find the violation in an hour. However if the timeout is set to 10 minutes no matter how many

65

times the analysis is run the violation will not be found. However, if randomisation is used every
time the analysis is run the chance that a violation is found increases.

7.4 Contributions to svm library

In order for symbolic execution to work efficiently the interpreter needs to pose as little overhead
over the actual program runtime. Furthermore a symbolic execution might have to handle millions
of states that need to be executed. Thus, a lot of SVM code is both performance and memory
critical.

This section describes contributions made to the svm library in order to make it capable to run
more complex examples.

7.4.0.3 Adding timeout to program execution Many programs can run forever. In effect
it is important to define a timeout after which SVM will say that no violation is detected. In order
to make the timeout efficient, the timing logic is placed on a separate background thread and
does not cause any performance issues.

7.4.0.4 Adding support for more bytecode instructions. Because Java is a complex
language creating an interpreter capable of supporting all of bytecode would take a staggering
amount of time. SVM supports most commonly used bytecode instructions. In effect it is capable
of running more complex Java programs. Nevertheless, it is still incapable of running many simple
Java applications.

In order to be able to run more complex examples partial of complete support was added for the
following bytecode operations:

• IDIV, IREM – these operators perform division and modulo operations. They and their
symbolic counterparts have been implemented into SVM.

• INSTANCEOF and CHECKCAST – while SVM already supported these operations its imple-
mentation was not bug free. In particular INSTANCEOF <class> and CHECKCAST <class>
expected an instance of a class <class> to be already initialised by the vm. However, for
many programs this is not the case.

• LDC – this is a class load operation that occurs whenever a class is loaded explicitly.
For instance an instruction System.out.println(Object.class) will require to load the
Object class definition. Again previously this operation required the class to be already
loaded. However, due to the lazy nature of Java this is not always the case.

• ATHROW – this bytecode instruction is called whenever the program throws an exception.
This instruction has not been implemented completely as catching the exception is not
supported. However SVM will now terminate the paths which throw exceptions instead of
crashing the entire SVM.

7.4.1 Caching SMT results

A symbolic execution engine spends a lot of its time executing branch conditions. For each branch
it needs to determine if it could be taken under some scenario. With symbolic values it does it by
making a query to an SMT solver and checking whether the branch conditions are satisfiable.

66

Querying the SMT solver is a costly operation on its own and can potentially degrade the
performance of the symbolic engine. Branch execution can be sped up by caching the queries
that were sent to the SMT solver and reusing their results. Relatively sophisticated methods are
discussed in the KLEE paper [7].

Whenever a symbolic execution needs to execute a branch instruction it needs to determine
whether the then and the else branches are feasible. In some cases both of these branches can be
taken conditionally. Take the following snippet as an example:
public class SMTExample {

public static void main(String [] args) {
if (args.length == 0) {

System.out.println("No␣args!");
}

}
}

It can take both branches. For instance calling java SMTExample would print the “No args!”
message. However calling java SMTExample 0 would not. In order to determine whether there
exists a scenario under which a program would take a branch SVM sends the branch condition (in
this case args.length == 0) to an SMT solver. This is a very costly operation.

By caching the results of SMT queries two cases are optimised. Firstly when the branch condition
evaluates to True or False (which happens for most branches) SVM no longer makes the SMT
query. Secondly, if both versions make the same queries the query is sent to the SMT solver just
once.

7.4.1.1 Fast state selection When profiling the code one of the largest performance bottle-
necks was the state selection. After diagnosis I noticed that the states were kept in an array list.
However, once a state was selected it was removed from a list. Originally this required both a list
scan and an array copy. In effect the state selection algorithm had a O(States) complexity. That
made the speed dramatically decrease once SVM had to handle a lot of states.

Fast selection algorithm made two changes in order to reach an O(1) complexity. Firstly an
element from an array list was removed by swapping it with the last one and removing the element
from the end of the list. In effect this removed the costly array copy operation. Secondly when
the element was selected from the list the state selection algorithm remembered the index at
which the item was stored in the list. This removed the requirement to scan the list.

7.4.2 Caching of data

Some objects are continuously created by the programs. One such example are symbols. In
order to avoid the overhead caused by redundant memory allocation SVM now pre allocates many
data structures. Then when a program wants to allocate some data it gets an already prepared
instance.

7.4.3 Memory sharing

Since symbolic execution expects to handle many states it cannot have a separate heap for each
state. This would be both inefficient as the fork would be costly but would also make SVM quickly

67

run out of memory. SVM already did heap sharing so that the heap would be shared between
different program states.

This project had went further and implemented data sharing in more places. It adds sharing for
the stack of processes only cloning the stack frame for the method call on the top of the stack.
Furthermore it uses the Copy on Write technique to share all of the meta state between different
versions. Only when one of the states actually modifies the data does it create its own copy.

8 Limitations

There are a few limitations both to the equivalence checking technique as well as the tools used to
implement it. This section discusses those limitations and potential solutions to deal with them.

8.1 Project integration

IntelliJ plugin makes it possible to integrate the use of the loupe tool inside of an IDE. However,
the tool can still not be used out of the box. In order to actually run the analysis the project must
contain both version of the program. This is normally not the case as instead the programmer
keeps just one version in his working directory. Other versions are available, nevertheless they
can only be accessed from git.

8.2 State explosion

One of the major limitations of any symbolic execution technique is that large applications even
without abstractions have a lot of paths to explore. These paths increase in size exponentially
on branch points. As a result only clever search strategies are able to reach interesting paths
(in equivalence analysis an interesting path is the one that causes a partition violation). The
problem this causes is that most of the paths remain unexplored.

8.3 Abstraction performance

Equivalence analysis can only be useful for the programmer if it can quickly find violations.
Abstractions can immensely change the performance of SVM. Their implementation greatly affects
the complexity of classes and the number of states that they generate.

More imprecise abstractions can potentially increase the number of possible code paths that a
program can execute. Consider the following two code snippets below, before and after abstraction.
The non abstract version the config.get method can be explored in one way. On the other hand
with abstractions the same method can result in args.length * 2 different outcomes. This can
potentially increase the number of states that SVM needs to explore in order to find the violation13.
In effect finding the performance might degrade.
public interface StringMap {

public void putValue(String key , String value);
public String getValue(String key);

}

13This depends on the search strategy making it’s choice even more important

68

public void main(String [] args) {
StringMap config = new StringMap ();
for (int i = 0; i < args.lenght - 1; i+= 2) {

config.put(args[i], args[i+1]);
}
System.out.println(config.get("verbose"));

}

public class StringMap {
private ArrayList <String > strings = new ArrayList <>();

public void putValue(String key , String value) {
strings.add(key);
strings.add(value);

}
public String getValue(String key) {

return getPassedParameter(strings);
}

}

public void main(String [] args) {
StringMap config = new StringMap ();
for (int i = 0; i < args.lenght - 1; i+= 2) {

config.put(args[i], args[i+1]);
}
System.out.println(config.get("verbose"));

}

8.4 Parallelism

Typical Java programs do not execute sequential code and in order to boost their performance
use multiple threads. The problem that this creates is that the traces could be out of order and
thus even running the same version of the program twice could create a violation.

8.5 Svm Java support

SVM is a library that simulates bytecode instructions in a symbolic environment. This in order
to function it needs to accurately simulate all bytecode instructions. At the moment of writing
there are several instructions that are not implemented. For instance no instructions from Java 8
are implemented. Therefore SVM cannot execute an arbitrary program.

8.6 Specification language

Specification language forms the basis of equivalence checking as it defines ways in which we can
partition the heap. The predicates that current specification language provides to the user are
not so expressive. In effect it is tricky in some circumstances to define a partitioning which does
not tag too many unaffected objects as affected.

The reason why the specification language cannot be always expressive is due to the way that
partitioning is used. Because we want to avoid any backtracking we want to classify objects
during bytecode execution when it gets constructed.

69

There is very little information we can obtain about the object when it is constructed in bytecode.
Take for instance the following constructor:
new Package(newIntSymbol (), newBooleanSymbol (), newIntSymbol ())

Its bytecode representation is shown in listing 23. In order to avoid any backtracking we would
like to classify the object during the NEW bytecode operation (line 1). However at this point we
do not have any access to the object’s state or even constructor parameters. These parameters
are only available at line 6.

In order to mitigate it SVM already has an in built algorithm that scans for matching NEW and
INVOKESPECIAL.<init> calls. This way it can tag the object on the <init> call once it knows
the constructor parameters.

1 NEW loupe/examples/packagemanager/Package
2 DUP
3 INVOKESTATIC lexicalscope /.../ SymbolFactory.newIntSymbol ()I
4 INVOKESTATIC lexicalscope /.../ SymbolFactory.newBooleanSymbol ()Z
5 INVOKESTATIC lexicalscope /.../ SymbolFactory.newIntSymbol ()I
6 INVOKESPECIAL loupe/examples/packagemanager/Package.<init > (IZI)V
7 ARETURN

Listing 23: Bytecode representation of the new Package construction.

However even with this improvement the specification language is still limited. This is because
constructor parameters, call stack and the object which makes the INVOKESPECIAL.<init> call
are the only pieces of information we have about the objet. Thus we still cannot tag objects
based on its field at construction. Consider the implementation of the class below. The current
specification language still does not allow to make all packages affected if the version field would
get instantiated to a positive value.
public class Package {

public Package () {
this.version = SymbolFactory.newIntSymbol ();

}
}

8.7 Retaining object properties

Abstracted objects usually loose a lot of properties that they inherently had. For instance an
ordered list would loose the elements order, a hash map would loose the mapping from keys to
values. Being able to detect and preserve those properties would potentially allows to make the
abstractions even more precise.

Nevertheless making the abstractions too precise has the potential of decreasing the performance
of the tool and actually might make it more difficult to find the bug.

70

9 Evaluation

This section evaluates the quality of abstractions generated by the loupe tool. It assesses two
quality criteria of abstractions:

1. Speed with which violations are found.
2. The number of false positives generated by abstractions.

The environment which was prepared for the benchmarks is discussed in section 9.1. Specifically
it describes actions taken in order to make the results comparable.

The data collected by the benchmark suite is listed in section 9.2.

The evaluation has been performed by contrasting different techniques (section 9.3). The
techniques differ by varying the search strategy and the level of abstraction. Each technique is
then evaluated against a set of example programs (section 9.4).

9.1 Testing environment

The testing environment in which the tests were run was controlled in order to give reliable
measurements.

Firstly the benchmark was performed on the machine with an i5-4250U processor running at
1.30GHz14. The machine was fitted with 8GB of RAM. In addition typical background processes
were closed in order to ensure an uninterrupted execution of the benchmark. Furthermore, the
benchmark was run against the JVM 1.7.0_45 version on Mac OS X 10.10.3.

Secondly the benchmarks have been executed in two steps. The first step run the application
multiple times. This has been done in order to ensure that JVM has warmed up. Without this
step the second execution would normally take far less time as the code was compiled by the JIT.
The second step run the benchmark multiple times and then calculated the average performance.

It is important to note that the symbolic exploration strategy uses randomisation to pick the
relevant paths underneath. This causes disparity between successive runs and is the main reason
for averaging the results.

Adding randomisation makes the benchmarks return a different result every time it is run.
Nonetheless, there are multiple reasons for the use of randomisation both in the benchmark
process. Firstly a random strategy is used by SVM when finding violations. Therefore by using
randomisation we can benchmarks the expected performance of SVM. Secondly the search strategies
often execute heuristically. Adding randomisation allows the strategies to avoid pathological edge
cases.

9.2 Data collected

When benchmarks are run the benchmarking tool executed the SVM instances in the same way
that loupe would run it. After SVM finishes the analysis the benchmarking tool collects several
metrics that can be used to understand the performance behaviour of the application. The metrics
are explained in table 2.

14Full CPU specification: http://ark.intel.com/products/75028/Intel-Core-i5-4250U-Processor-3M-Cache-up-to-2_
60-GHz

71

http://ark.intel.com/products/75028/Intel-Core-i5-4250U-Processor-3M-Cache-up-to-2_60-GHz
http://ark.intel.com/products/75028/Intel-Core-i5-4250U-Processor-3M-Cache-up-to-2_60-GHz

Metric name Metric description
Time Time in which svm completed its analysis. This is the main

metric used to evaluate performance. The time will be
shown as “TO” when a timeout occurred. Because some
examples run orders of magnitude faster the time is shown
on a logarithmic scale.

Finished states The number of states which completed execution. This is
one potential reason for the time difference between two
versions.

Queries The number of different queries sent to the SMT solver.
The queries are generated in order to check the feasibility
of different scenarios within one version. They also check
if there is a common scenario between two states in two
versions. This is one potential reasons for the time difference
between two versions.

Violation detected Shows whether the tool detected a partition violation. Used
to detect any false positives/negatives generated by an anal-
ysis.

Table 2: Metrics collected by the benchmarking tool.

9.3 Svm configurations

Equivalence analysis can be made more or less efficient by configuring the way that SVM explores
the program. The main configuration parameter being evaluated by this project is the degree
to which the code is being abstracted. Another configuration parameter considers in the search
strategy which defines how does SVM explore the paths.

The search strategies that svm runs in this benchmark are:

1. Tree strategy – This is a simple strategy which picks one of existing states almost at random.
In order to improve performance it groups the pending states by their trace. Then it selects
one of the groups at random and then one of the states from within the random group.

2. Line coverage strategy (LOC) – This strategy tries to optimize the search by tracking
instruction coverage. When it tries to pick a state to execute it prioritizes states that would
be executing previously unreached code. This heuristic can potentially speed up the search
since violations are likely to occur on previously unexplored code.

The different abstraction policies that svm is configured with are:

1. Non abstract implementation – This is the class implementation that was a part of the
program.

2. Shallow – Naïve abstractions have their method bodies replaced by a single return statement.
The return statement returns a symbolic object of a type expected by the method.

3. Deep – This abstraction extends the naïve abstraction. The method bodies also contain
method calls to other objects. However, all objects present in the abstractions are symbolic.

72

4. Mnemonic – This is the abstraction automatically generated by the loupe tool. It reuses
objects an instance gets passed in method calls. We expect that it should preserve more
properties of the classes.

Making the non abstract implementation required no additional work since the class definition
was included in the sources. Similarly the mnemonic abstraction policy also required no work
since it was generated by loupe. However, both shallow and deep abstractions were written by
hand. They were created for comparison to see how other potential abstractions would perform.
The IO in the benchmarked examples could not be execute concretely since SVM does not
model the IO interactions. Therefore it has been replaced by abstractions that return symbolic
values. In effect program will receive symbolic inputs.

9.4 Choice of benchmarking examples

Initially real world Java applications were candidates for the benchmarking. However, they were
either unable to run on SVM that supports a Java subset and required a change specification. This
made it impossible to simply apply the technique to existing source code.
To solve this problem the benchmarking examples were hand written and tested different aspects
of the tool. We created benchmarks with three aims in mind:

1. Check abstraction instrumentation overhead (results in section 9.5.2) – As explained in
section 6.1.4 all bytecode instructions are instrumented and wrapped into an abstraction
operation. One set of benchmarks (called C1) was created to test whether or not the
presence of abstract operations cause an overhead. In case of C1 benchmarks no classes were
listed for abstraction. For each example we run SVM with and without the instrumentation
enabled.

2. Check abstraction performance (results in sections 9.5.3 and 9.5.4) – Abstraction policy and
search strategy can affect the performance with which violations are found. Therefore a series
of examples C2 was created. All of these examples contained a specification violation and
SVM was expected to find it. Furthermore for these examples some classes were abstracted
according to all abstraction policies.

3. Check accuracy

• Check false negative rate (results in section 9.5.5) – False negatives occur if SVM fails
to find a violation when it exists. This happens whenever SVM times out. Since C2
examples all contained violations they are used to find the false negative rate.

• Check false positive rate (results in section 9.5.6) – False positives occur then SVM finds
a violation while the code change does not violate a change specification. Therefore
examples C2 could not be used to test the false positive rate. Thus examples 5 examples
C3 were created that did not violate the specification.

In total 19 examples were generated and contained 6734 lines of code. Some of the examples
were really small and contained just 20 lines of code. The largest example was made of 450 lines.
A lot of these examples make use of a standard library that was also created. Because some
java.util containers used methods not supported by SVM I created similar classes as a part of
the benchmark. The classes are: ArrayList, HashMap, Trie, symbolic string Str, Logger.
Selected examples have been added to the appendix section for reference.

73

9.5 Results

This section gives an analysis of the results. Raw table of benchmark results can be seen in
appendix B. These results have been processed into figures and tables and are discussed in the
following sections.

9.5.1 Automatic generation of abstractions

The classes meant to be abstracted have a varying complexity in terms of the control flow. Some
examples contain method bodies comprised of just a single statement while others have more
complicated branching instructions. Benchmark examples contain if/else statements, loops, switch
statements. For all of these examples loupe is capable to automatically generate abstractions
and run them in SVM.

One limitation of automatic generation is that the source code generated does not always turn
out to be pretty or fully optimised. Hand crafted abstractions can have a much simpler logic.
Potential optimisations of the generated code are left for future work. An example which shows
potential simplifications is shown in listings 35 and 36.

Another side of abstraction generation is the aggressiveness of over approximations. Other
examples in the benchmark have a higher over approximation. However, making such abstractions
automatically is non trivial. These abstractions were built with the knowledge of concrete
behaviour in mind. This is needed especially when a method returns an Object instance while it
returns String objects.

Another limitation of the automatic generation is that loupe does not handle exceptions. A
potential extension would add support for try/catch cases. Despite it limiting the classes that
could be abstracted it did not make examples poor. Firstly a lot of classes do not throw exceptions.
Secondly SVM does not completely handle exceptions either.

9.5.2 Overhead of abstraction instrumentation

This series of benchmarks runs tests to check the overhead of abstraction instrumentation (defined
in section 6.1.4). The results of these benchmarks figs. 32 to 34 indicate that the overhead is
minimal.

The timings shown in fig. 32 show that the time to find the violation with and without the
instrumentation is comparable. Running abstraction instrumentation added at most a 10%
overhead for the examples that did not time out15. Surprisingly for some of them searching
for the violation with abstraction instrumentation improved performance. However this can be
attributed to the random nature of exploration.

The same conclusion can be reached when comparing for the unique queries computed and the
number of states that reached termination (figs. 33 and 34). If we compare runs that use the
same strategy abstractions generate 10% more queries and traverse roughly 10% less states. This
disparity holds even for the examples for which the analysis timed out. Thus, even in those cases
the analyses have made similar progress.

15When comparing the time it only makes sense to compare examples that did not time out. This is because the
examples were stopped right after a minute and so it looks like they have terminated at the same time. However,
it could still be possible for one of them to complete right after a minute while the other would complete after 2
minutes.

74

0 200 400 600 800 1000 1200

C1_1

C1_2

C1_3

C1_4

C1_5

With instrumentation [LOC]

Without instrumentation [LOC]

With instrumentation

Without instrumentation

60000

Figure 32: Comparison of time taken for concrete examples. It is important to note that
expressions and webapp examples took 60000 milliseconds.

1 10 100 1000

C1_1

C1_2

C1_3

C1_4

C1_5

With instrumentation [LOC]

Without instrumentation [LOC]

With instrumentation

Without instrumentation

Figure 33: Comparison of states terminated for concrete benchmarks plotted on a logarithmic
scale.

1 10 100 1000 10000

C1_1

C1_2

C1_3

C1_4

C1_5

With instrumentation [LOC]

Without instrumentation [LOC]

With instrumentation

Without instrumentation

Figure 34: Comparison of the number of queries for concrete benchmarks plotted on a logarithmic
scale.

75

9.5.3 Effect of abstraction policy on performance

In this section we compare the effect of abstraction policy on performance. Thus, we only compare
timings which use the same search strategy.

Figure 35 compares the timings of the different runs. Unlike for the concrete examples here
we can see a large disparity in performance. Because of this the results had to be plotted on
a logarithmic scale. It is worth paying attention to that no strategy outperforms others for all
examples.

For some examples there is a staggering advantage in using abstractions. For instance in case of
C2_3 and C2_4 examples mnemonic abstractions perform 30 times faster compared to the non
abstract search strategy which times out. Deep was also capable to find the violation with a
similar time. On the other hand Shallow abstraction was unable to find the violation. This is
because the violation was only triggered if the abstracted class made relevant method calls.

For some examples there is a big can see a big disadvantage in using abstractions. Look for
example at the C2_2 example in figs. 35 and 37. There are a few interesting observations we can
make about the example. The non abstract version has reached 30 states in 2423 milliseconds.
On the other hand the deep and mnemonic versions have reached 23049 and 42918 states in
a minute. Thus, when the abstracted version is used SVM explores states 30 or 55 times faster.
Nevertheless, SVM was still unable to pick a state which contained a violation. In addition we can
notice that the naïve implementation completed just in 30 milliseconds. However unlike all other
analyses it was unable to find the bug.

We can see that the speed improvement is caused by the lowered number of SMT queries. It is
orders of magnitude lower compared to the non abstract classes as shown in fig. 37. This explains
why abstractions perform faster by a factor of 30.

Because of this the mnemonic strategy highly increases the number of explored terminating
states within the same time. For instance in the C2_1 example it explores 60 times the number
of states the non abstract strategy does. Thus, whether on not an abstract strategy finds a
violation depends on whether abstractions generate more than 60 times the number of states the
exploration of a concrete class would cause.

If we look at the C2_6 example the mnemonic strategy makes 300 times less SMT queries (4500
queries). When we compare the number of states explored we can see on the other hand that
abstractions explore 300 times more states.

9.5.4 Effect of search strategy on performance

Another useful comparison is to compare different search strategies between each other and see
how they compare. In order to make the comparison we made the table 3. It shows the ratio
between the time it took the tree strategy to find a violation over the time it took the tree LOC
strategy to find a violation a particular example. Values larger than 1 mean that the tree strategy
was slower. Values smaller than 1 mean that the tree strategy was faster.

What can be noticed is that neither of these techniques is always better.

For many examples the ratio equals to 1. This is caused by two reasons. Firstly some examples
are small and the search strategy has no effect on the speed. Secondly some examples time out.
For these examples both of the search strategies timed out.

76

1 10 100 1000 10000 100000

C2_1

[LOC] C2_1

C2_2

[LOC] C2_2

C2_3

[LOC] C2_3

C2_4

[LOC] C2_4

C2_5

[LOC] C2_5

C2_6

[LOC] C2_6

C2_7

[LOC] C2_7

C2_8

[LOC] C2_8

C2_9

[LOC] C2_9

Mnemonic Deep Shallow Non abstract

Figure 35: Comparison of time taken for abstract benchmarks grouped by examples and search
strategy. It is plotted on a logarithmic scale. Since all examples above contained a violation runs
that took a minute (60000 milliseconds) signify a missed violation (false negative). Examples
prefixed with [LOC] were run using the LOC strategy.

77

1 10 100 1000 10000 100000

C2_1

[LOC] C2_1

C2_2

[LOC] C2_2

C2_3

[LOC] C2_3

C2_4

[LOC] C2_4

C2_5

[LOC] C2_5

C2_6

[LOC] C2_6

C2_7

[LOC] C2_7

C2_8

[LOC] C2_8

C2_9

[LOC] C2_9

Mnemonic Deep Shallow Non abstract

Figure 36: Comparison of states terminated for abstract benchmarks grouped by examples and
search strategy. Examples prefixed with [LOC] were run using the LOC strategy.

78

1 10 100 1000 10000

C2_1

[LOC] C2_1

C2_2

[LOC] C2_2

C2_3

[LOC] C2_3

C2_4

[LOC] C2_4

C2_5

[LOC] C2_5

C2_6

[LOC] C2_6

C2_7

[LOC] C2_7

C2_8

[LOC] C2_8

C2_9

[LOC] C2_9

Mnemonic Deep Shallow Non abstract

Figure 37: Comparison of the number of queries for abstract benchmarks. It can be noticed
that for many examples the non abstract strategy is the only one that makes any queries. The
mnemonic strategy makes most queries out of abstraction strategies. Examples prefixed with
[LOC] were run using the LOC strategy.

79

Example Non abstract Shallow AbstractionsMiddle AbstractionsBest
C2_1 2.12 1.25 0.94 1.19
C2_2 0.98 1.07 1.00 1.00
C2_3 1.00 1.00 1.30 1.56
C2_4 1.00 1.00 0.98 1.08
C2_5 1.00 0.92 0.86 1.09
C2_6 1.00 1.00 1.00 0.26
C2_7 1.00 1.00 1.00 1.00
C2_8 1.00 1.00 1.00 1.00
C2_9 1.00 1.00 1.00 1.00

Table 3: Amount of time taken by the tree search over amount of time takes by the line of code
search strategy.

For the majority of remaining examples the tree strategy is slower than the lines of code strategy.
In most examples the difference is negligible and the ratio is small than 1.10. The C2_1 example
stands out where the tree strategy requires over twice the time. This is most likely caused by
the fact that the violation happens when a method is called on an object of a different class.
Therefore the lines of code strategy will prioritise this example.

Some examples actually execute faster using the tree strategy. For instance in the C2_6 example
the tree strategy finds the violation four times faster. The possible explanation of this phenomenon
is that exploration of lines that were already explored is extremely penalised requiring all other
code paths to be explored first. For instance if a loop needs to be iterated twice firstly all paths
that do not iterate over the loop will be explored.

Other strategies do not completely omit states that try to explore already explored lines of code,
just decrease the weight with which these states get picked. For instance authors of PEX describe
the following strategy:

In order to avoid getting stuck in a particular area of the program by a fixed search
order, Pex implements a fair choice between all such unexplored branches of the
explored execution tree. Pex includes various fair strategies which partition all
branches into equivalence classes, and then pick a representative of the least often
chosen class. The equivalence classes cluster branches by mapping them:
– to the branch statement in the program of which the execution tree branch is an
instance (each branch statement may give rise to multiple branch instances in the
execution tree, e.g. when loops are unfolded),
– to the stack trace at the time the brach was recorded,
– to the overall branch coverage at the time the branch was recorded,
– to the depth of the branch in the execution tree.
Pex combines all such fair strategies into a meta-strategy that performs a fair choice
between the strategies. [33]

What we can also notice is that different strategies seem to suit different abstraction levels more.
While the simple abstractions performs faster in general using the tree strategy the abstract
abstractions perform faster in general using the LOC strategy.

80

9.5.5 Effect of abstractions on false negative rate

Table 4 extracts the timings from fig. 35 and counts the number of found violations. Since all of
these examples contained a violation we count all examples for which the time to find a violation
was smaller or equal to a minute (time out).

We can notice that the mnemonic strategy has the highest detection of violations. It finds 2 more
violations compared to the non abstract version. Other abstraction strategies lie in between non
abstract and mnemonic strategy.

What is important to note is that the mnemonic strategy does not find all violations that the non
abstract strategy does. In effect by running all strategies in parallel and reporting a violation if
any of the strategies reported one we would find even more violations. The combined strategy is
capable of finding twice the number of violations found by the non abstract version.

While the LOC and tree strategies impact the speed with which the violations are found there
were no examples where one of them would time out while the other would not. In effect the
number of found violations is the same for both strategies.

Abstraction strategy Found violations for tree strategy Found violations for LOC strategy
Non abstract 3 3
Shallow 3 3
Deep 4 4
Mnemonic 5 5
Combined 6 6

Table 4: Number of examples (out of 9 examples in total) for which a violation was found by svm.
Running svm with abstractions increases the number of violations found within a time limit. The
last row expresses the number of violations that would be found if a violation is found whenever
one of the strategies reports a violation.

9.5.6 Effect of abstractions on false positive rate

False positive examples try to differentiate the false positive rate for different abstraction strategies.
We expect the programs to time out as this means that the SVM did not find a violation. Because
of this it is not useful to compare the timings as the more accurate strategies would be considered
“slower”. Therefore, the only metric we will compare on is the percentage of times that different
techniques have mistakenly found a violation.

Abstraction policy False positives for tree strategy False positives for LOC strategy
Non abstract 0 0
Shallow 1 1
Deep 1 1
Mnemonic 1 1

Table 5: Number of times svm incorrectly reported a violation (false positives). There were 4
examples in total.

81

Table 5 shows the percentage of false positives. Because non abstract execution runs the program
as is, when a violation is found it would occur in a real program. As a result non abstract classes
do not generate any false positives. On the other hand running abstracted classes does make a
small false positive rate.

However the false positive rate is not terrible for two reasons. Firstly the abstraction keeps
track of its behaviour. Thus, it would be possible to run the program once again with a non
abstract class and find whether a non abstract class would also have the behaviour that caused
the bug. Secondly this is still a rare behaviour. The example is shown in appendix A.3 however
the specification change was generated specifically to trigger a false positive.

Nonetheless, it is hard to predict how many developers would build such contrived scenarios.
Scenarios where the specification would assume properties of the system and the paths it could
take. And scenarios where the abstracted class would return an over approximation that affects
the paths that the program may take.

9.5.7 Summary

Firstly it is worth noticing that there is no significant overhead caused by adding abstraction
instrumentation.

Overall abstractions code is a technique which makes it quicker for symbolic execution engines to
explore program behaviours. Typically abstractions generated by the loupe tool can be explored
faster. When abstractions are used SVM terminates with about 30 times more states explored.
This is caused by the fact that abstractions reduce the number of queries.

Because abstractions are faster they can find more violations within a specified time out. However
they also raise false positives and detect violations not present in the actual program.

In some cases finding a violation in over-approximations requires far more states to be explored.
In those cases the abstractions generated by loupe no longer find violations faster. However, less
precise approximation strategies (such as the shallow) decrease the number of states that have
to be explored. For instance when approximating a Map<String, String>.get(key) instead of
returning all values passed to the map a shallow abstraction would return one symbolic string.
While returning a symbolic primitive is easy it becomes more difficult when the abstraction needs
to return a symbolic object.

10 Conclusions

This project presents the loupe tool which can generate abstractions used in equivalence analysis.
As a result it finds more bd spec violations than an analyser without abstractions. It can
generate abstractions automatically making the abstraction system really easy to use. In order
to generate abstractions for classes with complex behaviours loupe makes the abstraction logic
closely resemble the non abstract code. As shown by section 9.5.3 out of all abstraction strategies
the one used by loupe finds most violations. Nevertheless, in many cases it is slower compared
to other strategies.

The project demonstrates that abstractions can improve the speed with which the analysis is
performed. For the majority of benchmarks abstractions improved the speed with which violations
are found. The use of abstractions increases the speed of exploration by factor larger than 30. In

82

effect if the number of states to explore does not increase by a larger factor the violations will be
found faster.

The key implementation choice that made such performance possible is making exploration of
abstractions generate almost no SMT queries. In fact the SMT queries often turned out be the
largest bottleneck of symbolic exploration.

Another feature of loupe is that it can generate the Java code for abstractions. In doing so it
restructures bytecode into higher level Java code. It does it by doing a single traversal of the
control flow graph. While the generated code is made for abstractions the algorithm is suitable
for use in a decompiler.

While useful the proposed solution has several limitations which prevent it from being used to
test large programs at the moment. Firstly, because of the complexity of the Java language the
SVM library does not yet support all bytecode instructions. In effect not all programs can be run
yet on SVM to begin with.

Secondly the abstractions generated by loupe are not the fastest. Abstractions which over
approximate the behaviour even further usually trade off the accuracy for the performance.
However, it is possible that some strategies could improve the performance without sacrificing the
accuracy. An example strategy could combine the mnemonic and shallow strategies and prioritise
the search using the shallow strategy. Therefore there is still room for improvement of abstraction
algorithm.

Thirdly the number of false positives is small despite abstractions having many behaviours that
non abstract classes do not have. The small false positive rate can be attributed to the fact that
SVM executes and compares the behaviours of two versions. Thus in a single version execution if
an abstraction would throw a NullPointerException an incorrect behaviour would be found.
On the other hand in case of a multi version execution this behaviour is fine as long as the other
version also throws the NullPointerException for that scenario.

Overall the project makes several contributions. First and foremost it shows a potential use
for class abstractions in a symbolic execution engine. By doing so it gives a possibility to find
violations that would not be found as quickly without their use. Secondly the project shows a
new way in which bytecode can efficiently be decompiled into abstractions in a single pass.

10.1 Future work

This section contains changes that could be made to the project in order to improve it. The
changes try to address the limitations of the current implementation. They concentrate on
improving the overall performance of loupe and making the equivalence analysis more flexible.

Features which are discussed in the subsections in more detail that could be introduced are:

• A way of removing pure functions from the traces to make trace equivalence more lenient.
• A more interactive, graphical way of creating behaviour change specifications.
• Performing optimisations of the abstraction logic.
• Perform different abstractions in parallel. Since different abstraction levels have better

performance under different scenarios perhaps using all of them would have the overall tool
find violations faster.

83

• A way of reducing the number of states required to thoroughly explore a number of code
paths. While this feature the path merging algorithm discussed below could highly limit the
path explosion its implementation requires many changes to the symbolic engine. Moreover
it isn’t certain whether the current search strategies are good enough that they pick the
interesting paths anyway.

A useful extension to the project would integrate with build tools like ant or maven. This would
make it possible to automatically test the equivalence with respect to the last checked in version
to a version control system. A tool could simply check out the sources from a version control
system to a temporary directory and use the build configuration in order to detect the necessary
set up required to run the main application.

10.1.1 More lenient trace equivalence

Path equivalence analysis checks for any method calls made on the affected/unaffected boundary
since it could potentially be responsible for a mutation of an unaffected.

As explained in the background (section 2.1.5) this creates a big limitation. In reality there are
many programs that have exactly the same behaviour but produce different traces. For instance
if pure methods are added to the trace they definitely cannot affect object state. Yet they will
cause a partition violation if another version of the program does not also call the same pure
method.

The result of such trace equivalence is that if add a new getter call to an object from an affected
object both object suddenly become affected. This is despite the fact that calling the getter
cannot affect an object in its intuitive sense. Let’s consider the following program.
interface Drink {

public void drink ();
}

class Alcohol implements Drink {
public void drink() {

System.out.println("Drink␣it␣all");
}

}

class SoftDrink implements Drink {
public void drink() {

System.out.println("So␣fizzy");
}

}

class Person {
private int age;
public Person(int age) {

this.age = age;
}

public int getAge () {
return age;

}
}

84

class Vendor {
public Drink giveAlcohol(Person p) {

return new Alcohol ();
}

}

class AdultBuyingAlcohol {
static void main(String [] args) {

int age = Integer.parse(args [0]);
Person adult = new Person(age);
Vendor v = new Vendor ();

v.giveAlcohol(adult). drink ();
}

}

class Vendor {
public Drink giveAlcohol(Person p) {

if (p.getAge () >= 18) {
return new Alcohol ();

} else {
return new SoftDrink ();

}
}

}

class AdultBuyingAlcohol {
static void main(String [] args) {

int age = Integer.parse(args [0]);
Person adult = new Person(age);
Vendor v = new Vendor ();

v.giveAlcohol(adult). drink ();
}

}

Version 2 of the Vendor program represents the way that current vendors in many supermarkets
function checking the age of people and selling alcohol to just people over the drinking age. For
the change specification we can say that all instances of a Vendor were affected since the vendor
can now prohibit some people from drinking. However if the use the original equivalence notion all
instances of Person are also affected. If we would make the Person unaffected then the following
traces would be captured:

new Vendor ()
return 0
Vendor.giveAlcohol(alias -0)

new Alcohol ()
return alias -1

return alias -1
Drink.drink(alias -1)
System.out.println (" Drunk")
return
return

Listing 24: Trace created by executing the first
version of vendor.

new Vendor ()
return 0
Vendor.giveAlcohol(alias -0)

Person.getAge ()
return symbol -0
new Alcohol ()
return alias -1

return alias -1
Drink.drink(alias -1)
System.out.println (" Drunk")
return
return

Listing 25: Trace created by executing the
second version of vendor.

The reason why these traces are not equivalent is because the second version of a Vendor class
calls the getAge method. It was added to the trace because potentially it could mutate the state
of the Person object. However in this case getAge resembles a simple object getter and cannot
affect the state of a Person.

This is why a possible extension of SVM would be able to get a list of method calls that are pure.
These methods would then be left out of the trace. This would make the affected objects have a
more intuitive meaning.

10.1.2 Easier generation of partitions

A big pain point of the equivalence analysis is that it requires a change specification for every
code change made. One can argue that this corresponds to the way that programmer write unit

85

tests. Nevertheless in case of a refactoring change it might not be necessary to make any changes
to unit tests. On the other hand a bds needs to be defined for every code change.

Ideally an equivalence analysis program such as loupe could generate the partitioning automati-
cally. While it is possible to make an algorithm that creates a partitioning for which no violation
occurs one would have to be careful to make sure it finds a representative partitioning. It is
highly likely that it would reach a local minimum instead. For instance it could classify all classes
as affected which is not too useful for a programmer.

A reasonable solution would make the process more interactive only suggesting the initial
partitioning to work on. For example, by default all modified classes between the two versions
could be tagged as affected.

In addition to make it easier to alter the change specification the programmer could be presented
with a GUI. The UI would show the dependency graph between the classes. Making changes to
the specification would require clicking on the classes present on the graph.

Making such a UI would potentially make it quicker to define and change the change specification.
At the same time it would not make the tool less useful as the programmer would still be able to
provide an arbitrary specification.

10.1.3 Path merging

A significant problem with symbolic execution is the presence of path explosion. In this project it
occurs whenever an abstracted method performs a dynamic non-deterministic choice and is called
many times. Let’s take an example of an abstract HashMap.
public class HashMap {

private ArrayList <String > strings = new ArrayList <>();
private ArrayList <Integer > integers = new ArrayList <>();

public void put(String key , Integer value) {
strings.add(key);
integers.add(value);

}

public Integer get() {
return getPassedParameter(integers);

}
}

public MapTester {
@Test
public testHashMapContainsElements () {

HashMap hm = new HashMap ();
for (int i = 0; i < 100; i++) {

hm.put(Integer.toString(i), i);
}
for (int i = 0; i < 100; i++) {

assertNotEqual(hm.get(Integer.toString(i), null));
}

}
}

Since the abstraction keeps no true state about what objects get added the program tries to
return one of the passed values. However, given that 100 values were passed and a method is

86

called a 100 times then the total number of paths to explore is 100100. This means that the
effectiveness of symbolic execution will depend enormously on the search strategy. It will only be
able to explore a fraction of all code paths.

Figure 38 shows the paths that can be executed by the test method. What can be observed
about the code above is that the results of method calls for hm.get are mostly independent of
one another. There are 100 paths where the method call hm.get("0") returns a non null value.
At the same time all of these paths behave in the same way as the test no longer queries for
hm.get("0") again. Therefore instead of the hm.get("0") method creating a 101 states it could
create two: one where the result is null and one where it isn’t.

hm.get("0")

hm.get("1")

hm.get("2")

hm.get("3")

...

hm.get("99")

assertion failure

assertion failure

assertion failure

assertion failure

assertion failure

equals null

equals null

equals null

equals null

equals null

Figure 38: Paths of the testHashMapContainsElements test.

What this observation leads us to is a question: can we explore all code paths without
ending up with 100100 states? By exploiting data independence we can limit state explosion
to only occur the results so then we can save the program from falling into the exponential state
explosion when it really is not necessary and would allow us to execute the bulk of the program
in once doing a Single Instruction Multiple States execution.

Specifically by observing the fig. 38 I realised that the main issue is that once a state forks into
two paths it stays that way forever. This happens even if both paths later execute the same
instruction. As a result it takes twice the time for symbolic execution to explore that state.

My hypothesis is that for most real applications the code that could be shared across different
paths is high. If this is the case then it would be worthwhile merging paths, a technique which I
though of.

Path merging is a technique in which symbolic execution would wait for different paths to reach
the same instruction. Afterwards it could execute different paths under one state. Consider the
code below. When line 2 is executed the state will be forked for cases when args.length == 0

87

and case when !(args.length == 0).

Once one of the paths executes line 2 it must wait for another path to complete. This needs to
be done so that line 3 can be executed for both paths at once. After the second path reaches
line 3 both paths can be merged. To make path merging possible the state that holds both cases
would need to map the value of x to both 1 and 2. This allows then the line 3 to be executed by
one state since all paths part of the state will compute the same result.

There are cases though when the merged state can compute different results. When line 4 is
executed then the assertion fails for one state but passed for another. If this case the symbolic
execution would split the path again and execute them separately.

1 public static void main(String [] args) {
2 int x = args.length == 0 ? 1 : 2;
3 System.out.println("Hello␣World!");
4 assert x + x == 2;
5 }

Path merging requires a lot of changes to the way that the engine executes instructions. The
following changes are required:

1. Firstly as shown in the example above it is possible for a heap or stack object to have
multiple values for one state. Thus each value in memory needs to be able to represent
multiple values.

2. Bytecode instructions such as load, store, branches, arithmetic operations would need to
support the fact that the memory location could have multiple values in memory. For the
example above the expression x + x at line 4 would evaluate to 2 or 4 depending on the
circumstances.

3. Most importantly in order to make this algorithm helpful symbolic execution needs to put
some states on hold until other states reach the same program point and then efficiently
merge them. In the HashMap example (fig. 38) ideally the symbolic execution would wait
for all paths to complete the assertion after hm.get("0") is called. Then it would be able
to merge 100 different states into 1. However, in general this is not a trivial problem as
some states may throw exceptions, return from a method call or loop forever.

88

A Appendix: Code examples

A.1 Package Manager

The first example shows a possible implementation of a package manager with only the update
method implemented. Listings 26 to 29 show the code for the first version (except for the
PackageMap for the local repository).

The new version of the code tries to ensure that the package is installed both if it was not yet
installed and also if a new version is available and the listing 30 shows how this class would
change.

Listing 31 shows how the PackageMap class could be abstracted.
package loupe.examples.packagemanager;

import com.lexicalscope.svm.j.instruction.symbolic.symbols.SymbolFactory;

public class Package {
private final int versionNumber;
private final boolean isInstalled;
private final int isDeveloper;

public Package(int versionNumber , boolean isInstalled , int isDeveloper) {
this.versionNumber = versionNumber;
this.isInstalled = isInstalled;
this.isDeveloper = isDeveloper;

}

public void install () { }
public int getVersionNumber () { return versionNumber; }
public int isDeveloper () { return isDeveloper; }
public boolean isInstalled () { return isInstalled; }

}

Listing 26: Package class. Shared between both versions.

package loupe.examples.packagemanager;

public class PackageManagerApp {
public static void main(String [] args) {

updateAllPackages(args [0]);
}

public static void updateAllPackages(String packageName) {
new PackageManagerApp (). update(packageName);

}

private void update(String packageName) {
PackageManager manager = new PackageManager ();
manager.updatePackages(packageName);

}
}

Listing 27: Package Manager class. Shared between both versions.

package loupe.examples.packagemanager;

import java.sql.Connection;

89

import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;
import java.util.HashMap;

public class OriginalPackageMap {
private HashMap <String , Package > packages;

public OriginalPackageMap () {
try {

Connection connection = DriverManager.getConnection("localhost");
Statement statement = connection.createStatement ();
String query = "SELECT␣name ,␣versionNumber ,␣" +

+ "isInstalled ,␣isDeveloper␣"
+ "FROM␣packages;";

ResultSet resultSet = statement.executeQuery(query);
while (resultSet.next ()) {

String name = resultSet.getString (0);
int versionNumber = resultSet.getInt (1);
boolean isInstalled = resultSet.getBoolean (2);
int isDeveloper = resultSet.getInt (3);
put(name , new Package(versionNumber , isInstalled , isDeveloper));

}
} catch (SQLException e) {

e.printStackTrace ();
}

}

public void put(String key , Package value) {
packages.put(key , value);

}

private Iterable <Package > getMembers () {
return packages.values ();

}

public Iterable <String > getKeys () {
return packages.keySet ();

}

public Package getValue(String key) {
return packages.get(key);

}
}

Listing 28: Concrete implementation of the package map.

package loupe.examples.packagemanager;

public class PackageManager {
private PackageMap externalRepository = new PackageMap ();
private PackageMap locallyInstalled = new PackageMap ();

public void updatePackages(String packageName) {
Package externalPackage = externalRepository.getValue(packageName);
Package localPackage = locallyInstalled.getValue(packageName);
int developer = localPackage.isDeveloper ();
int currentVersion = localPackage.getVersionNumber ();
int externalVersion = externalPackage.getVersionNumber ();

if (! localPackage.isInstalled ()) {

90

localPackage.install ();
}

}
}

Listing 29: Package manager class for the first version.

After making the change
package loupe.examples.packagemanager;

public class PackageManager {
private PackageMap externalRepository = new PackageMap ();
private PackageMap locallyInstalled = new PackageMap ();

public void updatePackages(String packageName) {
Package externalPackage = externalRepository.getValue(packageName);
Package localPackage = locallyInstalled.getValue(packageName);
int developer = localPackage.isDeveloper ();
int currentVersion = localPackage.getVersionNumber ();
int externalVersion = externalPackage.getVersionNumber ();

if (! localPackage.isInstalled ()) {
localPackage.install ();

} else if (currentVersion < externalVersion) {
localPackage.install ();

}
}

}

Listing 30: Package manager class for the second version.

package loupe.examples.packagemanager;

import com.lexicalscope.svm.j.instruction.symbolic.symbols.SymbolFactory;

public class PackageMap {
private ArrayList <String > strings = new ArrayList <>();
private ArrayList <Package > packages = new ArrayList <>();

public void put(String key , Package value) {
strings.add(key);
packages.add(value);

}

private Iterable <Object > getMembers () {
return null;

}

public Iterable <String > getKeys () {
return strings;

}

public Package getValue(String key) {
return createPackage ();

}

public static Package createPackage () {
return new Package(

SymbolFactory.newIntSymbol (),
SymbolFactory.newBooleanSymbol (),

91

SymbolFactory.newIntSymbol ());
}

}

Listing 31: Abstracted version of the package map.

A.2 Web app example

A class hierarchy of the web app example is shown in fig. 39. For simplicity WebApp program
uses a CGI server to handle the Http. As a CGI application the Main class receives the URL path
and the query from the environment. The Main class creates then the Request and Response
classes. The request class contains request information. On the other hand the Response contains
methods that create a reply to the CGI server.

It follows a callback pattern where the Router class is expected to process the Request and
decide which Route should handle the request. Then it should call the appropriate route method.
A concrete implementation of the Router class is shown in listing 32.

The different levels of abstraction can be explained by comparing different Router implementations.

Main Router

Request

Response Route

CGI ServerInternetUser

WebApp application

route

sendMessage

Figure 39: A web application overview.

A.2.1 Router abstractions

A.2.1.1 Concrete implementation concrete implementation of a Router routes the request
to a Route class that matches on the Route path.

package loupe.examples.webapp.core;

import loupe.examples.utils.Logging;

public class Router {
private static final Logging LOG = new Logging ();
private int routeCount = 0;
private RouterItem [] items = new RouterItem [512];

public void addRoute(String format , Route route) {
items[routeCount] = new RouterItem(format , route);
routeCount ++;

92

}

public void route(Request req , Response res) {
for (int i = 0; i < routeCount; i++) {

RouterItem item = items[i];
if (req.getPath (). equalToString(item.format)) {

item.route.route(req , res);
return;

}
}
LOG.warning("Route␣not␣found␣%s", req.getPath ());

}

private class RouterItem {
public String format;
public Route route;

public RouterItem(String format , Route route) {
this.format = format;
this.route = route;

}
}

}

Listing 32: Concrete implementation of the Router class.

A.2.1.2 The shallow abstraction such abstraction only needs to ensure that its return
value conforms to the return type. Since the return types of both method is void the inner bodies
will be replaced by no ops.

package loupe.examples.webapp.core;

import loupe.examples.utils.Logging;

public class Router {
public void addRoute(String format , Route route) {
}

public void route(Request req , Response res) {
}

}

Listing 33: Naïve implementation of a Router abstraction.

A.2.1.3 A deep abstraction such abstraction should allow a call to the route method
missing from the naïve implementation. It over approximates any objects that could have multiple
values (in this example the route variable) by creating a new object of a specific type. The
implementation is shown below:

package loupe.examples.webapp.core;

import loupe.examples.webapp.routes.FindRoute;
import loupe.examples.webapp.routes.FormRoute;
import loupe.examples.webapp.routes.HelpRoute;
import loupe.examples.webapp.routes.InfoRoute;
import static com.lexicalscope.svm.j.instruction.symbolic

.symbols.SymbolFactory .*;

93

public class Router {
public void addRoute(String format , Route route) {
}

public void route(Request req , Response res) {
switch (selectState (4)) {

case 0:
new FindRoute (). route(req , res);
break;

case 1:
new FormRoute (). route(req , res);
break;

case 2:
new HelpRoute (). route(req , res);
break;

default:
new InfoRoute (). route(req , res);
break;

}
}

}

Listing 34: Simple implementation of a Router abstraction.

A.2.1.4 A mnemonic abstraction such abstraction preserves the context a class has be-
tween method calls. It uses the SymbolFactory method in order to capture the state of method
calls. In addition it preserves the original control flow. The implementation is shown below:

package loupe.examples.webapp.core;

import static com.lexicalscope.svm.j.instruction.symbolic
.symbols.SymbolFactory .*;

public class Router {
private ArrayList <String > strings = new ArrayList <>();
private ArrayList <Route > routes = new ArrayList <>();

public void addRoute(String format , Route route) {
strings.add(format);
routes.add(route);

}

public void route(Request req , Response res) {
do {

if (randomChoice ()) {
break;

}
if (randomChoice ()) {

Route route = getPassedParameter(routes);
route.route(req , res);
return;

}
}

}
}

Listing 35: Precise implementation of a Router abstraction.

94

The automated algorithm makes the code much more complicated than necessary. Manually it
could be optimised to the following code:

package loupe.examples.webapp.core;

import static com.lexicalscope.svm.j.instruction.symbolic
]. symbols.SymbolFactory .*;

public class Router {
private ArrayList <String > strings = new ArrayList <>();
private ArrayList <Route > routes = new ArrayList <>();

public void addRoute(String format , Route route) {
strings.add(format);
routes.add(route);

}

public void route(Request req , Response res) {
if (randomChoice ()) {

Route route = getPassedParameter(routes);
route.route(req , res);

}
}

Listing 36: Manually written precise implementation of a Router abstraction.

A.3 Even change example

This example shows a case where creating an abstraction causes a false. The reason for this is
that the bd spec violation happens on a path which cannot happen under the execution of a real
program.

An even change program is a simple program that doubles a value and prints a message. The
introduced change changes the message printed when the value is not even. The corresponding
EvenMain classes are shown in listings 38 and 41. The DoubleValue class is shown in listing 39.

package loupe.examples.benchmark.falsepositive.evenchange;

import loupe.examples.utils.Logging;

public class EvenMain {
private Logging LOG = new Logging ();

public static void main(int[] values) {
new EvenMain ().run(values);

}

private void run(int[] values) {
if (new DoubleValue (). doubleValue(values [0]) % 2 == 0) {

LOG.info("should␣be␣even");
} else {

LOG.info("I␣don't␣even");
}

}
}

Listing 37: An old version of the EvenMain class.

95

package loupe.examples.benchmark.falsepositive.evenchange;

import loupe.examples.utils.Logging;

public class EvenMain {
private Logging LOG = new Logging ();

public static void main(int[] values) {
new EvenMain ().run(values);

}

private void run(int[] values) {
if (new DoubleValue (). doubleValue(values [0]) % 2 == 0) {

LOG.info("should␣be␣even");
} else {

LOG.info("I␣don't␣even␣(%d)", 12);
}

}
}

Listing 38: A new version of the EvenMain class.

package loupe.examples.benchmark.falsepositive.evenchange;

public class DoubleValue {
public int doubleValue(int entry) {

return 2 * entry;
}

}

Listing 39: A DoubleValue implementation.

Under normal execution doubling an integer should never cause a number to become odd. Thus
even though the EvenMain class was changed the output sent to the Logging class should not
change. Therefore the bd spec shown in listing 40 would be applicable.

package loupe.examples.benchmark.falsepositive;

import com.lexicalscope.svm.partition.spec.BehaviourChanged;
import com.lexicalscope.svm.partition.spec.BehaviourUnchanged;
import com.lexicalscope.svm.partition.spec.CallContext;
import com.lexicalscope.svm.partition.spec.ChangeSpecification;
import loupe.examples.benchmark.falsepositive.evenchange.EvenMain;
import loupe.examples.utils.Logging;
import org.hamcrest.Matcher;

import static com.lexicalscope.svm.partition.spec.MatchersSpec .*;
import static org.objectweb.asm.Type.getInternalName;

public class EvenChange implements ChangeSpecification {
@BehaviourChanged
public Matcher <? super CallContext > mainHasChanged () {

return receiver(klassIn(getInternalName(EvenMain.class)));
}

@BehaviourUnchanged
public Matcher <? super CallContext > loggingHasNotChanged () {

return receiver(klassIn(getInternalName(Logging.class)));
}

96

}

Listing 40: Bd spec for the EvenChange example.

A.3.1 Shallow abstraction

In this case the concrete implementation does not perform any method calls. Therefore the only
thing that needs to be abstracted is the return value. Without performing an even/odd analysis
the abstracted DoubleValue class would look like the listing 41.

Because the abstraction returns a symbolic integer the previously unreachable path suddenly
becomes reachable. Since the code was modified only on the unreachable path a false positive is
triggered. Nevertheless, this example seems contrived.

package loupe.examples.benchmark.falsepositive.evenchange;

import static com.lexicalscope.svm.j.instruction.symbolic
.symbols.SymbolFactory .*;

public class DoubleValue {
public int doubleValue(int entry) {

return newIntSymbol ();
}

}

Listing 41: Abstracted DoubleValue class.

97

B
A
pp

en
di
x:

R
aw

re
su
lt
s

T
hi
s
se
ct
io
n
co
nt
ai
ns

R
aw

ou
tp
ut

ge
ne

ra
te
d
by

th
e
to
ol
.

Le
ge
nd

:

•
T
im

e
–
to
ta
lt

im
e
sp
en
t
by

sv
m

•
ST

–
nu

m
be

r
of

st
at
es

th
at

co
m
pl
et
ed

ex
ec
ut
io
n

•
Q
S
–
un

iq
ue

qu
er
ie
s
se
nt

to
SM

T
so
lv
er

•
F

–
vi
ol
at
io
n
de
te
ct
ed

W
it
ho

ut
in
st
ru
m
en
ta
ti
on

[T
re
e]

W
it
h
in
st
ru
m
en
ta
ti
on

[L
O
C
]

W
it
ho

ut
in
st
ru
m
en
ta
ti
on

[T
re
e]

W
it
h
in
st
ru
m
en
ta
ti
on

[L
O
C
]

N
am

e
T
im

e
Q
S

ST
F

T
im

e
Q
S

ST
F

T
im

e
Q
S

ST
F

T
im

e
Q
S

ST
F

C1
_1

6
1

0
T

6
1

0
T

6
1

0
T

6
1

0
T

C1
_2

28
6

0
2

T
24
1

1
2

T
26
8

1
0

T
28
0

1
0

T
C1

_3
93
5

25
67

T
61
8

17
44

T
97
8

25
70

T
68
7

17
43

T
C1

_4
60
00
0

26
4

57
61

F
60
00
0

34
1

59
86

F
60
00
0

23
4

54
39

F
60
00
0

35
0

62
66

F
C1

_5
60
00
0

58
56
46

F
60
00
0

4
59
90

F
60
00
0

81
53
12

F
60
00
0

4
58
00

F

Ta
bl
e
6:

C1
ex
am

pl
es

be
nc
hm

ar
k
re
su
lts

.

N
on

ab
st
ra
ct

Sh
al
lo
w

D
ee
p

M
ne

m
on

ic
N
am

e
T
im

e
Q
S

ST
F

T
im

e
Q
S

ST
F

T
im

e
Q
S

ST
F

T
im

e
Q
S

ST
F

C2
_1

13
51

23
64

T
35

4
0

F
16
3

15
24

0
T

17
7

15
46

0
T

C2
_2

24
23

30
19
0

T
32

16
0

F
60
00
0

23
04
9

0
F

60
00
0

42
91
8

0
F

C2
_3

60
00
0

17
6

44
16

F
60
00
0

41
6

61
46

F
21
72

55
17
8

T
12
60

30
99

T
C2

_4
60
00
0

24
4

53
90

F
60
00
0

14
39
1

0
F

61
97

3
T

42
43

2
T

C2
_5

32
6

0
2

T
11

2
0

F
12

2
0

F
32
31

78
78

T
C2

_6
60
00
0

39
47
76

F
60
00
0

29
67
9

30
74

F
60
00
0

83
13
7

0
F

15
45

45
74

0
T

C2
_7

60
00
0

50
43
12

F
60
00
0

17
64
0

38
F

60
00
0

32
62
8

22
F

60
00
0

12
65
33

38
F

C2
_8

60
00
0

58
41
60

F
60
00
0

27
54
5

21
04

F
60
00
0

11
39
63

0
F

60
00
0

12
96
64

0
F

C2
_9

60
00
0

32
40
98

F
60
00
0

45
62
7

26
F

60
00
0

53
72
5

30
F

60
00
0

13
08
20

40
F

Ta
bl
e
7:

C2
ex
am

pl
es

be
nc
hm

ar
k
re
su
lts

fo
r
tr
ee

st
ra
te
gy
.

98

N
on

ab
st
ra
ct

Sh
al
lo
w

D
ee
p

M
ne

m
on

ic
N
am

e
T
im

e
Q
S

ST
F

T
im

e
Q
S

ST
F

T
im

e
Q
S

ST
F

T
im

e
Q
S

ST
F

C2
_1

63
8

17
44

T
28

4
0

F
17
4

15
65

0
T

14
9

16
63

0
T

C2
_2

24
75

25
17
2

T
30

16
0

F
60
00
0

31
70
6

0
F

60
00
0

32
60
5

0
F

C2
_3

60
00
0

28
0

51
22

F
60
00
0

51
3

62
38

F
16
77

43
12
1

T
80
7

23
65

T
C2

_4
60
00
0

36
1

61
46

F
60
00
0

17
04
8

0
F

62
10
0

3
T

39
40

1
T

C2
_5

32
5

1
2

T
12

2
0

F
14

2
0

F
29
69

73
64

T
C2

_6
60
00
0

4
55
98

F
60
00
0

35
57
8

29
68

F
60
00
0

10
79
58

0
F

60
07

13
05
7

0
T

C2
_7

60
00
0

4
48
86

F
60
00
0

26
23
5

26
F

60
00
0

37
58
2

26
F

60
00
0

12
23
92

22
F

C2
_8

60
00
0

4
51
22

F
60
00
0

28
72
8

30
82

F
60
00
0

88
09
8

0
F

60
00
0

14
17
16

0
F

C2
_9

60
00
0

4
50
20

F
60
00
0

47
91
4

32
F

60
00
0

47
79
6

30
F

60
00
0

11
72
42

30
F

Ta
bl
e
8:

C2
ex
am

pl
es

be
nc
hm

ar
k
re
su
lts

fo
r
LO

C
st
ra
te
gy
.

N
on

ab
st
ra
ct

Sh
al
lo
w

D
ee
p

M
ne

m
on

ic
N
am

e
T
im

e
Q
S

ST
F

T
im

e
Q
S

ST
F

T
im

e
Q
S

ST
F

T
im

e
Q
S

ST
F

C3
_1

74
2

0
F

74
2

0
F

65
2

0
F

61
2

0
F

C3
_2

25
5

2
2

F
20
4

0
3

T
18
2

0
2

T
16
8

0
3

T
C3

_3
30
00
0

95
20
50

F
30
00
0

16
3

22
16

F
30
00
0

14
39

22
00

F
30
00
0

13
62

20
80

F
C3

_4
15
00
0

34
11
38

F
15
00
0

82
16

10
26

F
15
00
0

33
86
7

0
F

15
00
0

40
25
0

0
F

C3
_5

15
01
6

41
13
80

F
15
87
0

72
92

88
2

F
15
13
0

35
43
5

0
F

15
00
3

48
01
8

0
F

Ta
bl
e
9:

C3
ex
am

pl
es

be
nc
hm

ar
k
re
su
lts

fo
r
tr
ee

st
ra
te
gy
.

N
on

ab
st
ra
ct

Sh
al
lo
w

D
ee
p

M
ne

m
on

ic
N
am

e
T
im

e
Q
S

ST
F

T
im

e
Q
S

ST
F

T
im

e
Q
S

ST
F

T
im

e
Q
S

ST
F

C3
_1

T
O

2
0

F
65

2
0

F
65

2
0

F
68

2
0

F
C3

_2
23
7

2
2

F
19
6

0
3

T
19
4

0
3

T
18
0

0
3

T
C3

_3
30
00
0

97
18
32

F
30
00
0

26
6

27
88

F
30
00
0

25
89

27
94

F
30
00
0

16
61

19
66

F
C3

_4
15
00
0

4
12
78

F
15
00
0

10
95
7

10
26

F
15
00
0

23
80
6

0
F

15
00
0

27
80
7

0
F

C3
_5

15
02
2

4
14
76

F
16
34
1

56
89

10
26

F
18
95
4

31
40
9

0
F

15
00
6

52
86
5

0
F

Ta
bl
e
10
:

C3
ex
am

pl
es

be
nc
hm

ar
k
re
su
lts

fo
r
LO

C
st
ra
te
gy
.

99

References

[1] Zuoning Yin et al. “How do fixes become bugs?” In: Proceedings of the 19th ACM SIGSOFT
symposium and the 13th European conference on Foundations of software engineering. ACM.
2011, pp. 26–36.

[2] Napol Rachatasumrit and Miryung Kim. “An empirical investigation into the impact of
refactoring on regression testing”. In: Software Maintenance (ICSM), 2012 28th IEEE
International Conference on. IEEE. 2012, pp. 357–366.

[3] Tim Wood and Sophia Drossopoulou. “Program Equivalence through Trace Equivalence”.
In: Foundations of Object Oriented Languages, FOOL. 2014.

[4] Tim Mackinnon, Steve Freeman, and Philip Craig. “Endo-testing: unit testing with mock
objects”. In: Extreme programming examined (2000), pp. 287–301.

[5] James C King. “Symbolic execution and program testing”. In: Communications of the ACM
19.7 (1976), pp. 385–394.

[6] Robert S. Boyer, Bernard Elspas, and Karl N. Levitt. “SELECT&Mdash;a Formal System
for Testing and Debugging Programs by Symbolic Execution”. In: Proceedings of the
International Conference on Reliable Software. New York, NY, USA: ACM, 1975, pp. 234–
245. doi: 10.1145/800027.808445. url: http://doi.acm.org/10.1145/800027.808445 (visited
on 01/17/2015).

[7] Cristian Cadar, Daniel Dunbar, and Dawson R Engler. “KLEE: Unassisted and Automatic
Generation of High-Coverage Tests for Complex Systems Programs.” In: OSDI. Vol. 8. 2008,
pp. 209–224.

[8] Ondrej Lhoták. “Spark: A flexible points-to analysis framework for Java”. In: (2002).
[9] Thomas Lengauer and Robert Endre Tarjan. “A fast algorithm for finding dominators in a

flowgraph”. In: ACM Transactions on Programming Languages and Systems (TOPLAS) 1.1
(1979), pp. 121–141.

[10] Thomas Ball et al. “Thorough static analysis of device drivers”. In: ACM SIGOPS Operating
Systems Review. Vol. 40. 4. ACM. 2006, pp. 73–85.

[11] Yannick Welsch and Arnd Poetzsch-Heffter. “Verifying backwards compatibility of object-
oriented libraries using Boogie”. In: Proceedings of the 14th Workshop on Formal Techniques
for Java-like Programs. ACM. 2012, pp. 35–41.

[12] Jerome Miecznikowski. “New algorithms for a java decompiler and their implementation in
soot”. PhD thesis. McGill University, 2003.

[13] Raja Vallée-Rai et al. “Soot-a Java bytecode optimization framework”. In: Proceedings of
the 1999 conference of the Centre for Advanced Studies on Collaborative research. IBM
Press. 1999, p. 13.

[14] Oracle. CodeModel project. https://codemodel.java.net/. 2015.
[15] Suzette Person et al. “Differential symbolic execution”. In: Proceedings of the 16th ACM

SIGSOFT International Symposium on Foundations of software engineering. ACM. 2008,
pp. 226–237.

[16] Patrice Godefroid. “Compositional dynamic test generation”. In: Acm Sigplan Notices.
Vol. 42. 1. ACM. 2007, pp. 47–54.

100

http://dx.doi.org/10.1145/800027.808445
http://doi.acm.org/10.1145/800027.808445
https://codemodel.java.net/

[17] Saswat Anand, Patrice Godefroid, and Nikolai Tillmann. “Demand-driven compositional
symbolic execution”. In: Tools and Algorithms for the Construction and Analysis of Systems.
Springer, 2008, pp. 367–381.

[18] David Currie et al. “Embedded software verification using symbolic execution and un-
interpreted functions”. In: International Journal of Parallel Programming 34.1 (2006),
pp. 61–91.

[19] Mary Jean Harrold and ML Souffa. “An incremental approach to unit testing during
maintenance”. In: Software Maintenance, 1988., Proceedings of the Conference on. IEEE.
1988, pp. 362–367.

[20] Robert B Evans and Alberto Savoia. “Differential testing: a new approach to change
detection”. In: The 6th Joint Meeting on European software engineering conference and
the ACM SIGSOFT Symposium on the Foundations of Software Engineering: Companion
Papers. ACM. 2007, pp. 549–552.

[21] Shuvendu K Lahiri, Kapil Vaswani, and C AR Hoare. “Differential static analysis: opportu-
nities, applications, and challenges”. In: Proceedings of the FSE/SDP workshop on Future
of software engineering research. ACM. 2010, pp. 201–204.

[22] Samuel Bates and Susan Horwitz. “Incremental program testing using program dependence
graphs”. In: Proceedings of the 20th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages. ACM. 1993, pp. 384–396.

[23] Carsten Görg and Peter Weißgerber. “Error detection by refactoring reconstruction”. In:
ACM SIGSOFT Software Engineering Notes 30.4 (2005), pp. 1–5.

[24] Xiaoxia Ren et al. “Chianti: a tool for change impact analysis of java programs”. In: ACM
Sigplan Notices. Vol. 39. 10. ACM. 2004, pp. 432–448.

[25] Wei Jin, Alessandro Orso, and Tao Xie. “Automated behavioral regression testing”. In:
Software Testing, Verification and Validation (ICST), 2010 Third International Conference
on. IEEE. 2010, pp. 137–146.

[26] Tao Xie et al. “Towards a framework for differential unit testing of object-oriented programs”.
In: Proceedings of the Second International Workshop on Automation of Software Test.
IEEE Computer Society. 2007, p. 5.

[27] Kunal Taneja et al. “Guided path exploration for regression test generation”. In: Soft-
ware Engineering-Companion Volume, 2009. ICSE-Companion 2009. 31st International
Conference on. IEEE. 2009, pp. 311–314.

[28] Alberto Bacchelli, Paolo Ciancarini, and Davide Rossi. “On the effectiveness of manual and
automatic unit test generation”. In: Software Engineering Advances, 2008. ICSEA’08. The
Third International Conference on. IEEE. 2008, pp. 252–257.

[29] Daniel Jackson and David A Ladd. “Semantic diff: A tool for summarizing the effects of
modifications”. In: Software Maintenance, 1994. Proceedings., International Conference on.
IEEE. 1994, pp. 243–252.

[30] Koushik Sen, Darko Marinov, and Gul Agha. CUTE: a concolic unit testing engine for C.
Vol. 30. 5. ACM, 2005.

[31] Trung Dinh-Trong et al. “Looking for More Confidence in Refactoring? How to Assess
Adequacy of Your Refactoring Tests”. In: Quality Software, 2008. QSIC’08. The Eighth
International Conference on. IEEE. 2008, pp. 255–263.

[32] Tim wood. Java Bytecode Snapshot Vm and Symbolic Executor. https://github.com/
lexicalscope/svm. [Online; accessed 12-June-2015]. 2015.

101

https://github.com/lexicalscope/svm
https://github.com/lexicalscope/svm

[33] Nikolai Tillmann and Jonathan De Halleux. “Pex–white box test generation for. net”. In:
Tests and Proofs. Springer, 2008, pp. 134–153.

102

	Introduction
	Motivating example
	Objectives
	Contributions
	Report outline

	Background
	Core concepts
	Java internals
	Behaviour equivalence analysis
	Symbolic execution
	Affected and unaffected objects
	Trace equivalence
	Control flow graph
	Code flow analysis
	Points-to analysis
	Dominators
	Most general context
	Decompilation of code

	Libraries used in this project
	Soot framework
	CodeModel
	IntelliJ plugin framework

	Alternative approach used to run Java programs
	Alternative approaches to code simplification
	Method summaries
	Uninterpreted functions

	Alternative approaches to equivalence analysis
	Overview
	Dependency graph
	Reverse refactoring
	Analysis through unit testing
	Control flow analyses
	Symbolic diff

	Implementation of Loupe
	Using Loupe
	IntelliJ plugin for Loupe
	Running the loupe tool in IntelliJ
	Running the CLI tool
	Processing loupe IntelliJ plugin output

	Loupe architecture
	Architecture overview
	Specification
	Creating and using a behaviour difference specification

	Generating abstractions
	Abstracting behaviours
	Retained behaviours
	Abstraction API
	Using the abstraction API to build abstractions
	Running abstractions inside of svm
	Implementing abstraction API

	Improving abstraction precision by code analysis
	Dealing with parameters
	Mirroring method calls and dealing with new
	Points-to analysis
	Keeping the control flow

	Generating Java code
	Overview of the algorithm
	Branch structuring
	Loop structuring
	Simplifying structured graph
	Generating Java from structured graph

	Svm
	Svm overview
	Svm performance
	Search strategy
	Contributions to svm library
	Caching SMT results
	Caching of data
	Memory sharing

	Limitations
	Project integration
	State explosion
	Abstraction performance
	Parallelism
	Svm Java support
	Specification language
	Retaining object properties

	Evaluation
	Testing environment
	Data collected
	Svm configurations
	Choice of benchmarking examples
	Results
	Automatic generation of abstractions
	Overhead of abstraction instrumentation
	Effect of abstraction policy on performance
	Effect of search strategy on performance
	Effect of abstractions on false negative rate
	Effect of abstractions on false positive rate
	Summary

	Conclusions
	Future work
	More lenient trace equivalence
	Easier generation of partitions
	Path merging

	Appendix: Code examples
	Package Manager
	Web app example
	Router abstractions

	Even change example
	 abstraction

	Appendix: Raw results

