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Abstract

This project aims to classify recognition without awareness using eye movement. We employ
popular machine learning techniques to process and organize eye movement to try to solve
the binary classification problem “has the participant seen the image before?”. We build an
application to run trials to collect eye-tracking data and produce a data set of eye movement
data with both image and subimage recognition features. Initial analysis of the data set shows
there are significant statistical differences between first and second viewing. We use and compare
two clustering techniques to automatically generate areas of interests for each category of image,
and represent eye movement as strings, Markov chains, and Hidden Markov Models in order to
classify the two groups. We achieve a highest result of 68.7% which is lower than the participant
average of 72.8% but in general results indicate promise for solving this problem.
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Chapter 1

Introduction

Memory, my dear Cecily, is the diary that we all carry about with
us.

The Importance of Being Earnest
Oscar Wilde

Memory is a critical function of human nature. What we remember shapes how we think, who we
are and how we see the world. As Oscar Wilde wrote, it is a a “diary we all carry about with us”
whatever we do. But how memory is written and how it is read are questions that have teased
both scientists and philosophers alike. This project is an investigation into an indirect method of
accessing memory: the eyes.

Commonly, the interface we associate with memory is explicit: a thought in our consciousness
that we can express either orally or through text. However, there are many examples in daily
life of functions and activities we can all perform but would find it difficult to express; imagine
writing down the steps to tying your shoes for example. This implicit memory can exist and be
accessed without conscious recognition.

Our eyes are one of the principal ways we understand and communicate with the external world.
With its proximity to the brain, it has a direct channel to neurological systems to control where
we look and what we look at. At least one of these neurological systems is influenced by our
memory, and there is growing research into using eye movement as a means of accessing these
systems; in other words, using our eyes as an index into our memory. There would be numerous
benefits including: providing another means to investigate memory and its implementation in the
brain; giving people who do not have the ability to express their memory explicitly an increased
opportunity to understand their past; make our understanding of how we look and what we
choose to see, or our model of eye movement, more robust and more accurate.

This project will investigate whether our eye movement can be used as a measure of recognition
independent of explicit recognition. We will pursue these objectives by finding the models and
features of our eye movement which best identify whether an object we observe is an object we
have seen before. In order to accomplish this task, we will need to collect and analyse data for
our models.

1.1 Motivation

The pairing of eye movement and the brain is not novel to this investigation; as discussed in our
review of existing research on the subject in section 2.3.1, eye movement has been a successful
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tool to understand the mind. Especially with regards to memory, eye movement can display
implicit biases and involuntary displays of knowledge, sometimes without our awareness. The
decision to target memory without awareness, rather than memory, was twofold:

1. to create a more robust model of memory, rather than human behaviour

2. to orient ourselves towards supplementing the brain rather than mimicking it

The first motivation is to make a clear distinction between classification of eye movement behaviour
as controlled implicitly by neurological feedback loops and classification of eye movement as a
display for human behaviour. We want to access the full domain of memory rather than the
range consciousness has access to. This is a subtle distinction but an important one; when we
analyse the performance of our classification methods, we do not train nor base our success
around comparison with the participant. However, we are interested in the relationship between
the two as they are inextricably linked. The second motivation expands upon that link.

If we return anecdotally to the importance of memory in our daily lives, there are often situations
when insufficient memory plays a negative role. Forgetting something can come at the cost of
a roundtrip back home, a missed date or a fatal mistake. For many sufferers of neurological
impairments and damage, an ill-functioning memory is a significant hardship. If eye movement
can be a measure of recognition independent of all the neurological systems that need to function
in order to experience recognition, the people who have suffered damage to those systems will
have another means of accessing their memory and piece together something they will have
otherwise lost. Unfortunately the scope of the project did not able us to accomplish either goal,
but we hope this work builds upon the foundation laid before and guides further work towards
those goals.

1.2 Objectives

Memory, as a component critical to human activity but as a subject naturally difficult to
investigate, is a field filled with opportunities for novel techniques and cross-fertilization of proven
techniques. With our investigation, we approach the problem as a data analysis problem, rather
than as a neuropsychology experiment, and aimed to uncover new behaviours of eye movement
and memory.

We formally set out and achieve the following three objectives:

• to build a platform to collect eye tracking data

• to collect a novel data set of eye movement for analysis

• to use the data set to better model the relationship between memory and eye movement

In addition to these objectives, and as the project progressed, opportunities to target peripheral
objectives were introduced, including:

• to create a versatile tool to collect and display real-time eye tracking data

• to implement and evaluate the latest methodologies of scanpath representation

1.3 Contributions

This report details the following contributions:
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• a novel data set of 1200 scanpaths from twenty participants for forty images (twenty
repeated)

• an analysis of statistical differences between first and second image viewings (and subimage
seen and unseen features)

• an evaluation and implementation of four representations of scanpaths for classification of
eye movement

• results for sixteen different classifiers, with a highest accuracy of 68.7% for classifying seen
and unseen images

• an easy to configure and ready to play application for collecting and displaying eye-tracking
data

1.4 Structure of the Report

This report covers the work and findings of our investigation as we followed its principal and
peripheral objectives. In order to properly communicate the work, it will first be necessary to
outline the existing research and relevant practices in machine learning (section 2.1), eye-tracking
(section 2.2) and memory (section 2.3). Many of the techniques we will use will refer to topics in
this section.

The implementation of the project is divided into two sections: Chapter 3 Data Collection and
Chapter 4 Classification. Data Collection refers to the application and outcome of the aggregation
of eye movement data for our novel data set. We will cover both an overview of the eye-tracking
application we engineered in section 3.1 and the procedure, stimulus and results of our trials
in section 3.2. Classification will cover the algorithms and techniques we employ to extract
recognition from eye movement and our efforts to understand the results. This includes an
overview of how we pre-process the data in section 4.2 and four sets of classification techniques:
a discriminative approach in section 4.3, a spatial approach in section 4.4, a string-edit approach
in section 4.5 and using the Markov property in section 4.6.

Finally we conclude with an evaluation of our investigation in Chapter 5 and final remarks on
our contribution and our hopes for the future in Chapter 6.
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Chapter 2

Background

2.1 Machine Learning

Machine learning is the field of study centred around algorithms and techniques for identifying
patterns and relationships in data [1][2]. With increasing availability of large amounts of data
and computational processing, automatic methods, particularly those derived from statistics,
have become more popular as a tool to sort, predict and understand data.

Machine learning is a broad umbrella split commonly into three subsections: supervised, unsu-
pervised and reinforcement learning. In this investigation, we will not be using reinforcement
learning, but will be applying techniques from both supervised and unsupervised learning.

The distinction between supervised and unsupervised learning is labelling; namely, supervised
learning is concerned with mapping inputs to outputs, e.g. linear regression, finding the line of
best fit for a set of points. Unsupervised learning is concerned with finding unforeseen patterns in
data, e.g. clustering, grouping points located near each other. As this investigation is primarily a
classification problem, which is in the domain of supervised learning, most of the techniques used
will be from this subsection of machine learning. However, a few unsupervised techniques are
useful for dealing with and organizing large amounts of data.

It is useful while discussing certain techniques to break down input, or data, into a set of features.
A feature is an individual quantity or characteristic of the input; for example, if the input was a
set of two-dimensional points, each point has the features x-position and y-position.

2.1.1 Probability Models

One of the principal explorations within machine learning is how to build accurate models from
data. The data we have is the observed data and we are trying to model the systems which
produced the data. However, these models are not exact or true recreations of the original system
and therefore include a measure of uncertainty. The common measure is probability.

Using a probability model provides a measure of confidence of the model in representing the data,
but requires finding the appropriate functions and parameters for the model.

2.1.1.1 The Normal Distribution

The normal, or Gaussian, distribution is a popular and useful probability distribution, with a
probability density function N (x|µ, σ2) (pdf):
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N (x|µ, σ2) = 1√
2πσ2

exp
(
− (x− µ)2

2σ2

)
(2.1)

where x is the random variable, and µ and σ2 are the parameters of the distribution, representing
the mean and the covariance of the data respectively. The multivariate counterpart is:

Nn(x|µ,Σ) = 1√
(2π)n|Σ|

exp
(
−1

2(x− µ)TΣ−1(x− µ)
)

(2.2)

where x and µ are n-dimensional vectors and Σ is a n-by-n covariance matrix.
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Figure 2.1: Probability density functions for the (a) univariate and (b) bivariate normal distributions

Figure 2.1a and figure 2.1b show the pdfs for the univariate and bivariate normal distributions
with zero mean and unit covariance.

2.1.1.2 Maximum Likelihood

Maximum likelihood estimation (MLE) is a mathematical technique to estimate the parameters
that maximize the likelihood of a model. For example, for a model using a probability distribution,
the parameters θ of the distribution can be estimated from the probability p(x|θ). We can take a
look at an example using the univariate normal distribution in equation (2.1).

The parameter θ for the normal distribution is µ and σ2. Using equation (2.1) for the univariate
normal pdf, we can derive the likelihood of a set of nvariables x as:

L(x|µ, σ2) =
n∏
i=1
N (xi|µ, σ2)

The likelihood L represents the probability that each variable xi was generated from the model
with parameters µ and σ2. If we assume to be individually and independently distributed (i.i.d),
the probability of observing the entire set x is the product of the probabilities of each individual
xis.

Using the properties of exponents, and noticing that σ2 is constant with respect to n, we can
turn the product into a sum:

6



L(x|µ, σ2) = 1
(2πσ)

n
2

exp
(
−
∑n
i=1 (xi − µ)2

2σ2

)

When working with probabilities, especially those from the exponential family, it is often easier
to work with the log-likelihood logL rather than L for two reasons: one, it prevents arithmetic
underflow, as multiplication of very small fractions are replaced with addition of negative numbers;
two, it gives us the opportunity to use properties of logarithms (which we use to turn the product
into a sum).

Taking the log-likelihood l:

l(x|µ, σ2) = logL(x|µ, σ2)

l(x|µ, σ2) = log 1
(2πσ2)

n
2

exp
(
−
∑n
i=1 (xi − µ)2

2σ2

)

l(x|µ, σ2) = −n2 log 2π + −n2 log σ2 +−1
2

∑n
i=1 (xi − µ)2

σ2

For MLE, we find the optimal parameters by differentiating the function and setting the gradient
equal to zero. Because the logarithm function is monotonically increasing, it will not change the
maximums of the function. Therefore the parameters that maximize the log-likelihood will also
maximize the likelihood function. For the normal distribution, we differentiate the log-likelihood
with respect to each parameter µ and σ2 and set it equal to zero to get:

µ̂ =
∑n
i=1 (xi − µ)

σ2

σ̂2 =
∑n
i=1 (xi − µ)2

n

which is the empirical mean and empirical covariance respectively.

2.1.1.3 Maximum A Posteriori (MAP)

Maximum A Posteriori (MAP) is a parameter estimation technique that utilizes Bayes Theorem.
It estimates the parameters θ from the data x by maximizing the posterior probability of θ given
x. Bayes Theorem defines the posterior probability as:

p(θ|x) = p(x|θ)p(θ)
p(x)

In a Bayesian framework, probability is a measure of belief, and the posterior represents our
belief after observing x. Our belief about θ is proportional to what we believed before observing
x (the prior p(θ)) and the probability of θ producing x (the likelihood p(x|θ)).

The optimal parameters are then calculated by finding the posterior probability for θM :

θM = arg max
θ

p(θ|x)

θM = arg max
θ

p(x|θ)p(θ)
p(x)
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p(x) will be constant for different values of θ so the equation can be simplified to:

θM = arg max
θ

p(x|θ)p(θ)

The addition of the prior p(θ) is what separates the MAP estimate from the MLE estimate.

2.1.1.4 Expectation Maximization

Expectation Maximization (EM) is an iterative process to find the MAP or MLE estimate [3]. It
is commonly used when computing the ML and MAP estimates directly is difficult, such as if
there are latent, or hidden, variables.

If we define X to be our observed data set, Z to be our latent variables, and θ to be our
parameters, the goal of EM is to maximize the joint log-likelihood:

l(θ) =
N∑
i=1

log p(X,Z|θ) (2.3)

EM iteration is broken down in to two steps: the E step and M step. At iteration step t, the E
step aims to calculate the expectations of the parameters with respect to the observed data and
the previous parameter values:

Q(θ, θt−1) = E[lc(θ)|X, θt−1] (2.4)

Q is an auxiliary function. The M step finds the next set of parameters θt by maximizing the Q
function with respect to θ:

θt = arg max
θ

Q(θ, θt−1) + logp(θ) (2.5)

The algorithm iterates until θt converges to the optimal value θM . Convergence to a local
optimum is guaranteed, as the maximum likelihood is strictly non-decreasing at each iteration,
and increasing if the expectation of the auxiliary function increases.

2.1.2 Classification

Classification is a part of supervised learning whose goal is to assign inputs their respective
discrete classes (labels). A simple example would be the function is_even, which given the
domain of natural numbers as an input will classify each number as either even or odd. In other
words, it applies a class label of even or odd.

is_even is an example of a binary classifier (as it has only two classes) and can be modelled by a
well-known relationship: if the number is divisible by two. However, for this investigation, the
relationship, or relationships, are not so easily known.

In order to model these ambiguous relationships, probability will be used. With probability,
classification can be broken down in to a two-step problem:

1. infer the probability of a class

2. decide whether the label will be assigned
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2.1.2.1 Naive Bayesian Classifier (NBC)

Naive Bayesian classifiers (NBC) is a set of simple classifiers built on the foundations of Bayesian
probability. Bayesian probability is often regarded as a measure of belief; new data is interpreted
as evidence, which affects a prior belief, to create a new posterior belief.

Naive refers to the treatment of the input data features as conditionally independent given the
class label. In other words, the assumption that the different features of the data all contribute
independently to the probability of the class label. This way, the probability of a class label
given the data can be obtained from the posterior:

p(c|x) = p(x|c)p(c)
p(x)

It is unlikely that features are conditionally independent in real-life systems, however NBCs have
been shown to be an effective estimation regardless [4]. To use NBCs, we combine the posterior
probability with a decision rule such as “pick the class which maximizes the posterior”:

ĉ = arg max
c⊆C

p(c|x) = p(x|c)p(c)
p(x)

in other words, the MAP estimate of the class label.

Training the classifier, or model, is the process of using data to find the optimal parameters or
distributions for a classifier. In the case of the NBC, it is finding the right likelihood and prior
functions. For example, we could use the normal distribution as our likelihood function, which
has parameters µ and Σ, if it fits our data well. This an example of a parametric and generative
classifier; parametric as it uses fixed parameters of the training data rather than the entire training
data itself, and generative as once we find the parameters, we can also generate likely observations.
There are several techniques to finding the optimal parameters: maximum likelihood, maximum
a posteriori and expectation maximization, which we discussed in section 2.1.1.2.

2.1.2.2 K-Nearest-Neighbour Classifier (KNN)

An example of a non-parametric classifier is the K-Nearest-Neighbour (KNN) classifier. KNN
uses the entire training data set and some measure of distance such as Euclidean distance to
label points based on their neighbours.

Figure 2.2a shows an example of a training dataset with two classes and K set to 5. To classify a
new test point with KNN, such as the red point in figure 2.2b, the closest 5 neighbours from
the training set are found using the distance metric. Figure 2.2c highlights the neighbours. The
test point is assigned by a majority vote: the best represented class among its neighbours. A
probability score can be calculated by dividing the number of neighbours with the majority class
by K. In our simple example, the point is classified as blue in figure 2.2d, as four of its five
neighbours (a probability of 80%) are blue.

As a binary classifier, an odd value for K is sufficient for avoiding any ties. However, to deal
with outliers, a weighting can be added as an additional cost to classification. If the weighting
was inversely related to distance, closer neighbours will have greater weight than further away
neighbours.

2.1.2.3 Logistic Regression

A popular approach to binary classification is logistic regression, which unlike NBCs, is a
discriminative parametric classifier. Discriminative means that logistic regression aims to classify
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Figure 2.2: Example of K-NN binary classification of a test point where K is 5
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by computing the conditional probability p(c|x) directly, instead of marginalizing over the joint
probability. The disadvantage is the inability to generate likely pairs from a joint probability.

Logistic regression aims to model the relationship between the inputs and outputs as a function.
Specifically, it aims to model the relationship as a function of the form:

p(y|x,w) = Ber(y|sigm(wx))

where y is the label, x is the input, w are the parameter weights, Ber is the Bernouilli distribution
and sigm is the sigmoid or logistic function. The Bernouilli distribution Ber(x|θ) is a distribution
such that:

Ber(x|θ) =
{
θ ifx = 1
1− θ ifx = 0

The sigmoid, or logistic, function is a continuous function which returns a value between 0 and 1,
and is characterized by its S-shape graph. The definition of the sigmoid function is

S(x) = 1
1 + exp(−t)

In combination with the Bernouilli distribution, the conditional probability p(c|x,w) with weights
w is

p(c|x,w) = 1
1 + exp(−w0 + ŵx)

As this is a binary classification problem, if we combine this with a decision rule similar to what
we suggested with NBCs (the MAP estimate of the class label), we will pick the label which has
p(c|x,w) < 0.5. This is true if

−w0 + ŵx > 0

and the decision boundary is located at

−w0 + ŵx = 0

2.1.3 Clustering

Clustering is a technique in unsupervised learning to group unlabelled points together based on a
set of metrics, usually a form of distance.

For this section, we will show two strategies for clustering the points in figure 2.3a, which was
created using three multivariate normal distributions with different means.

2.1.3.1 Soft and Hard Clustering

Clustering is concerned with assignment points to their appropriate clusters.

For hard clustering, the assignment is one-to-one; each point will be assigned to exactly one
cluster. Soft clustering is stochastic; the responsibility for the point can be shared among several
clusters. A soft-assignment can be turned in to a hard-assignment by finding the cluster with the
largest responsibility for the point.
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2.1.3.2 Mixture of Gaussians (MOGs)

A popular clustering technique is to use a mixture model of normal distributions referred to as a
Mixture of Gaussians (MoG). Mixture models use clusters defined by probability distributions,
and use soft-assignment based on the probability of the point belonging to each distribution.

A point is therefore not strictly assigned to a cluster, but assigned to several clusters, who share
the responsibility for that point. Reponsibility is a latent, or hidden, variable of the model. This
probability assignment is modelled as a posterior probability:

p(ci = k|xi,θ) = p(xi|ci = k,θ)p(ci = k|θ)∑K
j=1 p(xi|ci = j,θ)p(ci = j|θ)

where K is the number of clusters.

For a Mixture (model) of Gaussians, the likelihood function is the normal distribution, and the
prior probability is the cumulative responsibility that distribution has across all the points. To
find the optimal parameters, including the latent variables, EM (see section 2.1.1.4) is used.

Bayesian Information Criterion The downside to the classic MoG approach is that the
number of clusters K needs to be defined a priori, which in some cases can be cumbersome. If
we leave the number of clusters unbounded, we can overfit the data; i.e. make the model too
specific to the training set that it does not generalize well to new data.

One technique to find the number of clusters is to use a measure of model quality to rank between
models with different K values.

Bayesian Information Criterion is a measure to assess the quality of a model with respect to the
dataset [5]. Formally defined:

BIC = −2 ln(l) + α log(n) (2.6)

where k is the maximized likelihood p(x|M, θM ) of model M and with parameters θM , x is the
observed data, n is the number of observations and α is the number of free parameters.

A lower BIC value indicates a better quality of fit. BIC dissuades overfitting by penalizing the
number of free parameters used in the model (see α in equation (2.6)). A similar criterion to BIC
is Akaike Information Criterion (AIC); however BIC discourages complex models more than AIC.

2.1.3.3 DeCarlo-Santella Algorithm (DCS)

An alternative clustering algorithm is one suggested as an alternative to k-means (another
clustering algorithm that we will not cover) [6]. The algorithm, which uses the mean-shift
procedure, was brought to the eye movement community by DeCarlo and Santella. We will
refer to this algorithm as the DeCarlo-Santella (DCS) algorithm for convenience, although the
mean-shift procedure and its use as part of a clustering algorithm was first proposed by Fukunuga
and Hostetler [7]. The main advantages of DCS is that it produces consistent results and the
number of clusters does not have to be calculated in advance, which are weaknesses of other
clustering techniques including MoGs.

The idea behind DCS is a two-step process:

1. shift the points into a denser, easily separable configuration
2. cluster using a simple distance algorithm
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(b) Assignment after clustering using a Mixture of Gaussians
where K = 3
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(a) The points after four iterations of the mean-shift
procedure. The original locations are shown in grey
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(b) The points after six iterations of the mean-shift
procedure. The original locations and the locations
after two iterations are shown in light grey and grey
respectively
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(c) Assignment after clustering with the DeCarlo-
Santella algorithm
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In order to perform step one, the mean shift procedure is used. The procedure iteratively moves
each point to the weighted mean of all points, until all points converge (to save computational
performance the number of iterations is often capped) . The weight is the use of an interchangeable
kernel function to avoid sensitivity to extreme outliers, typically a multivariate Gaussian kernel.

Once the points have converged to their local means, a distance based clustering algorithm can
be applied. This creates clusters for every group of points separated by a certain threshold of
distance.

2.1.4 Markov Processes

The Markov property states that given an ordered sequence of states, the probability of the
current state can be determined sufficiently by the previous states.

p(st|θ, s1:t−1) = p(st|s1:t−1)

First and second order Markov properties enforce the stronger condition that the current state
can be determined sufficiently by the previous and the previous two states respectively.

p(st|θ, s1:t−1) = p(st|st−1)
p(st|θ, s1:t−1) = p(st|st−1, st−2)

It is often more practical to also include that the probability is invariant to time; namely the
probability of state s occuring at time t1 is the same as the probability of it occuring it at any
other time t2, given the same previous one or two states (for first and second order Markov
properties).

p(st1 |st1−1) = p(st2 |st2−1)

A Markov process is a process that obeys the Markov property. The probability of a sequence of
states S that obeys a first order Markov property can be decomposed in to a product:

p(s1:T ) = p(s1)
T∏
t=2

p(st|st−1)

In order to model a first order Markov process, we need to calculate the probability to transition
from state st−1 to st. This is typically captured in stochastic n-by-n transition matrix A, where
n is the number of possible states, and Aij is the probability of transitioning from state i to state
j. The rows of A sum to 1.

A can be calculated using empirical data by counting the number of occurrences where state i
transitions to state j, and normalizing across the rows. However, if the resulting matrix is sparse
(i.e. with a large number of zeros), the transition probability may be zero. This may or may
not capture appropriate behaviour. To avoid this problem, we can use add-one smoothing, or
pre-populate each row with at least one occurrence (add one smoothing) [1].

2.1.5 Hidden Markov Models

A Markov chain is a useful model for sequences of states which we can observe, but is not suitable
for situations where the state space is hidden, or latent. To model hidden state spaces, we want
to use the hidden Markov model (HMM).
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We can build the definition of HMMs using two previously discussed concepts: Mixture of
Gaussians (MOG) and the Markov chain. In Mixture of Gaussians, we referred to the responsibility
of a cluster, how much of each point is assigned to the cluster, as a latent variable. This was
because the responsibility is not something we observe, but is implicitly modelled by our MoG.
The observations are the actual data points, and the clusters’ responsibility is the hidden state
space.

Let us define a MoG with two clusters k1 and k2 and observe one data point x1. The likelihood
that x1 belongs to cluster k1 is the probability p(x1|k = k1), which is just the normal distribution
with parameters µ1 and σ2

1 . In other words, we can think of it as the probability that ki generated,
or emitted, x1. If we observe another data point, x2, we can formulate the same thing: the
probability x2 was emitted by k1 is N (x2|µ1, σ

2
1). For a MoG, the probability of observing both

x1 and x2 is the product of the individual posterior probabilities, where the individual posterior
probability for k1 is:

p(k = k1|x1) ∝ p(x1|k = k1)p(k1)

where the prior probability p(k1) is the proportion of points cluster k1 is responsible for. In the
MoG model, the probability of x2 belonging to k1 is independent of the probability x1 belongs
to k1. The prior probability p(k1) does not take into account any of the history of the previous
observations (after training). However, if there was dependency between states, we would have
to update the prior in our equation:

p(kt = k1|x1) ∝ p(x1|kt = k1)p(kt = k1|k1..t−1)

With the first order Markov property, the prior probability becomes a product of one-step
transition probabilities, or:

p(kt = k1|x1) ∝ p(x1|kt = k1)p(k1)
t∏
i=2

p(ki|ki−1)

This is the posterior probability of the HMM, which combines the emission probability of MoG
with the transition probabilities of the Markov chain. A graphical illustration of a HMM is shown
in figure 2.5

k1 k2
A12

k1
A12

x1

p(x1|k1)

x2

p(x2|k2)

x3

p(x3|k1)

Figure 2.5: A model of a HMM with a sequence of hidden states space {k1, k2,k1} emitting the
observations {x1, x2, x3}

Hidden Markov Models have discrete latent states, Z̄ = z1, ..., zt and either continuous or discrete
observations X̄ = x1, ..xt. As a generative model they can be used to generate samples and
compute the likelihood of a sample (using log-likelihood), as well as make inferences or predictions.
To find the parameters of the model, the EM algorithm (for HMMs also known as the Baum-Welch
algorithm) can be used.
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2.1.6 Evaluation

An important part of any investigation is how to measure performance. For probability models
this is especially critical, as they are only approximations of real-world systems. For binary
classification, an obvious measure is accuracy, where

Accuracy = number of correct predictions

number of predictions

While accuracy is a useful metric, it does not portray the full picture; for example, let us say we
built a model to predict coin tosses with the following rule:

for all inputs, predict heads

If we tested the model by tossing the coin 10 times, and observe heads 8 times, we can calculate
an accuracy of 80%. This would seem to imply a successful model (as we would expect a random
model to achieve around 50% accuracy). Such naive evaluations can distort the validity of a
model.

In order to provide a greater breakdown of performance, a confusion matrix can be used.

A confusion matrix is a four-celled table representing the four values of binary classification:

• true positives (TP) - the number of correct positive predictions

• false positives (FP) - the number of incorrect positive predictions

• true negatives (TN) - the number of correct negative predictions

• false negatives (FN) - the number of incorrect negative predictions

The distinction between a positive and negative prediction is arbitrary for many binary classifica-
tion problems, including ours. A confusion matrix then has the following form:

TP FP
FN TN

From these values, we can calculate four derived performance metrics, including the aforementioned
accuracy:

Accuracy TP+TN
TP+TN+FP+FN the proportion of correct predictions

Sensitivity TP
TP+FN also known as the true positive rate, the proportion of positive

conditions that were correctly predicted

Specificity TN
TN+FP also known as the true negative rate, the proportion of negative

conditions that were correctly predicted

Precision TP
TP+FP the proportion of positive predictions that were correct

We can model the relationship between the true positive and false positive rate (or 1 - the true
negative rate) as a curve called the Receiver Operating Characteristic (ROC) curve. The ROC
curve shows us the performance of the classifier as the threshold for prediction is increased. The
diagonal represents an ideal random classifier (50%), with anything above the line showing better
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Figure 2.6: A ROC curve for the random classifier

than random performance. Figure 2.6 displays the ROC curve of an actual random classifier. A
perfect classifier would be a single point in the top left corner, as the true positive rate would be
100% and the false positive rate 0%.

The area under the ROC curve (AUC) is a a measure of how probable a positive sample will be
classified as positive. Thus an AUC score of 1 represents perfect positive classification.

2.1.6.1 Cross Validation

In order to get values for the confusion matrix and ROC curves, we need to test our classifiers
with real-world inputs, and compare them with the correct labels. However, in order to build an
accurate model, we need to train it, usually by feeding it real-world data and its correct labels.
Training and testing data need to be separated; otherwise it calls into question the validity of the
evaluation (the success of parametric classifiers like KNN would artificially skyrocket).

To maximize the utility of our data, we can use cross-validation to recycle our data as both
testing and training data. For example, 2-fold cross validation would involve splitting the data
into two sets D1 and D2 and perform two evaluations with the following arrangement:

1. Train the model with D1, test against D2

2. Train the model with D2, test against D1

The values can be aggregated and averaged to provide an overall score. A common implementation
of cross-validation is Leave-One-Out Cross Validation (LOOC). With ten data sets, LOOC involves
running 10 validations, where one data set per validation is reserved for testing, and the other
nine used for training. The advantage of LOOC, besides simplicity, is that it is often advantageous
to use as much data as possible for training the model (for robustness and accuracy).

18



2.1.7 Tools

Our analysis of the data was done using Matlab version 2014a/b 1. Many of the implementations
of machine learning techniques can be found either in the Statistics and Machine Learning
Toolbox 2 or Kevin Murphy’s HMM toolbox 3.

2.2 Eyes

Our investigation is concerned with questions of why our eyes move; however we must first address
the question of how our eyes move and explore the basic mechanics of the eyes.

2.2.1 Eye Physiology

Eyes are principally concerned with visual perception, or the process to convert light energy into
nerve signals [8]. In order to facilitate this process, the cornea, at the front of the eye, focuses
incoming light. The light then passes through the pupil, whose diameter is controlled by the iris,
on towards and through a crystalline lens. Ultimately, the light energy is picked up at at the
back of the eye by the retina.

Figure 2.7: Anatomy of the eye. Taken from http://www.aapos.org/terms/conditions/22

The retina houses “sensors” which convert the incoming light energy in to electrical energy. There
are two types: rods and cones. The physical differences between rods and cones leads to different
functions: rods are sensitive to low-level, achromatic light (such as seeing in the dark) and cones
are sensitive to high-level chromatic light (such as normal daytime vision) [9]. The retina contains
both rods and cones; however the total distribution is not equal (there are roughly 120 millions
cones to only 7 million rods) nor is the spatial distribution equal across the retina. A particularly
important subsection of the retina is called the fovea, where there is a highly dense collection of
cones. The fovea therefore is the part of the eye which has the highest focus as it maximises the
ability to sense high levels of chromatic light energy.

The retina sends the electric nerve signals to the optic nerve, which transports it to the visual
cortex in the brain.

1http://uk.mathworks.com/products/matlab/
2http://uk.mathworks.com/products/statistics/
3http://www.cs.ubc.ca/ murphyk/Software/HMM/hmm.html
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2.2.2 Visual Field

Because of the unequal distribution of rods and cones in the retina, our visual field is not uniform.
The fovea, with its dense population of cones, represents our best eyesight: the portion of the
visual field most in focus. The fovea is about 1-5 degrees of the visual angle and only 6-8% of the
entire visual field [10]. Outside the fovea, the para-foveal and peripheral area are dominated by
the low-resolution rods, which leads to a dramatic drop-off in terms of resolution [11].

Because of the non-uniform distribution, only a small percentage of our vision can be at focus,
so physical movement of the eye is signficant: eye movement is the mechanism for which our
eyes keep or put objects in our visual field in focus. Therefore the study of eye movement is an
investigation into how or why objects are put into that focus.

2.2.3 The How of Eye Movement

There are six muscles which can move the eye and six corresponding degrees of freedom: sideways
movement is performed by the medial and lacteral recti, vertical movement is performed by the
superior and inferior recti, and twists are performed by the superior and inferior obliques [9].

Figure 2.8: Muscles which move the eye. Taken from http://www.aapos.org/terms/conditions/22

The muscles are controlled in a neurological feedback loop controlled by three major areas of the
brain: the occipital cortex, the superior colliculus and the semicircular canals. The areas map
with the functional roles of eye movements: voluntary, involuntary and reflexive.

2.2.4 The Why of Eye Movement

There are four categories of positional eye-movement: saccades, smooth-pursuit, vergence and
vestibulo-occular movements [12]. Other changes in the eye, such as pupil dilation, are not
investigated in this project.

This project is principally concerned with saccades, but for thoroughness: smooth-pursuit
movements are movements of the eye tracking a moving object across the visual field (e.g. focusing
on a bird flying in the sky); vergence movements are the movements each eyes make in opposite
directions to account for the spacing between each eye (i.e. to focus on something in the near
distance); vestibulo-occular movements are eye movements to correct for external movements
(e.g. head movements).
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2.2.4.1 Saccades and Fixations

Saccades are the rapid pre-programmed movement of the eye intended to move the fovea across
the visual field [9]. The periods between saccades, when the eyes are relatively still and the
fovea fixed, is called a fixation. In reality, eyes are seldom still; there are also movements
such as microsaccades which are so small that they do not disrupt fixations. Fixations take
up approximately ninety percent of total viewing time and can last in the range of 100-600
milliseconds [13]. Studies have shown that the next desired location of a saccade can incur
processing up to 200ms [9]. In contrast to the fixation, because of the speed of movement, the
eyes are effectively blind during a saccade. Therefore fixations are the best representation of
visual acuity for still images, and form the basis for the data collected in eye-tracking research.

2.2.5 Eye Tracking

Eye tracking is the practice of recording eye movements, specifically the location of the gaze
over time. While there are are many different approaches to eye tracking - mounted or remote,
Electro-Oculography (EOG) or Pupil Centre Corneal Reflection (PCCR) - our investigation will
use a remote PCCR eye tracker, therefore we will only cover the background relevant to those
systems.

2.2.5.1 Pupil Centre Corneal Reflection

Pupil Centre Corneal Reflection is a non-intrusive technique which detects the direction of gaze
through the reflection of light in the cornea and pupil [10]. An image sensor is placed at a known
fixed position relative to the screen with a corresponding light source. The light is directed at
the eyes, and the movement of the head can be tracked, as well as the movement of the pupil
within the eye socket, by tracking the position of the glint (or the light reflected in the corneal
reflection).

In order to track in 3D space, two cameras with partnering light sources need to be placed a
fixed width apart. With the use of 3D geometry, the direction of the gaze can be measured as
well as the movement of the head within a three-dimensional trackbox.

In order to relate the position of the glint with the direction of the screen, PCCR eye trackers
are typically bundled with calibration software. By looking at nine points on the screen (the
center and the extremes), the user’s eye movements can then be tracked at any other point on
the screen.

2.2.5.2 Tobii

Tobii are a Swedish technology company specialising in eye-tracking products [14]. Tobii have
produced many iterations and versions of remote and mounted eye trackers, commonly used for
either consumer gaming or academic research.

In this project, the Imperial Bioengineering department provided the Tobii EyeX Controller
hardware, which is packaged with software and software development kit (SDK).

Hardware The Tobii EyeX Controller is a remote eye-tracker compatible with a computer
running Windows 7 or above through USB 3.0. The system is available as a Development Kit for
a consumer-realistic price.

The EyeX is a PCCR eye tracker with two image sensors and proprietary software to detect
eye movement [10]. The tracker’s specification state that it supports monitors up to a size of
27in. The sampling rate of the tracker is around 55-60Hz. One of the main advantages of the
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Tobii remote tracker is a generous trackbox, or the space in which the controller can maintain
eye-tracking. A user can move their head within a plane of 48cm x 39cm, and at a distance of
45cm - 80cm.

Software The Tobii EyeX comes packaged with a SDK that makes it easy to set-up, calibrate
and communicate with. The SDK is available as a library in a select few languages such as C,
C++ and the .NET stack.

Calibration must be performed per user to achieve reliable eye movement data. A profile is
created, with information about whether the user wears contact lenses, glasses or neither, and
then eye tracking measurements are taken at eight points on the edges of the screen and a point
at the center. User profiles and calibration is set up using Tobii software, independent of any
developer-engineered application using the SDK.

The .NET Tobii API provides several way to interface with the eye-tracker and provides many
examples. With the inclusion of pre-compiled library files (.dll), applications have access to the
API and its methods [15]. The API supports the different ways a developer can create .NET
applications, including Windows Presentation Foundation (WPF).

The API is more comprehensive than is necessary to explain, including easy ways of defining
trackable zones. For this investigation, the lower-level API is suitable, which allows reading the
lightly-processed data from the eye-tracker in a similar vein as other input buffers. There are
three available data streams:

• gaze points, in x and y positions relative to the top-left corner of the screen

• right and left eye position in three-dimensional space relative to the screen

• fixations, calculated from the gaze points using two fixation algorithms, including Tobii’s
proprietary and blackbox algorithm.

For this investigation we will rely on our own algorithms to detect fixations.

2.2.5.3 Fixation Detection

Eye trackers such as the Tobii provide gaze point data, a measurement of the location of the
gaze at a certain time. Therefore the data is agnostic as whether the point belongs to a saccade
or a fixation. A number of algorithms have been devised to classify raw gaze data (x,y,t), with
2D position x and y and timestamp t, into fixations and saccades. We will be using Dispersion
Threshold Identificaton (I-DT), as according to experiments conducted by Salvucci and Goldberg,
shows both high accuracy and robustness [16]. Other algorithms, such as Velocity Threshold
Identification, are either equivalent or have tradeoffs in terms of implementation ease, number of
parameters and speed.

Dispersion Threshold Identification An approach to distinguishing between fixations and
saccades is to use a typical characteristic of fixations; due to their lower velocity, fixation gaze
points tend to cluster together (typically over areas of interest) [16]. Dispersion Threshold
Identification (I-DT) uses the dispersion D of points, defined as

D = ymax − ymin + xmax − xmin

for the primary metric for clustering gaze points.
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Figure 2.9: A set of gaze points (blue) with corresponding fixations (red) calculated using I-DT. The
radius of the circles correlate to the duration of the fixation

Listing 2.1: Our version of the Dispersion Threshold Identification algorithm in pseudocode
f i x a t i o n s = [ ]

whi l e po in t s . isNotEmpty :
window = [ po in t s ( 1 ) ]
whi l e window . durat ion < 100ms & po in t s . hasNext :

add po in t s ( next ) to window
end
i f window . d i s p e r s i o n <= thre sho ld & window . durat ion > 100ms

whi le (window . d i s p e r s i o n <= thre sho ld & po in t s . hasNext )
add po in t s ( next ) to window

end

add cen t ro id (window) to f i x a t i o n s
remove window from po in t s

e l s e
remove po in t s (1 ) from po in t s

end
end

return f i x a t i o n s

It does this by considering windows of points; groups of gaze points that span the minimum
duration of a fixation (typically 100ms). It adds consecutive gaze points that maintain a
dispersion value under a certain threshold, using known or experimentally-retrieved values. Once
the property is violated, the window is closed and a new one, starting from the violating gaze
point, is created. Points which do not belong to a window are marked as part of a saccade, and
thus ignored. The pseudocode for the algorithm is shown in figure 2.1.
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Figure 2.9 shows the original raw gaze data points (in blue) and its corresponding fixations (in
red) found using I-DT. The number of fixations is significantly less than the number of original
gaze points.

2.2.5.4 Metrics of Eye Movement

In order to quantify and compare eye movement data, it needs to be represented in certain a
structure or measure.

Raw 2D eye movement data is typically a triple of (x,y,t), or the location of the gaze in the x and
y-dimensions and the timestamp at measurement. Converting the raw gaze data into fixations
can be performed by specialized algorithms such as I-DT (see section 2.2.5.3).

Take for example the four fixations calculated while a user viewed the “image” in figure 2.10a.
The sequence of four fixations (labelled in their respective order) compose the scanpath. The
radius of the circle shows the dwell time, or duration of the fixation, such that a larger circle
indicates a longer dwell time. With only the fixations, a number of metrics can be derived,
including:

• fixation duration
• number of fixations in a scanpath
• total fixation time
• spatial distribution of fixations

We can then calculate the saccades as the vectors connecting fixations. In figure 2.10b, these are
the three purple vectors labelled a, b, and c. Corresponding metrics can be found such as:

• saccade length (magnitude of the vector)
• saccade amplitude (radians/sec), or saccadic length normalized against the distance to the

screen
• number of saccades
• saccade directions (the angle between two saccades)
• saccade duration
• ratio between time in fixations and time in saccades

Finally, a popular organization is to mark sections of the image or screen as Areas-of-Interest (AOI)
or Regions-of-Interest (ROI, although we will be using the AOI nomenclature). In figure 2.10c, we
defined three AOIs: A, B and C. Once AOIs have been identified, either by humans or algorithms,
the following measures can be calculated:

• number of fixations per AOI
• time spent per AOI
• first/second order entropy between AOIs
• number of revisits (left and returned) or repeats (consecutive fixations) per AOI

2.2.5.5 Scanpaths

Scanpaths are the term given to a person’s series of fixations over time. In essence, they are
composed of the saccade vectors connecting fixations, such as the scanpath in figure 2.11. They
may also be represented as a series of AOIs, if fixations are replaced with the AOI region in
which they located.
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(a) An image with locations of four fixations 1,2,3, and 4 dis-
played as red circles with radius proportional to duration

(b) The saccades a, b and c which connect the four fixations

(c) The three AOIs A, B, and C in the image

Figure 2.10: Examples of eye movement features

25



Figure 2.11: An example of a scanpath represented its saccadic vectors

For many eye movement procedures, scanpaths is the natural data structure used to analyse eye
movements. Therefore, there is growing research into how to compare and analyse pairs and
groups of scanpaths [17].

A scanpath such as the one in figure 2.11 is a list of three-dimensional fixation objects (x,y,t),
with x and y position and timestamp t. However, oftentimes we are not interested in the exact x
and y position, but it’s relationship to a semantic region of the observed image, i.e. an Area of
Interest. Therefore, we can reduce a scanpath as a series of AOIs. Let us refer back to figure 2.10
used in the previous section, with the drawing of the mountaintop. In that example, there are
three AOIs defined: A, B and C. In the scanpath, there are four fixations (marked 1, 2, 3 and 4).
If we represent the fixations by the AOI they are located in, the scanpath can be represented as:

A→ B → C → A

This representation of the scanpath reduces it to a finite sequence of fixed states, which open up
the opportunity to model it as a string or a Markov Process.

String Editing With scanpaths represented as a string, we can use a set of distance metrics
known as string-edit distance. String editing measures the similarity between two strings of
characters by counting the cost of editing one string into another. An example of a string-edit
metric is the Levenshtein distance.

The Levenshtein distance between two strings is the minimum number of steps required to
transform one string into another using one of three operations: addition, deletion, and subtitution
of a character [18]. For example, the Levenshtein distance between imperial and emperor is 4:

imperial
emperial # substitute 'i' => 'e'
emperoal # substitute 'i' => 'o'
emperorl # substitute 'a' => 'r'
emperor # delete 'l'

Levenshtein distance can be calculated efficiently using a bottom-up algorithm to populate a
m-by-n matrix with the minimum cost to transform a string of length m into a string of length
n. Each cell of the matrix (i,j) contains the minimum cost to transform the ith letter of the first
string into the jth letter of the second string.

As longer strings are penalized by the number of transformations, the measure is normalized
against the length of the longer string. The maximum number of steps using Levenshtein
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operations is the length of the longer string (substitute every character in the shorter string, and
then add the missing characters). To qualify as a similarity measure, Levenshtein distance is
defined as f(s1, s2) = 1−Lc, where Lc is the normalized cost of transforming s1 into s2. Identical
strings produce a value of 1, and the function is symmetric: the value of f(s1, s2) is the same as
f(s2, s1).

Levenshtein distance has been used to compare scanpaths successfully in a wide variety of
applications. While the original measured proposed by Levenshtein had a cost of 1 for all three
operations, other researches have experimented with increasing the cost of the operations [19]. For
example, in an investigation on the eye movements of TV viewers, Josephson and Holmes weighted
the cost of substituting aoi1 and aoi2 by the number of other AOIs physically between aoi1
and aoi2 [20]. Similarly, Takeuchi and Habuchi concluded the use of Euclidean and City-Block
distance metrics to weight substitution costs improved similarity performance over the original
uniform cost [19].

String editing is a useful measure for pairwise comparison of scanpaths, but there have also been
efforts to use it as a measure of groupwise similarity. Galgani et al and Duchowski et al. used
Levenshtein distance as a metric as the basis of a non-parametric binary classifier [21] [17]. By
comparing the test scanpath against each of the scanpaths in the group, a groupwise similarity
metric was calculated as the average of the pairwise similarities. For Galgani et al., classification
was determined by the higher groupwise similarity. Duchowski trained a classifier for each group,
determining the thresholds for similarity that resulted in good performance by using ROC curves
(see section 2.1.6). In the situation where neither threshold was reached, the higher average, or
groupwise similarity, was used.

Markov Process The second representation of a scanpath is a Markov chain, or a state of
discrete states with transition probabilities from one state to another. This representation is
particularly appropriate as it models the hypothesized behaviour of the human visual system
(HVS); as discussed in section 2.2.4, a saccade is movement with ballistic properties. In other words,
the HVS processes and selects the next target fixation and saccades are calculated accordingly.
Therefore this dependence between two fixation locations and selection is a transition that can
be modelled using a first-order Markov property (see section 2.1.4 for details on the Markov
property and Markov Processes).

In relation to eye movement, the sequence of states can map directly to the sequence of fixations
(represented by the AOI in which they are located). The corresponding first-order Markov
property states that the location of the next fixation can be determined by the location of the
previous fixation.

This model of the scanpath produces a n-by-n transition probability matrix, where n is the
number of distinct AOIs. We can then use this structure to measure each scanpath, and compare
two scanpaths.

The utility of this representation and potential has been of interest to the eye movement community
for decades. Stark and Ellis investigated the use of the Markov property at different orders to
identify structured processes within eye movements [22]. Hacisalihzade et al. continued the work
to use a discordance matrix as a dissimiliarity metric, which we will refer to as Markov Error
(ME) [23]. The Markov Error is the normalized error, or element-wise difference, of each element
between two n-by-n transition matrices A and B such that:

D = 1
n2

n∑
i,j=1

|Aij −Bij | (2.7)

This is a dissimilarity metric as identical transition matrices will result in a score of zero.

A similar metric is Markov-Path-Distance (MPD), which measures the aggregated discordance
of two transition matrices after a certain number of steps [24]. If Ai,j is the probability of
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transitioning from state i to state j in one step, the probability of transitioning from state i to
state j in k steps is Akij . The MPD between two n-by-n transition matrices A and B is thus:

MPD =
n∑

i,j=1

∣∣Akij −Bkij∣∣ (2.8)

1 < k < inf (2.9)

The value of k can be adjusted to retain the most information and target non-uniform transition
probabilities. A k of one is equivalent to the unnormalized ME. A sufficiently large k will lead to
the stationary distribution, therefore a k between those values is suggested.

A final measure of a Markov transition matrix is to use Shannon’s definition of information
entropy. As shown by Ciuperica and Girardin [25], entropy as applied to Markov chains can be
calculated as:

Ht = −
∑
i⊆N

πi
∑
j⊆N

Aij logAij (2.10)

where N is the set of states, A is the transition probability matrix, and π is the stationary
distribution.

This measure, unlike MPD and ME, is not a comparison or similarity metric. It is a measure of
randomness; thus a matrix with high entropy (such as a uniform matrix) will have a value closer
to 1, whereas more predictable transitions have a lower entropy. In the context of eye movement,
this can be used to measure either the predictability of eye movement or, as Krejtz et al. did, a
measure of complexity. In their study, entropy was used to quantify a participant’s switching
patterns while observing pieces of art to compare against attractiveness and curiosity [26].

From the Markov chain, naturally some research has led into the use of HMMs. Hidden Markov
Models (HMM) intuitively seem like an appropriate model of a scanpath because as a Markov
process they represent both the temporal and spatial dimensions of eye movement, but there are
often latent states not directly observed that are useful to model.

Several studies have used HMM as a means of evaluating scanpath strategies. Pieters et al. used
HMMs to model the eye movement of participants viewing advertising [27]. In their study, the
hidden states represented whether the user’s attention was global or local, relating it to their
search strategy. Simola et al. mapped three cognitive processes (scanning, reading and deciding)
to three hidden states in evaluation of search strategies while online search [28].

Chuk, Chian and Hsao used a HMM to model each user’s eye movements in a face recognition
task [29]. The hidden state spaces were the AOIs of the image and observations the spatial
dimensions of fixations. They also clustered the HMMs to identify two types of recognition
strategies: holistic and analytic.

2.3 Memory

The study of memory, as a topic of neuropsychology, is still a field with lots of mystery. Functions
of memory such as how it is stored and how it is retrieved, as well as which parts of the brain
those functions take place, are hypothesised under memory models. Experimental data collected
over time helps refine, support and eliminate these models of memory. For example, many of
the research studies discussed below follow on from data collected from patient H.M. in 1962,
whose damage to the hippocampus helped identify the role and importance of the hippocampus
in memory [30].
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With increased technology, the ability to map the functions of memory to parts of the brain have
eliminated and uncovered new models. While it is not necessary for the purposes of our study to
delve in to the full research, it is important to appreciate the foundations for some of the research
we will discuss in later sections 2.3.1. More critically, we need to ensure that the feasibility of the
project matches with the expectations of current theories on memory.

A model that is referred to often in the eye-tracking research is the principal component model
with dual stage processing [31][32]. This model puts the hippocampus, a small region of the brain,
as an index to memory traces, analogous to how a program stack maintains pointers. Anything
that is consciously experienced creates a memory trace and the hippocampus stores the index
to the trace. If we think of memory as an object on the heap, which itself can be fragmented
across different parts of the heap, then the index is the original pointer to the object. Where
the memory is “stored” and what regions of the brain is necessary to encode and retrieve are
dependent on the type of memory. The key to the retrieval of the memory trace is a cue, or
stimulus, which was also used during the encoding process. In layman’s terms, this is referred
to as a trigger; for example, hearing your wedding song may remind you of the experience of
dancing at the reception. A point to note is that the hippocampus does not discriminate; it
cannot assess the importance of a memory, and indexes anything that is consciously experienced.
This is why Moscovitch refers to the hippocampus as a “stupid” module [31].

The expansion to the model includes two stages for recollection: a quick retrieval of studied
content possibly without awareness, as awareness includes the use of other parts of the brain,
and a second slower process which brings about the awareness of the recollection. Theoretically,
this implies that if the regions of the brain which the memory are actually stored are disrupted,
by lesions or other effects, there would still be one form of recognition from the initial process.

While our investigation is primarily concerned with the interface, or input and output, of these
processes, rather than its implementation in neurological systems, this model especially does
create a strong foundation for success for our analysis. It is important to note, however, that
there are other models of memory, with varying levels of evidence and popularity. While memory
research has improved dramatically with the advent of technologies such as functional Magnetic
Reasoning Imaging (or fMRI), it is still difficult to test memory in controlled conditions, and
the validity of past experiments have been called into question[33] [32]. Therefore, instead of
navigating all the evidence, our study will stay relatively independent from any particular model.
The principal component model is a convenient vehicle in which to explain the current state of
memory research. We make no attempt to prove or disprove any of the models.

As well as models of the overall system, different types of memory are categorised under specific
terms. One of the most relevant to our investigation is the difference between explicit, of which
we are consciously aware, and implicit, of which we are not aware, memory. Other words for
explicit include declarative, and implicit is interchangeable with non-declarative or procedural.
Common examples for implicit memory are everyday activities such as knowing how to tie your
shoelaces. The study of implicit memory is a particularly difficult subject of experimentation,
and a major reason for the increased use of eye-tracking as a method of investigation.

There is also a distinction between recollection and familiarity; recollection being tied to re-
membering, or recalling the memory with its context, and familiarity referring to recognising or
knowing something but not realising from what context.

There are also types of memory dependent on the object being encoded. Memories of conscious
experiences are episodic. Remembering the bindings between two things, for example a pairing of
a face and a scene, is an example of relational memory. Finally, semantic memory is remembering
the meaning or context of an object, for example seeing a picture of Tom Cruise and remembering
that he is an actor.
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Figure 2.12: Stimulus used by an experiment by Loftus and Mackworth (taken from paper) [37]

2.3.1 Current Research

Eye tracking is a useful tool for investigating certain memory-related properties as eye movement
is typically influenced by two factors: physical properties, such as luminance and hue, and
brain-related properties, such as episodic or semantic memory [34]. We are interested in the
influence of memory, but will have to account for the influence of physical properties too. In the
following section, we will be looking at support and results for this field of research.

2.3.1.1 Eyes, the Brain and Memory

Experiments investigating the relationship between eye movement and the brain have occurred
for decades, especially those concerned with memory and its retrieval.

In 1967, Yarbus formulated an experiment to track participants’ eyes as they viewed Repin’s
An Unexpected Visitor [35]. Yarbus showed that the scanpaths differed depending on which task
they were given prior to looking at the painting, e.g. identifying the wealth of the family. We
will refer to this as the task effect.

An experiment at Stanford University showed the reverse relationship; the influence of eye
movement on the brain. In this study, the goal was to measure the relationship between eye
movements and memory performance: namely if the number of fixations or the total fixation
time during the studying of an image correlated with correct recollection of the given image in
the test phase [36]. The experiment discovered a significant positive correlation between the
number of fixations and memory performance. Simply translated, the more we look at the image,
the better we remember it.

Loftus and Mackworth then showed the effect of semantic memory on eye movement [37]. They
found, by showing participants images of a barnyard seen such as the one in figure 2.12, that
fixations were earlier, longer and more frequent for objects that were unexpected (like an octopus)
rather than a tractor.

Another direction of research looked in to the effectiveness of eye-movement desensitization-
reprocessing therapy (abbreviated as EMD-R) to treat patients with post traumatic stress disorder.
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EMD-R is a technique to reduce the stress of recollecting traumatic memories by making the
patient move their eyes at the moment of recollection. Running four experiments with University
of Sydney students, Andrade, Kavanagh and Baddeley discovered that vividness (measured
by a surveyed response) was reduced while making saccadic eye-movements [38]. A follow-up
experiment testing only autobiographical memory found a similar correlation; eye movements
were more effective as a distraction than tapping or other repetitive tasks. Interestingly the
vividness of even further future recollections of those memories was affected [39].

At the University of Massachusetts Amherst, eye movement was used to study the familiarity effect;
namely, if the familiarity of the targets affected the performance of the search. Eye movement was
measured to test whether searching for a familiar target embedded within unfamiliar distractors
takes longer than an unfamiliar target within familiar distractors [40]. In addition to manual
reaction time, number of fixation and duration of fixations were measured to help understand the
possible cognitive processes at play. Number of fixations correlated with the familiarity effect,
but there was no significant relationship with individual or average fixation duration.

2.3.1.2 Awareness Experiments

A much closer area of research in the past decade has been the investigation of using eye-movements
as a metric for recognition independent of conscious awareness.

An experiment investigating the relationship between eye movements and the hippocampus and
surrounding media temporal lobes (MTL) was conducted in 2009 [33]. In the first experiment,
background scenes and superimposed face pairs were studied, and then participants were asked
to identify, based on the scene cue, which of the three faces were the correct pairing. Examples of
the stimulus can be seen in figure 2.13 Correctly identified faces were viewed longer cumulatively
than just selected faces. Researchers analysed the set of instances where a disproportionate
(more than 10% of viewing time) amount of time was spent on a matching face (DPM), the set of
instances where a disproportionate amount of time was spent on a non-matching face (DPNM),
and the activity of the MTL using functional magnetic resonance imaging (fMRI). Results showed
there was a greater strength of the blood-oxygen-level dependent signal in certain MTL lobes for
DPM than for DPNM, regardless of explicit memory retrieval. The prefrontal cortex (PFC) was
also analysed, and the activity of the connection between the hippocampus and PFC correlated
with whether the participant correctly or incorrectly identified the target. These results do not
contradict the hypothesis that eye movements can be an expression of hippocampal recognition,
but without activity from other regions of the brain (such as the PFC), then explicit awareness
might not be reached.

Figure 2.13: Study and test stimulus used in a relational memory experiment (taken from paper) [33]

Experiments at the University of Illinois and University of California, Davis, investigated the use
of memory as a veridical index of memory disassociated from conscious recognition [41]. The
experiments asked participants to study a set of faces during a study phase, and then select a face
from a three-face display if they studied that face, or to select randomly if the face was not present.
Eye movements were compared to verbal responses, and a second experiment was conducted to
increase the number of verbal false positives (incorrectly recognised as studied). To increase the
difficulty of the challenge, the three face display used morphed images; a morphed face is the
target face “morphed”, or mixed algorithmically, with the non-target face. The procedure also
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Figure 2.14: Stimulus for study and test phases to test eye movement as an index to memory (taken
from paper) [41]

included a morphing coefficient, either 20% or 40%, to test the relationship between accuracy
and difficulty (measured by the morphing coefficient).

Results suggested that eye movements were a better indicator of studied faces than behaviour -
namely that eye movement indicators of recognition occured earlier and were more accurate than
behavioural responses. Eye movements also seemed to be insensitive to the morphing coefficient,
and in the experiments occurred within the first two seconds of seeing the images.

Schwedes and Ventura investigated the use of eye movements as a means of uncovering revealed
information in an experiment with students from Saarland University [42]. The experiment asked
participant to select one out of six presented faces under three conditions: in the concealed
display, the participant knew one face but was instructed to select one of the other five; in the
revealed display, one face was known and the participant was instructed to select it; in the neutral
display, no faces were known and the participant was instructed to select a random face.

The results indicated a pattern that separated the recognition effect, whether the participant
recognised a face, and the response intention effect, whether the participant selected a face, in
eye movements. The recognition effect manifested itself by fixation duration over the first three
fixations - faces that were recognized, regardless of whether the intent was to conceal or reveal
them, had higher fixation durations during the first three fixations (analysis actually showed
only the first two were needed). The neutral display did not follow this pattern. The response
intention effect could not be identified within the first three fixations, and only under the analysis
of total fixation duration did the selected face have a significant difference in the neutral display
condition.

A study at the University of Barcelona tested the oculomotor reaction to auditory cues in
retrieving long-term memory traces of picture-location pairings [43]. The set-up included a screen
depicting four possible picture locations,arranged in a two-by-two grid, and eye-tracking sensors.
Participants in the experiment went through an encoding phase in which a unique sound was
played, followed by a single picture in one of the four locations. The encoding phase was purposely
large in order to overwhelm memory capacity and create the opportunity to test both conscious
and unconscious memory retrieval. During the testing phase, participants were asked to focus on
the centre of the screen, and one of the encoded auditory cues was played. Participants were
asked to search for the correct location the picture should appear in. Three separate responses
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were captured per trial: one, the eye movement in relation to one of the four regions of interest;
two, whether the participant could verbally recollect which of the four locations the associated
picture appeared in; three, whether the participant could correctly identify the picture. A second
experiment also asked the participant for their confidence judgment on being correct.

The metrics used for eye-movement involved the relative number of fixations and the proportion of
time gaze was fixated on the correct square during the search period. Results in both experiments
found that, even for instances where the participant reported an inability to remember the correct
location, eye movements tended to show a disproportionate number of fixations (and to a lesser
degree, dwell time) on the correct location. This is further evidence that suggests eye movement
could implicitly indicate memory retrieval.
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Chapter 3

Data Collection

3.1 Application

One of the principal objectives of this investigation was generating a novel dataset for purposes of
analysis. In addition, the lab did not have an established means of collecting eye movement data
for a customized purpose. Therefore, the development of an eye movement collection application
was necessary. This section describes the implementation of this application. The actual data
collected through trials will be discussed in section 3.2.

3.1.1 Background

WPF Windows Presentation Foundation (WPF) is a .NET application framework that makes
it easy to create rich user experiences. Using XML as the view markup, developers write code
in any .NET language (such as C# or Visual Basic) to write the code-behind, including adding
behaviours such as event handlers. Properties and interactions can be programmed in either the
code-behind or the markup.

3.1.2 Application Objectives

The data collection application was designed to collect eye tracking data from a single user sitting
in front of a monitor. The parameters of the application were primarily defined by the use of
the Tobii EyeX Controller, described in section 2.2.5.2. Compatibility with Tobii influenced
other set-up criteria, including the use of the Microsoft .NET framework, Windows Presentation
Foundation.

The implementation of the application began before the trial protocol was fully defined, therefore
it was designed to be robust against any changes. It was also designed with the secondary
objectives of reusability and multi-purpose; a possible framework to be used by others in the lab,
or for situations outside of this investigation. We will detail such a use-case in section 3.1.4.2.

3.1.3 Application Architecture

The application is an executable designed to “play” a user-given experiment and write out data
files. An experiment is defined as a series of phases by the user in a text file called phases.txt.
The user also supplies any images in the images folder, optionally subdivided into folders. Both
the images folder and phases.txt are expected to be in the root directory of the executable.

35



Playing an experiment involves sequentially traversing the list of phases in serial order. Each
phase is responsible for alerting the application when it has completed so that the application
can either move to the next phase, or close.

When a phase is active, it has access to the filesystem, keyboard, eye tracker, and window. Phases
are pre-defined, but are abstracted such that it is easy to add custom phases to the application if
required. All phases are instantiated at application start-up. A phase is activated by calling its
start() method and is given a callback to signal when the phase has completed. It also exposes
a close() method, where it is expected to clean up any of its responsible memory (such as an
open write buffer).

The application is displayed in full-screen but with a maximum-sized rectangle of screen space
defined as a working area. The working area is used to prevent the application from relying on
the edges of the screen, where the calibration is weaker, for extremely large screens.

3.1.3.1 Phases

The application lifespan is subdivided into discrete sections called phases.

Figure 3.1: The centering image used to divert users’ attention to the center of the screen

The following phases are currently supported, with brief overviews provided:

• Study Phase: show a series of images and write eye tracking data to file. Each image is
preceded by a centering image, shown in figure 3.1.

• Score Phase: equivalent to the study phase, except asks the user to press one of two
buttons (red or green) to proceed to the next image, and the keys are printed to file.

• Calibration: Play a sequence where a dot moves around the extremes of the screen and
print the eye movement data to file.

• Instruction/Key Trigger: Print text on screen. Ended either by a time limit (instruction)
or by pressing a button (Key Trigger)

• Eye Trigger: User must look at a cross in the centre of the screen in order to move on.
• Demo Phase: Display an image and show eye tracking data on screen. Supports dual screen.

Both the study and score phases are a time-triggered series of images. The series is defined by a
TestScript, and the images are loaded using an ImageLoader. The script’s file path (relative to
the application root directory) is passed in as the first parameter of the phase in phases.txt.
Other phases also support parameters. An example of a phases.txt can be found in section B.1
of the Appendix.
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3.1.3.2 ImageLoader and ImagePool

On instantiation, an ImageLoader loads all the images in the images folder and converts it in to
a list of ImagePools. A pool is created for each sub-folder in the images folder, with the first
ImagePool consisting of any JPEG and PNG images in the images folder itself. The order of
folders and images is deterministic and lexicographical.

Each image is captured as a DisplayImage, which contains its source path and some application-
relevant meta data.

In addition to storing the DisplayImages, an ImagePool provides the access to retrieving the
images. This includes supporting four getter methods:

• next(): get the first free image, or reset if no image is free
• prev(): get the last used image
• randomNew(): get any random image
• randomOld(): get any previously used image

ImagePools are implemented using two lists, one for used images and one for free (unused)
images.

3.1.3.3 TestScript

A TestScript is a series of triples composed of an Action (different from the C# Action), pool
index, and duration. Action is an enum with values Next, Previous, RandomNew and RandomOld,
mapping directly to each of the ImagePool access methods. Pool index and Action define which
image will be shown and duration is the number of milliseconds the image will be shown. Action
is the only necessary parameter as both pool index and duration, if not defined, will default to 0
and 5000 respectively.

TestScripts are expected to be UTF-8 encoded text files, whose location are passed in as a
parameter to the phase. An example of a TestScript can be found in section B.1.1 of the
Appendix.

Each image shown in the script is preceded by a neutralising image with a cross in the centre
(as seen in figure 3.1). The neutral image is defined as the image in the images folder titled
neutral.jpg. Each ImagePool is responsible for alternating between a script image and the
neutral image, and the neutral image is shown for three seconds. We plan to add a configuration
file so that these settings are easier to customize than changing source code.

3.1.3.4 Data Input

There are two methods of input for the application: keyboard and eye tracker. All forms of input
fit the event handler pattern used by WPF.

The only key reserved for use by the global application is the escape key, which pressed during
any phase can be used to close the application. The active phase is commanded to exit using its
close() method, and is therefore responsible for ensuring the data is properly written to in the
case of unexpected termination.

To access the eye tracker, the application uses the available libraries provided by Tobii. As
discussed in section 2.2.5.2, Tobii provides a low-level API to access data streams.

The application accesses two global data streams: the raw gaze position in relation to the display
and the position of the users eye in 3D space.

Access to the eye tracker is given to each phase through a Tracker singleton instance, which is
responsible for creating and disposing of the streams.
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In order for the eye tracker to read input correctly, it needs to be calibrated per person. This is
independent of the application, which assumes the eye tracker is configured correctly.

3.1.3.5 Data Output

The application can output DataFiles, append only files (with extension .dat) filled with
chronologically-sorted, row-based, tab-separated data. In order to work with other programs1,
strings are ordered at the end of each row. DataFiles insert an application defined POSIX
timestamp.

The name of the DataFile is defined by the phase which creates and manages the DataFile. For
the pre-defined phases, such as the Study Phase, we have adopted a minute-granular naming
convention. For example, if the application was started at 4pm on June 16th, the file would be
named:

06-16-16-00-1-image-gaze.dat

where the fifth number, 1, is the unique phase ID given to the phase during instantion by the
application.

3.1.4 Use

3.1.4.1 Data Collection Trials

The engineering of the application coincided with the development of the data collection protocol
discussed in section 3.2. As designed, the application was used successfully in a number of trials.
The configuration is discussed in section 3.2.4, and the exact phases.txt can be found in the
Appendix in figure B.2.

3.1.4.2 Imperial Festival

Independent of this investigation, the application was used in another environment: the Imperial
Festival2. The Festival took place over the weekend of 9th and 10th May 2015 at Imperial College
London, and is a free and open to the public. The event is designed to recognise great research
by the institution as well as provide activities, talks and music events for all ages. As part
of the Bioengineering exhibit, there was a stall dedicated to research into eye movement and
eye-tracking.

The application was used to give members of the public an opportunity to experience eye-tracking
in a novel and entertaining way. For the event, the application was configured to display primarily
in DemoPhases. This allowed for a series of images that can be shown both on the monitor with
the eye tracker, and a larger second screen available to the audience. The most popular images
were a collection of ‘Where’s Wally?3’ pictures, which attracted a lot of interest from children.
The second, larger screen would show a moving dot, representing the real-time eye movement
of the child in the chair as they searched the picture for Wally. Members of the crowd could
help guide the user if they wished. DemoPhase, triggered on input from the keyboard, can also
can show the entire gaze data point history, which a few participants used to self-evaluate their
search strategieis. Over the weekend over a hundred people used the application, and several
hundred more observed its output.

1Matlab
2https://www.imperial.ac.uk/be-inspired/festival/
3http://www.whereswally.co.uk/
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3.2 Data Collection Trials

The data collection application was used as a part of a series of trials to collect novel eye movement
data. In this section, the set-up, procedure and initial analysis of the results from the trials will
be described.

3.2.1 Objectives

The objectives of the data collection trials was to collect eye-tracking data to test and train our
classifiers. The goal of the classifier was to be able to discriminate between eye movement that
indicates recognition independent of awareness. We targeted two levels of recognition, which
we will refer to as image and subimage recognition. Image refers to macroscopic recognition of
the image, whereas subimage refers to specific features of the image. The principal objective
of this investigation is to classify recognition in general, not solely of an entire image. The
behaviour of eye movement on feature-level recognition may be a critical component of recognition.
Furthermore, later users of the data may find this additional feature of the data set useful.

While it is straightforward to determine whether a participant has seen an image before, one
of the objectives was to detect recognition independent of awareness. In order to study this
characteristic, it was necessary to collect results directly from the participant about explicit
recognition of the images. This data also enabled another means to evaluate our classifier in
section 4.1.

As part of our preliminary analysis, we investigated the following hypotheses:

• eye movement differed between first and second viewings of the same image (image)
• eye movement differed for previously viewed features (subimage)

We tested several metrics, and for the purposes of showing the value of the data, will use the
following six metrics (which showed good results) for image recognition:

• µsl, mean saccade length (pixels)
• µst, mean saccade duration (ms)
• σat, standard deviation of total fixation time in each AOI (ms)
• σaft, standard deviation of fixation duration in AOIs, ie grouping consecutive fixations

which are in the same AOI (ms)
• σft, standard deviation of fixation durations (ms)
• Σtft, total fixation time (ms)

We will concentrate on one metric for subimage, or feature, recognition:

• µft, average fixation duration (ms)

AOIs were defined a priori using human analysis. Saccade length is was not normalized against
eye position (ie it is not saccadic amplitude), although the data is available.

3.2.2 Stimulus

To support the objectives of the experiment, an appropriate stimulus needed to be found, with
the following characteristics:

• novel to the subjects: to ensure participants had not seen the stimulus before
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• various: a number of different images was needed to collect as much data as possible
• modular : in order to study both image and subimage recognition, features needed to be

shared across images
• visually neutral: hue, contrast, and visual saliency have all been shown to affect eye

movement [34]. In order to test for memory-related movement, images would preferably
minimize the effect of these properties.

The stimulus used achieves all the objectives. The images were generated for use as experimental
stimulus and are referred to as fribbles. The original set of models were generated by Mike Tarr
from the Department of Psychology at Carnegie Mellon University 4, however our source comes
directly from its use as a data set for an experimental study in haptic research by Yildrim &
Jacobs [44]. The adapted data set provide the additional benefits of being monochromatic and
increasing slightly stronger inter-relation features.

Fribbles are made-up objects that categorise into species. Each species is visually distinct, but
fribbles within a species are only a small Hamming distance, or substitutions, away from each
other [45]. In other words, each object is made up of subset of components shared across the
species. Documentation for the differences can be found in section C.

(a) Category 1 (b) Category 2

(c) Category 3 (d) Category 4

Figure 3.2: Examples from each species (or category) of fribble

4Stimulus images courtesy of Michael J. Tarr, Center for the Neural Basis of Cognition and Department of
Psychology, Carnegie Mellon University, http://www.tarrlab.org
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Our experiment utilized four species of fribbles, an example of each is shown in figure 3.2. The
collection of images showing the same species of fribble will be referred to as a category. Every
fribble is distinct inter-species and intra-species in their structure and composition. All images
were shown in the same size, although the proportion of the fribbles to the image differed across
fribbles. The orientation of the fribble within a species was consistent. An image shown multiple
times was shown in exactly the same configuration.

3.2.3 Preparation

The stimulus was shown using the application described in the previous section. The corresponding
test script can be found in section B.1.1 of the Appendix. The application was displayed on a
27in monitor Viewsonic Monitor connected to an Intel i7 PC running Windows 8.1. To collect
eye-tracking data, the Tobii EyeX was placed on the bottom edge of the monitor (see the red
lights in figure 3.3). Each participant was asked to calibrate with the Tobii tracker prior to
the start of the experiment. There were no notable difficulties with calibration, regardless of
whether the participant wore glasses or contact lenses. An image of the physical set-up is shown
in figure 3.3.

Figure 3.3: A reconstruction of the actual physical setup of the data collection trial

All experiments were conducted in the Brain & Behaviour Lab in the Department of Bioengineering
at Imperial College London. All participants were students at Imperial College London studying
in the Department of Bioengineering or the Department of Computing. A privacy curtain was
used to separate the participant from the surrounding environment, and as an additional measure
against audio disruption participants were encouraged to wear noise-reducing ear protection
as seen worn in figure 3.3. No notable occurences took place and observer notes will be made
available with the data set. Experiments lasted approximately twelve minutes. In total, data for
twenty participants was collected and analyzed.

3.2.4 Procedure

The experiment consisted of two phases: a study phase and a score phase. The participant
was not told the number of phases beforehand, although they were given a rough estimate of
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Figure 3.4: Subsection of series of images show during the study phase. Fribbles are from category 3,
category 1, category 3 and category 2 in order from left to right.

the length of the experiment. Each phase was preceeded by instructions in white-on-black text
presented on the screen. Instructions appeared on the screen until the participant pressed the
green button to continue. The only verbal instruction provided to the participant was the location
of the green and red keys necessary to conduct the experiment. The keys can be seen in figure 3.3,
and were the space (green) and insert/numpad0 (red) keys. Additionally, participants were able
to ask any questions to the observer sitting behind them, although such occurences were rare
(and related to clarification of an on-screen instruction during the interval between phases). The
observer’s primary purpose was to note down any occurrences which may lead to invalid results,
such as major distractions or unexpected program behaviour. Again, such occurrences were rare.

The experiment began and ended with a calibration test. The participant was asked to follow
a dot which appeared in the eight cardinal positions of the screen. The dot appeared for five
seconds before moving to the next counter-clockwise position. Eye movement data and the
position of the dot were recorded in the case of experimental results being affected by calibration.

3.2.4.1 Study Phase

Before the study phase, participants were given two instructions:

• “please look at the cross until it disappears”
• “otherwise, please look freely at the images”

No indication of the purpose of the experiment was provided. During the study phase, a total
of twenty images were shown from across three categories (in other words, twenty fribbles were
shown from three species). Each image was preceeded by an image with a centering cross, to
provide a consistent starting point for eye movement for each image across participants, that
displayed for three seconds.

The distribution of images was: five images from category 1, five images from category 2, and
ten images from category 3. The images from category 3 were interpolated between the other
two categories such that no category was shown twice in a row. Each image was displayed for
exactly five seconds before automatically switching to the next centering cross (or text to signal
the end of the phase). No image was repeated.

3.2.4.2 Score Phase

Preparation for the score phase began immediately after the conclusion of the study phase. The
instructions for the score phase were more complicated than the study phase and included:

• “Phase 2 is a game”
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Figure 3.5: Subsection of series of images show during the score phase. Fribbles are from category 3,
category 1, category 4 and category 2 in order from left to right.

• “The goal of the game is to maximize the number of points”
• “If You Saw The Image In Phase 1, Press Green”
• “If You Did NOT See the Image In Phase 1, Press Red”
• “You Get +1 Points For A Correct Answer And -1 For An Incorrect Answer”

In essence, participants were asked to press one of two buttons per image: green if the image
was shown during the study phase, and red if they image was not shown during the study phase.
Participants had to press a button per image, and were scored 1 point for a correct response, and
-1 point for an incorrect response.

During the score phase, a total of 40 images were shown from across all four categories. Each
image was preceeded by an image with a centering cross, to provide a consistent starting point
for eye movement for each image across participants, that displayed for three seconds. Each
image was displayed for five seconds. If the participant had not pressed the red or green button
by five seconds, the screen turned black until they input a response, which then triggered the
transition to the next centering cross.

The distribution of the images was equal, with ten images from each category. If we divide the
order into groups of four images, each category was represented exactly once in each group. The
positions of the category alternated, and was the same for all participants5. The inclusion of the
fourth category balanced the number of seen versus unseen images (for collecting participant
input), and to make the number of images seen larger, thereby making the task more difficult.

Due to the increased number of images and the additional time for participant input, the score
phase was 2-3 times longer than the study phase.

3.2.5 Results

For ease of nomenclature, a displayed image will be referred to as a Viewing Experience (VE).
Therefore each participant produced sixty VEs (20 in the study phase and 40 in the score phase).
Each VE is preceeded by the three second centering image.

3.2.5.1 Participant Performance

Performance of the participants ranked high, with a mean score of 18.2 points (an average
accuracy of 72.8%). All scores are shown in figure 3.6a. The lowest score was 10, or 25 correct and
15 incorrect responses. The highest score was 26, or 33 correct responses and 7 incorrect responses.
Figure 3.6c shows the breakdown of each score into its four constituent parts: correctly identified

5Due to an application bug, the first five participants saw a different fribble from within a species than the last
fifteen. The exact ordering shown to each participant is available with the data set.
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as seen (green correct), correctly identified as not seen (red correct), incorrectly identified as seen
(green incorrect) and incorrectly identified as unseen. Figure 3.6b shows how performance varied
across categories, or species, of the images. Unsurprisingly, category 4, which was novel to the
score phase, resulted in the best accuracy. Finally, figure 3.6e showed the breakdown of responses
per each VE. Each index contained the same category and same level of novelty, although the
exact image could vary. Correct responses for the first twelve images (mean points = 11.33) and
final twelve images (mean points = 9.50) showed slight decreased performance on average over
time.

Timestamps were also collected for each keypress, to show the amount of time per VE before the
participant responded. Figure 3.6d shows the difference between mean time spent on correct and
incorrect responses. In general, participants spent more time on incorrect responses. Figure 3.6f
shows the mean time per VE index.

3.2.5.2 Eye Data

Collection for all sixty images shown to each participant was successful. Data indicated that for
the 500ms prior to all 1200 VEs, gaze was directed (number of points greater than 150px less
than 50%) near the center of the screen for all but 47 VEs6.

Figure 3.7 displays examples of the raw gaze data collected for two images from the same
participant.

3.2.5.3 Fixation Detection and Saccade Extraction

Processing of gaze points into fixations used the I-DT algorithm as described in section 2.2.5.3,
with a spatial threshold of 35 pixels. We discuss the implication of this threshold in section 4.2.1.
Saccades are calculated as the vectors connecting successive fixations, without further processing.

Figure 3.7 shows two examples of scanpaths from the same participant with the corresponding
image shown in the background. Figure 3.7a is a category 1 image and figure 3.7b is a category 2
image. The arrows represent saccades and the circles represent fixations, with the intensity (size)
of the circle proportional to the dwell time (or fixation duration).

3.2.5.4 First Versus Second Viewing

µsl µst σat σaft σft Σtft
First 126.418 42.623 758.528 450.869 103.936 4266.571
Second 157.842 79.758 702.328 350.446 94.479 3868.940

p-value p < 0.001 p < 0.001 p < 0.05 p < 0.001 p < 0.05 p < 0.001
DOF 399 399 399 399 399 399
t-value -13.020 -6.362 2.617 4.912 2.513 8.291

Table 3.1: Results table for the paired t-test for the recognition effect

We will now show the utility of the data by performing some initial analysis to show the differences
between first and second image viewing. We chose six metrics, listed in table 3.1, which showed
statistical differences between first and second image viewing. However, in order to show that
these effects are not mediated by other differences, we will also show the differences between two
other groups: first and second category viewing and first and second phase viewing. These two

6For purposes of classification, and after visual inspection of the VEs, we decided to use all 1200 VEs. Future
uses may want to be more selective, and the centering data is all available with the data set
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(a) Eye movement data for a category 1
image

(b) Eye movement data for a category 2
image

Figure 3.7: Example of two scanpaths from the same user for two different categories

µsl µst σat σaft σft Σtft
First 137.759 69.354 715.315 335.180 95.957 3944.957
Similar 123.832 37.838 776.645 452.387 107.004 4331.949
p-value p < 0.001 p < 0.001 p > 0.05 p < 0.001 p > 0.05 p < 0.001
DOF 398.000 398.000 398.000 398.000 398.000 398.000
t-value 4.190 4.114 -1.883 -3.818 -1.878 -4.280

Table 3.2: Results table for the two-sample t-test for the similarity effect

map to two different possible other effects, besides recognition, which could cause differences in
eye movement.

The first is the similarity effect; seeing a similar image again. This occurs during the study phase
when a participant sees an image from the same category again. Recall that we are seeking
displays recognition or recollection, although displays of similarity will also be useful later on.
The second is the task effect; the difference in movement based on what task the participant is
given. Yarbus showed that a task does affect eye movement [35], and in our protocol a participant
is given a specific task in phase 2 (the score phase) and an ambiguous task in phase 1 (the study
phase).

We will show the differences between all six metrics, and justify our claim by showing the
differences are not caused by the other two effects. In order to test first and second viewing, which
we refer to as the recognition effect, we used a paired t-test between the first and second Viewing
Experiences (VEs) the participant saw the exact same image. Across twenty participants, this
gave us 400 datapoints. For the similarity effect, we used two groups of images for a two-sample
t-test: the first image shown of each category and the second image shown from each category.
There were 80 datapoints. For the task effect, we compared all the images in phase 1, and all the
images in phase 2 not seen in phase 1, using a two-sample t-test. This was a direct comparison of
how eye movement changed while viewing an image for the first time in the study phase compared
to the score phase. We used category 1 and 2 images for a total of 400 VEs.

The data for tests on the metrics the recognition effect is found in table 3.1, the similarity effect
in table 3.2 and the task effect in table 3.3.

Mean Saccade Length Mean saccade length µsl is the mean of the magnitude of the saccade
vectors. The paired t-test for the recognition effect shows a significant statistical difference (p
< 0.001) between the two means (t(399) = -13.02). µsl increases on the second viewing. The
opposite effect is observed in relation to the similiarity and task effects; statistical differences are
shown between the means, but the means decrease. As can be seen through the three box plots
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µsl µst σat σaft σft Σtft
Phase 1 195.717 89.223 661.134 300.680 155.385 3852.118
Phase 2 181.498 82.849 698.236 334.553 164.943 3964.592
p-value p < 0.05 p > 0.05 p > 0.05 p > 0.05 p > 0.05 p < 0.05
DOF 79.000 79.000 79.000 79.000 79.000 79.000
t-value 2.589 1.684 -1.155 -1.417 -0.996 -2.461

Table 3.3: Results table for the two-sample t-test for the task effect
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(b) Similarity effect for µsl
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(c) Task Effect for µsl

Figure 3.8: Boxplots comparing mean saccade length (µsl) for the three effects

in figure 3.8, the increase of µsl only incurs for first and second image viewing.

Mean Saccade Duration Mean saccade duration µst is the mean of the time taken for each
saccade. The recognition effect shows a significant (p < 0.001) increase (t(399) = -6.362) in µst
across first and viewings. There was against a significant but opposite difference for the similarity
effect; duration decreased. There was no significant difference for the task effect, although as can
be seen in figure 3.9, the group mean decreased.

Standard Deviation of Total Fixation Time in Each AOI Standard deviation of total
fixation time in each AOI σat is the standard deviation between the total amount of dwell time
(or fixation duration) the participant spent looking at each AOI. To determine the AOIs, we
used a human analysis approach, which approximated the areas of interest for each category of
image. The AOIs for each category are the coloured boxed in figure 3.10. There was a significant
decrease in σat for the recognition effect (p < 0.05, t(399) = 2.617), and no significant differences
in the similarity or task effects. The box plots are in figure 3.11.
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(c) Task Effect for µst

Figure 3.9: Boxplots comparing mean saccade duration (µst) for the three effects

Standard Deviation of Fixation Duration in AOI Standard deviation of fixation duration
in each AOI σaft is the deviation of fixation durations after grouping consecutive fixations in the
same AOI as one fixation. We found a significant decrease with regards to the recognition effect
(p < 0.001, t(399) = 4.912) but a significant increase with regards to the similarity effect (p <
0.001, t(79) = -3.818). There was no significant difference in the task effect as can be seen in
figure 3.12.

Standard Deviation of Fixation Duration Standard deviation of fixation duration in each
AOI σft is the deviation of dwell times for each fixation in the scanpath. Only the recognition
effect showed a significant difference with a decreased deviation (p < 0.05, t(399) = 2.513).
The two groups and their means alongside the similarity effect and the task effect is drawn in
figure 3.13.

Total Fixation Time Total fixation time Σtft, or the total amount of time the participant
spent per VE in fixations rather than in saccades, showed that participants spent less time in
fixations for the second viewing of images rather than first. This correlates with our first metric,
mean saccade length, as longer saccades would naturally use more time. There was significant
differences in all three effects; however, while Σtft decreased for the recognition effect (t(399) =
8.291), it increased for both the similarity (t(79) = -4.280) and task (t(398) = -4.280) effects.

Summary Measuring these six metrics, which were hand-picked as they showed significant
differences for the recognition effect, serve two purposes: first, they illustrate the utility of our
data and our protocol for finding results for different effects; two, they give us a platform for
our classification attempt. However, inspection of the box plots reveals that while significant
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(a) Category 1 (b) Category 2

(c) Category 3
(d) Category 4

Figure 3.10: Human picked area of interest for each category

differences may occurs, that implies neither causation nor good discriminative powers; two
properties we need in order to build a good classifier.

3.2.5.5 First versus n-th Feature Viewings

With the collected data, we can also compare the results in terms of the individual features
of each image (fribble) in VEs. For this analysis, each VE was analysed for which features
had appeared before in the experiment. Each fixation was then labelled: targeted towards a
seen feature (1); targeted towards an unseen feature (2); neither/unknown (3). categorising all
the fixations under their label, and deconstructing the original gaze points which made up the
fixation, we show data for one metric:

• mean fixation duration µf t

For this comparison, we used a two-sample two tests of two groups: mean fixation duration
per seen feature and mean fixation duration per unseen feature. This was calculated by finding
the total fixation time on the area of interest of the feature, labelling the fixation as seen and
unseen, and for each scanpath, aggregating the fixation duration for seen and unseen features.
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(c) Task Effect for σat

Figure 3.11: Boxplots comparing standard deviation of AOI total fixation time (σat) for the three effects

µsl

Seen 375.491
Unseen 449.610

p-value p < 0.001
DOF 1493
t-value -5.6764

Table 3.4: Results table for the two-sample t-test for the subimage recognition effect

We divided each by the number of seen features and unseen features they actually viewed (which
in most cases were the number of seen and unseen features in the image).

Table 3.4 shows the results of this comparison measuring just mean fixation duration. There
is a significant increase in the mean fixation duration (p < 0.001, t(1493) = -5.6764). This is
related to the work mentioned in section 2.3.1 by Greene and Rayner, who studied the effects of
familiar distractors in visual search [40]. However, while they found that familiar distractors had
fewer fixations, slightly different from our results the duration was comparable to the unfamiliar
distractors.

Summary While subimage recognition is a feature we use for classification, we wanted to
create a data set with this property of decomposability. Through our initial analysis of just
mean fixation duration, we have found a significant difference between seen and unseen; therefore
further investigation may be worthwhile.
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(b) Similarity effect for σaft
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(c) Task Effect for σaft

Figure 3.12: Boxplots comparing standard deviation of AOI fixation duration (σaft) for the three effects
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Figure 3.13: Boxplots comparing standard deviation of fixation duration (σat) for the three effects
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(c) Task Effect for Σtft

Figure 3.14: Boxplots comparing total fixation time (Σtft) for the three effects
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Chapter 4

Classification

4.1 Method of Evaluation

Classification was tested against the data collected from all twenty participants of the data
collection trials described in Section 3.2.

4.1.1 Cross Validation

The data was separated by using the Leave-One-Out-Cross-Validation (LOOC) method (see 2.1.6
for background). As figure 4.1 captures, this created 20 independent tests and 20 corresponding
models of each classifier. The models were trained with 19 participants’ Viewing Experiences
(VEs), with the remaining, i.e. left out, user’s data used as the test set.

Not all sixty VEs per participant were used for testing. Instead, to create equal distributions
of seen and unseen images, only forty images were used. These were further divided into their
respective image categories, as many of the classification methods relied on category-based
segregation. To maintain equal distribution at both category and response-level, the forty images
did not include any images from category 4 (whose images were only shown once). Also, five
images were excluded for categories 1 and 2. More precisely, the five images that were novel to
the score phase were excluded. In total, the forty images broke down in to:

• the 5 category 1 VEs from the study phase and the matching 5 category 1 VEs from the
score phase

• the 5 category 2 VEs from the study phase and the matching 5 category 2 VEs from the
score phase

Figure 4.1: Diagram showing how the data from twenty participants was divided in Leave-One-Out-Cross
Validation (without the subdivision into categories)
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• all 10 category 3 VEs from the study phase and the matching 10 category 3 VEs from the
score phase

In total, this created 40 tests for each of the 20 runs, or a total of 800 predictions from each
classifier. There were sixty corresponding models, mapping to the twenty participants and three
categories.

For the training data, category 4 images were excluded. Training data also mainted equal
relationships, but did not discriminate which images were selected. Therefore it randomly
sampled 200 category 1 VEs, 200 category 2 VEs and 400 category 3 VEs, such that there was a
50/50 split between first and second viewing. In total, each classifier was trained with 800 VEs
for each of the 20 runs.

4.1.2 Performance Metrics

For each classifier, results were aggregated into a confusion matrix, which details the number of
true positives (TP), false positives (FP), true negatives (TN) and false negatives (FN) aggregated
for all twenty folds. The positive case for our classifier is defined as seen. Accuracy1, sensitivity,
specificity and precision scores were averaged across each fold (and category), and an ROC curve
was plotted and graphed for the aggregated results. The ROC curve is given for each classifier,
and the performance metrics are compiled into a table, along with the area under the ROC curve
(AUC) value.

4.2 Data Pre-Processing

4.2.1 Fixation Detection

For both training and testing, the input to our classifiers is a scanpath, represented as a series of
fixations, with dimensions (x, y, t, d), with x and y position in pixels, t the timestamp of the
fixation relative to the beginning of the VE in milliseconds, and d the duration of the fixation in
milliseconds. In order to translate the raw gaze data into fixations, we use our implementation
of the I-DT algorithm, described in section 2.2.5.3. For the dispersion threshold value, we used
a value of 35 pixels. Our initial estimation was based on analysis performed by Blignaut on
optimum threshold values for I-DT algorithm, which found a range of 0.7 to 1 degrees to be
the optimal threshold [46]. With the average eye position around 45cm, and through empirical
analysis, we chose a threshold value of 35 pixels. The effect of the threshold value can be seen
in figure 4.2, for three values: 5 pixels (figure 4.2a), our selected 35 pixels (figure 4.2b) and 75
pixels (figure 4.2c).

4.2.2 Automatic AOI generation

Many of the metrics discussed by the research into the relationship between eye movement and
memory use Areas-of-Interest (AOI) demarcation. AOIs are image-dependent areas which have
semantic and visual value, such that they tend to attract the attention of users. Roughly speaking,
there are three strategies to identify AOIs within an image:

1. manually, i.e. a human marks the areas
2. using characteristics of the image, such as location of edges, distribution of light/shadow
3. using aggregated eye movement data
1We draw a distinction between average accuracy, which is accuracy averaged over the 60 models, and aggregate

accuracy, which is the ratio of the total number of correct predictions over the total number of predictions
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(a) I-DT threshold of 5 pixels

0 200 400 600 800 1000

0

100

200

300

400

500

600

700

800

900

1000

x position (px)

y
 p

o
s
it
io

n
 (

p
x
)

(b) I-DT threshold of 35 pixels
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(c) I-DT threshold of 75 pixels

Figure 4.2: Calculated fixations using I-DT with a dispersion threshold of (a) 5 pixels, (b) 35 pixels and
(c) 75 pixels
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While all three methods have appropriate use-cases, this investigation pursues automatic clas-
sification based on eye-movement, so unless otherwise stated, the third strategy, based on eye
movement, was used as it best fits these objectives. However, for certain tasks, we have relied on
human analysis and future work may find more benefit in image analysis.

We use two methods for calculating areas of interest, both based on the spatial distribution of
fixations. An area of interest is defined as any area of the image with a high density of fixations,
or in other words, clusters of fixations. The two methods we will use are the unsupervised
clustering algorithms MoG and DCS (see section 2.1.3).

Figure 4.3 shows the difference between the AOI assignment generated by each clustering method.
AOIs are represented by the fixations that were used to generate them and each fixation is
coloured with their respective AOI assignment.

4.2.2.1 MoG AOI Generation

The first AOI generation technique is to use a Mixture of Gaussians (MoG), where each bivariate
normal distribution of the mixture model represents one AOI. MoGs use a soft-assignment where
responsibility for a point can be shared across multiple clusters. The assignment is a posterior
probability, and a hard assignment can be derived by maximizing the posterior, i.e. using a MAP
estimate. The EM algorithm is used as the principal method to calculate the optimal parameters.
In order to make the MoG more robust, EM estimation is repeated five times with random starts,
and the mixture model with the largest log-likelihood (with respect of the training data) is chosen.
The number of iterations is capped to 500 for computational performance.

Traditionally, the disadvantage of a MoG clustering technique is having to know the number
of clusters K apriori. To overcome this requirement, K is found iteratively by comparing the
goodness of fit of MoGs with different K values, starting at K is equal. The criterion used to
measure goodness of fit is the Bayesian Information Criterion (see 2.1.3.2). As an additional
measure to overfitting, K values were capped to 10, twice the number of components in each
image. Figure 4.3c shows the AOIs generated by the MoG algorithm for a category 1 image.

4.2.2.2 DCS AOI Generation

DCS AOI generation uses the mean shift procedure as described in 2.1.3.3. For the mean shift
step, the weightings are calculated using a Gaussian kernel with zero mean and covariance σsI:

ks(x, y, t) = exp
(
−x

2 + y2

σ2
s

)
This kernel, suggested by DeCarlo and Santella, significantly decreases the sensitivity of points
σs pixels away. σs controls the scale in terms of Gaussian distance, and tuning this parameter
affects the size and number of AOIs generated, as well as sensitivity to outlier fixations.

To assign a new fixation to the existing clusters we use a 5-NN classifier (see section 2.1.2.2),
where each neighbour is an existing fixation, and the class labels are the AOIs. We use an inverse
distance metric, where the weight of a neighbour’s vote is inversely related to its distance away
from the new fixation. Therefore, closer neighbours have a larger influence. The tie-breaker
between equal votes is a random decision.

Clustering is accomplished by finding populations of fixations who are no greater than ε pixels
away from each other. It is useful to make σs and ε similar, and for this investigation, both were
set to 50 pixels.

Figure 4.4 shows the effect of changing the value of σs and ε to the generation of AOIs. Too
small a value, such as in figure 4.4a, too many AOIs will be generated. A large value for σs may
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(a) A set of fixations aggregated over multiple partic-
ipants while looking at images in category 1

 

 

(b) Assignment of fixations to AOIs as calculated
using the DeCarlo-Santella algorithm

 

 

(c) Assignment of fixations to AOIs as calculated
using Mixture of Gaussians with 6 clusters

Figure 4.3: AOI assignment of (a) using (b) DCS and (c) MoG
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(a) DCS at σs = 25 pixels
 

 

(b) DCS at σs = 50 pixels

 

 

(c) DCS at σs = 100 pixels

Figure 4.4

result in too few AOIs; notice how in figure 4.4c the image is represented by three large AOIs
and two small outlier AOIs.

Figure 4.4b is the assignment when the value of σs and ε is 50 pixels, or the one used by our
classifiers. The DCS algorithm will produce six AOIs but one of the AOIs contains only one point
(it is marked in yellow near the bottom right corner of the figure). In figure 4.3b, there are two
outlier points in the bottom right corner, marked magenta and purple respectively. To prevent
outlier fixations from generating unnecessary AOIs, we pass the assignment (for category-wise
AOI generation) through a noise-filtering process. During this cleaning, any AOI which receives
less than 1% of total dwell time is removed. The fixations within the removed AOI are either
reassigned to the closest AOI (using the same KNN classifier as we used for assignments), or if
they are greater than 50 pixels away from the AOI, removed completely.
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4.3 Discriminative Classification

4.3.1 Approach

Our first attempt at classification is to use the metrics we identified in the initial data analysis
section 3.2.5.4 and compute a probability distribution over it. We will be using logisitic regression
(Section 2.1.2.3) as our model due to its speed and effectiveness. As a discriminative classifier,
logistic regression computes a function which maps our feature vectors to a value between 0 and
1. We can use a threshold of 0.5 to determine which class label to use.

Training the classifier is fitting the training data to the function; namely finding the different
weights w of the function which maximize the accuracy of the classifier.

In total we will be testing six sets of features:

• MSL-CL: mean saccade length

• VEC-CL: mean saccade length and mean saccade duration

• DUR-CL: standard deviation of total AOI duration, standard deviation of AOI duration,
standard deviation of fixation duration and total fixation time

• EXP-CL: aggregate of the features in VEC-CL and DUR-CL

• SIG-CL: number of revisits per AOI (two fixations in the same AOI separated by at least
one fixation in another AOI), number of repeats per AOI (consecutive fixations within the
same AOI), proportion of AOIs visited and ratio of fixations to AOIs

• ALL-CL: all the features above combined

The first four feature sets were explained during the preliminary data analysis in section 3.2.5.4.
To reiterate, these were features that showed statistical significance between first and second
viewing. The fifth feature set was not previously discussed, but is based on our own personal
hypothesis to what may show an AOI as significant (especially with regards to recognition).
All of these are metrics of predictability and order; one would expect revisits to correlate with
significance, and a larger number of fixations to correlate with greater uncertainty. However, we
aim to test this under classification conditions, rather than statistical analysis.

4.3.2 Results

Performance for both classifiers aggregated over the whole cross-validation is represented in
figure 4.5, with the performance metrics shown in table 4.5a, the confusion matrices in table 4.8c,
and the ROC curves in figure 4.5b.

4.3.2.1 Summary

The six classifiers showed disappointing performance, with performance only marginally better
than a random classifier. The combined classifier (ALL-CL) and the experimental classifier
(EXP-CL) showed the most promise, with average accuracies of 61.3% and 61.0% respectively.
The experimental metrics had a slightly lower devation (11.7%) than the aggregate set (13.3%)
which may show that the additional features cause greater variability, and therefore, less reliability.

The other four feature sets cover an accuracy range of 56.2 % and 60.4%. The inclusion of mean
saccade duration to a feature set comprised of mean saccade length only seems to be marginally
lower standard deviation (from 12.9 % down to 12.4%) with no difference in accuracy (60.4%).
In fact, out of 800 predictions, only twelve predictions differed between the first two classifiers.
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Figure 4.5: Summary of results for MSL-CL, VEC-CL, DUR-CL, EXP-CL, SIG-CL, and ALL-CL
classifiers

Classifier Accuracy Sensitivity Specificity Precision AUC
MSL-CL 0.604 (0.129) 0.338 0.870 0.593 0.701
VEC-CL 0.604 (0.124) 0.330 0.878 0.591 0.698
DUR-CL 0.562 (0.097) 0.292 0.833 0.578 0.633
EXP-CL 0.610 (0.117) 0.377 0.843 0.602 0.697
SIG-CL 0.563 (0.109) 0.273 0.852 0.580 0.644
ALL-CL 0.613 (0.133) 0.387 0.838 0.609 0.699

(a) Performance metrics for MSL-CL, VEC-CL, DUR-CL, EXP-CL, SIG-CL, and ALL-CL
classifiers (parentheses indicate standard deviation)
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(b) ROC Curves for MSL-CL, VEC-CL, DUR-CL, EXP-CL, SIG-CL, and ALL-CL classifiers
(positive: seen)

Classifier v.s. correct Classifier v.s. correct
seen not seen seen not seen

MSL-CL EXP-CL
seen 333 232 seen 319 217
not seen 67 168 not seen 81 183

VEC-CL SIG-CL
seen 336 235 seen 316 243
not seen 64 165 not seen 84 157

DUR-CL ALL-CL
seen 305 239 seen 317 212
not seen 95 161 not seen 83 188

(c) Confusion matrices for MSL-CL, VEC-CL, DUR-CL, EXP-CL, SIG-CL, and ALL-CL
classifiers - columns are the true conditions, rows are the classifier predictions
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The worst two classifiers in terms of accuracy is DUR-CL (56.2%), the latter four metrics used in
the preliminary data analysis, and SIG-CL (56.3%), our hypothesized significance classifier.

All six classifiers have a heavy bias towards positive predictions, and thus have a high amount
of false positives (and corresponding poor sensitivity) and low amount of false negatives (and
corresponding good specificity).

4.3.2.2 Participant and Category Breakdown

The performance of the classifiers across each participant shows two interesting results: the
lowest accuracy (46.7%) is fold 14 for three (MSL-CL, VEC-CL and EXP-CL) out of the six
classifiers, and fold 13 for three (VEC-CL, EXP-CL and ALL-CL) out of the six classifiers.
This shows the influence of the mean saccade length and mean saccade duration features in the
combined classifiers for the low and high accuracy cases respectively; fold 13 and fold 14, which
correspond to participant 13 and participant 14, may have displayed especially unusual and
especially predictable movement behaviours respectively.

Classifier Participant Category
MSL-CL 0.604 (0.066) 0.604 (0.077)
VEC-CL 0.604 (0.064) 0.604 (0.078)
DUR-CL 0.562 (0.045) 0.562 (0.073)
EXP-CL 0.610 (0.074) 0.610 (0.064)
SIG-CL 0.562 (0.050) 0.562 (0.100)
ALL-CL 0.613 (0.074) 0.612 (0.070)

Table 4.1: Category-divided and participant-divided accuracy means and standard deviation (in paren-
theses) for the logisitic regression classifiers

Unsuprisingly, the standard deviation across the three category is greater than the deviation
between participants. For all six metrics, category 1 resulted in the worst accuracy, and category
3 the greatest accuracy. Category 3, as the largest training and test set, is expected to have the
most robust and most accurate results without taking into account the classification method.
Table 4.1 summarises the average accuracy and standard deviation for participant and category
taxonomies.

4.3.2.3 Thresholding

For logistic regression, we used the decision rule:

Decision =
{
seen if p > 0.5
unseen if p <= 0.5

However, given our cross-validation, the highest accuracy may not have been at a 50% decision
boundary. Figure 4.6 shows the accuracy of the six models given different decision boundaries.
All six classifiers peak earlier than 50%, and improve their accuracy 2-4%.

Another form of thresholding is to only accept predictions with a probability greater than a certain
threshold. This would cut out the middle portion of the logistic curve, where the probability of
success is much lower, as the confidence of the model is lower. Table 4.7a, table 4.7b, table 4.7c,
table 4.7d, table 4.7e and table 4.7f show the change of aggregate accuracy over different threshold
values.

If we set a standard of good coverage; namely, the classifier predicts over half the cases, then we
we can gain 7-8% for all the classifiers except DUR-CL for predictions with a probability of 65%

61



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Decision Boundary

A
c
c
u

ra
c
y

 

 

50%

MSL−CL

VEC−CL

DUR−CL

EXP−CL

SIG−CL

ALL−CL

Figure 4.6: The accuracy of the six classifiers at different decision boundary thresholds

Table 4.2: The optimal boundary values for aggregate accuracy values for each discriminative classifier

Classifier Peak Boundary Accuracy
MSL-CL 0.38 0.638
VEC-CL 0.38 0.644
DUR-CL 0.34 0.583
EXP-CL 0.42 0.648
SIG-CL 0.38 0.603
ALL-CL 0.38 0.653

confidence or greater. DUR-CL does not cover half the cases until we lower the threshold below
65%, which may explain its poor average accuracy.
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Figure 4.7: Columns are number of (P)redictions, number of (C)orrect predictions and total (Acc)urracy

Category 1 Category 2 Category 3 Total
Threshold P C P C P C P C Acc

0.85 1 1 8 7 34 32 43 40 0.930
0.75 33 21 56 44 105 87 194 152 0.784
0.65 114 69 133 83 211 157 458 309 0.675
0.55 184 96 185 107 338 239 707 442 0.625

(a) Prediction accuracy of MSL-CL at different thresholds

Category 1 Category 2 Category 3 Total
Threshold P C P C P C P C Acc

0.85 1 1 8 7 39 35 48 43 0.896
0.75 38 27 54 42 123 99 215 168 0.781
0.65 116 70 132 82 232 176 480 328 0.683
0.55 185 97 185 107 344 241 714 445 0.623

(b) Prediction accuracy of VEC-CL at different thresholds

Category 1 Category 2 Category 3 Total
Threshold P C P C P C P C Acc

0.85 8 8 13 12 12 9 33 29 0.879
0.75 34 22 42 28 38 27 114 77 0.675
0.65 112 61 111 69 106 71 329 201 0.611
0.55 186 94 187 93 296 196 669 383 0.572

(c) Prediction accuracy of DUR-CL at different thresholds

Category 1 Category 2 Category 3 Total
Threshold P C P C P C P C Acc

0.85 13 10 19 17 66 56 98 83 0.847
0.75 49 34 61 46 146 119 256 199 0.777
0.65 112 66 128 80 243 188 483 334 0.692
0.55 178 97 179 105 353 252 710 454 0.639

(d) Prediction accuracy of EXP-CL at different thresholds

Category 1 Category 2 Category 3 Total
Threshold P C P C P C P C Acc

0.85 0 0 8 7 1 1 9 8 0.889
0.75 28 16 59 47 37 26 124 89 0.718
0.65 119 65 125 77 165 117 409 259 0.633
0.55 191 95 179 93 315 204 685 392 0.572

(e) Prediction accuracy of SIG-CL at different thresholds

Category 1 Category 2 Category 3 Total
Threshold P C P C P C P C Acc

0.85 14 10 24 22 68 56 106 88 0.830
0.75 53 36 59 46 162 133 274 215 0.785
0.65 111 65 125 75 266 202 502 342 0.681
0.55 176 95 177 105 355 257 708 457 0.645

(f) Prediction accuracy of ALL-CL at different thresholds
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4.4 Spatial Classification

A non-temporal parametric probability model can be found by considering only the spatial
dimension of fixations across the image for first and second viewing experiences. In this section
we compare the classification based on spatial distribution using two clustering strategies: the
DeCarlo-Santella (DCS) algorithm (see 4.2.2.2) and Mixture of Gaussians (MoG) (see 4.2.2.1).

4.4.1 Approach

We built two classifers to compare the two strategies for classification:

• DCS-CL
• MOG-CL

Each classifer was trained using two sets of fixations, one set for each group (first and second
viewing).

4.4.1.1 DeCarlo-Santella Clustering

The DCS clustering algorithm is a robust and deterministic algorithm for creating centroids from
fixations using the mean-shift procedure (see 2.1.3.3). These centroids represent AOIs, and for
the use of the classifier, are represented by the mean µ and the diagonal covariance matrix Σc

(which was lower-bounded by
√

50 pixels in each dimension) of the fixations.

Each set of fixations resulted in a corresponding set of AOIs. To classify a test scanpath, each
fixation f of the scanpath S was compared in turn to each AOI cluster c of the group g. The
gaussian distance is calculated using the bivariate normal pdf with parameters µc and Σc; in
other words, the likelihood L(c, f) of the fixation belonging to cluster [17].

L(c, f) = N(f |µc,ΣC)

By taking the maximum log-likelihood for each cluster, and summing the log-likelihoods for each
fixation, a total log-likelihood was calculated for the scanpath.

L(S, g) = log p(S|G = g)

=
∑
f⊆S

arg max
c⊆g

logL(c, f)

With the assumption that the prior probability of the group is uniform, classification was
determined by the group, or set of clusters, which maximized the log-likelihood.

argg max p(G = g|S) = arg max
g

p(S|G = g)p(G = g)

= arg max
g

p(S|G = g)p(G = g)

= arg max
g

log p(S|G = g) + Constant

= arg max
g

L(S, g)
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4.4.1.2 Mixture of Gaussian Clustering

For the MoG classifier, we constructed a MoG for each group using only the (x, y) coordinates of
its fixations. The parameters of the MoG were estimated using the EM algorithm (see 2.1.1.4).
The probability p(S|M = m) of a test scanpath S composed of N fixations x1, ..., xN belonging
to a MoG m is:

p(S|M = m) =
N∏
i=1

p(xi|M = m)

=
∏
i=1

m∑
k=1

p(k|xi)

∝
∏
i=1

m∑
k=1

p(xi|k)p(k)

where Km is the number of clusters in MoG m, and µk, πk and Σk are the parameters of cluster
k found through EM estimation. Classification was performed by finding the posterior probability
of the test scanpath for each MoG and choosing the larger probability. For convenience, and to
avoid arithmetic underflow, the log-likelihood was used.

It is important to note that in comparison to the DCS classifer, the MoG classifer uses a soft-
assignment for cluster each fixation in a scanpath. Also, as the number of clusters K has to be
defined a priori, the classifier selected the value K which minimized the BIC value (as described
in section 2.1.3.2). The maximum value for K was capped at 10, which is more than the number
of human-selected AOIs in each source image.

4.4.2 Results

Performance for both classifiers aggregated over the whole cross-validation is represented in
figure 4.8, with the performance metrics shown in table 4.8a, the confusion matrices in table 4.8c,
and the ROC curves in figure 4.8b.

The results for both spatial classifiers is noticeably poor. With a prediction accuracy analogous
to a random classifer there are very few positive conclusions to be drawn from these classifiers.
The ROC displays how similar the quality of the model is to that of the random classifier (the
dashed reference line in figure 4.8b).

DCS Classifier (DCS-CL) DCS classifier has the lower accuracy (0.488) and the lower AUC
score (0.483) of the two classifiers. The ROC curve shows how similar the performance of DCS-CL
is to the random classifer. DCS-CL makes a much larger number of seen predictions (469) to
seen predictions (331). The large standard deviation shows the poor performance of the DCS-CL
on certain folds, with a minimum accuracy of 10%.

As table 4.3 shows, DCS-CL does not improve beyond 50.7% in relation to the difference
between the log-likelihoods. The slight positive correlation only manages to make the classifier
as respectable as random.

MOG Classifier (MOG-CL) While MOG-CL fared better than DCS-CL in terms of accuracy
(0.502) and AUC score (0.487), as neither classifers differentiated themselves from the idealized
random classifier (0.50), it’s not possible to draw any conclusions from this comparison.

However, in comparison to DCS-CL, there is a negative correlation between the difference between
log-likelihoods and the prediction accuracy. In fact, table 4.4 shows, the greater the difference
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Figure 4.8: Summary of the results of DCS-CL and MOG-CL classifiers

Classifier Accuracy Sensitivity Specificity Precision AUC
DCS-CL 0.488 (0.138) 0.402 0.575 0.500 0.483
MOG-CL 0.502 (0.125) 0.572 0.433 0.449 0.487

(a) Performance metrics for DCS-CL and MOG-CL classifier
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(b) ROC Curve for DCS-CL and MOG-CL classifiers (positive: seen)

Classifier v.s. correct Classifier v.s. correct
seen not seen seen not seen

DCS-CL MOG-CL
seen 231 238 seen 200 196
notseen 169 162 notseen 200 204

(c) Confusion matrices for DCS-CL and MOG-CL classifier -
columns are the true conditions, rows are the classifier predic-
tions
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Category 1 Category 2 Category 3 Total
Threshold P C P C P C P C Acc

7 41 21 36 19 63 31 140 71 0.507
5 70 37 58 29 119 56 247 122 0.494
2 144 72 134 60 276 136 554 268 0.484
1 167 87 170 77 326 158 663 322 0.486
0.1 196 103 196 85 394 198 786 386 0.491

Table 4.3: Prediction accuracy of DCS-CL at different thresholds. Columns are number of (P)redictions,
number of (C)orrect predictions and total (Acc)urracy

Category 1 Category 2 Category 3 Total
Threshold P C P C P C P C Acc

5 70 30 58 29 119 53 247 112 0.453
2 144 67 134 72 276 137 554 276 0.498
1 167 75 170 93 326 167 663 335 0.505
0.5 184 83 186 100 372 187 742 370 0.499
0.05 198 90 199 106 397 202 794 398 0.501

Table 4.4: Prediction accuracy of MOG-CL at different thresholds. Columns are number of (P)redictions,
number of (C)orrect predictions and total (Acc)urracy

between the log-likelihoods, the less accurate the predictions are. This indicates that those low
scores are effectively outliers, and have no significance on whether it is a first or second viewing.

4.4.2.1 Participant and Category Breakdown

Classifier Participant Category
DCS-CL 0.488 (0.095) 0.488 (0.044)
MOG-CL 0.502 (0.086) 0.502 (0.038)

Table 4.5: Category-divided and participant-divided accuracy means and standard deviation (in paren-
theses) for the spatial classifers

The accuracy, as shown in table 4.5 is consistent across categories and participants with a standard
deviation of 4.4% and 3.8% for DCS-CL and MOG-CL respectively.
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4.5 String-Edit Classification

Scanpaths consist of a sequential property that is ignored in spatial distance metrics such as
Euclidean distance. A likely cause of failure for our spatial classifiers may have been this
reduction to a set of independent fixations, rather than considering a scanpath as a sequence
of fixations. A model that can maintain the relative ordering of fixations preserves potentially
crucial information about the similarity between two scanpaths. This goal has lead research into
the string representation of scanpaths and the use of string editing distance.

4.5.1 Approach

One can identify the relationship between strings and scanpaths as an analogy; a string is a series
of characters like a scanpath is a series of fixations. Therefore, finding the string representation
of a scanpath consists of converting fixations, which have a real-valued location and duration,
into a discrete set of characters. The transformation we will use is to represent fixations by the
area-of-interest (AOI) they are located in. Like the characters of a string, AOIs are a finite set of
discrete elements; therefore a one-to-one mapping of character to AOI is trivial.

As discussed in section 4.2.2, what is not trivial is the definition of AOIs, or in its string form,
our alphabet. As we intend to use a hard-assignment for AOIs, and considering its equivalent
performance to MoGs empirically in the spatial classifiers, we will use the DCS method for AOI
generation. However, the set of fixations we use to generate AOIs is a control variable we test.

We use the Levenshtein distance as the metric for our string representation. Levenshtein distance
measures the similarity of strings as a measure of the cost to transform one string into another using
one of three operations: deletion, addition and substitution. A variation of the original metric,
possibly more representative of real-world systems, is to apply a weighted cost to substitution,
such that the substitution of two characters further apart (using another distance metric) is more
expensive than one close by. We explore the effectiveness of using a substitution cost.

In total, we modelled four classifiers using the string-editing metric:

• weighted substitution cost and imagewise alphabet (WS-IA)
• uniform cost and imagewise alphabet (UC-IA)
• weighted substitution cost and pairwise alphabet (WS-PA)
• uniform cost and pairwise alphabet (UC-PA)

As stated, all four classifiers used the DCS clustering algorithm to automatically generate AOIs
from a set of fixations. For UC-PA and WS-PA, the set was the union of the fixations in the two
scanpaths compared. For UC-IA and WS-IA, the set was the union of all the fixations in both
groups from the training set. Therefore, while UC-IA and WS-IA generated an alphabet once per
model, UC-PA and WS-PA had pair specific AOIs and generated them for each comparison. It
may be worth noting that in an online system, AOI generation is a variable cost for the pairwise
alphabets and a fixed cost for the imagewise alphabets.

The reasons to use an imagewise alphabet instead of a groupwise alphabet, where each group
has its own set of AOIs, is twofold: one, AOIs can be considered properties of the underlying
image; two, analysis of the spatial classifiers indicated that the spatial distribution between both
groups was insignificant. Applications where neither of these points hold may find value in using
a groupwise alphabet.

To assign a new scanpath to the existing AOIs, a K-Nearest-Neighbour classifier was used, with
K = 5 and a distance-weighted cost (see section 2.1.2.2).

For WS-PA and WS-IA the cost of substitution was weighted using the Euclidean distance
between the centers of the AOIs. The cost of addition and deletion remained fixed at 1, but the
cost of substitution equalled
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α

2∑
i=1

√
(ui − vi)2

where u and v represent the means of the two AOIs, and α is 0.0025. The value for α should
be relative to the units and size of the image, and was found empirically based on performance.
This is discussed below in section 4.5.2.4. Substitutions were stored in a n-by-n cost matrix,
where n is the length of the alphabet.

4.5.2 Results

The results of the four classifiers against the cross validation set is shown in figure 4.9. The ROC
curves and confusion matrix are also shown in figure 4.9b and table 4.9c respectively.

There is clearly a marked improvement over the spatial classifiers. Figure 4.9b shows that the
behaviour of the classifier departs the diagonal reference line representing the behaviour of an
ideal random classifier.

4.5.2.1 Pairwise v.s. Image wise

The performance between the two definitions of alphabets did not show a significant difference.
The accuracy of the imagewise alphabets (UC-IA = 66.6%, WS-IA = 68.7%) is similar to the
accuracy of the pairwise alphabets (UC-PA = 65.5%, WS-PA = 68.7%). However, the imagewise
alphabets both consistently have higher specificity scores and lower sensitivity scores, a cause of
the bias for the imagewise classifiers towards positive seen predictions.

4.5.2.2 Weighted v.s. Unweighted

The performance of the weighted classifiers, who use a Euclidean-distance weighted cost for
substitution, is greater than that of the uniform costs for both definition of the alphabets, and
achieve similar accuracies to each other. WS-IA (68.7%) is higher than UC-IA (66.6%) and WS-Pa
(68.7%) is higher than UC-PA (65.5%). They also have lower standard deviations, indicating
more consistent results.

4.5.2.3 Participant and Category Breakdown

Classifier Participant Category
UC-IA 0.666 (0.096) 0.666 (0.011)
WS-IA 0.687 (0.090) 0.687 (0.036)
UC-PA 0.655 (0.100) 0.655 (0.010)
WS-PA 0.687 (0.082) 0.687 (0.032)

Table 4.6: Category-divided and participant-divided accuracy means and standard deviation (in paren-
theses) for the string classifers

Accuracy, as shown in table 4.6, is consistent across participants and categories. However, the
deviation between categories is much less than across participants, which is unsurprising, as our
classifiers are using a similarity metric. Participants whose viewing patterns differ greatly than
the group will suffer a much lower accuracy; those with common viewing patterns (similar to the
group) will score a higher accuracy.
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Figure 4.9: Summary of results for UC-IA, WS-IA, UC-PA and WS-PA classifiers

Classifier Accuracy Sensitivity Specificity Precision AUC
UC-IA 0.666 (0.149) 0.642 0.690 0.676 0.729
WS-IA 0.687 (0.124) 0.633 0.740 0.708 0.741
UC-PA 0.655 (0.135) 0.773 0.537 0.739 0.696
WS-PA 0.687 (0.122) 0.742 0.632 0.740 0.725

(a) Performance metrics for UC-IA, WS-IA, UC-PA and WS-PA classifiers
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(b) ROC curve for UC-IA, WS-IA, UC-PA and WS-PA classifiers (positive:
seen)

Classifier v.s. correct Classifier v.s. correct
seen not seen seen not seen

UC-IA UC-PA
seen 272 137 seen 208 82
not seen 128 263 not seen 192 318

WS-IA WS-PA
seen 284 131 seen 241 89
not seen 116 269 not seen 159 311

(c) Confusion matrices for UC-IA, WS-IA, UC-PA and WS-PA classifiers - columns are the
true conditions, rows are the classifier predictions
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4.5.2.4 Search for Alpha

Our results table in figure 4.9 show the performance of two weighted classifiers WS-IA and WS-PA.
However, to account for the control variable α, we cross-validated four additional classifiers, using
two other α values: 0.001 and 0.005. We chose 0.0025 as it showed the best results, as can be
seen in table 4.7.

α Classifier Accuracy Sensitivity Specificity Precision
0.001 WS-IA 0.598 (0.117) 0.333 0.862 0.584
0.001 WS-PA 0.601 (0.121) 0.420 0.782 0.590
0.0025 WS-IA 0.687 (0.124) 0.633 0.740 0.708
0.0025 WS-PA 0.687 (0.122) 0.742 0.632 0.740
0.005 WS-IA 0.676 (0.149) 0.723 0.628 0.716
0.005 WS-PA 0.686 (0.130) 0.833 0.538 0.790

Table 4.7: Performance metrics for weighted string classifiers with different α values
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4.6 Markov Process Classification

From our promising results with the string editing classifier in section 4.5.2 and poor results
in the spatial classifier in section 4.4.2, we have seen the important of sequence over spatial
distribution. With the string-editing approach, we saw the benefit of including a substitution cost
to give non-uniformity to the substitution of AOIs in a sequence. We will follow a similar line of
reasoning by considering the cost, or probability, of transitions by using the Markov property.

4.6.1 Approach

We built and compared four classifiers from the assumption eye movements obey the Markov
property:

• MC1-CL: using the posterior probabilities of first-order Markov chains
• MC2-CL: using the posterior probabilites of second-order Markov chains
• HMMM-CL: using the posterior probabilities of a first order Hidden Markov (Mixture)

Model, with observations as fixations of (x, y) dimensions and AOIs as the latent state
space

• HMMD-CL: using the posterior probabilities of a first order Hidden Markov (Mixture)
Model, with observations as fixations of (x, y, t) dimensions and AOIs as the latent state
space

Transition matrices were built using the training data across each group seen and unseen for the
Markov chain models (MC1-CL, MC2-CL). Transitions matrices were created empirically with
counts, with an adapted version of add-one smoothing to solve the sparse matrix problem [1],
where the occurence matrix was pre-populated with the value 0.01. This implies a non-informative
uniform distribution for any AOI that was never reached in the training set.

All the HMMs were first-order and trained and fitted using the Baum-Welch algorithm (see
section 2.1.1.4). The training data was composed of the fixations and corresponding AOI
assignment. A HMM was fitted for both first and second viewings, and classification was the
comparison between the log-likelihoods of the test scanpath belong to either HMM.

For MC1-CL and MC2-CL, an aggregated transition matrix was constructed using the training
data for each group. The log-likelihood was calculated and compared for classification of each
test scanpath.

4.6.2 Results

Performance for all four classifiers aggregated over the whole cross-validation is represented
in figure 4.10, with the performance metrics shown in table 4.10a, the confusion matrices in
table 4.10d, and the ROC curves in figure 4.10b. The accuracy per category and per participant
is shown in table 4.8.

4.6.2.1 Comparison

The performance of all four classifiers is comparable, with the first-order Markov Chain model
(MC1-CL) achieving the highest accuracy (67.8%). However, looking closer at the results, there
were five test sets (number of tests was 10 in each set) where MC1-CL scored an accuracy of less
than 50%, which shows that the model has a clear division in performance. The Hidden Markov
Mixture Model (HMMM-CL) performed second best, with an average accuracy of 64.7%. The
overall distribution between positive predictions and negative predictions was similar to MC1-CL,
with a bias towards positive predictions (P = 427, N = 373) as was the case for MC1-CL ( P
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Figure 4.10: Summary of results for the MC1-CL, MC2-CL, HMMM-CL and HMMD-CL classifiers

Classifier Accuracy Sensitivity Specificity Precision AUC
MC1-CL 0.678 (0.165) 0.623 0.732 0.698 0.749
MC2-CL 0.610 (0.133) 0.557 0.663 0.609 0.665
HMMM-CL 0.647 (0.161) 0.603 0.692 0.661 0.690
HMMD-CL 0.616 (0.149) 0.655 0.577 0.633 0.642

(a) Averaged performance metrics for each model of the four Markov classifiers (parentheses
indicate standard deviation)
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(b) ROC Curve for MC1-CL, MC2-CL, HMMM-CL and HMMD-
CL classifiers (positive: seen)

(c)

Classifier v.s. correct Classifier v.s. correct
seen not seen seen not seen

MC1-CL HMMM-CL
seen 294 141 seen 276 151
not seen 106 259 not seen 124 249

MC2-CL HMMD-CL
seen 265 169 seen 235 137
not seen 135 231 not seen 165 263

(d) Confusion matrices for the four Markov classifiers - columns
are the true conditions, rows are the classifier predictions
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= 435, N = 365), and MC1-CL(P = 265, N = 366). Only HMMD-CL predicted more negative
predictions over the whole cross-validation (P = 372, N = 428). The second order Markov chain
performed the worst, with an average accuracy of 61.0%.

4.6.2.2 Category and Participant Breakdown

Classifier Participant Category
MC1-CL 0.677 (0.109) 0.677 (0.052)
MC2-CL 0.610 (0.096) 0.610 (0.043)
HMMM-CL 0.648 (0.091) 0.647 (0.063)
HMMD-CL 0.616 (0.105) 0.616 (0.062)

Table 4.8: Category-divided and participant-divided means and standard deviation (in parentheses) for
the Markov classifiers

Table 4.8 shows that the devation across categories was much less than across participants. The
variability of the participants may be explained by individual differences in scanpath patterns, or
under the structure of the Markov chain, the difference in transition matrices produced by the
training models.

4.6.2.3 Thresholding

We can measure the performance by comparing the accuracy of the classifiers with regards to the
difference, or distance, in log-likelihoods. If the model is well-oriented, the greater the difference
between the log-likelihoods the greater the accuracy. Any other correlation would detail that
our model is wrong (inversely related), or no better than random (no correlation). The ROC
captures this behaviour with respect to the probabilities of the positive predictions, but we will
study the behaviour against the log-likelihoods.

If we find a threshold value for which the classifer provides both good coverage and good accuracy,
we can improve our prediction accuracy without too much cost. It’s important to note that the
threshold tables used represent aggregate accuracy (ratio of correct predictions over the whole
cross validation set, not averaged over the folds).

Category 1 Category 2 Category 3 Total
Threshold P C P C P C P C Acc

2 17 17 4 1 73 64 94 82 0.872
1 79 59 55 40 209 168 343 267 0.778
0.5 140 101 122 85 302 231 564 417 0.739
0.05 197 134 194 124 387 285 778 543 0.698

Table 4.9: Prediction accuracy of MC1-CL at different thresholds. Columns are number of (P)redictions,
number of (C)orrect predictions and total (Acc)urracy

MC1-CL The first order Markov chain can improve upon its accuracy to 73.9% (originally
69.1% for the aggregated accuracy) while still covering over half the predictions (564) with a
threshold value of 0.05. The different threshold values in table 4.9 imply a positive correlation
between accuracy and distance.
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Category 1 Category 2 Category 3 Total
Threshold P C P C P C P C Acc

5 19 8 22 12 34 21 75 41 0.547
2 62 42 68 44 150 108 280 194 0.693
1 118 75 129 75 264 181 511 331 0.648
0.5 157 97 165 94 338 227 660 418 0.633
0.05 195 121 195 112 395 257 785 490 0.624

Table 4.10: Prediction accuracy of MC2-CL at different thresholds. Columns are number of (P)redictions,
number of (C)orrect predictions and total (Acc)urracy

MC2-CL For the second order Markov chain to cover a similar number (511) of test cases as
the first order Markov chain, the accuracy would only be at 64.8%. The different threshold values
in table 4.9 imply a positive correlation between accuracy and distance, except that a threshold
too high (5) actually reduces the accuracy. This could indicate the location of outliers, and shows
the potential value of thresholding both sides of the difference. If we restrict the predictions to
be between 2 and 5, aggregate accuracy will improve to 71.1%.

Category 1 Category 2 Category 3 Total
Threshold P C P C P C P C Acc

5 10 9 6 4 30 22 46 35 0.761
2 66 52 36 27 166 127 268 206 0.769
1 130 100 97 66 278 200 505 366 0.725
0.5 175 128 136 83 342 239 653 450 0.689
0.05 199 136 196 113 395 270 790 519 0.657

Table 4.11: Prediction accuracy of HMMM-CL at different thresholds

HMMM-CL For HMMM-CL, performance rivals MC1-CL for most of the thresholds. For a
threshold of 1, the accuracy rises to 72.5% and the coverage is 505.

Category 1 Category 2 Category 3 Total
Threshold P C P C P C P C Acc

5 16 14 14 9 49 34 79 57 0.722
2 81 60 71 43 208 150 360 253 0.703
1 132 97 134 74 303 208 569 379 0.666
0.5 162 113 162 90 353 234 677 437 0.645
0.05 197 132 199 108 397 255 793 495 0.624

Table 4.12: Prediction accuracy of HMMD-CL at different thresholds. Columns are number of
(P)redictions, number of (C)orrect predictions and total (Acc)urracy

HMMD-CL For HMMD-CL to achieve an aggregate accuracy greater than 70% (70.3%), the
model is limited to guess only 360 cases out of a total of 800. Otherwise, it also loses accuracy
over increased distance, with a 66.6% accuracy for 569 predictions.
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Chapter 5

Evaluation

The results from classification show that the primary goal, to classify recognition, was only a
mild success. In fact, in comparison to user accuracy, all our classifcation attempts fell just short
of the 72.8% average accuracy of the participant.

5.1 Data Collection

Ultimately, the greatest contribution of this investigation may be the creation of a novel dataset
targeted towards the relationship between eye movement and memory. We successfully imple-
mented a protocol and conducted twenty trials to collect 1200 scanpaths from twenty different
users. We also created a platform for revising and rerunning experiments with a similar setup.
We aim to make both available for future use.

The value of the data set is dependent on its intended use. We created the data set to classify
recognition and therefore it is catered towards that purpose. However, we aimed to collect and
annotate the data set as much as possible in order to make it useful for a variety of applications,
as well as a variety of standards. For example, we analyzed all 1200 scanpaths collected; other
uses may be more restrictive on the quality and characteristics of the scanpaths. Our purpose
was classification so naturally robustness against outliers was a property we sought; noise in the
data is useful for testing our models.

The data set offers recognition on two levels: macroscopic image and modular subimage recognition.
We believe the value in the decomposability of the stimulus will aid future investigations into the
nature of eye movement. We only scratched the surface with analysis of subimage recognition;
however we could potentially recreate or revalidate past experiments into relational memory with
this same data set.

5.2 Classification

Our principal objective was classification performance, and we built several models for classification
of scanpaths.

5.2.1 Discriminative Classifiers

The discriminative classifiers, or classification of the features of the image, did not produce
standout results. Most of the feature sets we considered were derived from statistical differences
between the groups means of first and second viewing. Difference between means does not
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(b) An example logisitic curve for category
1 (seen is 1, unseen is 0) - green shows
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Figure 5.1: The normal distribution and an estimated logistic curve for mean saccade length

translate to ‘linearly separable’ nor ‘easy to discriminate’. We will show its shortcomings using
the simplest feature set: mean saccade length. This is a one dimensional feature set using just
the mean saccade length of a scanpath to discriminate between seen and unseen images.

The initial analysis showed that for first and second image viewings, the mean saccade length
increased. We showed that this was not mediated by the task effect or the similarity effect, as
the means in both groups decreased. However, if we fit the data to the normal distribution, we
will see that there is a large amount of overlap. This is shown in figure 5.1a.

When we compute the conditional using logistic regression, the average accuracy of the MSL-CL
classifier is 60.4%. However, if we take a look at the example logistic regression curve in figure 5.1b,
we see a similar overlap. The accuracy of example this model with regards to its training data is
only 67.8%. As you can see, most points fall on the interval between (0,1) rather than near the
asymptotic ends. The large overlap between seen and unseen cases results in the lower accuracy,
and also justifies the difference in performance gained from moving the decision boundary we
calculated in section 4.3.2.3.

The previous example used a category 1 image; if we examine an example model from category 2
and 3, we will see a similar picture, displayed in figure 5.2a and figure 5.2b respectively.

5.2.2 Spatial Classifiers

Classification of recognition using only the spatial characteristics of scanpaths (in relation to
automatically generated Areas-of-Interests) did not succeed. We offer three hypotheses as to why
spatial classification did not produce any significant results:

1. The structure of the stimulus, with a small fixed number (5-6) of AOIs, does not provide
enough variety for spatial distributions to differ between first and second viewings

2. The clustering algorithms aggregate images for each of the categories, therefore there may
be increased noise in comparison to a per-image AOI demarcation

3. Spatial distribution is not a significant indicator of recognition

While we can only point to a similar comparison in the string-edit classifiers (see the pairwise v.s.
imagewise comparison in section 4.5.2.1) to counter the second reason, we believe that the root
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Figure 5.2: Two estimated logistic curves for mean saccade length

cause of the poor performance is the first reason: with only four or five distinct features and five
seconds of viewing time, most participants are able to look at many of the features. Aggregated
across all training data, all the features will appear in the AOI demarcation, and the distribution
will therefore be similar. The slight success of MOG-CL in comparison to DCS-CL would support
this: the only discriminatory feature about the clusters may be the density of fixations in certain
AOIs; something better represented by MOGs than the Gaussian centroids defined using the
DCS algorithm. Whether the third hypothesis is true is inconclusive given the available evidence.

We can examine the first claim by studying the examples AOIs produced by each classifier. As
can be seen in figure 5.3, the difference between the clustering for each groups is marginal, and the
difference between the classification of the correct (in green) and incorrect (in yellow) scanpaths
seem arbitrary. However, spatial classification does show its value in one regard: the clusters do
reveal the underlying structure of the image. This shows the potential value of the two clustering
techniques in other applications, including our other use of DCS and MoG clustering: automatic
detection of the structure (or AOI) of the images from eye movement.

5.2.3 String-Edit Classifiers

The string-editing representation is a popular approach in the scanpath community, and we found
equal success. It performed comparably with all other classification attempts. However, it is
clear that the decision to use a weighted or unweighted substitution cost can have noticeable
effects on performance; due diligence for any string editing approach is to find the combination
which works best.

A potential cause of failure for the string-editing approach with regards to memory is the
interchangeabililty of AOIs; namely, each participant may view the specific features of the image
differently. A sequence of AOIs A → B → C for one participant may be synonymous with
C → A→ B for another, as their relationship with each AOI is different in terms of semantic or
episodic properties. A more abstract definition of the AOIs, rather than a deterministic spatial
organization, may be more useful with regards to memory. We did not have time to completely
this investigate this idea; however, in regards to our subimage analysis in section 3.2.5.5, a
representation of AOIs as seen and unseen features did point to success in both string and Markov
representations.
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Figure 5.3: Examples of the spatial classifiers clustering from the same training model for category 3 -
fixations from a correctly (green) and incorrectly (yellow) predicted scanpath are shown
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Figure 5.4: Scatter plots to show the relationship between accuracy and the Markov Error of the two
transition matrices for each training model for (a) MC1-CL (b) HMMM-CL (c) HMMD-CL

5.2.4 Markov Process Classifiers

As similarly seen from the performance of the string-edit distance classifiers, the inclusion of
transition and sequence makes a significant difference to the performance of classification. The
four Markov classifiers demonstrate a probabilistic interpretation of sequence, where the weighting
of the transitions determine the likelihood of a sequence. For each fold, and for each category,
Markov classifiers produce two transition matrices (HMMM-CL and HMMD-CL also produce
emission and initial probabilities). We can evaluate our classifiers by examining the transition
matrices between the two groups, in terms of the distance between them. The distance metrics
we can use are Markov Error and Markov-Path-Distance (defined in section 2.2.5.5).

Using the two distance metrics, we can measure the relationship between the distance of the first
and second viewing transition matrices and its accuracy. In figure 5.5, we show a scatter plot
of the Markov Path Distance (MPD) between the two matrices for MC1-CL, HMMM-CL and
HMMD-CL, and in figure 5.4 we show the same except using Markov Error as a distance metric.
The table showing the linear correlation between distance and accuracy for the three models is
shown in table 5.1. As can be seen both graphically and numerically, the correlation between the
distance of the two matrices and its accuracy is not well-correlated. In fact, a greater distance
results more often in a worse accuracy. We used a k value of 2 for MPD heuristically as it showed
good levels of non-uniformity.
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Figure 5.5: Scatter plots to show the relationship between accuracy and the Markov Path Distance of
the two transition matrices for each training model for (a) MC1-CL (b) HMMM-CL (c) HMMD-CL

Classifier Markov Path Distance Markov Error
MC1-CL -0.074 -0.183
HMMM-CL -.210 -0.288
HMMD-CL -0.153 -0.252

Table 5.1: Correlation between accuracy and MPD and ME between seen and unseen transition matrix

Another metric of transition matrices we can use is the measure of information entropy, defined
in section 2.2.5.5. The entropy of a transition matrix in relation to eye movement can detail
the predictability, or inversely the randomness, of scanpaths. The histogram plots aggregating
the calculated entropy of the seen and unseen transition matrices for each of the first order
Markov models, MC1-CL, HMMM-CL and HMMD-CL, is shown in figure 5.6. As you can see,
the distribution shows that entropy is consistently greater for the seen transition matrix over
the unseen transition matrix for all three models. We believe further investigation of entropy,
especially in conjunction with a more abstract representation of AOIs, could result in even greater
classification.

However, the metric of entropy itself does not necessarily translate into good classification
performance. We also tested the performance of an entropy-only classifier, using a similar
classification technique to the string-edit distance: by comparing the pairwise entropy between
the test scanpath and each scanpath of each group, except using the absolute difference of
entropies as the measure of distance. The result is an accuracy that does not improve upon the
existing classifiers with an accuracy of 60.6%. The ROC curve is in figure 5.7. We include the
results here only as a means to demonstrate that while entropy may seem like a discriminative
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Figure 5.6: Histogram plots of entropy of the transition matrices for (a) MC1-CL (b) HMMM-CL (c)
HMMD-CL

feature, more care is needed to translate that into a robust classifier.

5.2.5 Participant Input

As a final evaluation, we can try to compare the performance of the classifiers against participant
input to measure how well our classifiers predict the participant’s response. However, none of
our models will be trained against participant input, but the ground truth. Therefore the models
are still separate from participant recognition. To illustrate the performance, we have plotted the
ROC curves of the same four sets of classifiers in figure 5.8, except using the participant input as
the correct condition.

As you can see, performance is not significantly better than against the ground truth. Without
training the models against participant input, we will not claim that the models act as a better
or worse classifier of human recognition. However, the similarity in results are interesting. The
average accuracy is shown in table 5.2. Accuracy is comparable to the performance when using
the ground truth as the correct answer. There are a few noticeable differences however; the
highest accuracy (68.1%) is achieved by VEC-CL, the discriminative classifier using mean saccade
length and duration as its features.
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Figure 5.7: ROC curve for an entropy pairwise classifier

Classifier Accuracy
MSL-CL 0.677 (0.117)
VEC-CL 0.681 (0.116)
DUR-CL 0.644 (0.129)
EXP-CL 0.663 (0.116)
SIG-CL 0.662 (0.120)
ALL-CL 0.662 (0.124)

DCS-CL 0.527 (0.142)
MOG-CL 0.469 (0.166)

UC-IA 0.632 (0.160)
WS-IA 0.663 (0.148)
UC-PA 0.587 (0.159)
WS-PA 0.627 (0.158)

MC1-CL 0.662 (0.175)
MC2-CL 0.607 (0.169)

HMMM-CL 0.646 (0.151)
HMMD-CL 0.588 (0.147)

Table 5.2: Accuracy (with standard deviation in parentheses) for all sixteen classifiers using participant
input as the ground truth
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Figure 5.8: ROC curves of classifiers against participant input
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(a) ROC Curves for MSL-CL, VEC-CL,
DUR-CL, EXP-CL, SIG-CL, and ALL-
CL classifiers against participant input

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r

a
te

 

 

DCS−CL

MOG−CL

(b) ROC Curves for DSC-CL and MOG-
CL classifiers against participant input
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(c) ROC Curves for UC-IA, WS-IA, UC-
PA, and WS-PA classifiers against partic-
ipant input
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Chapter 6

Conclusion

The aim of this project was to build a classifier to identify if a participant has seen an image before
based on their eye movement, independent of their own personal awareness of the recognition.
In order to achieve this, we built sixteen classifiers covering four representations: a set of
discriminating features, a string-editing approach, Markov models and spatial distributions.

We found that spatial distribution did not change between first and second viewing. String
editing, which preserves information about the sequence of a scanpath, and Markov models,
which use transition matrices to model the probability of the sequence, performed much better.

We found that the metrics used to find statistical significance between first and second viewing
did not translate into good classification performance, due to the large overlap in the values.

Our best performing classifiers were the weighted Levenshtein string similarity classifiers (both
pairwise and imagewise) in terms of average accuracy with 68.7%, and the first order Markov
chain classifer in terms of the area under the ROC curve with an AUC score of 0.741.

However, none of the classifiers performed at a higher average accuracy than explicit recognition,
or the average participant accuracy of 72.8%. In this regard, we have not shown that classification
of recognition using eye movement can be superior to explicit recognition, which was our original
objective. However, we believe we have made progress towards that goal in the following regards:

We produced a data set targeted towards studies investigating the relationship between eye
movement and memory. We believe our data set is versatile enough to be used for multiple
applications and studies, especially for users who may be interested in an initial data set to
explore experimental protocols.

We implemented and evaluated common representations of eye movement as models for classifica-
tion and compared their effectiveness.

In addition to our attempts at classification, we also provided an analysis of features of eye
movement that show statistical differences between first and second image viewing. We also
made a brief overture towards subimage recognition, or structuring images as a collection of
components which may or may not have been seen before.

Finally, we built and used a flexible application for collecting data from eye-movement experiments
compatible with commercial eye-tracking hardware.

6.1 Future Work

We believe that this area of research is only at its infancy; the modelling of accurate eye
movement has both academic and commercial interests. Understanding how we see things as
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well as understanding how we remember unlocks two parts of human physiology and behaviour
that could have significant benefits to society.

More specifically, we would like to encourage the following investigations:

Firstly, using more elements of subimage recognition to make classification more robust. While
our attempts at classification focused on holistic scanpath properties, in our preliminary data
analysis we found value in looking at the eye movement in relation to features of the image that
have been seen before. Considering that many elements of an image will have either episodic or
semantic memory properties, holistic image recognition is difficult without accounting for this
decomposability. We made efforts to attempt this, using a HMM where the observations were
raw gaze points, and the latent states were the AOIs marked as seen, unseen or unknown; while
the investigation seemed promising, we did not have sufficient time to report any findings, and
therefore only include it as a potential avenue of investigation.

Secondly, to model a classifier more around each participant, rather than aggregating them
altogether. The high variability in the cross-validation results indicate that a per-participant
segmentation of models could result in greater accuracy. Intuitively, a per-user segmentation maps
to the reality that brains and eyes are specific to individual participants. Therefore, classification
which targets finding common memory strategies for clusters of participants, and training a
classifier to identify which cluster the individual belongs to, may reveal more about the behaviour
of our eyes with regards to memory. This would also follow on from work done by Chuk et. al,
who found two recognition strategies among individuals: holistic and analytic [29].

Thirdly, we provided a data set which includes participant input. We modelled our classifiers on
the ground truth of whether the participant has seen the image before, but another investigation
is the relationship between explicit memory and eye movement. We aim to package the data set
and make it publicly available so others may continue down this route without rerunning trials.

Finally, we would like to see the incorporation of memory research into the user-interface design
side of the eye-tracking community. Using eye movement as a method of control can fall prey to
the Midas Touch problem, where any eye movement can be misinterpreted as a command [47]. A
better model of eye movement, including understanding how our eyes react to novel and seen
scenes, can help alleviate this problem. Ultimately, a reactive user interface, that can identify
the user state of being, can reach the zenith of user experience.
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Appendix A

Analysis Architecture

In order to facilitate the analysis, the raw data was processed into models dubbed Viewing
Experience Models. A global system to create, manage and analyse these models was built. This
section outlines this system.

A.1 Viewing Experience Model

As described in section TBD, the data is divided per phase, with one file for the study phase
and another for the score phase. This means that eye movement data for a series of images is
captured in one file, interweaved with data for the neutral images.

Our analysis aims to classify a viewing experience, where viewing experience is defined to be
continuous observation of one image. This viewing experience model (VEModel) is the basic
structure used throughout the analysis.

A VEModel includes the neutralising data directly before it, which can be used to check whether
the VEModel’s eye data is valid. Therefore, a phase is broken down into a consecutive series of
VEModels.

The basic structure of a VEModel includes the fields:

• imageid (int): a globally-consistent image identifier

• imagesize ([double,double]): the size of the image as shown to the user

• userid (int): a unique user id

• phase ({1,2}): phase number

• index (int): the index of the VEModel relative to the phase

• order ({1,2}): whether this is the first or second time this image has been shown

• input ({-1,0,1}): what key the user pressed {0 for not seen, 1 for seen, -1 for invalid/no
input}

• points ([double,double,double]): all the raw gaze data points, in terms of [ x, y, tstart time
started relative to the first point]

• fixations ([double,double,double,double]): processed fixations, in terms of [ x, y, tstart,
duration]
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• saccades ([double,double,double,double, double, double]): processed saccades, in terms of [
xstart, ystart, xdir, ydir, tstart, duration]

• calibration ([double,double,double]): raw gaze data points for the previous neutral image

Fixations were calculated using the I-DT algorithm.

A.2 Global IDs

The system keeps track of globally consistent identifiers and mappings using Matlab default
matrices data format (.mat). Image IDs map to their string name which can be used to retrieve
their full path, if the user has properly configured the global variable rootdir. User IDs map to
their string representation, a three letter keyname used to store their data files. Accessors to get
files based on name, images based on ID, etc. are available as utility functions.

The system also maintains the mapping of image ID to category ID, which is useful for classifica-
tion.
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Appendix B

Example Files

This section contains example files used for the data collection application described in section 3.1.

B.1 phases.txt

Listing B.1: An example phases.txt for the data collection application
i n s t r u c t i o n Follow the Dot
c a l i b r a t i o n
e y e t r i g g e r
image image−1. txt
i n s t r u c t i o n Follow the Dot
c a l i b r a t i o n
k ey t r i g g e r Free ly look at the image . Press Space to Continue .
image image−1. txt
i n s t r u c t i o n Thank you !

Listing B.2: The TestScript used in the data collection trials
k ey t r i g g e r He l lo ! \nThank You For Taking Part In This Experiment . \

nPress Green to Move On.
k ey t r i g g e r Al l I n s t r u c t i o n s Wil l Appear Here . \ nPress ing Green Wil l

Move To The Next I n s t r u c t i o n s .
k e y t r i g g e r Please Follow Al l I n s t r u c t i o n s
k ey t r i g g e r Before We Begin\nWe Need To Test The Ca l i b ra t i on
k ey t r i g g e r Please Follow The Dot
c a l i b r a t i o n
k ey t r i g g e r Ca l i b r a t i on Test Complete .
k e y t r i g g e r I n s t r u c t i o n s For Phase 1 :
k ey t r i g g e r I f You See A Cross On the Screen , \ n Please Look At I t Unt i l

I t Disappears
k ey t r i g g e r Otherwise Please Look Free ly At The Image
k ey t r i g g e r Each Image Wil l Be Shown For 5 Seconds .
k ey t r i g g e r Press Green When You Are Ready To Begin Phase 1
study experiment −1. txt
k ey t r i g g e r Phase 1 Complete .
k e y t r i g g e r I n s t r u c t i o n s f o r Phase 2 :
k ey t r i g g e r Phase 2 I s A Game . \nThe Goal Of The Game I s To Maximize

The Number o f Points .
k e y t r i g g e r You Get Points For Cor r ec t l y I d e n t i f y i n g Whether : \ nThe

Image Was Shown In Phase 1\nOr\ nIs New To Phase 2

97



k ey t r i g g e r I f You Saw The Image In Phase 1 , \ nPress Green
k ey t r i g g e r I f You Did NOT See the Image In Phase 1 , \ nPress Red
key t r i g g e r Each Image Wil l Always Be Shown For 5 Seconds .
k ey t r i g g e r You Can Press A Button At Any Time , But You Must Press A

Button Once Per Image
k ey t r i g g e r The Screen Wil l Remain Black Unt i l You Press A Button
k ey t r i g g e r You Get +1 Points For A Correct Answer\n−1 For An In c o r r e c t

Answer
k ey t r i g g e r I f You See A Cross On the Screen , \ n Please Look At I t Unt i l

I t Disappears
k ey t r i g g e r Your Score Wil l Only Be Shown At The End . \nA Sound Wil l

Play I f You Press A Key .
k ey t r i g g e r Press Green When You Are Ready To Begin Phase 2
s co r e experiment −2. txt
k ey t r i g g e r Phase 2 Complete .
k e y t r i g g e r We Need To Test The Ca l i b ra t i on Again .
k ey t r i g g e r Please Follow The Dot
c a l i b r a t i o n
k ey t r i g g e r Ca l i b r a t i on Test Complete .
end
k ey t r i g g e r Al l Done − Thank You !

B.1.1 TestScript

Listing B.3: An example TestScript for the data collection application
next 6
next 0 3000
randomnew 8
next 0 3000
next 7
next 0 3000
randomold 5

98



Appendix C

Fribbles Data Set

Information regarding the fribbles data set is found here.
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Table C.1: The features of the source set

Image F1 F2 F3 F4 Body Species
1.png 1 1 1 1 1 1
10.png 1 3 3 3 1 1
2.png 2 2 1 2 1 1
3.png 3 3 1 3 1 1
4.png 3 1 1 2 1 1
5.png 2 3 2 2 1 1
9.png 3 1 3 1 1 1
7.png 3 2 2 3 1 1
6.png 1 1 2 2 1 1
8.png 2 2 3 2 1 1
11.png 1 1 1 1 1 2
12.png 2 2 2 1 1 2
13.png 3 3 3 1 1 2
14.png 3 3 3 2 1 2
15.png 2 1 2 2 1 2
17.png 1 2 1 2 1 2
16.png 3 3 3 2 1 2
20.png 1 3 3 1 1 2
19.png 1 2 1 2 1 2
18.png 2 1 2 3 1 2
21.png 1 1 1 1 1 3
22.png 2 2 1 2 1 3
23.png 2 3 1 3 1 3
24.png 1 3 1 2 1 3
25.png 1 1 2 3 1 3
26.png 2 2 2 2 1 3
27.png 2 3 2 1 1 3
28.png 2 1 3 3 1 3
29.png 1 3 3 1 1 3
30.png 2 2 3 2 1 3
31.png 1 1 1 1 1 4
32.png 1 2 2 2 1 4
33.png 1 3 3 1 1 4
34.png 1 3 3 2 1 4
35.png 2 1 1 2 1 4
36.png 2 2 1 1 1 4
37.png 2 3 2 1 1 4
38.png 3 3 1 2 1 4
39.png 3 2 3 2 1 4
40.png 3 1 3 1 1 4
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Appendix D

Results

This section lists the full results for all 16 classifiers across all categories and participants.

(a) Full results for DCS-CL classifier

Category Fold TP FP FN TN Accuracy

1
1 1 3 4 2 0.300
2 3 4 2 1 0.400
3 3 2 2 3 0.600
4 3 3 2 2 0.500
5 3 4 2 1 0.400
6 2 1 3 4 0.600
7 4 4 1 1 0.500
8 3 1 2 4 0.700
9 1 3 4 2 0.300

10 4 2 1 3 0.700
11 1 2 4 3 0.400
12 3 1 2 4 0.700
13 5 5 0 0 0.500
14 4 4 1 1 0.500
15 4 2 1 3 0.700
16 2 3 3 2 0.400
17 4 0 1 5 0.900
18 3 3 2 2 0.500
19 2 4 3 1 0.300
20 2 1 3 4 0.600

2
1 0 4 5 1 0.100
2 2 5 3 0 0.200
3 3 4 2 1 0.400
4 3 2 2 3 0.600
5 5 5 0 0 0.500
6 5 4 0 1 0.600
7 3 3 2 2 0.500
8 3 4 2 1 0.400
9 3 3 2 2 0.500

10 1 2 4 3 0.400
11 3 2 2 3 0.600
12 4 4 1 1 0.500
13 4 5 1 0 0.400
14 4 5 1 0 0.400
15 3 3 2 2 0.500
16 3 3 2 2 0.500
17 2 1 3 4 0.600
18 2 2 3 3 0.500
19 2 4 3 1 0.300
20 2 4 3 1 0.300

3
1 5 8 5 2 0.350
2 7 5 3 5 0.600
3 8 8 2 2 0.500
4 7 8 3 2 0.450
5 5 8 5 2 0.350
6 7 6 3 4 0.550
7 5 8 5 2 0.350
8 4 3 6 7 0.550
9 4 3 6 7 0.550

10 2 0 8 10 0.600
11 1 2 9 8 0.450
12 6 8 4 2 0.400
13 7 5 3 5 0.600
14 10 6 0 4 0.700
15 7 5 3 5 0.600
16 5 7 5 3 0.400
17 7 6 3 4 0.550
18 7 9 3 1 0.400
19 6 7 4 3 0.450
20 7 5 3 5 0.600

(b) Full results for MOG-CL classifier

Category Fold TP FP FN TN Accuracy

1
1 3 2 2 3 0.600
2 3 2 2 3 0.600
3 1 4 4 1 0.200
4 3 3 2 2 0.500
5 2 1 3 4 0.600
6 3 4 2 1 0.400
7 3 4 2 1 0.400
8 1 4 4 1 0.200
9 3 5 2 0 0.300

10 4 1 1 4 0.800
11 2 5 3 0 0.200
12 2 4 3 1 0.300
13 3 3 2 2 0.500
14 2 2 3 3 0.500
15 4 4 1 1 0.500
16 3 2 2 3 0.600
17 1 2 4 3 0.400
18 2 0 3 5 0.700
19 2 2 3 3 0.500
20 3 4 2 1 0.400

2
1 1 0 4 5 0.600
2 1 0 4 5 0.600
3 0 1 5 4 0.400
4 1 0 4 5 0.600
5 1 0 4 5 0.600
6 1 0 4 5 0.600
7 0 0 5 5 0.500
8 0 0 5 5 0.500
9 0 0 5 5 0.500

10 0 0 5 5 0.500
11 0 0 5 5 0.500
12 0 0 5 5 0.500
13 0 0 5 5 0.500
14 0 0 5 5 0.500
15 2 0 3 5 0.700
16 0 0 5 5 0.500
17 0 0 5 5 0.500
18 2 1 3 4 0.600
19 1 1 4 4 0.500
20 0 0 5 5 0.500

3
1 2 4 8 6 0.400
2 8 9 2 1 0.450
3 6 7 4 3 0.450
4 9 6 1 4 0.650
5 9 6 1 4 0.650
6 9 10 1 0 0.450
7 8 9 2 1 0.450
8 7 10 3 0 0.350
9 5 7 5 3 0.400

10 1 4 9 6 0.350
11 6 7 4 3 0.450
12 8 5 2 5 0.650
13 7 3 3 7 0.700
14 5 7 5 3 0.400
15 8 6 2 4 0.600
16 8 6 2 4 0.600
17 9 8 1 2 0.550
18 9 7 1 3 0.600
19 7 4 3 6 0.650
20 9 10 1 0 0.450
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(a) Full results for MC1-CL classifier

Category Fold TP FP FN TN Accuracy

1
1 5 3 0 2 0.700
2 4 2 1 3 0.700
3 1 1 4 4 0.500
4 4 4 1 1 0.500
5 3 2 2 3 0.600
6 3 1 2 4 0.700
7 5 1 0 4 0.900
8 4 2 1 3 0.700
9 5 1 0 4 0.900

10 3 2 2 3 0.600
11 1 0 4 5 0.600
12 5 3 0 2 0.700
13 5 2 0 3 0.800
14 4 5 1 0 0.400
15 5 1 0 4 0.900
16 3 5 2 0 0.300
17 4 1 1 4 0.800
18 3 0 2 5 0.800
19 4 4 1 1 0.500
20 5 2 0 3 0.800

2
1 5 3 0 2 0.700
2 4 1 1 4 0.800
3 4 2 1 3 0.700
4 5 4 0 1 0.600
5 4 0 1 5 0.900
6 1 1 4 4 0.500
7 3 4 2 1 0.400
8 2 5 3 0 0.200
9 4 0 1 5 0.900

10 3 2 2 3 0.600
11 4 4 1 1 0.500
12 3 0 2 5 0.800
13 3 0 2 5 0.800
14 3 2 2 3 0.600
15 4 2 1 3 0.700
16 4 3 1 2 0.600
17 3 1 2 4 0.700
18 1 1 4 4 0.500
19 4 3 1 2 0.600
20 5 5 0 0 0.500

3
1 9 1 1 9 0.900
2 10 4 0 6 0.800
3 9 1 1 9 0.900
4 9 3 1 7 0.800
5 9 2 1 8 0.850
6 7 0 3 10 0.850
7 4 7 6 3 0.350
8 6 3 4 7 0.650
9 9 2 1 8 0.850

10 5 3 5 7 0.600
11 4 2 6 8 0.600
12 6 1 4 9 0.750
13 8 1 2 9 0.850
14 7 3 3 7 0.700
15 10 4 0 6 0.800
16 9 4 1 6 0.750
17 7 0 3 10 0.850
18 2 0 8 10 0.600
19 10 7 0 3 0.650
20 9 8 1 2 0.550

(b) Full results for MC2-CL classifier

Category Fold TP FP FN TN Accuracy

1
1 5 3 0 2 0.700
2 4 3 1 2 0.600
3 3 2 2 3 0.600
4 5 5 0 0 0.500
5 3 2 2 3 0.600
6 3 2 2 3 0.600
7 5 1 0 4 0.900
8 4 4 1 1 0.500
9 4 3 1 2 0.600

10 2 3 3 2 0.400
11 2 1 3 4 0.600
12 4 1 1 4 0.800
13 5 4 0 1 0.600
14 3 4 2 1 0.400
15 5 2 0 3 0.800
16 4 2 1 3 0.700
17 3 1 2 4 0.700
18 2 0 3 5 0.700
19 3 3 2 2 0.500
20 4 4 1 1 0.500

2
1 3 2 2 3 0.600
2 4 4 1 1 0.500
3 2 2 3 3 0.500
4 5 3 0 2 0.700
5 3 2 2 3 0.600
6 3 2 2 3 0.600
7 2 4 3 1 0.300
8 4 5 1 0 0.400
9 2 1 3 4 0.600

10 3 3 2 2 0.500
11 2 4 3 1 0.300
12 4 3 1 2 0.600
13 3 0 2 5 0.800
14 1 2 4 3 0.400
15 4 1 1 4 0.800
16 3 2 2 3 0.600
17 3 0 2 5 0.800
18 0 0 5 5 0.500
19 4 3 1 2 0.600
20 5 4 0 1 0.600

3
1 5 3 5 7 0.600
2 7 4 3 6 0.650
3 6 4 4 6 0.600
4 9 3 1 7 0.800
5 8 2 2 8 0.800
6 5 5 5 5 0.500
7 6 4 4 6 0.600
8 5 4 5 6 0.550
9 7 1 3 9 0.800

10 4 3 6 7 0.550
11 5 4 5 6 0.550
12 6 3 4 7 0.650
13 8 3 2 7 0.750
14 4 3 6 7 0.550
15 9 4 1 6 0.750
16 9 5 1 5 0.700
17 8 1 2 9 0.850
18 2 1 8 9 0.550
19 10 6 0 4 0.700
20 9 9 1 1 0.500
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(a) Full results for HMMM-CL classifier

Category Fold TP FP FN TN Accuracy

1
1 4 2 1 3 0.700
2 5 1 0 4 0.900
3 3 2 2 3 0.600
4 5 5 0 0 0.500
5 4 2 1 3 0.700
6 4 0 1 5 0.900
7 3 2 2 3 0.600
8 4 1 1 4 0.800
9 5 0 0 5 1.000

10 3 2 2 3 0.600
11 1 0 4 5 0.600
12 5 4 0 1 0.600
13 5 1 0 4 0.900
14 4 5 1 0 0.400
15 4 2 1 3 0.700
16 3 4 2 1 0.400
17 5 2 0 3 0.800
18 2 1 3 4 0.600
19 4 4 1 1 0.500
20 5 1 0 4 0.900

2
1 4 2 1 3 0.700
2 4 3 1 2 0.600
3 4 3 1 2 0.600
4 4 1 1 4 0.800
5 3 1 2 4 0.700
6 2 2 3 3 0.500
7 5 5 0 0 0.500
8 1 4 4 1 0.200
9 2 0 3 5 0.700

10 2 3 3 2 0.400
11 2 2 3 3 0.500
12 3 3 2 2 0.500
13 3 1 2 4 0.700
14 3 1 2 4 0.700
15 3 2 2 3 0.600
16 4 3 1 2 0.600
17 2 3 3 2 0.400
18 2 3 3 2 0.400
19 4 2 1 3 0.700
20 4 2 1 3 0.700

3
1 6 2 4 8 0.700
2 7 4 3 6 0.650
3 7 0 3 10 0.850
4 10 3 0 7 0.850
5 9 1 1 9 0.900
6 4 4 6 6 0.500
7 3 1 7 9 0.600
8 8 4 2 6 0.700
9 6 4 4 6 0.600

10 5 5 5 5 0.500
11 7 0 3 10 0.850
12 6 4 4 6 0.600
13 8 1 2 9 0.850
14 2 1 8 9 0.550
15 9 2 1 8 0.850
16 7 4 3 6 0.650
17 10 4 0 6 0.800
18 7 5 3 5 0.600
19 9 8 1 2 0.550
20 7 7 3 3 0.500

(b) Full results for HMMD-CL classifier

Category Fold TP FP FN TN Accuracy

1
1 4 2 1 3 0.700
2 3 0 2 5 0.800
3 4 1 1 4 0.800
4 4 3 1 2 0.600
5 3 2 2 3 0.600
6 3 0 2 5 0.800
7 1 1 4 4 0.500
8 4 1 1 4 0.800
9 4 2 1 3 0.700

10 2 2 3 3 0.500
11 3 0 2 5 0.800
12 4 3 1 2 0.600
13 5 2 0 3 0.800
14 4 5 1 0 0.400
15 3 2 2 3 0.600
16 3 1 2 4 0.700
17 2 2 3 3 0.500
18 2 2 3 3 0.500
19 3 3 2 2 0.500
20 5 0 0 5 1.000

2
1 3 2 2 3 0.600
2 1 2 4 3 0.400
3 3 3 2 2 0.500
4 1 1 4 4 0.500
5 2 1 3 4 0.600
6 3 1 2 4 0.700
7 3 3 2 2 0.500
8 1 2 4 3 0.400
9 3 1 2 4 0.700

10 1 2 4 3 0.400
11 2 2 3 3 0.500
12 2 4 3 1 0.300
13 2 1 3 4 0.600
14 2 1 3 4 0.600
15 3 1 2 4 0.700
16 4 1 1 4 0.800
17 2 2 3 3 0.500
18 2 2 3 3 0.500
19 1 2 4 3 0.400
20 4 2 1 3 0.700

3
1 8 3 2 7 0.750
2 4 0 6 10 0.700
3 8 1 2 9 0.850
4 8 1 2 9 0.850
5 7 5 3 5 0.600
6 4 2 6 8 0.600
7 2 1 8 9 0.550
8 6 4 4 6 0.600
9 8 4 2 6 0.700

10 2 2 8 8 0.500
11 7 3 3 7 0.700
12 4 6 6 4 0.400
13 9 2 1 8 0.850
14 2 3 8 7 0.450
15 6 0 4 10 0.800
16 7 5 3 5 0.600
17 9 4 1 6 0.750
18 5 7 5 3 0.400
19 9 7 1 3 0.600
20 9 7 1 3 0.600

103



(a) Full results for MSL-CL classifier

Category Fold TP FP FN TN Accuracy

1
1 5 5 0 0 0.500
2 5 2 0 3 0.800
3 4 2 1 3 0.700
4 5 5 0 0 0.500
5 5 5 0 0 0.500
6 5 5 0 0 0.500
7 5 4 0 1 0.600
8 5 5 0 0 0.500
9 4 4 1 1 0.500

10 5 3 0 2 0.700
11 5 2 0 3 0.800
12 5 4 0 1 0.600
13 5 4 0 1 0.600
14 4 5 1 0 0.400
15 4 5 1 0 0.400
16 5 5 0 0 0.500
17 4 4 1 1 0.500
18 4 4 1 1 0.500
19 4 5 1 0 0.400
20 5 5 0 0 0.500

2
1 5 5 0 0 0.500
2 5 5 0 0 0.500
3 5 5 0 0 0.500
4 5 4 0 1 0.600
5 5 4 0 1 0.600
6 5 3 0 2 0.700
7 5 5 0 0 0.500
8 5 5 0 0 0.500
9 5 5 0 0 0.500

10 4 3 1 2 0.600
11 4 3 1 2 0.600
12 4 5 1 0 0.400
13 5 3 0 2 0.700
14 5 5 0 0 0.500
15 5 5 0 0 0.500
16 5 4 0 1 0.600
17 5 2 0 3 0.800
18 4 1 1 4 0.800
19 5 5 0 0 0.500
20 5 5 0 0 0.500

3
1 6 2 4 8 0.700
2 8 2 2 8 0.800
3 7 2 3 8 0.750
4 8 1 2 9 0.850
5 5 3 5 7 0.600
6 10 3 0 7 0.850
7 8 7 2 3 0.550
8 8 2 2 8 0.800
9 9 3 1 7 0.800

10 6 3 4 7 0.650
11 1 1 9 9 0.500
12 7 3 3 7 0.700
13 8 2 2 8 0.800
14 8 8 2 2 0.500
15 10 6 0 4 0.700
16 6 5 4 5 0.550
17 7 1 3 9 0.800
18 4 2 6 8 0.600
19 10 6 0 4 0.700
20 8 5 2 5 0.650

(b) Full results for VEC-CL classifier

Category Fold TP FP FN TN Accuracy

1
1 5 5 0 0 0.500
2 5 3 0 2 0.700
3 4 3 1 2 0.600
4 5 5 0 0 0.500
5 5 5 0 0 0.500
6 5 5 0 0 0.500
7 5 4 0 1 0.600
8 5 5 0 0 0.500
9 5 4 0 1 0.600

10 5 3 0 2 0.700
11 5 2 0 3 0.800
12 5 4 0 1 0.600
13 5 4 0 1 0.600
14 4 5 1 0 0.400
15 4 5 1 0 0.400
16 5 5 0 0 0.500
17 4 4 1 1 0.500
18 4 4 1 1 0.500
19 4 5 1 0 0.400
20 5 5 0 0 0.500

2
1 5 5 0 0 0.500
2 5 5 0 0 0.500
3 5 5 0 0 0.500
4 5 4 0 1 0.600
5 5 4 0 1 0.600
6 5 3 0 2 0.700
7 5 5 0 0 0.500
8 5 5 0 0 0.500
9 5 4 0 1 0.600

10 5 4 0 1 0.600
11 4 3 1 2 0.600
12 4 5 1 0 0.400
13 5 3 0 2 0.700
14 5 5 0 0 0.500
15 5 5 0 0 0.500
16 5 4 0 1 0.600
17 5 2 0 3 0.800
18 4 1 1 4 0.800
19 5 5 0 0 0.500
20 5 5 0 0 0.500

3
1 6 2 4 8 0.700
2 8 3 2 7 0.750
3 7 2 3 8 0.750
4 8 1 2 9 0.850
5 5 2 5 8 0.650
6 10 4 0 6 0.800
7 8 7 2 3 0.550
8 8 2 2 8 0.800
9 9 3 1 7 0.800

10 6 3 4 7 0.650
11 1 1 9 9 0.500
12 7 3 3 7 0.700
13 9 2 1 8 0.850
14 8 8 2 2 0.500
15 10 6 0 4 0.700
16 6 5 4 5 0.550
17 7 1 3 9 0.800
18 4 2 6 8 0.600
19 10 6 0 4 0.700
20 8 5 2 5 0.650
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(a) Full results for DUR-CL classifier

Category Fold TP FP FN TN Accuracy

1
1 5 5 0 0 0.500
2 5 5 0 0 0.500
3 5 5 0 0 0.500
4 5 5 0 0 0.500
5 5 5 0 0 0.500
6 5 5 0 0 0.500
7 5 5 0 0 0.500
8 5 5 0 0 0.500
9 5 5 0 0 0.500

10 4 3 1 2 0.600
11 5 5 0 0 0.500
12 5 5 0 0 0.500
13 5 5 0 0 0.500
14 5 5 0 0 0.500
15 5 5 0 0 0.500
16 5 5 0 0 0.500
17 4 5 1 0 0.400
18 5 5 0 0 0.500
19 5 5 0 0 0.500
20 5 5 0 0 0.500

2
1 5 5 0 0 0.500
2 5 2 0 3 0.800
3 5 5 0 0 0.500
4 5 4 0 1 0.600
5 5 5 0 0 0.500
6 4 5 1 0 0.400
7 5 5 0 0 0.500
8 5 4 0 1 0.600
9 5 3 0 2 0.700

10 5 3 0 2 0.700
11 5 5 0 0 0.500
12 5 5 0 0 0.500
13 4 4 1 1 0.500
14 5 5 0 0 0.500
15 5 5 0 0 0.500
16 5 5 0 0 0.500
17 5 5 0 0 0.500
18 4 3 1 2 0.600
19 5 5 0 0 0.500
20 5 5 0 0 0.500

3
1 8 3 2 7 0.750
2 2 0 8 10 0.600
3 4 0 6 10 0.700
4 6 1 4 9 0.750
5 1 3 9 7 0.400
6 8 5 2 5 0.650
7 6 3 4 7 0.650
8 6 3 4 7 0.650
9 6 1 4 9 0.750

10 3 2 7 8 0.550
11 6 1 4 9 0.750
12 8 4 2 6 0.700
13 4 0 6 10 0.700
14 3 1 7 9 0.600
15 10 6 0 4 0.700
16 8 6 2 4 0.600
17 5 3 5 7 0.600
18 4 4 6 6 0.500
19 6 4 4 6 0.600
20 6 3 4 7 0.650

(b) Full results for EXP-CL classifier

Category Fold TP FP FN TN Accuracy

1
1 5 5 0 0 0.500
2 5 3 0 2 0.700
3 5 5 0 0 0.500
4 5 4 0 1 0.600
5 5 4 0 1 0.600
6 5 5 0 0 0.500
7 5 4 0 1 0.600
8 5 5 0 0 0.500
9 4 4 1 1 0.500

10 5 3 0 2 0.700
11 5 3 0 2 0.700
12 5 3 0 2 0.700
13 5 3 0 2 0.700
14 4 5 1 0 0.400
15 4 5 1 0 0.400
16 5 5 0 0 0.500
17 4 4 1 1 0.500
18 3 2 2 3 0.600
19 4 5 1 0 0.400
20 5 5 0 0 0.500

2
1 5 5 0 0 0.500
2 5 3 0 2 0.700
3 5 5 0 0 0.500
4 5 3 0 2 0.700
5 5 4 0 1 0.600
6 4 3 1 2 0.600
7 5 5 0 0 0.500
8 5 4 0 1 0.600
9 5 3 0 2 0.700

10 5 3 0 2 0.700
11 5 3 0 2 0.700
12 4 4 1 1 0.500
13 5 3 0 2 0.700
14 5 5 0 0 0.500
15 4 5 1 0 0.400
16 4 4 1 1 0.500
17 5 2 0 3 0.800
18 3 1 2 4 0.700
19 5 5 0 0 0.500
20 5 5 0 0 0.500

3
1 7 1 3 9 0.800
2 6 2 4 8 0.700
3 6 1 4 9 0.750
4 7 1 3 9 0.800
5 2 2 8 8 0.500
6 8 4 2 6 0.700
7 8 6 2 4 0.600
8 8 3 2 7 0.750
9 7 3 3 7 0.700

10 5 2 5 8 0.650
11 2 1 8 9 0.550
12 8 3 2 7 0.750
13 8 1 2 9 0.850
14 7 7 3 3 0.500
15 10 7 0 3 0.650
16 8 6 2 4 0.600
17 6 1 4 9 0.750
18 2 1 8 9 0.550
19 9 3 1 7 0.800
20 8 5 2 5 0.650

105



(a) Full results for SIG-CL classifier

Category Fold TP FP FN TN Accuracy

1
1 5 5 0 0 0.500
2 5 5 0 0 0.500
3 5 5 0 0 0.500
4 5 5 0 0 0.500
5 5 5 0 0 0.500
6 5 5 0 0 0.500
7 5 5 0 0 0.500
8 5 5 0 0 0.500
9 5 5 0 0 0.500

10 5 5 0 0 0.500
11 5 5 0 0 0.500
12 5 5 0 0 0.500
13 5 5 0 0 0.500
14 5 5 0 0 0.500
15 5 5 0 0 0.500
16 5 5 0 0 0.500
17 5 5 0 0 0.500
18 5 5 0 0 0.500
19 5 5 0 0 0.500
20 5 5 0 0 0.500

2
1 5 5 0 0 0.500
2 5 5 0 0 0.500
3 4 4 1 1 0.500
4 5 5 0 0 0.500
5 4 5 1 0 0.400
6 4 4 1 1 0.500
7 5 5 0 0 0.500
8 5 4 0 1 0.600
9 5 5 0 0 0.500

10 5 5 0 0 0.500
11 5 5 0 0 0.500
12 5 5 0 0 0.500
13 5 4 0 1 0.600
14 5 3 0 2 0.700
15 5 5 0 0 0.500
16 5 5 0 0 0.500
17 5 5 0 0 0.500
18 3 5 2 0 0.300
19 5 4 0 1 0.600
20 5 5 0 0 0.500

3
1 7 3 3 7 0.700
2 6 2 4 8 0.700
3 5 1 5 9 0.700
4 6 2 4 8 0.700
5 5 4 5 6 0.550
6 6 4 4 6 0.600
7 5 3 5 7 0.600
8 5 3 5 7 0.600
9 6 1 4 9 0.750

10 3 1 7 9 0.600
11 5 0 5 10 0.750
12 8 2 2 8 0.800
13 5 0 5 10 0.750
14 8 2 2 8 0.800
15 10 5 0 5 0.750
16 9 5 1 5 0.700
17 7 2 3 8 0.750
18 4 2 6 8 0.600
19 6 1 4 9 0.750
20 5 7 5 3 0.400

(b) Full results for ALL-CL classifier

Category Fold TP FP FN TN Accuracy

1
1 5 5 0 0 0.500
2 5 3 0 2 0.700
3 4 5 1 0 0.400
4 5 4 0 1 0.600
5 5 5 0 0 0.500
6 5 5 0 0 0.500
7 5 4 0 1 0.600
8 5 5 0 0 0.500
9 4 4 1 1 0.500

10 5 2 0 3 0.800
11 5 3 0 2 0.700
12 5 3 0 2 0.700
13 5 3 0 2 0.700
14 4 5 1 0 0.400
15 4 5 1 0 0.400
16 5 5 0 0 0.500
17 4 4 1 1 0.500
18 3 2 2 3 0.600
19 4 5 1 0 0.400
20 5 5 0 0 0.500

2
1 5 5 0 0 0.500
2 5 3 0 2 0.700
3 5 5 0 0 0.500
4 5 4 0 1 0.600
5 5 4 0 1 0.600
6 4 3 1 2 0.600
7 5 5 0 0 0.500
8 5 4 0 1 0.600
9 5 3 0 2 0.700

10 5 3 0 2 0.700
11 5 3 0 2 0.700
12 4 5 1 0 0.400
13 5 3 0 2 0.700
14 5 3 0 2 0.700
15 5 5 0 0 0.500
16 4 4 1 1 0.500
17 5 2 0 3 0.800
18 2 1 3 4 0.600
19 5 4 0 1 0.600
20 5 5 0 0 0.500

3
1 6 0 4 10 0.800
2 6 4 4 6 0.600
3 6 1 4 9 0.750
4 7 0 3 10 0.850
5 3 3 7 7 0.500
6 8 4 2 6 0.700
7 6 7 4 3 0.450
8 7 3 3 7 0.700
9 7 2 3 8 0.750

10 5 1 5 9 0.700
11 2 1 8 9 0.550
12 10 4 0 6 0.800
13 8 0 2 10 0.900
14 7 6 3 4 0.550
15 10 3 0 7 0.850
16 8 5 2 5 0.650
17 7 0 3 10 0.850
18 1 1 9 9 0.500
19 9 3 1 7 0.800
20 8 8 2 2 0.500
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(a) Full results for UC-IA classifier

Category Fold TP FP FN TN Accuracy

1
1 4 3 1 2 0.600
2 3 2 2 3 0.600
3 5 0 0 5 1.000
4 4 3 1 2 0.600
5 4 2 1 3 0.700
6 3 1 2 4 0.700
7 2 2 3 3 0.500
8 3 0 2 5 0.800
9 4 3 1 2 0.600

10 1 1 4 4 0.500
11 1 0 4 5 0.600
12 5 2 0 3 0.800
13 5 4 0 1 0.600
14 5 5 0 0 0.500
15 5 0 0 5 1.000
16 4 2 1 3 0.700
17 2 2 3 3 0.500
18 3 2 2 3 0.600
19 3 3 2 2 0.500
20 4 2 1 3 0.700

2
1 4 2 1 3 0.700
2 3 1 2 4 0.700
3 4 1 1 4 0.800
4 5 0 0 5 1.000
5 5 0 0 5 1.000
6 2 1 3 4 0.600
7 3 1 2 4 0.700
8 5 5 0 0 0.500
9 3 4 2 1 0.400

10 3 1 2 4 0.700
11 4 2 1 3 0.700
12 3 4 2 1 0.400
13 4 1 1 4 0.800
14 1 2 4 3 0.400
15 5 2 0 3 0.800
16 3 1 2 4 0.700
17 4 4 1 1 0.500
18 1 1 4 4 0.500
19 5 4 0 1 0.600
20 5 2 0 3 0.800

3
1 9 2 1 8 0.850
2 9 0 1 10 0.950
3 6 3 4 7 0.650
4 7 3 3 7 0.700
5 5 1 5 9 0.700
6 5 1 5 9 0.700
7 4 4 6 6 0.500
8 7 4 3 6 0.650
9 8 3 2 7 0.750

10 3 2 7 8 0.550
11 6 2 4 8 0.700
12 8 3 2 7 0.750
13 5 5 5 5 0.500
14 9 4 1 6 0.750
15 8 2 2 8 0.800
16 4 2 6 8 0.600
17 6 2 4 8 0.700
18 2 2 8 8 0.500
19 10 7 0 3 0.650
20 9 7 1 3 0.600

(b) Full results for WS-IA classifier

Category Fold TP FP FN TN Accuracy

1
1 5 3 0 2 0.700
2 4 2 1 3 0.700
3 5 2 0 3 0.800
4 5 4 0 1 0.600
5 5 4 0 1 0.600
6 4 1 1 4 0.800
7 4 3 1 2 0.600
8 4 4 1 1 0.500
9 5 3 0 2 0.700

10 2 2 3 3 0.500
11 3 0 2 5 0.800
12 5 3 0 2 0.700
13 5 4 0 1 0.600
14 5 5 0 0 0.500
15 5 2 0 3 0.800
16 4 2 1 3 0.700
17 3 3 2 2 0.500
18 3 2 2 3 0.600
19 5 5 0 0 0.500
20 5 3 0 2 0.700

2
1 4 1 1 4 0.800
2 4 0 1 5 0.900
3 4 1 1 4 0.800
4 4 0 1 5 0.900
5 5 1 0 4 0.900
6 2 0 3 5 0.700
7 3 2 2 3 0.600
8 5 5 0 0 0.500
9 4 2 1 3 0.700

10 3 1 2 4 0.700
11 4 1 1 4 0.800
12 2 3 3 2 0.400
13 5 2 0 3 0.800
14 3 2 2 3 0.600
15 5 2 0 3 0.800
16 2 0 3 5 0.700
17 4 3 1 2 0.600
18 1 0 4 5 0.600
19 5 4 0 1 0.600
20 5 2 0 3 0.800

3
1 10 2 0 8 0.900
2 9 0 1 10 0.950
3 6 3 4 7 0.650
4 6 1 4 9 0.750
5 7 2 3 8 0.750
6 5 2 5 8 0.650
7 4 2 6 8 0.600
8 5 4 5 6 0.550
9 6 1 4 9 0.750

10 4 1 6 9 0.650
11 6 2 4 8 0.700
12 6 0 4 10 0.800
13 4 1 6 9 0.650
14 7 2 3 8 0.750
15 9 2 1 8 0.850
16 5 5 5 5 0.500
17 6 1 4 9 0.750
18 3 3 7 7 0.500
19 8 3 2 7 0.750
20 8 5 2 5 0.650
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(a) Full results for UC-PA classifier

Category Fold TP FP FN TN Accuracy

1
1 3 0 2 5 0.800
2 3 2 2 3 0.600
3 3 0 2 5 0.800
4 5 3 0 2 0.700
5 3 2 2 3 0.600
6 2 1 3 4 0.600
7 1 1 4 4 0.500
8 2 0 3 5 0.700
9 4 2 1 3 0.700

10 1 0 4 5 0.600
11 1 0 4 5 0.600
12 3 1 2 4 0.700
13 4 2 1 3 0.700
14 3 3 2 2 0.500
15 5 0 0 5 1.000
16 2 1 3 4 0.600
17 2 1 3 4 0.600
18 1 1 4 4 0.500
19 3 3 2 2 0.500
20 4 1 1 4 0.800

2
1 3 1 2 4 0.700
2 3 1 2 4 0.700
3 2 1 3 4 0.600
4 4 0 1 5 0.900
5 3 0 2 5 0.800
6 1 0 4 5 0.600
7 2 1 3 4 0.600
8 3 4 2 1 0.400
9 3 2 2 3 0.600

10 1 2 4 3 0.400
11 4 4 1 1 0.500
12 2 2 3 3 0.500
13 4 0 1 5 0.900
14 3 0 2 5 0.800
15 5 2 0 3 0.800
16 3 2 2 3 0.600
17 3 3 2 2 0.500
18 0 1 5 4 0.400
19 5 3 0 2 0.700
20 5 1 0 4 0.900

3
1 8 1 2 9 0.850
2 7 0 3 10 0.850
3 4 0 6 10 0.700
4 6 3 4 7 0.650
5 5 0 5 10 0.750
6 4 0 6 10 0.700
7 2 0 8 10 0.600
8 6 2 4 8 0.700
9 5 2 5 8 0.650

10 2 0 8 10 0.600
11 2 2 8 8 0.500
12 5 3 5 7 0.600
13 4 0 6 10 0.700
14 4 0 6 10 0.700
15 6 1 4 9 0.750
16 3 2 7 8 0.550
17 3 3 7 7 0.500
18 2 1 8 9 0.550
19 8 1 2 9 0.850
20 8 7 2 3 0.550

(b) Full results for WS-PA classifier

Category Fold TP FP FN TN Accuracy

1
1 4 4 1 1 0.500
2 3 2 2 3 0.600
3 5 0 0 5 1.000
4 4 3 1 2 0.600
5 3 2 2 3 0.600
6 3 1 2 4 0.700
7 3 3 2 2 0.500
8 3 2 2 3 0.600
9 3 2 2 3 0.600

10 1 0 4 5 0.600
11 2 0 3 5 0.700
12 4 2 1 3 0.700
13 5 2 0 3 0.800
14 4 3 1 2 0.600
15 5 1 0 4 0.900
16 2 1 3 4 0.600
17 2 2 3 3 0.500
18 2 0 3 5 0.700
19 4 4 1 1 0.500
20 5 3 0 2 0.700

2
1 4 1 1 4 0.800
2 4 0 1 5 0.900
3 4 1 1 4 0.800
4 5 0 0 5 1.000
5 4 1 1 4 0.800
6 1 0 4 5 0.600
7 3 1 2 4 0.700
8 5 5 0 0 0.500
9 4 2 1 3 0.700

10 3 1 2 4 0.700
11 4 1 1 4 0.800
12 2 1 3 4 0.600
13 5 2 0 3 0.800
14 3 2 2 3 0.600
15 5 2 0 3 0.800
16 2 1 3 4 0.600
17 3 2 2 3 0.600
18 0 0 5 5 0.500
19 5 4 0 1 0.600
20 5 2 0 3 0.800

3
1 8 1 2 9 0.850
2 8 0 2 10 0.900
3 3 2 7 8 0.550
4 6 1 4 9 0.750
5 5 1 5 9 0.700
6 5 0 5 10 0.750
7 3 1 7 9 0.600
8 5 2 5 8 0.650
9 4 1 6 9 0.650

10 4 1 6 9 0.650
11 7 1 3 9 0.800
12 6 0 4 10 0.800
13 4 0 6 10 0.700
14 3 0 7 10 0.650
15 7 1 3 9 0.800
16 4 2 6 8 0.600
17 5 1 5 9 0.700
18 2 1 8 9 0.550
19 6 2 4 8 0.700
20 8 5 2 5 0.650
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