
Imperial College London

Department of Computing

Exploring Optimisations for the Local

Assembly phase of Finite Element

Methods on GPUs

Hector Dearman

June 2015

Supervised by Prof. Paul H. J. Kelly and Fabio Luporini

1

Abstract

Finite Element Methods (FEM) are ubiquitous in science and engineering where they

are used in fields as diverse as structural analysis, ocean modeling and bioengineering.

FEM allow us to find approximate solutions to a system of partial differential equations

over an unstructured mesh. The first phase of solving a FEM problem, local assembly,

involves computing a tensor for every element in the mesh. Local assembly is extremely

data-parallel, each entry in each tensor may be computed independently, making local

assembly an excellent target for General Purpose Graphics Processing Units.

We systematically investigate optimisations to improve the performance of the local as-

sembly phase of FEM on GPUs for a broad range of problems. We look at four classes

of optimisations: effective use of constant memory, tuning the kernel launch parameters,

using multiple threads per element and loop unrolling.

The optimisations are implemented in the Firedrake toolchain, particularly in PyOP2 and

COFFEE, and the performance improvement of each optimisation is measured using three

representative benchmarks. In order to ensure our results are robust we consider each of

these benchmarks in the context of a variety of element shapes and polynomial degrees of

the basis functions. Combining these optimisations, we achieve speed increases of up to 35

times compared to Firedrake’s current performance on some benchmarks and an average

increase of 13 times across all benchmarks. Finally, we measure the absolute performance

of the combined optimisations, showing that we achieve up to 78% of peak FLOPs on some

benchmarks and an average of 57% of peak FLOPs across all benchmarks on an NVIDA

GRID K520.

2

Acknowledgements

I would like to thank Prof. Paul Kelly and Fabio Luporini, who were unfailingly generous

with their time and knowledge and who helped me navigate the deep waters of Finite Ele-

ment Methods, making this project possible. Thanks go also to my family, who supported

me always, to my friends, who survived Imperial with me and to Sam, who did both.

3

Contents

1 Introduction 10

1.1 Objectives . 11

1.2 Contributions . 12

2 Background 14

2.1 Finite Element Method . 14

2.1.1 Local Matrix Approach vs. Addto Algorithm 15

2.1.2 Local Assembly Structure . 15

2.1.3 Meshes . 16

2.1.4 Basis Functions . 16

2.1.5 Jacobian . 16

2.2 Firedrake Toolchain . 17

2.2.1 UFL . 17

2.2.2 FFC . 18

2.2.3 PyOP2 . 18

2.2.4 PETSc . 18

2.3 COFFEE . 18

2.4 GPU Architecture . 18

2.5 GPU Programming Models . 19

2.5.1 CUDA . 19

2.5.2 OpenCL . 21

3 Related Work 23

4 Experimental Methodology 25

4.1 Timing Benchmarks . 25

4.2 Profiling Benchmarks . 26

4.3 Selection and range of benchmarks . 26

4.3.1 Mass . 27

4.3.2 Helmholtz . 27

4.3.3 Elasticity . 27

4.4 Benchmark Parameters . 28

4.4.1 Polynomial Degree of Basis Functions 28

4.4.2 Mesh type . 28

4

4.4.3 Mesh size . 29

4.4.4 Overview . 30

4.5 Correctness . 30

4.6 Hardware . 33

5 Choice of Optimisations 34

6 Investigation 35

6.1 Constant Hoisting . 35

6.1.1 Current Status . 36

6.1.2 Hypothesis . 36

6.1.3 Experiment . 36

6.1.4 Implementation . 36

6.1.5 Discussion . 39

6.2 Parameter Tuning . 42

6.2.1 Current Status . 44

6.2.2 Hypothesis . 45

6.2.3 Experiment . 45

6.2.4 Implementation . 45

6.2.5 Discussion . 46

6.3 Loop Unrolling . 46

6.3.1 Current Status . 48

6.3.2 Hypothesis . 48

6.3.3 Experiment . 48

6.3.4 Discussion . 48

6.4 Multiple Threads per Element . 49

6.4.1 Number of threads per element . 53

6.4.2 Special Case Loop Flattening . 59

6.4.3 Chunked vs. Coalesced . 60

6.4.4 Parameter Tuning and Multiple Threads per Element 63

7 Conclusion 67

7.1 Contributions . 68

7.2 Conclusion . 69

7.3 Future Work . 69

Glossary 72

5

List of Tables

2.1 CUDA vs. OpenCL Keywords [5] . 21

2.2 CUDA vs. OpenCL Terminology [5] . 22

4.1 Benchmarks . 31

4.2 GPU Characteristics . 33

6.1 Memory Utilisation in {mass, quadrilateral, degree 4} on a 10,000 element

mesh . 41

6.2 Benchmarks with small performance drops after constant hoisting 42

6.3 Benchmarks with large performance drops after constant hoisting 42

6.4 Parameter space . 45

6.5 Use of pragma unroll[22] . 48

6.6 Summary of pragma unroll experiment . 49

6.7 Speedups for Special Case Loop Flattening vs. Loop Flattening 61

6.8 Memory Access Efficiency for {mass,triangle,4, o, degree n} a 10,000 element

mesh . 62

7.1 Best combined optimisation for each benchmark 71

6

List of Figures

2.1 A 2D unstructured mesh with triangular elements 14

4.1 Times recored by cuda_kernel timer vs. those recored by parloop_kernel

for every experiment conducted for this report. y = 1.00027221902x +

0.000236040794433 . 26

4.2 Wrieframes of diffrent mesh types . 29

4.3 ‘Golden’ matrix mass-unittriangle-10-1.npy . 32

6.1 Constant hoisting speedup (compared to Firedrake’s current implementa-

tion) for each benchmark . 39

6.2 Constant Hoisting speedup vs. Basis Function Size 40

6.3 Screen shot of CUDAs Occupancy Calculator 44

6.4 The average speedup (compared to the post-Constant Hoisting baseline)

across all benchmarks for each parameter set. 47

6.5 Maximum speedup compared to the post-Constant Hoisting baseline for

each benchmark after a parameter sweep. 47

6.6 Speedup per benchmark for the parameters {blocksize = 128, partition size =
1
2 , blocks per SM = 4} . 47

6.7 Speedup of unrolling no loops, unrolling only ip loop, unrolling ip and k

loops and unrolling all three loops with pragma unroll, compared to post-

Constant Hoisting baseline for each benchmark. 50

6.8 Current strategy for parallelisation . 51

6.9 Chunked strategy for parallelisation . 51

6.10 Coalesced chunked strategy for parallelisation 52

6.11 Allocating five threads to a nine entry tensor under the ‘coalesced’ and

‘chunked’ strategies . 56

6.12 Speedup for each benchmark under the ‘coalesced’ scheme (compared to

post-Constant Hoisting performance) for 1 to 128 threads 58

6.13 Speedup for each benchmark under the ‘chunked’ scheme (compared to

post-Constant Hoisting performance) for 1 to 128 threads 58

6.14 Theoretical speedup for each benchmark for 1 to 128 threads 58

6.15 Illustration of the how the chunked (top) and coalesced (bottom) schemes

access a six entry local matrix with three threads. 62

7

6.16 The speedup for the ‘coalesced gcd10’ scheme compared to the ‘chunked

gcd10’ scheme across all benchmarks. 64

6.17 The speedup for the ‘coalesced gcd10’ scheme compared to the post-constant

hoisting baseline. 64

6.18 The speedup for the ‘chunked gcd10’ scheme compared to the scheme com-

pared to the post-constant hoisting baseline. 64

6.19 The average speedup of the ‘coalesced gcd10’ scheme (compared to the

post-Constant Hoisting baseline) across all benchmarks for each parameter

set . 66

6.20 Maximum speedup of the ‘coalesced gcd10’ scheme compared to the post-

constant hoisting baseline for each benchmark after a parameter sweep . . . 66

6.21 Maximum speedup of the ‘coalesced gcd10’ scheme after a parameter sweep

compared to the best post-constant hoisting baseline after a parameter sweep 66

7.1 Best achieved speedup compared to Firedrake’s current performance for

each benchmark . 67

7.2 FLOPs for best combination of the optimisations for each benchmark . . . 67

8

Listings

2.1 Loop nest structure of a local assembly kernel 15

2.2 Example of UFL . 17

2.3 CUDA Kernel for adding vectors . 19

2.4 OpenCL Kernel for adding vectors . 21

4.1 Mass Benchmark . 27

4.2 Helmholtz Benchmark . 27

4.3 Elasticity Benchmark . 28

6.1 Example of __constant__ qualifier . 35

6.2 Example of __constant__ qualifier with literal data 36

6.3 Mass benchmark kernel . 37

6.4 Mass benchmark kernel after constant hoisting 38

6.5 {mass, quadrilateral, degree 4} assembly snippet 41

6.6 {mass, quadrilateral, degree 4} assembly snippet after Constant Hoisting . . 41

6.7 Example of launch bounds in CUDA C . 44

6.8 Loop nest structure of a local assembly kernel 49

6.9 Example loop nest . 53

6.10 Collapsed loop nest . 53

6.11 Chunked Strategy Example . 53

6.12 Coalesced Stratagy Example . 53

6.13 Critical Section of kernel wrapper for benchmark {mass, quadrilateral, degree 4} 54

6.14 Kernel Wrapper Chunked Stratagy . 55

6.15 Kernel Wrapper Coalesced Stratagy . 55

6.16 With redundant loop . 59

6.17 Without redundant loop . 59

6.18 Flattened Loop Formulation . 59

6.19 Natural Loop Formulation . 59

9

1 Introduction

Finite Element Methods (FEM) is a numerical method for finding approximate solutions

to partial differential equations. It is used for modeling physical systems including solid

structures, fluid mechanics, electromagnetic fields and many others [6]. These applica-

tions make FEM ubiquitous in science and engineering and one of the key applications

of high performance computing. In FEM the (normally 2D or 3D) domain is broken up

into a ‘mesh’ of many, possibly non-uniform, elements, hence the name “Finite Element

Methods”.

There are three stages in solving a partial differential equation with FEM. First, we com-

pute the result of a ‘kernel’ for each element of the mesh, next we assemble these local

solutions into a system of global equations and finally we solve this system. These stages

are respectively named ‘local assembly’, ‘global assembly’ and ‘solution’.

Local assembly is often the most time consuming stage of FEM. The exact structure of the

local assembly ‘kernel’ is highly dependent on the problem and the mesh, but does have

a characteristic form: a deep loop nest in which each loop has a low trip count and the

innermost loop contains a complex expression. Local assembly is extremely data-parallel,

typically each element and each iteration of the loop nest can be computed independently.

Historically programs have been hand-written in a low-level language in order to apply

FEM to a specific problem. Although this allowed local assembly to be hand optimised

for the specific problem, in general it was an unfortunate and expensive duplication of

effort. The problem is especially severe since previous research[20] has shown that the best

optimisation strategy is highly dependant on the target architecture and the parameters of

the problem - optimisations were not portable between problems or between architectures

and changing either of these things required a rewrite or at least creating and maintaining

distinct backends. This has led to the creation of frameworks which accept a high level

description of the partial differential equations for a specific problem along with a mesh,

and which then produce optimised code for that problem on a target architecture. Since

optimisations have a direct scientific payoff (faster simulation means the simulation can be

made larger and more accurate), designing a composable set of optimisations that can be

applied to specific FEM problems and architectures within these frameworks is an active

area of research.

There is ongoing work to exploit the parallelism of local assembly on CPUs within these

frameworks using COFFEE1 [17, 18]. COFFEE is a compiler that manipulates local

1COmpiler For Fast Expression Evaluation

10

assembly kernel Abstract Syntax Trees (ASTs) to systematically apply various optimisa-

tions. These optimisations take advantage of the specific structure of the kernel to increase

instruction-level parallelism and register locality.

Graphical Processing Units (GPUs) have an order of magnitude more scope to take advan-

tage of data parallelism since they can execute thousands of operations at once whereas

even multicore CPUs using vector operations can only execute tens of operations at once

(albeit at lower latency). GPUs’ novel architecture also offers new avenues for optimi-

sation, for example by exploiting their fine-grained memory hierarchy. Local assembly’s

highly parallel nature makes it an excellent candidate for running on a GPU.

Previous work[2, 3, 8, 19] has investigated using GPUs to accelerate local assembly for

FEM with good results. However this has generally been restricted to only a few specific

problems. To our knowledge no codes exists that will produce optimised local assembly

kernels targeting GPUs for a broad range of unseen problems.

The opportunity is clear: FEM is a critical application of HPC, ubiquitous in science and

engineering, and local assembly is one of its most time consuming phases. Improving local

assembly for a specific problem would let us improve the accuracy of that simulation but

improving local assembly in Firedrake allows everybody2 to get the benefit immediately

for free. As for GPUs they are, theoretically, the perfect architecture for FEM but the

difficulty involved in programing GPUs has meant that their adoption for FEM has been

sporadic even among tools such as Firedrake where this cost would only have to be paid

once. If we can demonstrate that the potential benefits of using GPUs for local assembly

are as large as we imagine we can begin to justify the cost of solving the remaining problems

which stand in the way of performing FEM entirely on the GPU.

1.1 Objectives

The aim of this project is to investigate optimisations to improve the performance of

local assembly in Firedrake on GPUs. We use CUDA as our tool chain of choice and

evaluate the performance of our optimisations on a wide range of benchmarks to ensure

our optimisations will generalise well to unseen FEM kernels. We measure the performance

of our optimisations on a NVIDA GRID K520.

We systematically investigate four optimisations: using constant memory to store basis

functions, tuning the parameters of a kernel launch, using multiple threads per element

and loop unrolling. The choice of optimisations is justified in chapter 5. Our investigation

is described fully in chapter 6. Chapter 2 briefly describes FEM, the Firedrake tool chain

and the GPU programming model. The methodology we use to evaluate the optimisa-

tions is described in detail in chapter 4. Finally, in chapter 7 we evaluate some of these

optimisations and the success of this project.

2Or at least those who are Firedrake users.

11

1.2 Contributions

This thesis systematically investigates optimisations to improve the performance of local

assembly in FEM for GPUs. We do this in the context of a code generation scheme for

FEM in which, having implemented these optimisations once, they can be applied to a

huge number of FEM problems. To our knowledge such an investigation has not been

previously attempted.

The main contributions of this thesis are as follows:

• We show that storing the basis functions in local memory is catastrophic to the

performance of problems with > 1st degree basis functions, and that using constant

hoisting to move the basis functions into constant memory can produce speedups of

up to eighteen times. We produce patches allowing this optimisation to be immedi-

ately incorporated into Firedrake and PyOP2.

• We investigate parameter tuning to improve the occupancy of the generated CUDA

kernels. We find that PyOP2’s current strategy for choosing the three critical pa-

rameters which effect occupancy: registers per thread, blocksize and elements per

block is not optimal for any of the benchmarks studied. We show that better choice

of these parameters can result in a threefold performance improvement in some cases

and that while the best results (1.93 times average speedup) are only achieved by

tuning the parameters individually for each problem we can choose a single set of

parameters to achieve an average speedup of 1.80 times and improve the performance

of all but one benchmark.

• We examine the effect of forbidding and encouraging loop unrolling using pragma

↪→ unroll. We discover that while loop unrolling is critical to the performance of

kernels with low arithmetic intensity only in a minority of cases where the loop trip

counts are large enough that CUDA is reluctant to unroll them by default does

encouraging CUDA to unroll them improve performance and this improvement in

of the order of 10 to 30%. We also show that CUDA frequently ignores the pragma

especially for nested loops with large trip counts.

• We present a novel technique for allowing any number of threads up to one a limit

of one per local matrix entry to corporate on assembling an element. The technique

flattens the j and k loops and assigns sections of the flattened loop to each thread.

We show that for this technique to be effective the number of threads per element

must be a must be a divisor of the tensor size and close to a divisor of the block size

and we show the necessity of coalesced memory accesses in this scheme. We show

that combining this approach with parameter tuning improves the performance of

low order and low arithmetic intensity kernels.

• Finally we consider the optimisations together and show average improvements of

13 times rising to 35 times for some benchmarks. We also show we can achieve an

average 57% of peak FLOPs on the NVIDA GRID K520.

12

• Each of the above results is validated through testing with three separate problems

of greatly varying complexity, three element types including 2D and 3D elements,

polynomial basis functions of degree 1-4 and the combinations thereof. This provides

evidence that these results will generalize to yet unseen FEM problems: one of the

key benefits of Firedrake.

13

2 Background

This chapter will give a brief overview of Finite Element Methods

2.1 Finite Element Method

A Partial Differential Equation has the form:

L(u) = f (2.1)

To apply FEM we first derive a weak form of the equation by multiplying by a test function

v and integrating over the domain.

∫
Ω
L(u)v dX =

∫
Ω
fv dX (2.2)

Intuitively a solution to the weak form is an approximate solution to the strong form.

Next we discretise u in terms of a finite number of basis functions. The choice of basis

functions affects the accuracy of the solution.

The domain is divided into an unstructured mesh of elements. Normally each element has

the same number of vertexes.

Figure 2.1: A 2D unstructured mesh with triangular elements

Solving the weak form involves three stages: local assembly, global assembly and solution.

In local assembly we compute a matrix Mi and a vector bi for each element i in the

domain. Mi has dimensions Ne × Ne and bi has length Ne where Ne is the number of

vertices in each element. This computation involves using Gaussian quadrature to evaluate

integrals at each element.

Next we assemble these local matrices and vectors into a sparse global matrix M and

vector v. This is global assembly which combines the contributions from each element.

Finally we solve Mx = v for x which gives us the solution.

14

2.1.1 Local Matrix Approach vs. Addto Algorithm

Local assembly is an integration over quadrature points for each entry in the local matrix

and global assembly computes each non-zero entry by summing contributions from a subset

of the local matrix entries. This suggests an alternative strategy: rather than performing

assembly in these two phases we could perform the integration over quadrature points and

add these contributions directly into the correct place in the global matrix.

This strategy, which is known as the addto algorithm is the more traditional approach and

[20] shows that it is the optimal approach on multi-core architectures like modern CPUs.

However, [20] also shows that that the Local Matrix Approach (LMA) - the approach we

originally described, which explicitly constructs the local matrices - is optimal in the case

of many-core architectures like modern GPUs. The downside of the Addto algorithm,

particularly on GPUs where we must expose a large amount of parallelism to achieve good

performance, is twofold: firstly, concurrent updates to the same entries in the global matrix

can cause data races, necessitating expensive atomic operations or using coloring to avoid

assembling conflicting elements at the same time. Secondly, the global matrix is large and

sparse, so is normally stored in a compressed sparse row (CSR) format. Under this format

accessing an entry requires searching the sparsity structure of the matrix, causing control

flow divergence and uncoalesced accesses (see section 2.5). These problems make LMA

preferable to the Addto algorithm on GPUs despite duplicating computation.

Finally, we note that while the Addto algorithm explicitly constructs the global matrix,

the Local Matrix Approach could avoid this entirely and instead proceed directly to the

solving phase, a ‘matrix-free’ approach.

As described in [24], PyOP2 uses the LMA on GPUs and the Addto algorithm on CPUs.

The distinction between these approaches will be relevant in chapter 3 where we describe

prior work on optimising local assembly on GPUs.

2.1.2 Local Assembly Structure

As mentioned above local assembly involves computing a local assembly kernel for each

element in the mesh. Local assembly kernels normally contain a three loop nest, two loops

over the local basis functions and an inner loop over the quadrature points. Listing 2.1

shows the structure:

Listing 2.1: Loop nest structure of a local assembly kernel

1 for (element in elements) {

2 // Jacobian

3 for (int j=0; j<J; j++) {

4 for (int k=0; k<K; k++) {

5 for (int ip=0; ip<IP; ip++) {

6 // Code

7 A[j][k] += ...;

15

8 }

9 }

10 }

11 }

2.1.3 Meshes

As described above we must discretise the space in which we are interested into a fi-

nite number of elements. Together these elements are known as the ‘mesh’. The space

(and hence the elements) may be one-, two-, three- or higher-dimensional. Typically

one-dimensional meshes are only used for didactic purposes, the vast majority of prac-

tical applications use two or three dimensional meshes. Higher-dimensional meshes are

possible but more unusual. Normally every element in a mesh has the same number of

vertices, although FEM does not require this. Typical shapes for elements are triangles

or quadrilaterals in 2D meshes and tetrahedra or cuboids in 3D meshes.

Meshes may be ‘Structured’, ‘Unstructured’ or ‘Semi-Structured’. In structured meshes

we can compute the array indices of mesh elements directly - we can access this data with

only a single array access A[i]. Unstructured meshes require a level of indirection - A[B[i]].

Semi-structured (also known as extruded) meshes have an unstructured base mesh, which

requires an indirect access, but each element of the base mesh is also associated with a

column of other elements which, after this initial indirect access can be accessed directly.

One of the key advantages of FEM is that it can be used with fully unstructured meshes.

This thesis investigates only unstructured meshes.

2.1.4 Basis Functions

The choice of basis functions has a large impact on the solution and the computation.

Piecewise linear basis functions and Lagrange polynomial basis functions are common

choices although more exotic basis functions are possible.

2.1.5 Jacobian

Rather than recompute the basis functions for each element it is more convenient to map

each element onto a standard reference element. In practice to achieve this we compute

the determinant of the Jacobian matrix for each element, the Jacobian determinant is

a scaling factor that relates the differential area of the element to that of the reference

element.

Finite Element Methods are a large topic and this overview has been extremely brief,

concentrating on the part which is important for our purposes: local assembly. For a

complete treatment see [10].

16

Listing 2.2: Example of UFL

1 from firedrake import *
2
3 degree = 1
4
5 mesh = UnitCubeMesh (20, 20, 20)
6 V = FunctionSpace(mesh , "CG", degree)
7
8 # Define variational problem
9 u = TrialFunction(V)

10 v = TestFunction(V)
11 f = Function(V)
12
13 a = f * u * v * dx
14
15 A = assemble(a)
16 A.M

2.2 Firedrake Toolchain

Firedrake[23] is a new tool for automatically finding numerical solutions to partial dif-

ferential equations using FEM. A user specifies the weak form of the PDE, selects the

appropriate basis functions and defines the mesh at a high level using Unified Form Lan-

guage (UFL) (see section 2.2.1). Firedrake then lowers this description by generating

appropriate kernels using a modified version of FFC (see section 2.2.2). These kernels

are passed to PyOP2 (see section 2.2.3), which executes them in parallel over the mesh

to generate the global matrix and vector. Finally PETSc is used to solve this system of

linear equations.

Firedrake performs each of these steps at runtime. A user can execute the high level UFL

code directly and Firedrake will lazily generate and execute optimised code for solving the

PDE, targeting to the current platform.

2.2.1 UFL

Unified Form Language (UFL) [1] is a Domain Specific Language (DSL) used for expressing

variational formulations of partial differential equations. It allows a user to specify the

solution to a PDE at a very high level in a pseudo-mathematical form. The power of

UFL is that it does not commit to any specific implementation of the solution: the same

abstract UFL problem specification can be lowered into a concrete form by many different

form compilers. This has many advantages, it reduces the cost of solving new PDEs, it

means that solutions are portable between any platform that uses UFL and it provides

a separation of concerns - those who need to solve new PDEs do not necessarily have to

know or worry about maintaining and improving a form compiler and vice versa.

17

2.2.2 FFC

Firedrake uses a modified version of FFC which was originally built as part of the FEniCS

project. FFC takes the high level UFL description and produces C code which implements

the numerical kernels. FFC itself calls FIAT to generate the arrays of data used in the

kernel.

2.2.3 PyOP2

PyOP2[21, 24] is a performance-portable framework for applying numerical kernels in

parallel to each element of an unstructured mesh. PyOP2 can target multiple backends

including OpenMP, OpenCL on CPU, OpenCL on GPU and CUDA. When PyOP2 comes

to run a kernel it passes the AST though COFFEE (see section 2.3), which generates

optimised code for execution.

2.2.4 PETSc

Firedrake uses PETSc in the ‘solution’ phase to solve the system of linear equations.

2.3 COFFEE

COFFEE [17, 18] is a domain-specific compiler for optimising local assembly kernels.

COFFEE accepts ASTs and generates C code including vector intrinsics. COFFEE ap-

plies optimisations including loop invariant code motion, padding, data alignment, loop

interchange, loop unrolling and expression splitting in a systematic way to maximise regis-

ter locality, instruction-level parallelism and SIMD vectorisation. Although some of these

optimisations are preformed by vendor and research compilers, these compilers fail to

achieve comparable results to COFFEE because they do not take full of advantage of the

structure of local assembly kernels.

2.4 GPU Architecture

GPU architectures are typically ‘many-core’ in that they consist of a large number of

very simple processing units, each of which has relatively few registers and a small cache.

GPUs normally have a high-bandwidth connection to multiple banks of memory. To

achieve good performance they rely on being able to hide the latency of accessing this

memory by executing many instructions in parallel. The GPU device operates under the

control of a host Central Processing Unit (CPU). The host can transfer data to and from

the GPU and can also start computations.

18

2.5 GPU Programming Models

This section describes the two dominant GPU programing models, CUDA and OpenCL.

Our investigation deals exclusively with CUDA so the description of OpenCL is necessarily

brief and only relates the OpenCL concepts to their equivalent concepts in CUDA.

2.5.1 CUDA

CUDA code is compiled with nvcc, a proprietary compiler developed by NVidia. CUDA

code broadly has C syntax and semantics extended with extra keywords to identify GPU

functionality. For example, prefixing a function declaration with __global__ marks it as a

‘kernel’ function. In GPU programming a ‘kernel’ is a function that is called from the

host (the CPU) but executed on the device (the GPU). Similarly __device__ marks the

function as callable and executable only on the device and __host__ marks it as callable

and executable only on the host.

GPU programing typically follows a Single Instruction Multiple Threads (SIMT) model1,

this is halfway between Simultaneous Multithreading (SMT) which allows the simultaneous

execution of many completely separate instruction streams and Single Instruction Multiple

Data (SIMD) which has a single rigid instruction stream but each instruction can operate

on a short vector of operands. In SIMT you write a function that operates on scalar values,

as in listing 2.3, but when it comes to run this function on the GPU, thousands of threads

run the code in parallel. Each thread gets a unique identifier which can be accessed by

a variable (in CUDA the (threadIdx, blockIdx) pair is unique). These identifiers are used

to modify the behavior of each thread - in listing 2.3 the variables are used to calculate a

unique index into the arrays for each thread.

Listing 2.3: CUDA Kernel for adding vectors

1 __global__ void add(float *A, float *B, float *C) {

2 int i = threadIdx.x + blockIdx.x * blockDim.x;

3 C[i] = A[i] + B[i];

4 }

The CUDA terminology for running a function on the GPU this way is to “launch a kernel”.

In CUDA, threads are arranged into ‘blocks’ and ‘blocks’ are arranged into ‘grids’. A kernel

is associated with a single grid, each grid may contain many billions of blocks (although

only a few will execute on the GPU at the same time2). Each block groups a maximum

of 1024 threads together. Both grids and blocks may be 1-, 2- or 3-dimensional. Each

block of threads shares some fast memory referred to as “shared memory” and threads

within a block can synchronise by calling __syncthreads() this allows threads within a block

1The term was coined in NVidia documentation but also applies to OpenCl.
2The maximum number of simultaneously resident blocks is a small multiple of the number of Streaming

Multiprocessorss (SMs) - on recent architectures the multiple is 32.

19

to cooperate. It is not possible to synchronise threads from different blocks. Higher level

synchronisation can only be achieved by waiting for kernels to complete their execution.

If any thread in a block reaches a __syncthreads() statement then every thread in the block

much reach that statement, code that does satisfy this property is ‘barrier divergent’. The

behavior of barrier divergent code is undefined. Within each block, threads are grouped

into ‘warps’ of 32 threads3. A warp is guaranteed to execute in lock step.

Launching a kernel has a special syntax, we can launch the add kernel like so add<<<gridDim,blockDim>>>(A,

↪→ B, C). The arrangement of threads is specified by the gridDim and blockDim variables.

Unsurprisingly gridDim determines the dimensions of the grid and blockDim determines the

dimensions of the blocks, if gx× gy × gz is the grid dimension and bx× by × bz is the block

dimension then the total number of blocks is gxgygz, the number of threads in each block

is bxbybz and the total number of threads is their product.

The memory hierarchy described in 2.4 is explicitly managed: you must choose where

each variable is stored by prefixing its declaration with a keyword, for example __local__

to cause that variable to be stored in local memory. This affects access latency but also

visibility to other threads. There is only one instance of any memory declared global which

every thread can access. Local memory is per-thread and private to that thread, while

shared memory is, as mentioned, per-block. This is in contrast to memory management

in most CPUs, when you can explicitly choose to move data between registers and main

memory but exert only very indirect control over the L1, L2 and L3 caches, for example

by issuing cache flush instructions or by using prefetch hints.

When a warp accesses global memory the GPU attempts to ‘coalesce’ these accesses into

fewer transactions. For example, a 32bit load at address 128 and a 32bit load at address

160 might be coalesced into a single 64bit load from address 128. This is transparent to the

application except insofar as un-coaleased accesses suffer significant performance penalties.

Exactly which memory access patterns can be coalesced depends on the architecture but

in general the loads must be aligned and sequential.

When a warp encounters a branch and some threads take the branch but others do not

we have ‘warp divergence’ also known as branch divergence or control flow divergence.

Warp divergence hurts performance because warps execute in lock step, if any thread in a

warp takes a branch then the whole warp has to execute each instruction in that branch

with any threads which would not have taken the branch disabled. For the purposes of

intuition we can imagine warps being implemented as 32 lane SIMD instructions where

each lane can be separately predicated.

The most import consideration to achieve good performance on a GPU is to have enough

fine-grained parallelism [20, 22] to take advantage of the GPU’s highly parallel nature.

However, the following issues can also have a large impact on the performance of GPU

code:

3According to [22] “The term warp originates from weaving, the first parallel thread technology.”

20

• Minimise branch divergence within a warp.

• Access global memory in a way that allows coalescing.

• Maximise utilisation by maximising block occupancy and/or by providing sufficient

instruction-level parallelism.

• Minimise host-device data transfer.

2.5.2 OpenCL

Our investigation deals with CUDA exclusively so we will not go into so much detail about

OpenCL’s programing model. Suffice to say, it is broadly similar to CUDA’s. In simple

cases such as listing 2.4 the syntax is essentially identical to CUDA except for substitutions

of the various keyword in table 2.1. We will use CUDA terminology throughout this report

but translations can be found in table 2.2.

The most important difference between CUDA and OpenCL is that while OpenCL is an

open standard which principally targets GPUs (but also CPUs and more exotic architec-

tures), CUDA is a proprietary invention of NVIDA which only targets NVIDA GPUs.

Although OpenCL targets many more platforms, CUDA’s documentation and tooling is

more mature. Since our aim was largely investigative and duplicating every experiment

for two programming models was of limited benefit but took significant extra work, we

conducted our exploration with CUDA exclusively. Due to the close nature of the OpenCL

CUDA programing models we expect the results of this investigation to be broadly appli-

cable in the context of OpenCL.

Listing 2.4: OpenCL Kernel for adding vectors

1 __kernel void add(__global float *A,

2 __global float *B,

3 __global float *C) {

4 int tid = get_global_id (0);

5 C[id] = A[id] + B[id];

6 }

CUDA OpenCL

__global__ __kernel

__constant__ __constant

__device__ __global

__shared__ __local

__device__ (function) No annotation necessary

Table 2.1: CUDA vs. OpenCL Keywords [5]

21

CUDA OpenCL

Threads Work-item
Thread block Work-group
Global memory Global memory
Constant memory Constant memory
Shared memory Local memory
Local memory Private memory

Table 2.2: CUDA vs. OpenCL Terminology [5]

22

3 Related Work

Previous work has demonstrated significant speedups for FEM in general and for Finite

Element assembly in particular on GPUs. However, this has almost exclusively been in the

context of hand-tuning a specific implementation in order to achieve good performance.

A representative example is work by Przemys law P laszewski, Krzysztof Banas and Pawe l

Macio l [19] which compares CUDA, OpenCL and a single core CPU implementation of

a specific “2D linear elastostatics problem” with curved quadrilateral elements. Their

implementation assigns each element to a block and one or more tensor entries to each

thread and uses the Addto algorithm. It achieves significant speedups.

Similarly, [7] Dziekonski et al present an optimised implementation of local assembly using

CUDA for a specific FEM problem in computational electrodynamics. They consider

curvilinear tetrahedral elements and vector basis functions up to polynomial order three,

again assigning each element to a thread block.

As a final example, Komatitsch, Göddeke, Erlebacher and Michéa ([13], [12]) implement a

high-order finite-element application for earthquake modelling on a cluster of GPUs using

CUDA and MPU. They achieve speedups of up to 25 times, but again the problem is very

specific and few lessons can be drawn about optimising finite element assembly on GPUs

in general. Their application uses the Addto algorithm combined with element coloring to

parallelise the computation, assigning a block to each element and a thread to each local

matrix entry.

Work by Markall et al begun in [19] and extended in [21] show that the optimal strategy

for assembly differs between multi-core and many-core architectures and specifically that

LMA is a better strategy on GPUs as discussed in subsection 2.1.1. This work helps

motivate a code generation approach to FEM. However, it is mostly concerned with the

boundary between local and global assembly rather than how to optimise local assembly

itself (although clearly the decision of LMA vs. Addto will have a large impact on which

optimisations are effective).

The FEniCS project ([15, 16]) showed that a code generation approach to FEM has signifi-

cant benefits and implemented some automated optimisations for Finite Element assembly

but exclusively in the context of CPUs.

The Firedrake project ([21, 23, 24]), upon which this investigation is based also takes a code

generation approach, but among other features extends support to GPUs via CUDA and

OpenCL. In this context the LMA vs. Addto choice has been explored, favouring LMA on

23

GPUs, but no investigation into the optimal strategy for performing local assembly itself

on GPUs has been made.

As part of Firedrake COFFEE [17, 18], an optimising compiler specifically for local assem-

bly has been used to investigate a number of interesting optimisations including generalised

loop invariant code motion, padding, data alignment, loop interchange, loop unrolling and

expression splitting for local assembly on CPUs. This has improved the performance of

Firedrake’s CPU backend to the point where it outperforms the GPU backend.

Papers [3] and [4] by Cecka, Adrian and Eric come the closest to examining the problem

of optimising local assembly in general on GPUs. They consider various strategies for

assigning threads to an element: namely one thread per element, one thread per non-zero

entry in the global matrix and one thread per row of the global matrix. They also consider

various different methods for assembling the global matrix, for example assembling directly

in global memory (the Addto algorithm) or computing each non-zero in local memory first

then writing contributions out to the global matrix. The strategies were investigated for a

single problem but for a variety of different polynomial degrees of the basis functions. They

conclude that the best strategy for low-order elements is to assign one thread per non-zero

entry per entry in the global matrix but for higher-order elements, it is better to perform

assembly using one thread per element. This investigation was somewhat predicated on

the necessity of explicitly producing the global matrix. Since later research showed LMA

to be a better strategy in general we do not investigate these different strategies.

The existing work on optimising Finite element assembly on GPUs has shown that good

speedups are possible for hand-tuned compared to optimised CPU implementations [7,

12, 13, 19] (it remains to be seen if this will continue to be the case in light of [17,

18]). It has also been shown that code generation techniques for FEM are powerful and

competitive [15, 16, 21, 23, 24] on CPU as well as GPU. However, research into which

optimisation strategies are useful in general for local assembly on GPUs is limited and

what exists ([3, 4]) examines optimisations under a strategy for assembly which was later

shown ([21]) to be suboptimal for GPUs. This work aims to begin addressing this gap by

taking a systematic approach to investigating some of the optimisations applied by hand

in the past.

24

4 Experimental Methodology

We now describe the methodology we used to evaluate the performance of changes to

the Firedrake toolchain. A key benefit of Firedrake’s approach is that it allows a huge

variety of problems to be stated in a high level language. It is obviously impractical to test

our optimisations on all of these problems, especially since there are (presumably) many

important problems yet to be written, instead we follow the approach of [17], evaluating our

optimisations on a range of representative benchmarks. These benchmarks are motivated

below in section 4.3.

4.1 Timing Benchmarks

PyOP2 already includes robust instrumentation for measuring the runtime of various

stages of the computation, specifically PyOP2 implements various timers which can be

inspected after a run to see how long various sections of the code took to run. Two of these

timers, cuda_kernel and parloop_kernel, are useful to us. cuda_kernel records how long the

local assembly CUDA kernel takes to execute as measured by PyCUDA while parloop_kernel

measures the time between the local assembly call being dispatched to the correct backend

in PyOP2 and the result being returned, in the case of the CUDA backend this is effectively

a thin wrapper which calls the CUDA kernel. Figure 4.1 shows that the times measured by

the cuda_kernel and parloop_kernel are essentially identical with parloop_kernel being a tiny

bit slower due to the Python wrapper overhead. We could use either timer for timing local

assembly, in our experiments we use cuda_kernel since it does not carry this tiny overhead.

In order to get accurate timings we set two PyOP2 flags, setting PYOP2_LAZY=0 forces evalu-

ation of parallel loops to happen immediately rather than when the results are requested

and PYOP2_PROFILING=1 causes GPU kernels to be launched synchronously. In every case we

run benchmark multiple times (normally 11) and discard the first result to avoid ‘cold-

cache’ effects, for example the first time the PyCUDA executes the CUDA kernel it must

compile the code and this effects the parloop_kernel timer. It is reasonable to discard the

first result since in practice users run a small number of kernels repeatedly on a large

amount of data rather than the other way around.

25

Figure 4.1: Times recored by cuda_kernel timer vs. those recored by parloop_kernel

for every experiment conducted for this report. y = 1.00027221902x +
0.000236040794433

4.2 Profiling Benchmarks

We used two tools from the CUDA SDK, nvvp and nvprof to profile the benchmarks. Ad-

ditionally we built a Python test harness to make it easy to conduct the necessary exper-

iments

nvprof is a command line tool that can record various events and metrics of a CUDA

application. It is invoked as follows: nvprof [options] [application] [application arguments].

Based on the options nvprof invokes the application with the application arguments (pos-

sibly multiple times), collecting statistics on it. We used nvprof is measure the number of

double precision floating point operations carried out by the kernel in order to compute

the FLOPs counts reported in chapter 7.

nvvp is effectively a visual frontend to nvprof which can either read log files produced by

nvprof or invoke a CUDA application directly itself.

4.3 Selection and range of benchmarks

We chose three benchmarks to test our optimisations: ‘mass’, ‘helmholtz’ and ‘elasticity’.

These benchmarks are a representative sample of the equations used in real applications.

26

4.3.1 Mass

mass is the simplest possible benchmark. It performs the least amount of computation per

element and represents a form of ‘stress-test’ for the optimisations, since the best strategies

for local assembly when only a tiny amount of computation per element is done will differ

considerably to that when there is a large amount of work per element.

Listing 4.1: Mass Benchmark

1 from firedrake import *

2

3 def mass(mesh , degree =1):

4 V = FunctionSpace(mesh , "CG", degree)

5

6 u = TrialFunction(V)

7 v = TestFunction(V)

8 f = Function(V)

9

10 a = f * u * v * dx

11

12 A = assemble(a)

13 return A.M

4.3.2 Helmholtz

Helmholtz is a real-life kernel and a differential operator that is extensively encountered

in scientific computing. The Helmholtz kernel can be used for imposing pressure in a

compressible fluid and because of this it is frequently used in climate and ocean modeling.

Listing 4.2: Helmholtz Benchmark

1 from firedrake import *

2

3 def helmholtz(mesh , degree =1):

4 V = FunctionSpace(mesh , "CG", degree)

5 lmbda = 1

6 u = TrialFunction(V)

7 v = TestFunction(V)

8 a = (dot(grad(v), grad(u)) + lmbda * v * u) * dx

9 A = assemble(a)

10 return A.M

4.3.3 Elasticity

Elasticity is another real life kernel which represents the other end of the complexity

spectrum to mass, performing a significant amount of computation per element.

27

Listing 4.3: Elasticity Benchmark

1 from firedrake import *

2

3 def elasticity(mesh , degree =1):

4 V = VectorFunctionSpace(mesh , ’CG’, degree)

5 u = TrialFunction(V)

6 v = TestFunction(V)

7 eps = lambda v: grad(v) + transpose(grad(v))

8 it = inner(eps(v), eps(u))*dx

9 A = assemble(it)

10 return A.M

4.4 Benchmark Parameters

As well as the problem itself, a number of parameters have a large effect on the kernel which

we will detail below. Throughout the remainder of this report the notation {p, e, degree d}
refers to the benchmark consisting of problem p with element type e and polynomial degree

d.

4.4.1 Polynomial Degree of Basis Functions

The polynomial order of the basis functions can be varied independently of the problem.

In practical terms increasing the polynomial order increases the size of the basis functions,

the size of the local tensor and hence the trip count of the i, j and ip loops. Sensible

values for the polynomial order range from 1 to 8 or so, however Firedrake currently only

supports low-order finite element methods of range 1 to 4. These will be the focus of our

investigation. This is by no means a restriction, low order methods are extremely common

and are used frequently in practice.

4.4.2 Mesh type

The shape of the mesh elements greatly effects the kernel, it obviously determines the

number and size of the vertex coordinates which must be loaded from memory, but it also

partly determines the size of the local tensor (and hence the trip count of the i and j loops)

and the size of the basis functions, all of which has a profound effect on the performance

characteristics of a kernel. Given this, it is important for us to consider a variety of element

shapes, but even independently of this both two-dimensional and three-dimensional FEM

techniques are important and we want to ensure our optimisations are effective for both.

As mentioned in section 2.1.3 the elements of a FEM mesh can take a variety of shapes

but in practice elements are normally either triangles, in a two-dimensional mesh, or tetra-

hedra, in a three-dimensional mesh. In addition to these shapes we also consider meshes

28

with quadrilateral elements as these represent an intermediate step between triangles and

tetrahedra, the quadrilateral meshes still have two dimensional vertex coordinates but

they require more coordinates than triangle meshes and have larger local tensors than

triangle meshes. Figure 4.2 shows the three types of mesh we consider.

Figure 4.2: From left to right, a section of a ‘triangle’ mesh produced with, a section of a
‘quadrilateral’ mesh and a single tetrahedron element.

4.4.3 Mesh size

We would normally expect mesh size not to affect the performance of local assembly in

the sense that runtime ought to increase linearly with the number of elements. In general

we are interested in meshes which are as large as possible, however, the maximum mesh

size we can fit in a given amount varies wildly with with the benchmark, mesh type and

the polynomial degree of the basis function (since we must also store the local tensors).

We test with the largest mesh size that will fit in memory for each benchmark. the GRID

K520 GPU has 4GB of global memory which translates to a meshsize between 10, 000 and

100, 000 depending on the benchmark.

We construct the meshes using helper methods from Firedrake located in firedrake.utility_meshes.

What we refer to as the ‘triangle’ mesh is constructed with the UnitSquareMesh function (the

mesh fills a unit square area but the elements are triangular), the ‘square’ mesh is again

constructed with the UnitSquareMesh function but with the quadrilateral keyword argument

set to True so that the mesh uses quadrilateral elements. The ‘tetrahedron’ mesh is con-

structed with the UnitTetrahedronMesh function.

UnitSquareMesh takes arguments nx and ny which specify the elements per side of the square.

We choose values of nx and ny such that the total number of elements are equal to the

desired mesh size and nx is as equal as possible to ny and the mesh is as square as possible.

Similarly UnitTetrahedronMesh takes arguments nx, ny, nz and we hand pick values for nx, ny,

nz which produce meshes with the number of elements we desire.

29

4.4.4 Overview

The combination of these parameters results in 36 separate benchmarks detailed in ta-

ble 4.1. Two of these {elasticity, tetrahedron, degree 4} and {helmholtz, tetrahedron,degree 4}
produce kernels too large to be compiled by nvvc so we do not benchmark them. The

parameters have a profound effect on the kernels being executed, for example the ba-

sis functions of the {mass, triangle, degree 1} benchmark (9 doubles) can fit the registers

of a modern CPU whereas the basis functions of the {elasticity, tetrahdron,degree 4}
benchmark (22680 doubles) can not fit in the L1 data cache, similarly the local tensor in

the {mass, triangle, degree 1} benchmark is nine elements whereas the local tensor of the

{elasticity, tetrahdron,degree 4} has 11,025 elements.

4.5 Correctness

It is easy to accidentally change the semantics of code when trying to optimise it. To

avoid this we computed ‘golden’ expected values of the LMA matrix without our optimi-

sations for each benchmark tuple and then as we developed the optimisations we constantly

checked that the modified code still produced the correct results for each benchmark tuple.

Figure 4.3 shows one such ‘golden’ matrix.

30

Benchmark Mesh Type Degree

mass triangle 1
mass triangle 2
mass triangle 3
mass triangle 4
mass quadrilateral 1
mass quadrilateral 2
mass quadrilateral 3
mass quadrilateral 4
mass tetrahedron 1
mass tetrahedron 2
mass tetrahedron 3
mass tetrahedron 4
helmholtz triangle 1
helmholtz triangle 2
helmholtz triangle 3
helmholtz triangle 4
helmholtz quadrilateral 1
helmholtz quadrilateral 2
helmholtz quadrilateral 3
helmholtz quadrilateral 4
helmholtz tetrahedron 1
helmholtz tetrahedron 2
helmholtz tetrahedron 3
elasticity triangle 1
elasticity triangle 2
elasticity triangle 3
elasticity triangle 4
elasticity quadrilateral 1
elasticity quadrilateral 2
elasticity quadrilateral 3
elasticity quadrilateral 4
elasticity tetrahedron 1
elasticity tetrahedron 2
elasticity tetrahedron 3

Table 4.1: Benchmarks

31

0.01667 0.00833 0.00833
0.00833 0.05000 0.01667 0.01667 0.00833
0.00833 0.01667 0.03333 0.00833

0.01667 0.00833 0.05000 0.01667 0.00833
0.00833 0.01667 0.05000 0.01667 0.00833

0.00833 0.01667 0.05000 0.01667 0.00833
0.00833 0.01667 0.05000 0.00833 0.01667

0.00833 0.05000 0.01667 0.01667
0.00833 0.01667 0.01667 0.05000 0.00833

0.01667 0.00833 0.05000

Figure 4.3: ‘Golden’ matrix mass-unittriangle-10-1.npy

32

4.6 Hardware

We test our benchmarks on a NVIDA GRID K520, its characteristics are listed in table 4.2.

GRID K520
Chipset GK104

CUDA Compute Capability 3.0
Peak Double Precision 95 GFLOPs
Peak Single Precision 2256 GFLOPs

Peak Memory Bandwidth 192 GB/s

Table 4.2: GPU Characteristics

33

5 Choice of Optimisations

We chose four optimisations to investigate:

• Constant hoisting (section 6.1)

• Parameter tuning (section 6.2)

• Loop unrolling (section 6.3)

• Multiple threads per element (section 6.4)

Of these, loop unrolling and multiple threads per element both aim to take advantage of

intra-kernel parallelism while parameter tuning allows the GPU to make more efficient

use of existing parallelism and ‘constant hoisting’ reduces the required number of memory

accesses.

We chose to investigate intra-kernel parallelisation since taking advantage of intra-kernel

parallelisation via vectorisation is one of the key techniques used by COFFEE. Addition-

ally, using multiple elements per thread ought to increase the opportunity for coalesced

memory accesses.

Parameter tuning is a classic GPGPU optimisation. In order to hide the latency of memory

accesses many warps must be ready and waiting to be executed on each SM however the

number of blocks that can ‘fit’ on an SM is limited by the resources of that SM. Parameter

tuning allows us to adjust the use of these resources to increase the number of blocks which

can fit on an SM at once.

Finally ‘constant hoisting’ was a pragmatic choice having observed that the basis functions

could be very large in some kernels and also that they were ideal candidates to be stored

in constant memory.

34

6 Investigation

This chapter describes our systematic investigation and evaluation of four optimisations:

constant hoisting, parameter tuning, loop unrolling and multiple threads per element. For

each optimisation we first discuss why implementing it ought to improve performance, we

then explicitly state a hypothesis, suggest an experiment to test this hypothesis, detail

the implementation of the optimisation and finally report and explain the results of the

experiment.

6.1 Constant Hoisting

Effective use of bandwidth and the various levels in the GPU memory hierarchy are one

of the most important factors that can limit GPU kernel performance. Although the

programming model makes it look like each thread can access global memory completely

independently, in practice memory accesses (like all operations) are vectorised - a whole

warp must access memory together. When each thread in the warp accesses adjacent

locations in memory this load or store is ‘coalesced’ and takes only a single memory

access. Contrarily, if each thread accesses a different memory location the accesses must

be serialised which is much less efficient. In addition to ‘Global memory’ NVIDA GPUs

also have ‘Constant memory’. Like Global memory, Constant memory is stored off-chip

but unlike Global memory, Constant memory cannot be written by the kernel and is cached

in a special constant cache. So long as every thread in a warp accesses the same location,

reading from the constant cache is extremely fast.

In practice we can store a CUDA C variable in constant memory by prefixing its declaration

with the __constant__ qualifier. __constant__ variables must be declared at the top level scope

and are implicitly static. Listing 6.1 shows a typical use of the qualifier, in which constant

memory is first initialised using cudaMemcpyToSymbol and then a kernel that uses that data is

launched. Alternatively constant data can also be specified as a literal as in listing 6.2.

Listing 6.1: Example of __constant__ qualifier

1 __constant__ double lookupTable [1000];

2

3 __global__ void kernel () {

4 // Use lookupTable here

5 }

6

35

7 void setupTable () {

8 double table [1000];

9 // populate table

10 cudaMemcpyToSymbol (...); // copy data from table to lookupTable

11 }

12

13 int main(int argc , char** argv) {

14 setupTable ();

15 kernel <<<10, 32>>>();

16 }

Listing 6.2: Example of __constant__ qualifier with literal data

1 __constant__ double lookupTable [1000] = {0.0, 0.1, ...};

6.1.1 Current Status

Currently PyOP2’s CUDA back-end does not explicitly use constant memory at all. How-

ever, if we consider the different types of data a kernel accesses, the basis functions seem

like excellent candidates to be stored in constant memory. Like the vertex coordinates,

they are read only but unlike vertex coordinates every launch of kernel uses the same basis

functions, so they only need to be transferred to the device once, the same locations are

accessed repeatedly and all threads access the same elements of the basis functions in lock

step.

6.1.2 Hypothesis

Storing the basis functions in constant memory should decrease the required memory

bandwidth and, where this is the limiting factor, improve performance. This effect should

be stronger on kernels with larger basis functions.

6.1.3 Experiment

To test this hypothesis we implemented ‘constant hoisting’ in PyOP2 and COFFEE such

that any literal arrays in the kernel function are hoisted out of the kernel function and

placed in constant memory and then ran our suite of benchmarks with and without this

change.

6.1.4 Implementation

Listing 6.4 shows how the {mass, triangle,degree 1} kernel can be transformed from its

original form (see listing 6.3) to store the basis functions in constant memory.

36

Listing 6.3: Mass benchmark kernel

1 __device__ void form_cell_integral_0_otherwise(
2 double A[1][1] ,
3 double ** vertex_coordinates ,
4 double ** w0,
5 int k, int j) {
6 double FE0 [4][4] = {
7 {0.6220 , 0.1666 , 0.1666 , 0.0446} ,
8 {0.1666 , 0.6220 , 0.0446 , 0.1666} ,
9 {0.1666 , 0.0446 , 0.6220 , 0.1666} ,

10 {0.0446 , 0.1666 , 0.1666 , 0.6220}
11 };
12 double W4[4] = {0.25, 0.25, 0.25, 0.25};
13 double J[4];
14 double K[4];
15
16 // Calculate Jacobian
17 J[0] = 0.5*(vertex_coordinates [2][0] + vertex_coordinates [3][0]
18 - vertex_coordinates [0][0] - vertex_coordinates [1][0]);
19 J[1] = 0.5*(vertex_coordinates [1][0] + vertex_coordinates [3][0]
20 - vertex_coordinates [0][0] - vertex_coordinates [2][0]);
21 J[2] = 0.5*(vertex_coordinates [6][0] + vertex_coordinates [7][0]
22 - vertex_coordinates [4][0] - vertex_coordinates [5][0]);
23 J[3] = 0.5*(vertex_coordinates [5][0] + vertex_coordinates [7][0]
24 - vertex_coordinates [4][0] - vertex_coordinates [6][0]);
25 double detJ = J[0]*J[3] - J[1]*J[2];
26 K[0] = J[3] / detJ; K[1] = -J[1] / detJ;
27 K[2] = -J[2] / detJ; K[3] = J[0] / detJ;
28
29 const double det = fabs(detJ);
30 for (int ip = 0; ip < 4; ++ip) {
31 A[0][0] += (det * W4[ip] * FE0[ip][k] * FE0[ip][j]);
32 }
33 }

37

Listing 6.4: Mass benchmark kernel after constant hoisting

1 __constant__ double FE0 [4][4] = {
2 {0.6220 , 0.1666 , 0.1666 , 0.0446} ,
3 {0.1666 , 0.6220 , 0.0446 , 0.1666} ,
4 {0.1666 , 0.0446 , 0.6220 , 0.1666} ,
5 {0.0446 , 0.1666 , 0.1666 , 0.6220}
6 };
7 __constant__ double W4[4] = {0.25, 0.25, 0.25, 0.25};
8 __device__ void form_cell_integral_0_otherwise(
9 double A[1][1] ,

10 double ** vertex_coordinates ,
11 double ** w0,
12 int k, int j) {
13 double J[4];
14 double K[4];
15 J[0] = 0.5*(vertex_coordinates [2][0] + vertex_coordinates [3][0]
16 - vertex_coordinates [0][0] - vertex_coordinates [1][0]);
17 J[1] = 0.5*(vertex_coordinates [1][0] + vertex_coordinates [3][0]
18 - vertex_coordinates [0][0] - vertex_coordinates [2][0]);
19 J[2] = 0.5*(vertex_coordinates [6][0] + vertex_coordinates [7][0]
20 - vertex_coordinates [4][0] - vertex_coordinates [5][0]);
21 J[3] = 0.5*(vertex_coordinates [5][0] + vertex_coordinates [7][0]
22 - vertex_coordinates [4][0] - vertex_coordinates [6][0]);
23 double detJ = J[0]*J[3] - J[1]*J[2];
24 K[0] = J[3] / detJ; K[1] = -J[1] / detJ;
25 K[2] = -J[2] / detJ; K[3] = J[0] / detJ;
26
27 const double det = fabs(detJ);
28 for (int ip = 0; ip < 4; ++ip) {
29 A[0][0] += (det * W4[ip] * FE0[ip][k] * FE0[ip][j]);
30 }
31 }

38

We automated this transformation so it could be applied to any kernel by modifying

COFFEE and PyOP2. In COFFEE we modified the plan.ASTKernel.plan_gpu function to

search the AST for literal array declarations then hoist these declarations to the file-

level scope and prefix them with the __constant__ qualifier. This required small structural

refactoring of COFFEE and PyOP2. PyOP2 has separate code paths for ‘sequential’ or

CPU computation, OpenCL computation and CUDA computation but both GPU paths

use the same plan_gpu code path in COFFEE which can transform the kernel to improve

its performance before returning the modified kernel to PyOP2 for execution. There

was also an implicilt requirement that COFFEE return code which conforms to the C99

standard from plan_gpu since PyOP2 uses pycparser to add the __device__ prefixes to the

kernel and pycparser accepts only C99 compliant code. This limits COFFEE’s ability

to take advantage of non-standard syntax/features on GPU platforms (for example the

__constant__ modifier).

We split the plan_gpu code path in COFFEE into two paths, one for CUDA and one for

OpenCL to mirror the two code paths in PyOP2. Like PyOP2 we avoid duplication

between these two code paths by implementing them as subclasses of a base GPUPlan class

where the shared code can live. This matches PyOP2 implementation where the classes

in cuda.py and opencl.py inherit from base classes in device.py.

We also removed the requirement for pycparser in this part of PyOP2 (pyop2/cuda.py) by

moving the responsibility into COFFEE allowing COFFEE to return code which includes

CUDA specific syntax.

6.1.5 Discussion

We ran all of the benchmarks described in chapter 4 with and without the constant hoisting

optimisation. Figure 6.1 summarises the results as a speed up figure for each benchmark

comparing the median result of the benchmark with constant hoisting to the median result

without constant hoisting.

Figure 6.1: Constant hoisting speedup (compared to Firedrake’s current implementation)
for each benchmark

39

The plot consists of three subplots, each subplot shows a separate problem. Within each

subplot the x axis shows different mesh types while the y axis shows different polynomial

degrees. So each tile within a subplot shows a different benchmark and the color of that

tile represents the speedup (or slowdown) for that problem. Benchmark combinations that

we do not measure (see sub-section 4.4.4) are represented by gray tiles.

The performance of almost every benchmark improves with constant hoisting (31 of 34)

and benchmarks with higher polynomial degrees and larger elements improve more than

those with lower polynomial degrees or smaller elements. Of the remaining three, two

become slightly worse (1-2%) and one becomes significantly worse (14%).

Figure 6.2 shows that the speedup for a benchmark increases as the size of the basis

functions increase but that the scale of the increase varies significantly.

Figure 6.2: Constant Hoisting speedup vs. Basis Function Size

Profiling the memory bandwidth used by one of the most improved benchmarks, {mass, quadrilateral,degree 4}
(16.70x), on a 10,000 element mesh with and without constant hoisting shows a large re-

duction in the number of local loads (94.1%), local stores (99.9%) and total device accesses

(98.7%). We see no change to the number of accesses involving global and shared memory

as we would expect since we do not modify the code that accesses that memory. We would

expect to see an increase in the number of constant accesses, however CUDA profiling tools

40

do not support profiling the constant cache so we cannot measure this directly.

Baseline Constant Hoisting Percentage Decrease
Local Load 7123313 420673 94.1
Local Store 121737492 67697 99.9
Shared Load 1599490 1599490 0
Shared Store 2164 2164 0
Global Load 2256147 2256147 0
Global Store 2250000 2250000 0
Device Total 240879253 3077616 98.7

Table 6.1: Memory Utilisation in {mass, quadrilateral, degree 4} on a 10,000 element mesh

Examination of the assembly of the innermost loop of the original kernel shows it is storing

the basis functions as immediates (listing 6.5), however after loading these values into

registers it immediately stores them again in thread local memory and then much later

loads them back from thread local memory in order to compute with them, this happens on

every iteration of the j loop. In comparison after constant hoisting (listing 6.6), the basis

functions are stored in constant memory where they can be accessed directly. This explains

the decrease in local memory accesses and suggests that constant hoisting improves the

performance of most of the benchmarks because previously these kernels suffered from

catastrophic register spilling due to the large basis functions which limited performance.

Listing 6.5: {mass, quadrilateral,degree 4} assembly snippet

1 MOV32I R30 , 0x27a1bd03; // Load Immediate

2 STL.64 [R53+0x178], R24; // Store Local

3 MOV32I R31 , 0xbfacc8fe;

4 STL.64 [R53+0x3d0], R24;

5 ... snip ...

6 LDL.64 R24 , [R57+0x78]; // Load Local

7 DMUL R12 , R32 , R2; // Register Register Multiply

8 LD.E.64 R6, [R14];

9 DMUL R4, R28 , R24;

Listing 6.6: {mass, quadrilateral, degree 4} assembly snippet after Constant Hoisting

1 DMUL R10 , R8, c[0x3][0 xbb8]; // Register Constant Multiply

2 DMUL R26 , R8, c[0x3][0 xbc0];

3 DMUL R10 , R10 , R6;

4 DFMA R10 , R10 , c[0x3][0x20], R28;

Table 6.2 shows the benchmarks whose performance decreases a small amount. Exam-

ination of the assembly of these kernels show they already store the basis functions in

constant memory, we have been unable to discover what causes this performance drop

there is no notice diffrence in the profiling metrics and the instructions mix looks similar.

The performance of one benchmark, {helmholtz, triangle,degree 1}, significantly worsened

after constant hoisting (shown in table 6.3). Examination of the assembly of this bench-

mark shows that although it already stores the basis functions in constant memory, after

41

Problem Degree Mesh Type Speedup

mass 1 triangle 0.996664
mass 1 quadrilateral 0.987358
mass 1 tetrahedron 0.994096

Table 6.2: Benchmarks with small performance drops after constant hoisting

the constant hoisting is applied nvcc no longer chooses to fully unroll the i, j and ip loops,

instead it only unrolls the ip loop, this explains the drop in performance. Forcing nvcc to

unroll this loop using pragma unroll (see section 6.3) improves the performance to 0.93 of

the runtime without constant hoisting.

Problem Degree Mesh Type Speedup

helmholtz 1 triangle 0.865738

Table 6.3: Benchmarks with large performance drops after constant hoisting

Constant hoisting improves performance for the majority of benchmarks and this perfor-

mance increase is particularly dramatic on high order problems. The performance drop

on a minority of benchmarks was small but noticeable it might be the case that we should

not employ constant hoisting when the basis functions are very small but it will require

further investigation to determine the exact conditions under which we should not employ

constant hoisting.

The dramatic performance improvement was caused by a dramatic change in the memory

access characteristics of the benchmarks and it did not seem sensible to continue our

investigation ignoring this change. After all, optimisations that perform well in the context

of a huge number of local memory accesses might perform very differently in the context

of none. Due to this, in the remainder of this chapter we investigate the remaining

three optimisations as changes to an implementation that includes constant hoisting and

compare them to a new base line of the current implementation plus constant hoisting.

Our final evaluation in chapter 7 compares the performance of our optimisations and

reports the best speedups achieved against the original baseline.

6.2 Parameter Tuning

Another factor that strongly effects GPU performance is ‘occupancy’. The occupancy of

a streaming multiprocessor (SM) is defined as the number of active warps divided by the

maximum possible number of active warps for that SM. By extension the occupancy of a

kernel instantiation is the average occupancy of its SMs over the life of that kernel.

High occupancy allows an SM to hide the latency of accessing memory via context-

switching to another active warp, preventing the SM from stalling. This context-switching

is extremely fast since registers and shared memory do not need to be saved or restored,

42

rather these resources are allocated when an SM begins executing a block and are deal-

located when every warp in the block has completed its execution. Each SM only has

a finite number of registers and shared memory so these resources limit the number of

blocks which can be concurrently executing on an SM - if a block requires 2KB of shared

memory and each SM has only 4KB of memory then only two blocks can be active on the

SM at once even if the SM’s scheduling hardware supports four.

All other things being equal, increasing the occupancy of a kernel should only ever improve

performance since the higher occupancy might provide an opportunity to context-switch

and execute a warp where before an SM would have had to stall. Normally, however,

increasing occupancy comes at the cost of compromising on one of the two resources, if a

block uses fewer registers it might have to make more memory accesses and so the overall

effect on performance could be negative. In practice if occupancy is very low (∼10%)

then increasing it (to say 30%) can dramatically improve performance but if occupancy is

already high (∼60%) then increasing it (to say 80%) may have little effect.

Medium or high occupancy is not the only way to hide the latency of accessing global

memory. Alternatively, sufficient amounts of instruction-level parallelism could also hide

latency as we describe in section 6.3.

Three variables principally affect a block’s use of an SM’s resources and hence a kernel’s

occupancy: threads per block or ‘block size’, shared memory per block and registers per

thread. The value of each of these imposes an upper limit on the maximum possible

occupancy. Whichever upper limit is lowest is the theoretical maximum occupancy of the

kernel and the relevant variable(s) are the ‘occupancy limiter(s)’.

Understandably maximum occupancy is a monotonically decreasing function with respect

to both registers per thread and shared memory per block, as mentioned above registers

and shared memory are limited resources on an SM - the more of them a block requires

the fewer blocks can run on an SM simultaneously. The relationship between block size

maximum occupancy is less straightforward, increasing the number of threads per block

increases the number of registers needed for that block (since we are considering registers

per thread) and so decreasing occupancy, but it will also increase the total number of

warps in the block, possibly increasing occupancy.

CUDA provides mechanisms for controlling each of these three variables. Block size is

specified at kernel launch time with the triple angle bracket syntax the_kernel<<<gridSize,

↪→ blockSize>>>([kernel arguments]); or in PyCUDA via the block argument to the generated

function object. Shared memory use is the sum of shared memory allocated statically by

prefixing a variable declaration with __shared__ and shared memory allocated dynamically

at kernel launch time by passing a third optional argument in the triple angle bracket

syntax: the_kernel<<<gridSize, blockSize, sharedsize>>>([kernel arguments]); or in PyCUDA

by passing the shared argument to the generated function object. A kernel can access this

memory by declaring an extern pointer: extern __shared__ int *shared;. Registers per thread

43

can be controlled either by the -maxrregisters nvcc flag or by specifying launch bounds for

a kernel (see listing 6.7).

The -maxrregisters n flag forces nvcc to allocate a maximum number of n registers to any

one thread throughout the compilation unit. Specifying launch bounds provides more

fine-grained but indirect control over register use, the two variables specified in the launch

bounds are the maxThreadsPerBlock “maximum number of threads per block with which

the application will ever launch” and (optionally) minBlocksPerMultiprocessor the “desired

minimum number of resident blocks per multiprocessor”, with these two variables nvcc

derives an upper limit on the number of registers it should use per thread when compiling

the kernel.

Listing 6.7: Example of launch bounds in CUDA C

1 __global__ void

2 __launch_bounds__(maxThreadsPerBlock , minBlocksPerMultiprocessor)

3 the_kernel (...) {

4 }

The CUDA SDK provides the CUDA_Occupancy_Calculator.xls spreadsheet which calculates

the theoretical occupancy from the Compute Capability, total shared memory, threads per

block, shared memory per block and registers per thread. Figure 6.3 shows the Occupancy

Calculator {helmholtz, triangle,degree 4}

Figure 6.3: Screen shot of CUDAs Occupancy Calculator

6.2.1 Current Status

In terms of these three variables PyOP2 currently hard codes block size to 128 and gives

nvcc control over how many registers to use, but the use of shared memory is more com-

plicated. The principle use of shared memory in PyOP2’s CUDA backend is to ‘stage’ the

44

vertex coordinates (and other indirect arguments of the kernel). These data are first loaded

from global memory into shared memory then in a second step the local tensor entries are

computed. Due to this, the amount of shared memory used by a block increases propor-

tionally to the number of elements that block is assigned to compute. PyOP2 chooses the

number of elements each block should compute, the partition size, to be the maximum

number of elements whose indirect arguments could fit in the maximum allowable shared

memory for a block in the worst case. In practice, the block does not need and is not

allocated this much shared memory (the maximum possible) since normally some of the

indirect arguments’ values are shared between elements. For example, in a triangle mesh

the majority of time a triangle will share its coordinates with other elements.

6.2.2 Hypothesis

PyOP2’s fixed block size, lack of control over the number of registers per thread and its

mechanism for determining partition size (and so indirectly shared memory per block)

limits occupancy and hence performance.

6.2.3 Experiment

To test this hypothesis we perform a parameter sweep over block size, blocks per SM and

partition size and benchmark each parameter set. If the hypothesis is true we expect some

points in this parameter space to have higher theoretical and actual occupancy than the

existing implementation and that these should be correlated with higher performance.

6.2.4 Implementation

We modified PyOP2 to allow these three variables to be set from the test harness. Rather

than setting partition size directly we divide the original partition size by a factor. This

maps nicely on to shared memory. Since the original partition size implies the maximum

possible shared memory use, halving that partition size reduces the amount of shared

memory used by half. This avoids problems due to the large differences between baseline

partition sizes. Table 6.4 summarises the parameter space we searched.

Parameter Values
Block Size 128, 256, 512, 1024

Blocks per SM 1, 2, 4, 8, 16
Partition size factor 1, 1

2 , 1
4 , 1

8 , 1
16

Table 6.4: Parameter space

45

6.2.5 Discussion

The experimental results show better choice of kernel parameters can significantly im-

prove performance, up to 2.96 times in the case of {helmholtz, triangle,degree 3} although

some benchmarks were mostly unaffected. For example, the best choice of parameters for

{mass, tetrahedron, degree 3} only result in a 1.06 times speedup. PyOP2’s current choice

of parameters was not optimal for any benchmark.

Using the best choice of parameters for each benchmark results in an average speedup of

1.93 times (figure 6.5), however parameters which are good for one benchmark tend to

also be good for other benchmarks as we can see from figure 6.4.

The parameter set {blocksize = 128,partition size = 1
2 ,blocks per SM = 4} has the best

average speedup across all benchmarks, 1.80 times, this is very close to the 1.93 times

speedup achieved by choosing the best parameters on a per benchmark basis suggesting

that while the best performance is achieved by optimising the parameters for an individual

program, significant improvements can be achieved just by optimising the parameters for

a specific GPU.

From figure 6.4 we can see by far the most important parameter is the partition fraction

which controls the number of elements asigned to each block and so indirectly with the

shared memory per element. We can also see that as we increase blocksize our ability to

modify the partition size without hurting performance goes down, this is sensible since

assigning fewer elements to a block than the block has threads simply wastes resources.

The least useful parameter by far to change is the number of blocks per SM which controls

the register allocation.

We note that a one line change to PyOP2 to set the partition size to half its previous

value would probably improve perfomance by 1.8 times.

6.3 Loop Unrolling

Loop unrolling is a well known and venerable optimisation technique. In the simplest case,

unrolling a loop reduces the amount of overhead involved in keeping track of the induction

variable at the cost of increasing code size, however it can also increase the amount of

Instruction Level Parallelism (ILP) and this is particularly important in the case of GPUs

where ILP is one of the two ways to hide the latency of accessing memory (the other is

increasing occupancy, see secton 6.2).

CUDA C supports a pragma “#pragma unroll” to encourage nvcc to unroll a loop but reports

on its efficacy are mixed. Table 6.5 summarises the NVIDA documentation on “#pragma

↪→ unroll”. Alternatively we can unroll the loops manually in the jinga2 template or in

COFFEE.

46

Figure 6.4: The average speedup (compared to the post-Constant Hoisting baseline) across
all benchmarks for each parameter set.

Figure 6.5: Maximum speedup compared to the post-Constant Hoisting baseline for each
benchmark after a parameter sweep.

Figure 6.6: Speedup per benchmark for the parameters {blocksize = 128,partition size =
1
2 ,blocks per SM = 4}

47

Loop annotation Result

No pragma “By default, the compiler unrolls small loops with a known trip count”
#pragma unroll if the loop has constant trip count it is completely unrolled
#pragma unroll 1 the loop is never unrolled
#pragma unroll n the loop is unrolled n times

Table 6.5: Use of pragma unroll[22]

6.3.1 Current Status

The code generated by PyOP2’s CUDA back-end currently does not explicitly use loop

unrolling either manually or via the unrolling pragma.

6.3.2 Hypothesis

Unrolling the i, j and ip loops or some subset of them should increase ILP and hence

performance.

6.3.3 Experiment

We benchmarked the performance kernels with: no loop unrolled, with the ip loop fully

unrolled, with the ip and k loops fully unrolled and with all three loops unrolled. We used

pragma unroll 1 to force nvcc not to unroll a loop and pragma unroll to unroll a loop.

6.3.4 Discussion

Figure 6.7 shows the results of the experiment. If we consider columns associated with no

unrolling we see significant performance drops, suggesting that nvcc automatically unrolls

at least some loops. Examination of the assembly confirms this is indeed the case.

The performance drop for no unrolling is worst for {mass, triangle,degree 4}. This makes

sense since this is the benchmark that has the highest number of executions of the ip

loop body relative to the number of operations within that loop so the effect of removing

unrolling is strongest here.

Similarly the effect of removing loop unrolling is worse for {mass, triangle,degree x} than

for {helmholtz, triangle,degree x} and worse again for {elasticity, triangle, degree x} since

elasticity has higher arithmetic intensity than helmholtz and helmholtz has higher arithmetic

intensity than mass.

The same pattern can be seen between the different mesh types for the mass problem.

As the tetrahedron benchmarks have higher arithmetic intensity than the triangle bench-

marks, the performance drop of removing loop unrolling is higher for {mass, triangle, degree x}
than for {mass, quadrilateral, degree x} and for {mass, tetrahedron, degree x}.

48

However while loop unrolling seems critical for the performance of the mass problem

(removing it results at minimum performance drop of 9% and an average performance drop

of 20%), it is much less important for the performance of the other problems (helmholtz

has an average performance drop of 9% and elasticity an average of 3%) we suggest this

is due to the significantly larger ip loop bodies of helmholtz and elasticity.

In six cases, using the unroll pragma at all, even to force no unrolling, is contraindicated:

{helmholtz, tetrahedron, degree 2}, {helmholtz, tetrahedron,degree 3}, {elasticity, tetrahedron,degree 2}
and {mass, tetrahedron, degree 1}. These cases could be caused by by the best unrolling

strategy being to only partially unroll some loop or by nvcc choosing to unroll some com-

binations of loops we did not consider.

It is also clear from the results that nvcc does not always respect the pragma the results for

{elasticity, tetrahedron,degree 3} are almost identical independently of how which loops

we unroll despite the fact that there ought to be a 6000 times difference in the code size

between unrolling all the loops and unrolling none. Examination of the assembly confirms

this.

In a small number cases using pragma unroll increases performance on the order of 30%

these seem to be cases where nvcc is reluctant to unroll the roll but will still unroll the

loop if you ask it.

In general we conclude that while removing loop unrolling completely has a significant

impact on some kernels loop unrolling alone it not sufficient to significantly improve the

performance of local assembly. A more detailed investigation will require manual loop

unrolling to avoid the issues we encountered.

Speedup
Minimum Mean Maximum

No unrolling 0.594476 0.918302 1.099113
Unroll ip 0.851797 0.974587 1.264343
Unroll ip, k 0.899732 1.026266 1.264882
Unroll ip, k, j 0.900355 1.042778 1.310426

Table 6.6: Summary of pragma unroll experiment

6.4 Multiple Threads per Element

As stated in chapter 2, local assembly kernels contain an embarrassing amount of par-

allelism. Out of the loops in a local assembly kernel, the elements, i, and j loops are

completely parallel (the loop structure of a kernel is shown in listing 6.8).

Listing 6.8: Loop nest structure of a local assembly kernel

1 for (element in elements) {

2 // Jacobian

49

Figure 6.7: Speedup of unrolling no loops, unrolling only ip loop, unrolling ip and k loops
and unrolling all three loops with pragma unroll, compared to post-Constant
Hoisting baseline for each benchmark.

3 for (int j=0; j<J; j++) {

4 for (int k=0; k<K; k++) {

5 for (int ip=0; ip<IP; ip++) {

6 // Code

7 }

8 }

9 }

10 }

PyOP2’s current strategy for parallelising local assembly on GPUs uses only the par-

allelism found in the outer element loop. Specifically, PyOP2 breaks the elements into

50

groups and assigns each group to a block. Within that block of 128 threads1 the first

thread computes the local tensor of the first element, the second thread computes the

local tensor of the second element, etc. After a thread finishes computing its current ele-

ment it moves on 128 elements to find the next local tensor that needs computing, so if

there are e elements indexed from 0 to e− 1, each thread computes the elements Ei such

that i = k×blockSize.x+ threadIdx.x. Figure 6.8 illustrates this strategy, showing which

thread computes which local tensor entries in which elements by a number in that entry

of the local tensor in that element. The character subscripts describe the ordering of the

computations.

Figure 6.8: Current strategy for parallelisation

The kernel wrapper code which implements this strategy and is the entry point to our

CUDA kernel is instantiated at runtime from jinja2 template (PYOP2/pyop2/assets/cuda_indirect_loop.jinja2).

Listing 6.13 shows the critical section of the code for {mass, quadrilateral,degree 4}.

This strategy ignores the parallelism in the i and j loops but this does not necessarily hurt

performance so long as the mesh is large enough that it still exposes sufficient parallelism

and the GPU can make efficient use of this parallelism. Typically applications need to

launch tens of thousands of threads to make full use of the GPU’s SMs so this approach

may work well on large meshes.

Figure 6.9 and figure 6.10 illustrate alternative strategies in which multiple threads coop-

erate to compute the local tensor of a single element.

Figure 6.9: Chunked strategy for parallelisation

We implemented both of these alternative strategies in PyOP2 so that an arbitrary number

of threads (up to the limit of one thread per local tensor entry) can work on the same ele-

1This block size is hard-coded as (128, 1, 1).

51

Figure 6.10: Coalesced chunked strategy for parallelisation

ment. This involved changing PYOP2/pyop2/cuda.py and PYOP2/pyop2/assets/cuda_indirect_loop.jinja2

so that the kernel wrapper template takes an additional parameter, threads_per_local_array,

and transforms the element, i and j loops.

Our implementation works by compressing the element loop so multiple threads are as-

signed the same element, then flattening the j and k loops2 into a single new loop (e) and

assigning portions of this new loop to each thread. Within this new flattened loop we then

reconstruct the induction variables of the j and k loops from the induction variable of the

e loop.

Listing 6.10 shows loop flattening applied to a three loop nest while listings 6.11 and 6.12

show two strategies for parallelising a loop with trip count E among num_threads threads:

we can either give each thread a block of contiguous iterations or we can give each thread

every ith iteration where i is the number of threads.

Loop flattening (also called loop coalescing) is a technique which has been used in a variety

of contexts in the past. For example, to parallelise “irregular, recurrent loop nests” ([9]),

to reduce scheduling overhead in Guided self-scheduling ([11]) and more recently in [14]

which explores loop flattening in ‘coarse-grained reconfigurable architectures’ (CGRAs)

which must contend with many of the same issues as GPUs albeit in a more extreme

fashion.

Loop flattening is the opposite transformation to optimisations like code motion and loop

tiling, rather than moving code out of the innermost loop so it is executed less frequently

or splitting loops to create extra loops in the nest we push all the code into the innermost

loop and then flatten the loops. This always involves extra work since if nothing else we

end up recalculating the loop indices of the outer loops on every iteration of the flattened

loop. However, performing this extra work can be worth it if it allows us to parallelise the

loop.

In fact our case is almost the perfect situation for loop flattening, the iteration space loops

are always fully parallel, have known bounds and do not contain other code or conditionals

2PyOP2 supports an arbitrary number of ‘iteration space’ loops in which the j and k loops appear in the
benchmarks we consider, our implementation of loop flattening also supports multiple iteration space
loops, although this is not evaluated in the context of this work.

52

between the iteration space loops3. The only downside is the possibly expensive integer

devide and modulo operations that loop flattening requires.

Finally listings 6.14 and 6.15 show how we combine these techniques to generate the kernel

wrapper codes for {mass, quadrilateral, degree 4} matching the two alternative strategies

we suggested above.

Listing 6.9: Example loop nest

1 for (int i=0; i<I; i++) {

2 for (int j=0; j<J; j++) {

3 for (int k=0; k<K; k++) {

4 // Code

5 }

6 }

7 }

Listing 6.10: Collapsed loop nest

1 for (int e=0; e<I*J*K; e++) {

2 int i = e / (J*K);

3 int j = (e / K) % J;

4 int k = e % K;

5 // Code

6 }

Listing 6.11: Chunked Strategy Example

1 int tid = threadIdx.x % num_threads;

2 int part_size = ceil(E /

↪→ num_threads);

3 for (int e=part_size * tid;

4 e<part_size * (tid+1);

5 e++) {

6 if (e > E) {

7 break;

8 }

9 // Code

10 }

Listing 6.12: Coalesced Stratagy Example

1 int tid = threadIdx.x % num_threads;

2 int part_size = ceil(E /

↪→ num_threads);

3 for (int e=tid; e<E; e+= part_size) {

4 // Code

5 }

6.4.1 Number of threads per element

The ‘coalesced’ scheme described above can allocate an arbitrary number of threads to a

tensor however in some situations these threads are predicated off and the work that could

be done by them is wasted. For example if the tensor has nine entries and ten threads are

allocated to it then the extra thread is always predicated off and the work that could be

done by it is wasted. A similar situation (illustrated in figure 6.11) occurs if five threads

are allocated the tensor, on the second iteration of the e loop we waste the work of one

thread.

The above examples could reduce performance by 10% and 5% percent respectively but

the situation could be worse if dividing the number of tensor entries by the number of

3Local assembly kernels may contain conditionals but these do not effect the execution of iteration space
loops.

53

Listing 6.13: Critical Section of kernel wrapper for benchmark
{mass, quadrilateral, degree 4}

1 for (int idx=threadIdx.x; idx <nelem; idx += blockDim.x) {
2 ind_arg1_vec [0] = ind_arg1_shared + loc_map [0* set_size+idx+offset_b]*2 + 0;
3 // ... load vertex coordinates into local memory ...
4 ind_arg1_vec [7] = ind_arg1_shared + loc_map [3* set_size+idx+offset_b]*2 + 1;
5
6 for (int i0=0; i0 <25; ++i0) {
7 for (int i1=0; i1 <25; ++i1) {
8 form_cell_integral_0_otherwise(
9 (double (*) [1])(arg0+arg0_lmaoffset +(ele_offset+idx)*625+i0*25+i1*1),

10 ind_arg1_vec ,
11 i0, i1
12);
13 }
14 }
15 }

54

Listing 6.14: Kernel Wrapper Chunked Stratagy

1 for (int idx=threadIdx.x/25; idx < nelem; idx += blockDim.x/25) {
2 if (threadIdx.x >= 125) { // blockDim.x - blockDim.x % 25
3 continue;
4 }
5 ind_arg1_vec [0] = ind_arg1_shared + loc_map [0* set_size+idx+offset_b]*2 + 0;
6 // ... load vertex coordinates into local memory ...
7 ind_arg1_vec [7] = ind_arg1_shared + loc_map [7* set_size+idx+offset_b]*2 + 1;
8
9 int local_thread_id = threadIdx.x % 25;

10 for (int e=25 * local_thread_id; e<25 * (local_thread_id +1); e++) {
11 int i0 = e / 25;
12 int i1 = e % 25;
13 form_cell_integral_0_otherwise(
14 (double (*) [1])(arg0+arg0_lmaoffset +(ele_offset+idx)*625+i0*25+i1*1),
15 ind_arg1_vec ,
16 i0, i1
17);
18 }
19 }

Listing 6.15: Kernel Wrapper Coalesced Stratagy

1 for (int e=25 * local_thread_id; e<25 * (local_thread_id +25); e++) {
2 if (threadIdx.x >= 125) { // 125 == blockDim.x - blockDim.x % 25
3 continue;
4 }
5 ind_arg1_vec [0] = ind_arg1_shared + loc_map [0* set_size+idx+offset_b]*2 + 0;
6 // ... load vertex coordinates into local memory ...
7 ind_arg1_vec [7] = ind_arg1_shared + loc_map [7* set_size+idx+offset_b]*2 + 1;
8
9 int local_thread_id = threadIdx.x % 25;

10 for (int e=local_thread_id; e<625; e+=25) {
11 int i0 = e / 25;
12 int i1 = e % 25;
13 form_cell_integral_0_otherwise(
14 (double (*) [1])(arg0+arg0_lmaoffset +(ele_offset+idx)*625+i0*25+i1*1),
15 ind_arg1_vec ,
16 i0, i1
17);
18 }
19 }

55

Figure 6.11: Allocating five threads to a nine entry tensor under the ‘coalesced’ and ‘chun-
ked’ strategies

threads leaves a large remainder. We can not waste the work of more than 31 threads

this way since 32 contiguous threads together form a warp and a whole warp can not be

predicated off, it simply does not execute the instructions.

A similar situation occurs for the ‘chunked’ strategy however in this case we waste one

thread for x iterations of the e loop rather than x threads for one iteration (see figure 6.11).

Finally the same problem occurs with the number of threads per element and the block

size: if the number of threads per element is not a divisor of the block size then some

threads at the ‘end’ of the block must be predicated off permanently since otherwise they

would compute some but not all of the entries in a local tensor while other threads are

trying to compute and non-atomically write the same locations.

These two facts together suggest that we could only get full performance when the number

of threads per element is a divisor of both the block size and of the tensor size. We can

build a model to quantify the slowdown we expect when this is not the case based on the

factors mentioned above.

These problems could be avoided entirely by not assigning threads to specific elements.

Instead we could have the 128 threads in a block compute the first 128 tensor entries, then

compute the next 128 tensor entries etc, irrespective of which tensors they came from.

Although this avoids the problem it also obscures one of the most interesting possibilities

of multiple threads per element, which is having threads share data while computing

the tensor. For example the expression we evaluate in the innermost loop can contain

subexpressions common across entries in the local tensor, we could extract these, have

56

different threads compute different common subexpressions then share these via shared

memory or warp shuffle instructions. This becomes significantly more difficult if threads

do not know which of their neighbours are working on the same element. We expand on

this topic in section 7.3.

Hypothesis

When the number of threads allocated to an element is not a divisor of the number of

entries in the local tensor and the block size performance should decrease proportional to

the amount of work wasted.

Experiment

We benchmark the coalesced and the chunked scheme described at the start of section 6.4

with 1 to 128 threads per element and compare the results to a theoretical model of the

amount of work wasted.

Discussion

The experiments show that the model accurately predicts slowdowns, when a significant

slowdown is predicted there really is a significant slowdown in the actual results, but that

the model is also over optimistic - frequently predicting no slowdown where there are

significant slowdowns.

Two types of discontinuities are visible as vertical lines both in the graphs showing the

experimental results, figures 6.12 and 6.13 and in figure 6.14 which shows the predicted

results. These lines mirror the two factors discussed above. The contiguous lines which

run from the top to the bottom of the graphs are due to the interaction between the block

size and number of threads per element, this is why these lines appear in the same place

across every benchmark, they are not effected by the changing tensor size, and why they

appear on the 64−65, 42−43 and 32−33 (among other) boundaries - these are all places

where crossing the boundary makes a significant difference to the quotient of the block

size divided by the number of threads per element and hence to the performance. The

discontinuities shared by benchmarks with the same tensor size are due to the interaction

between the tensor size and the number of threads per element and occur for the same

reasons.

We conclude that avoiding poor performance under either the coalesced or chunked scheme

requires at least avoiding a number of threads per element which interacts poorly with the

block size or the tensor size but that is a necessary condition not a sufficient one.

57

Figure 6.12: Speedup for each benchmark under the ‘coalesced’ scheme (compared to post-
Constant Hoisting performance) for 1 to 128 threads

Figure 6.13: Speedup for each benchmark under the ‘chunked’ scheme (compared to post-
Constant Hoisting performance) for 1 to 128 threads

Figure 6.14: Theoretical speedup for each benchmark for 1 to 128 threads

58

6.4.2 Special Case Loop Flattening

Our investigation in sub-section 6.4.1 suggests we should choose a number of threads per

element which is a divisor of the tensor size. The tensor size itself and the trip counts of

the j or k loops4 are obvious divisors of tensor size and in these cases the generated code

could be simplified significantly.

In the case where the number of threads assigned to an element is equal to the tensor

size (and so the total number of iterations of the flattened loop) we can remove the loop

entirely, see listing 6.17.

Listing 6.16: With redundant loop

1 int tid = threadIdx.x % 9;

2 for (int e=tid; e<9; e+=9) {

3 int i = e / 3;

4 int j = e % 3;

5 // Code

6 }

Listing 6.17: Without redundant loop

1 int local_thread_id = threadIdx.x %

↪→ 9;

2 int i = e / 3;

3 int j = e % 3;

4 // Code

5 }

More generally if the number of threads per element is equal to the product of some

subset of the trip counts of the iteration space loops we can replace those loops with code

to calculate the indices directly but leave the rest of the loops. This preserves a much

more natural formulation than the flattened loop (see listing 6.19).

With either of these two simplifications we can choose to preserve the coalesced or the

chunked access patten. Removing loops from innermost to outermost (as in listing 6.19)

gives the coalesced access pattern while removing loops from outermost to innermost gives

the chunked access pattern.

Listing 6.18: Flattened Loop Formulation

1 int tid = threadIdx.x % 3;

2 for (int e=tid; e<9; e+=3) {

3 int i = e / 3;

4 int j = e % 3;

5 // Code

6 }

Listing 6.19: Natural Loop Formulation

1 for (int i=0; i<3; i++) {

2 int j = threadIdx.x % 3;

3 // Code

4 }

Hypothesis

We hypothesis that these simplifications make no difference to the performance after all

they only modify some of the book keeping around the computation and do not change

the order or how the entires of the local tensor are computed.

4And more generally in PyOP2 the trip count of any iteration space loop.

59

Experiment

We implemented the two simplifications described above and, for each benchmark where

these simplifications are relevant, compare performance with and without the simplifica-

tion.

Discussion

Unfortunately the results (6.4.2) show that these simplifications can significantly out per-

form (up to almost six times) the non-special cased versions. The effect is perticually bad

for the mass problem but also effects the other two problems. This suggests that our loop

flattening technique carries significant overheads either directly, via the additional mod

and divide instructions or indirectly via nvcc generating worse code for non standard loop

constructs.

To conduct the remainder of our investigation into multiple threads per element we had

to choose a method for assigning a number of threads to an element. Based on sub-

section 6.4.1 we initially chose the greatest common divisor of the tensor size and the block

size however in many situations they had no common divisor greater than one. Instead

we use a strategy ‘gcd10’ which chooses the maximum of the greatest common divisor of:

gcd(tensorsize, blocksize), gcd(tensorsize, blocksize-1), ... gcd(tensorsize, blocksize-9). This

allows a significant number of threads to be assigned to each benchmark and by our model

causes a maximum performance drop of 10% and normally a much smaller drop. This is

almost certainly not the optimum choice but it allowed us to continue our investigation

into the effects of using many threads to perform assembly.

6.4.3 Chunked vs. Coalesced

The two alternative strategies we have considered are two different thread orderings for

computing the elements of the local matrix. These two orderings correspond to two differ-

ent patterns for writing out the data to the underlying array. The coalesced scheme writes

out the data in a sequential way (in the sense that threads 1, 2 and 3 write to locations 1,

2 and 3 in the array) the chunked scheme writes out the data in strided way (while thread

1 is writing location 1 thread 2 is writing location 3 and thread 3 is writing location 5 etc.

Figure 6.15 illustrates the difference.

In order to access global memory efficiently warps must access memory in a way that allows

coalescing falling to do this causes the accesses to be serialised hurting performance.

The ‘coalesced’ pattern (unsurprisingly) accesses the underlying array in the suggested

way for coalescing. The chunked pattern is regular but strided. In general the amount

of coalescing possible for a strided access pattern decreases as the length of the stride

increases.

60

Benchmark Meshtype Degree Tensor Size Chunked Coalesced
Column Matrix Row Matrix

mass Triangle 1 9 1.17 1.2 1.18 1.0
mass Triangle 2 36 1.73 2.06 1.77 1.0
mass Triangle 3 100 2.39 2.72 2.93 1.0
mass Triangle 4 225 3.68 5.28
mass Square 1 16 1.25 1.46 1.22 1.0
mass Square 2 81 1.76 2.17 2.18 1.0
mass Square 3 256 2.97 3.87
mass Square 4 625 4.69 5.79
mass Tetrahedron 1 16 1.2 1.32 1.21 1.11
mass Tetrahedron 2 100 2.01 1.9 2.07 1.32
mass Tetrahedron 3 400 3.24 3.81
mass Tetrahedron 4 1225 3.15 3.26
helmholtz Triangle 1 9 1.16 1.22 1.16 1.09
helmholtz Triangle 2 36 1.38 1.66 1.44 1.24
helmholtz Triangle 3 100 1.05 0.99 1.04 1.0
helmholtz Triangle 4 225 1.02 1.02
helmholtz Square 1 16 1.18 1.32 1.19 1.14
helmholtz Square 2 81 1.55 1.56 1.58 1.21
helmholtz Square 3 256 1.02 1.01
helmholtz Square 4 625 1.01 1.03
helmholtz Tetrahedron 1 16 1.06 1.06 1.05 1.03
helmholtz Tetrahedron 2 100 1.03 0.98 1.03 0.99
helmholtz Tetrahedron 3 400 1.01 1.01
elasticity Triangle 1 36 1.14 1.27 1.14 1.12
elasticity Triangle 2 144 1.63 1.66
elasticity Triangle 3 400 1.02 1.03
elasticity Triangle 4 900 1.0 1.0
elasticity Square 1 64 1.17 1.2 1.15 1.09
elasticity Square 2 324 1.04 1.05
elasticity Square 3 1024 1.0 1.0
elasticity Square 4 2500 0.99 1.0
elasticity Tetrahedron 1 91 1.15 1.16
elasticity Tetrahedron 2 1006 1.0 1.01
elasticity Tetrahedron 3 6752 0.95 0.94

Table 6.7: Speedups for Special Case Loop Flattening vs. Loop Flattening

61

Figure 6.15: Illustration of the how the chunked (top) and coalesced (bottom) schemes
access a six entry local matrix with three threads.

Hypothesis

The coalesced scheme should perform better than the chunked scheme due to better global

store coalescing.

Experiment

We can benchmark the two schemes and compare them. Then profile an example bench-

mark to examine the reason for the performance difference if any.

Discussion

We can see from figure 6.16 that the coalesced scheme universally has the same or better

performance than the chunked scheme, in some cases 1.8 times. Table 6.8 shows the

‘efficiency’ of the memory accesses5 under the normal one thread per element scheme, the

chunked scheme and the coalesced scheme for the {mass,triangle,4, o,degree n} a 10,000

element mesh.

Shared Memory Efficiency Global Load Efficiency Global Store Efficiency
Baseline 30.0% 25.2% 25.0%
Chunked 97.6% 29.4% 25.0%

Coalesced 97.6% 100.0% 91.2%

Table 6.8: Memory Access Efficiency for {mass,triangle,4, o, degree n} a 10,000 element
mesh

Both the coalesced and the chunked scheme are much more efficient in their use of shared

memory. This makes sense, the only use of shared memory in the kernel is reading the

5Efficiency is a metric that compares the number of required memory transactions to the theoretical
minimum if they were perfectly coalesced for some kernel execution.

62

staged the vertex coordinates and previously every thread accessed different vertex co-

ordinates (hence the poor shared memory efficiency of the baseline implementation) now

most threads in the block access the same vertex coordinates since they are working on the

same element (accesses where every thread in a warp reads the same address are perfectly

coalesced). This number does not tell the whole story we now make n times as many

accesses to the shared memory as we did before where n is the number of threads assigned

to an element.

As we expected the coalesced scheme has much better global read and write efficiency

while the chunked scheme’s efficiency is closer to the baseline implementation.

These results show that it is both possible and important for performance to ensure that

the scheme for assigning multiple threads to an element results in coalesced memory ac-

cesses.

6.4.4 Parameter Tuning and Multiple Threads per Element

Our investigation into using multiple threads per element has shown how we can expose

the additional parallelism as efficiently as possible. However as we can see in figure 6.17

and figure 6.18 that alone this only helps for low polynomial elements. This is as we might

expect, since we always want to consider the largest meshes possible there is already

plenty of parallelism however there are advantages to this new source of parallelism it is

‘cheaper’ then the per element kind requiring fewer resources per thread. This suggests

that we should now be able to fit more blocks into each SM allowing us to take better

advantage of the hardware.

Hypothesis

Using multiple threads per element increases the amount of utilizable parallelism and

choosing the correct set of parameters allows the GPU to take the best advantage of the

available parallelism so these optimisations ought to be mutually beneficial and combining

them should increase performance.

Experiment

We performed a parameter sweep as in section 6.2 using the ‘coalesced gcd10’ scheme for

multiple threads per element described in section 6.4.

Discussion

Figure 6.20 shows the best achieved speedup after parameter tuning compared to the

baseline. Figure 6.19 shows the average speedup for each set of parameters, comparing this

63

Figure 6.16: The speedup for the ‘coalesced gcd10’ scheme compared to the ‘chunked
gcd10’ scheme across all benchmarks.

Figure 6.17: The speedup for the ‘coalesced gcd10’ scheme compared to the post-constant
hoisting baseline.

Figure 6.18: The speedup for the ‘chunked gcd10’ scheme compared to the scheme com-
pared to the post-constant hoisting baseline.

64

with figure 6.4 we see that using multiple threads per element has significantly increased

the range of acceptable parameters which give reasonable performance improvements, we

can now use much larger block sizes while still increasing the partition fraction.

The most interesting graph is figure 6.21 which compares the performance of the gcd10

scheme with parameter tuning to the best results from parameter tuning alone. It shows

that using multiple threads per element can give up to two times improvement over just

parameter tuning and that in general it improves the performance of the low order bench-

marks and mass the benchmarks significantly. These are the benchmarks which have the

lowest arithmetic intensity suggesting this optimisation is most helpful in cases where the

problems have lower arithmetic intensity.

Ideally we would repeat the previous parts of this investigation parameter tuning at each

opportunity however this will have to wait for future work.

This concludes our investigation of the four optimisations.

65

Figure 6.19: The average speedup of the ‘coalesced gcd10’ scheme (compared to the post-
Constant Hoisting baseline) across all benchmarks for each parameter set

Figure 6.20: Maximum speedup of the ‘coalesced gcd10’ scheme compared to the post-
constant hoisting baseline for each benchmark after a parameter sweep

Figure 6.21: Maximum speedup of the ‘coalesced gcd10’ scheme after a parameter sweep
compared to the best post-constant hoisting baseline after a parameter sweep

66

7 Conclusion

Our evaluation of the four individual optimisations has been conducted inline with our

investigation. We can now consider the best possible combination of these optimisations

and evaluate the project as a whole.

Table 7.1 shows for each benchmark the best combination of the optimisations we consid-

ered, this speedup is visualised in figure 7.1. To see what performance we have achieved

in absolute terms we used nvprof to measure the number of double precision floating point

operations the kernels and then computed the FLOPs for each benchmark, this is shown

in figure 7.2. The results are broadly as we would expect more complex problems with

high order basis function and larger elements have greater operational intensity and so

achieve higher FLOPs.

Figure 7.1: Best achieved speedup compared to Firedrake’s current performance for each
benchmark

Figure 7.2: FLOPs for best combination of the optimisations for each benchmark

67

7.1 Contributions

To reiterate the main contributions of this thesis are as follows:

• We show that storing the basis functions in local memory is catastrophic to the

performance of problems with > 1st degree basis functions, and that using constant

hoisting to move the basis functions into constant memory can produce speedups of

up to eighteen times. We produce patches allowing this optimisation to be immedi-

ately incorporated into Firedrake and PyOP2.

• We investigate parameter tuning to improve the occupancy of the generated CUDA

kernels. We find that PyOP2’s current strategy for choosing the three critical pa-

rameters which effect occupancy: registers per thread, blocksize and elements per

block is not optimal for any of the benchmarks studied. We show that better choice

of these parameters can result in a threefold performance improvement in some cases

and that while the best results (1.93 times average speedup) are only achieved by

tuning the parameters individually for each problem we can choose a single set of

parameters to achieve an average speedup of 1.80 times and improve the performance

of all but one benchmark.

• We examine the effect of forbidding and encouraging loop unrolling using pragma

↪→ unroll. We discover that while loop unrolling is critical to the performance of

kernels with low arithmetic intensity only in a minority of cases where the loop trip

counts are large enough that CUDA is reluctant to unroll them by default does

encouraging CUDA to unroll them improve performance and this improvement in

of the order of 10 to 30%. We also show that CUDA frequently ignores the pragma

especially for nested loops with large trip counts.

• We present a novel technique for allowing any number of threads up to one a limit

of one per local matrix entry to corporate on assembling an element. The technique

flattens the j and k loops and assigns sections of the flattened loop to each thread.

We show that for this technique to be effective the number of threads per element

must be a must be a divisor of the tensor size and close to a divisor of the block size

and we show the necessity of coalesced memory accesses in this scheme. We show

that combining this approach with parameter tuning improves the performance of

low order and low arithmetic intensity kernels.

• Finally we consider the optimisations together and show average improvements of

13 times rising to 35 times for some benchmarks. We also show we can achieve an

average 57% of peak FLOPs on the NVIDA GRID K520.

• Each of the above results is validated through testing with three separate problems

of greatly varying complexity, three element types including 2D and 3D elements,

polynomial basis functions of degree 1-4 and the combinations thereof. This provides

evidence that these results will generalize to yet unseen FEM problems: one of the

key benefits of Firedrake.

68

7.2 Conclusion

Both FEM and Firedrake many deep abstraction which have made this project challenging

however we have managed to speed up Firedrake’s local assembly on GPUs significantly,

up to 35 times for some benchmarks and most of the lessons we have learnt should be

broadly applicable for GPU Finite Element assembly in other situations.

We have investigated four optimisations, found one that Firedrake should adopt imme-

diately (constant hoisting) and one (parameter tuning) that should implemented as soon

as a good strategy can be found for doing the tuning or a good cost model is proposed

(although simply assigning half as many elements to each block would help significantly

as a stop gap measure).

We proposed a new strategy for using multiple threads to assemble a single element more

work and begun to investigate and although more could done we have shown that for some

low arithmetic intensity problems it can give a two times performance improvement.

We also considered (loop unrolling) which is often useful but also often done automatically

by nvcc. Using pragma unroll seemed to be helpful only in limited although circumstances.

Finally we performed a very limited analysis of our optimisations in absolute terms finding

we achieved a high percentage of peak FLOPs however one of the weaknesses of this work

is that this analysis is not more robust.

7.3 Future Work

This work only begins the project of automatically producing optimised local assembly

codes for GPUs. We could not consider everything and this work has also opened inter-

esting avenues for future research.

OpenCL

One obvious extension to this work is to investigate an OpenCL implementation.

In this work we considered CUDA only so we could take advantage of its tooling

assuming that the results would apply to OpenCL on the same target architectures

given its similar programing model however this assumption requires testing. An

OpenCL implementation would also allow us to compare the performance of AMD

and NVIDA GPUs.

COFFEE

One of the goals of this project which we did not meet was to apply COFFEE’s

optimisations in the GPU context. Many of COFFEE’s optimisations (for example

generalized invariant code motion) involve trading increased temporary storage for

less computation however GPU have a relative abundance of computation compared

to the number of registers per thread so it may be that we want to do the exact

opposite of this and trade duplicated computation for decreased register pressure.

69

COFFEE’s other optimisations involve applying vectorisation to the kernel and hav-

ing explored how to assign multiple threads to an element we now in an excellent

position to investigate applying these optimisations for GPUs.

Function Spaces

In this work we did not consider additional function spaces which manifest them-

selves as additional indirect arguments to the kernel. Given that these increase the

memory requirements of the kernel we might expect them to benefit more than the

benchmarks we considered from the optimisations which assign multiple threads to

an element reducing the memory footprint however they would also effect the amount

of bandwidth required by the kernels.

Jacobian

As well as parallelism in the element, j and k loops there is also parallelism present

in the computation of the Jacobian. However it is of a different sort to that element,

j and k loops. It would be interesting consider approaches to take advantage of this.

More generally our current approach to the Jacobian, recomputing it for each local

matrix element, is clearly suboptimal and some better approach must be found.

70

P
ro

bl
em

M
es

ht
yp

e
D

eg
re

e

St
ra

te
gy

B
lo

ck
si

ze
P

ar
ti

ti
on

Fa
ct

or
SM

s
p
er

B
lo

ck

Sp
ee

du
p

P
er

ce
nt

of
P

ea
k

F
L
O

P
s

mass unittriangle 1 gcd10 256 2 1 3.101984 0.259575
mass unittriangle 2 gcd10 128 4 2 10.032070 0.440941
mass unittriangle 3 gcd10 512 4 1 16.226553 0.494637
mass unittriangle 4 gcd10 1024 2 1 28.219022 0.517076
mass unitsquare 1 gcd10 128 2 1 2.538906 0.380207
mass unitsquare 2 gcd10 128 2 4 11.447474 0.516954
mass unitsquare 3 gcd10 256 8 2 20.438051 0.486861
mass unitsquare 4 gcd10 512 4 4 35.299448 0.551039
mass unittetrahedron 1 gcd10 256 1 1 1.651056 0.349711
mass unittetrahedron 2 gcd10 512 2 1 9.057831 0.514752
mass unittetrahedron 3 gcd10 1024 1 1 16.054782 0.475285
mass unittetrahedron 4 base 256 1 1 27.083580 0.404242

helmholtz unittriangle 1 gcd10 128 2 4 2.387420 0.472191
helmholtz unittriangle 2 gcd10 128 4 16 7.012997 0.601522
helmholtz unittriangle 3 base 256 2 8 12.633113 0.646815
helmholtz unittriangle 4 base 256 2 8 22.801415 0.688819
helmholtz unitsquare 1 gcd10 256 2 16 3.669533 0.534388
helmholtz unitsquare 2 gcd10 256 2 1 9.229746 0.592307
helmholtz unitsquare 3 base 128 4 16 18.564293 0.626643
helmholtz unitsquare 4 gcd10 512 4 4 27.998778 0.650470
helmholtz unittetrahedron 1 gcd10 256 2 1 2.214882 0.568903
helmholtz unittetrahedron 2 gcd10 128 4 1 5.466639 0.618567
helmholtz unittetrahedron 3 base 256 1 1 12.850643 0.654448
elasticity unittriangle 1 gcd10 512 4 2 4.450640 0.569368
elasticity unittriangle 2 gcd10 1024 2 16 8.671818 0.703238
elasticity unittriangle 3 base 128 4 16 15.870925 0.733239
elasticity unittriangle 4 base 128 4 16 26.457563 0.780266
elasticity unitsquare 1 gcd10 256 2 16 3.573897 0.579661
elasticity unitsquare 2 gcd10 128 4 16 9.344588 0.665119
elasticity unitsquare 3 base 128 4 16 20.835831 0.704890
elasticity unitsquare 4 gcd10 512 8 4 34.940822 0.757369
elasticity unittetrahedron 1 gcd10 1024 1 16 3.520061 0.663072
elasticity unittetrahedron 2 base 256 1 2 8.491247 0.660029
elasticity unittetrahedron 3 base 256 1 4 18.787962 0.712535

Table 7.1: Best combined optimisation for each benchmark

71

Glossary

AST Abstract Syntax Tree.

COFFEE An optimising compiler for local assembly kernels. See section 2.3.

CPU Central Processing Unit.

DSL Domain Specific Language.

FEM Finite Element Methods.

FFC FEniCS Form Compiler. Compiles UFL to C, see section 2.2.2.

Firedrake An automated system for solving partial differential equations. See section 2.2.

GPU Graphical Processing Unit.

NVidia An American company that produces GPUs.

PDE Partial Differential Equation.

PETSc See section 2.2.4.

PyOP2 See section 2.2.3.

SIMD Single Instruction Multiple Data.

SIMT Single Instruction Multiple Threads.

SM Streaming Multiprocessors.

SMT Simultaneous Multithreading.

UFL Unified Form Language.

72

Bibliography

[1] Martin S Alnæs et al. “Unified Form Language: A Domain-specific Language for

Weak Formulations of Partial Differential Equations”. In: ACM Trans. Math. Softw.

40.2 (Mar. 2014), 9:1–9:37. issn: 0098-3500. doi: 10.1145/2566630. arXiv: 1112.

0402. url: http://arxiv.org/abs/1112.0402.

[2] Krzysztof Bana, Przemyslaw Plaszewski, and Pawel Maciol. “Numerical integration

on GPUs for higher order finite elements”. In: Pre-Print (2013). arXiv: arXiv :

1310.1191v1.

[3] Cris Cecka, Adrian J. Lew, and Eric Darve. “Assembly of finite element methods

on graphics processors”. In: International Journal for Numerical Methods in En-

gineering (2010), n/a–n/a. issn: 00295981. doi: 10.1002/nme.2989. url: http:

//doi.wiley.com/10.1002/nme.2989.

[4] Cris Cecka, Adrian Lew, and Eric Darve. “Application of assembly of finite element

methods on graphics processors for real-time elastodynamics”. In: (2011).

[5] Advanced Micro Devices. Porting CUDA Applications to OpenCL. 2014. url: http:

/ / developer . amd . com / tools - and - sdks / opencl - zone / opencl - resources /

programming - in - opencl / porting - cuda - applications - to - opencl (visited on

02/03/2014).

[6] G. Dhatt, E. Lefrançois, and G. Touzot. Finite Element Method. ISTE. Wiley, 2012.

isbn: 9781118569702. url: http://books.google.co.uk/books?id=wvE1ClcHq5IC.

[7] Adam Dziekonski et al. “Finite element matrix generation on a GPU”. In: Progress

In Electromagnetics Research 128 (2012), pp. 249–265.

[8] J Filipovic, I Peterĺık, and Jan Fousek. “GPU Acceleration of equations assembly in

finite elements method-preliminary results”. In: SAAHPC: Symposium on Applica-

tion . . . (2009). url: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.

1.1.157.5693%5C&rep=rep1%5C&type=pdf.

[9] Anwar M. Ghuloum and Allan L. Fisher. “Flattening and Parallelizing Irregular,

Recurrent Loop Nests”. In: SIGPLAN Not. 30.8 (Aug. 1995), pp. 58–67. issn: 0362-

1340. doi: 10.1145/209937.209944. url: http://doi.acm.org/10.1145/209937.

209944.

[10] G. Karniadakis and S. Sherwin. Spectral/hp element methods for computational fluid

dynamics. 2nd ed. Oxford University Press, 2005, pp. 1–650. isbn: 9780198528692.

73

[11] Arun Kejariwal, Alexandru Nicolau, and ConstantineD. Polychronopoulos. “En-

hanced Loop Coalescing: A Compiler Technique for Transforming Non-uniform It-

eration Spaces”. English. In: High-Performance Computing. Ed. by Jesús Labarta,

Kazuki Joe, and Toshinori Sato. Vol. 4759. Lecture Notes in Computer Science.

Springer Berlin Heidelberg, 2008, pp. 17–32. isbn: 978-3-540-77703-8. doi: 10.1007/

978-3-540-77704-5 2. url: http://dx.doi.org/10.1007/978-3-540-77704-5 2.

[12] Dimitri Komatitsch et al. “High-order finite-element seismic wave propagation mod-

eling with MPI on a large GPU cluster”. In: Journal of computational physics 229.20

(2010), pp. 7692–7714.

[13] Dimitri Komatitsch et al. “Modeling the propagation of elastic waves using spectral

elements on a cluster of 192 GPUs”. In: Computer Science-Research and Develop-

ment 25.1-2 (2010), pp. 75–82.

[14] Jongeun Lee et al. “Flattening-based mapping of imperfect loop nests for CGRAs?”

In: Hardware/Software Codesign and System Synthesis (CODES+ISSS), 2014 In-

ternational Conference on. Oct. 2014, pp. 1–10. doi: 10.1145/2656075.2656085.

[15] Anders Logg. “Automating the finite element method”. In: Archives of Computa-

tional Methods in Engineering 14.2 (2007), pp. 93–138.

[16] Anders Logg, Kent-Andre Mardal, and Garth Wells. Automated solution of differ-

ential equations by the finite element method: The FEniCS book. Vol. 84. Springer

Science & Business Media, 2012.

[17] Fabio Luporini et al. “COFFEE: an Optimizing Compiler for Finite Element Local

Assembly”. In: Submitted to ACM Transactions on Architecture and Code Optimiza-

tion (2014). url: http://arxiv.org/abs/1407.0904.

[18] Fabio Luporini et al. “Cross-Loop Optimization of Arithmetic Intensity for Finite

Element”. In: Mathematical Software 11.4 (2015), p. 57. arXiv: 1407.0904.

[19] Pawe l Macio l, Przemys law P laszewski, and Krzysztof Banaś. “3D finite element

numerical integration on GPUs”. In: Procedia Computer Science 1.1 (May 2010),

pp. 1093–1100. issn: 18770509. doi: 10.1016/j.procs.2010.04.121. url: http:

//linkinghub.elsevier.com/retrieve/pii/S1877050910001225.

[20] G. R. Markall et al. “Finite element assembly strategies on multi- and many-core

architectures”. In: International Journal for Numerical Methods in Fluids 71 (2013),

pp. 80–97. doi: 10.1002/fld.3648. url: http://dx.doi.org/10.1002/fld.3648.

[21] Graham R. Markall et al. “Performance-Portable Finite Element Assembly Using

PyOP2 and FEniCS”. In: 28th International Supercomputing Conference, ISC, Pro-

ceedings. Ed. by Julian Martin Kunkel, Thomas Ludwig, and Hans Werner Meuer.

Vol. 7905. Lecture Notes in Computer Science. Springer, 2013, pp. 279–289. doi:

10.1007/978-3-642-38750-0 21. url: http://dx.doi.org/10.1007/978-3-642-

38750-0 21.

74

[22] NVIDIA Corporation. NVIDIA CUDA C Programming Guide. 2014.

[23] Florian Rathgeber et al. “Firedrake: automating the finite element method by com-

posing abstractions”. In: Submitted to ACM TOMS (2015). arXiv: 1501.01809.

[24] Florian Rathgeber et al. “PyOP2: A High-Level Framework for Performance-Portable

Simulations on Unstructured Meshes”. In: High Performance Computing, Network-

ing Storage and Analysis, SC Companion: Los Alamitos, CA, USA: IEEE Computer

Society, 2012, pp. 1116–1123. isbn: 978-1-4673-3049-7. doi: 10.1109/SC.Companion.

2012.134. url: http://dx.doi.org/10.1109/SC.Companion.2012.134.

75

