
Imperial College London

Department of Computing

Betting on the Bitcoin Blockchain

Author:
Joshua David Lind

Supervisor:
Dr. William Knottenbelt

June 2015

Submitted in part fulfilment of the requirements for the degree of
Master of Engineering in Computing

Abstract

We present the Bitcoin Betting Exchange, the first publicly auditable, entirely anonymous
and fully automatic Bitcoin betting exchange. By making use of the Bitcoin Blockchain and
a unique proof of bet system, we can minimize the amount of trust required between the
betting parties and enforce honest participation. Using the proof of bet system we can design
a hardware based private key store that acts as an external adjudicator, only ever releasing
funds when presented with sufficient evidence.

Existing betting exchanges and websites are rife with criminal activity. The ungoverned and
anonymous nature of Bitcoin mean that websites can secretly steal users money and users
can make false claims against the website. With no proof, it is the word of one against the
other.

Our betting exchange presents a unique and novel solution to addressing the issue of trust in
an anonymous environment. It has been rigorously tested, survived a security audit, numerous
attacks online and several vulnerability scanners. An in-depth analysis of the vulnerabilities
of our design reveal that under a threat model where an attacker has complete control over
the betting exchange, they cannot gain access to the funds held by the exchange, or to the
private keys.

Acknowledgements

I would like to express my sincerest thanks to:

• Dr. William Knottenbelt, my supervisor, for providing invaluable guidance throughout
my project. Your inspiration, enthusiasm and support have made this project a joy to
work on.

• Dr. Sergio Maffeis, my second supervisor. Your feedback and insight have helped shape
this project right from the beginning.

• Charlie Hothersall-Thomas, for spending his time penetration testing and analysing our
work.

• William Hanbury, for helping propose the project and providing feedback all the way
through.

• My family and friends, for their unwavering support throughout my studies.

• God, who has blessed me with the opportunity to study, supported me in the hard times
and never given up on me.

This thesis is dedicated to Charles Derek Crisp.

“No one lights a lamp and puts it in a place where it will be hidden, or under a bowl. Instead
they put it on its stand, so that those who come in may see the light.” Luke 11:33

Contents

1 Introduction 3
1.1 Motivation . 3
1.2 Objectives . 4
1.3 Contributions . 4

2 Background 6
2.1 Digital and Virtual Currencies . 6

2.1.1 Overview . 6
2.1.2 Bitcoin . 7
2.1.3 Block Mining . 9
2.1.4 The Blockchain . 11
2.1.5 Transaction and Scripts . 14
2.1.6 Wallets . 17
2.1.7 Alt Coins and Chains . 18
2.1.8 Bitcoin 2.0 . 20

2.2 Online Betting and Gambling . 22
2.2.1 Overview . 22
2.2.2 Sportsbooks . 23
2.2.3 Betting Exchanges . 24
2.2.4 Bet Resolution and Settlement . 26

2.3 Related Work . 28
2.3.1 DirectBet . 28
2.3.2 NitrogenSports & Anonibet . 29
2.3.3 Betmoose, BitBet & BetBTC . 31
2.3.4 Satoshi Dice & Satoshi Bet . 32
2.3.5 Proof Of Existence & Gradbase . 33
2.3.6 Reality Keys, Orisi & OpiDoki . 35

3 Legal Concerns 38
3.1 Betting Legislation . 38
3.2 Money Laundering . 38
3.3 Our Response . 39

4 Research and Design 40
4.1 Trust in An Anonymous Environment . 40

4.1.1 The Bitcoin Network as Escrow . 40
4.1.2 The Data Outside the Blockchain Problem 42
4.1.3 Third-Party Escrow . 42
4.1.4 M out of N Transactions . 44
4.1.5 Bitcoin Oracles . 45
4.1.6 Proof of Bet & Outcome . 47
4.1.7 Bet Verification Check . 53

4.2 Private Key Security . 53
4.2.1 Generation of Keys . 53
4.2.2 Backing up Keys . 55
4.2.3 Storage of Keys . 55
4.2.4 A Smart Private Key Store . 58
4.2.5 Security Recommendations for Sports Authorities 64

5 The Bitcoin Betting Exchange 65
5.1 Introduction . 65
5.2 Proof of Bet . 73
5.3 Proof of Outcome . 81
5.4 Audit Trail . 86

1

6 Implementation 90
6.1 Architecture . 90
6.2 The Bitcoin Betting Exchange . 91

6.2.1 Infastructure & Platform . 91
6.2.2 Live Event Data . 93
6.2.3 Integration with the Bitcoin Network . 97
6.2.4 Live Financial Data . 99
6.2.5 Testing . 101
6.2.6 User Interface and Experience . 103

6.3 The Smart Private Key Store . 108
6.3.1 Infastructure & Platform . 108
6.3.2 API . 108
6.3.3 Authentication . 110
6.3.4 Communication with the Betting Exchange 112
6.3.5 Database Encryption . 113
6.3.6 Testing . 114

7 Evaluation 116
7.1 User Experience Evaluation . 116

7.1.1 Online Feedback and Discussion . 116
7.1.2 User Experience Feedback . 120
7.1.3 Professional Feedback . 124

7.2 Security . 124
7.2.1 Hacking Challenge . 125
7.2.2 Security Scanners . 126
7.2.3 Security Audit . 127
7.2.4 Threat Analysis . 128

7.3 Strengths & Limitations . 133

8 Conclusion 135
8.1 Lessons Learnt . 135
8.2 Future Work . 135

A Bitcoin Betting Exchange Entity Relationship Diagram 138

2

1. Introduction

1.1 Motivation

The motivation for this project lies at the intersection between virtual currencies and online bet-
ting and gambling. By combining these two unique areas we can construct an entirely anonymous,
border-less and trust-less online betting exchange powered by virtual currency. With unlimited
transaction amounts, near zero transfer costs and instant payouts, the exchange could offer un-
capped competitive odds, with immediate resolution. This would not only free up the global
betting marketplace but it would allow anybody with access to the Internet to bet against any-
body else, anywhere in the world. By using the Bitcoin network as the foundation for a betting
system, we can create an anonymous and distributed betting exchange that is globally accessible
and completely unconstrained.

Although this idea has already been explored in part by several existing solutions, such as web-
sites like DirectBet.com [46] and BetBTC.co [11], there are two major issues that have yet to
be addressed. The first is trust in an anonymous environment. Many, if not all, of the existing
solutions require bettors to deposit their bets into an account owned by the betting website or
application. The betting website then acts as escrow until the bet has been settled, paying out
the winnings to the appropriate user. Because Bitcoin is by nature anonymous, the identities
of the bettors and the operators who own the sites are never known. Combined with the fact
that Bitcoin is also ungoverned, it creates opportunity for the various parties to misbehave. For
example, a betting website can refuse to pay out winnings to a user, delete any evidence of a
bet, and continue operating as though nothing had happened. Likewise, a bettor can falsely claim
wrong doing by a betting website in order to ruin their reputation and drive away customers. Both
parties have little in way of evidence to prove they have been wronged. Emails and screen-shots
do not constitute valid proof because emails can so easily be forged and images manipulated. In
the majority of cases it becomes the word of the bettor against the betting service, leaving one
with no way to prove the other wrong.

In fact, this problem has become so widespread throughout the Bitcoin betting community that
there are literally thousands [51] of reports of dishonest operation and foul-play scattered through-
out Bitcoin forums and various websites online. Hundreds of betting websites and applications
have reportedly ceased operation after receiving large deposits from users, and many have in-
correctly settled bets or simply refused customer withdrawals. In one case a betting website,
CoinBet.cc, refused to allow a customer to withdraw around $340,000 dollars [110] worth of ac-
cumulated winnings. When the customer complained and petitioned online, the website stopped
operating, refused to pay them any money and then later resurfaced online under another name.

The second major issue not yet addressed by any of the existing solutions is that of private key
security and storage, something that applies to all Bitcoin services. To date there have been many
serious and alarming cases where a Bitcoin application or website has been targeted by an attacker
and the private keys held online have been stolen. Because Bitcoin is not governed by any central
authority, with transactions being irreversible, these victims have been left without anywhere to
turn and their funds have permanently been lost. In fact many of the most serious cases have
occurred within the last two years alone. Mt. Gox for example, a Bitcoin exchange that allowed
users to trade Bitcoin for regular (fiat) currency was reportedly hacked in early 2014 [32]. The
result of this was the loss of over 750,000 Bitcoin, worth around $500 Million US at the time.
Likewise, BitStamp, another well known and trusted Bitcoin exchange also fell victim to a hot
wallet attack in early 2015, where private keys stored online were stolen. This resulted in the
loss of around 19,000 Bitcoin, worth around $5 Million US [93]. The frequency and severity of
these attacks highlight the importance of secure and sound key management, with mistakes having
disastrous consequences.

In order to overcome these problems and push back against the challenges facing Bitcoin bet-
ting services, we propose using several of the unique features provided by Bitcoin (such as the

3

Blockchain) to create an entirely public auditing system. Using these features the confirmation
of bets, resolution of outcomes and payments of winnings can forever be publicly signed, times-
tamped and embedded into the network. The auditing system would provide a very open and easy
way to verify the honest operation of the parties involved, while at the same time still maintaining
complete anonymity. Furthermore, using this proof we can design a hardware based private key
store that only ever releases funds when given proof of bet and outcome, without ever exposing
the private keys to the betting exchange or outside world.

1.2 Objectives

The goal of this project is to create an online betting exchange in the form of a web application. It
is to operate using Bitcoin as the primary trade currency, allowing users to place bets on various
sports events. It should be entirely anonymous, from payments and transactions, to interaction
with the website, meaning users should not need to create any form of account or complete any
registration process. It should also utilize the trust-less nature of the Bitcoin network in order to
match bets and propositions without requiring trust between the betting parties.

Furthemore, every stage of the betting process should be entirely transparent and auditable. This
means that at every step in the sequence of events the actions taken by the participants should be
publicly traceable and verifiable, without compromising anonymity. This means that any claims
of dishonest operation or disputes from either party can be backed up with verifiable and concrete
proof. This will help to ensure the honest operation of the betting exchange as well as the bettors
involved, minimizing the amount of trust required between the participants. In addition to this,
bets and wagers should be automatically settled as efficiently as possible in order to minimize
settlement waiting times.

Specific attention should also be given to the security of the private key store and overall archi-
tecture of the design, taking into account the threats that arise from storing key data online in
hot wallet scenarios.

1.3 Contributions

The main contributions provided by this thesis are summarized below:

• A web application that allows users to place uncapped and unconstrained bets on real
sports events and markets in real time. The application operates anonymously, requiring no
personal information or user sign up, and runs over an encrypted connection.

• A proof of bet system that uses the Bitcoin Blockchain as a way to sign, timestamp and
publicly announce user bets without compromising anonymity. This provides a way for users
to concretely prove and verify their bets.

• A proof of outcome system that allows trusted sports authorities to publicly and verifiably
announce the outcome of various events and markets. This prevents the betting exchange
from being able to incorrectly settle any bet without consequence.

• A verification check that allows third parties to verify the correct resolution and settlement
of all bets. This check is constructed using the proof of bet and outcome systems listed
above in combination with the public transaction information embedded in the Blockchain.

• The design and implementation of a hardware based, smart, private key store that makes
use of the above verification checks to sign payments and settle bets. The key store per-
forms these actions without ever exposing the private keys to the betting exchange or to the
outside world. This means that under a threat model where an adversary has control over
the web application, the private keys and funds for the exchange still remain intact.

4

In this thesis we present the Bitcoin Betting Exchange, a publicly auditable, anonymous and
fully automatic betting exchange that operates on the Bitcoin network. The Bitcoin Betting
Exchange and the private key store are both fully operational and can be accessed online at:
https://bitcoin-betting.herokuapp.com.

5

https://bitcoin-betting.herokuapp.com

2. Background

In this chapter we provide the background required to understand betting in a digital currency
environment.

We begin, first, by providing a general introduction to digital and virtual currencies and continue
thereafter by exploring the technical aspects required to understanding Bitcoin. We then provide
a brief introduction to online betting and gambling and describe the background associated with
sportsbooks and betting exchanges. We conclude finally by discussing the existing solutions and
related work in this area.

2.1 Digital and Virtual Currencies

2.1.1 Overview

Over the past 25 years the Internet has given rise to countless virtual and digital currencies. Ever
since the early 1990’s the idea of a border-less, tax-free and ungoverned currency has led to the
rise and fall of many different electronic and digital concepts. From E-gold [69], a digital currency
founded in 1996 that was backed by gold, to Beenz [38], a virtual currency that was tradable for
goods in online marketplaces, electronic currencies have taken root in the freedom and openness
that the Internet provides.

Today, there are over 80 [79] different digital and virtual currencies available online. Each cur-
rency with its own unique design and purpose. In order for us to identify and analyse the different
currencies it is important to define exactly what we mean when we use the terms digital and
virtual currencies. First and foremost, digital currencies are currencies that exist only in a digital,
binary format. 1s and 0s. All transactions occur in the digital realm, and these currencies are
never physical embodied. Meaning, all money is created and stored electronically. The primary
difference therefore, between digital and physical currencies are that digital currencies are never
physically produced. You cannot hold them in your hand or put them in your pocket. E-gold for
instance is a digital currency. It exists only in an electronic form. The British Pound however
is a physical currency. It can actually be held in your hand. Take a £5 note for instance, or a
£1 coin. Although this difference is somewhat clear, the distinction between digital currencies
and physical currencies can become blurred when you consider the fact that there isn’t actually
enough tangible, physical currency to supply the worlds demand. Meaning, that if everyone were
to go to their bank today and fully withdraw their accounts, there wouldn’t exist enough physical
coins and notes to satisfy the request [129]. Be that what it may, physical currencies can be held
in your hand, digital currencies cannot.

What then is a virtual currency? A virtual currency is a type of digital currency. It exists pri-
marily in a virtual world. An example of this might be gold coins in the massive multiplayer,
online role-playing game World of Warcraft. These currencies are limited to the virtual worlds
in which they exist. As such, Bitcoin is often incorrectly referred to as a virtual currency. In
fact, the primary motivation for Bitcoin is to provide a currency that can be used and traded
in the real world, such as to exchange for U.S Dollars, or to purchase a cup of coffee. Bitcoin is
therefore a digital currency. More specifically it is a digital cryptocurrency, a currency built using
cryptography as an implementation for managing transactions and generating new coins.

With so many of these different digital currencies available, why choose to pay particular atten-
tion to Bitcoin? Well up until the time it was first proposed, in 2008, every digital currency was
built using a single, centralized clearinghouse, or authority. This authority was responsible for
managing account balances and money transfers, similarly to how a bank operates. The problem
with this design was that it introduced a single point of failure. If the authority was attacked
or shut down, the currency immediately became worthless. This was a fundamental problem for
the majority of currencies, and as a result, many of them collapsed due to targeting by concerned
governments, cyber-criminals, legislative action or liquidation of their parent company.

6

In 2008 however, all this changed. A whitepaper entitled Bitcoin: A Peer-to-Peer Electronic Cash
System [80] was published online. Released under the pseudonym Satoshi Nakamoto, the paper
described the worlds first decentralized digital currency. By making use of a distributed peer to
peer network and a public transaction ledger, the paper resulted in the worlds first decentralized
crypto-currency, the first digital currency to provide a solution to the central authority problem.
It replaced the single centralized authority with a distributed network of many authorities and
provided a way to achieve consensus among them. In doing this, there was no longer a single
point of failure. In order for an attacker to render the currency worthless it would now need to
corrupt at least a majority of the distributed network. Something that is incredibly unlikely when
you consider that the number of active authorities in the Bitcoin network is in the order of 10s of
thousands [88].

Over the past 7 years, Bitcoin has rapidly gained popularity and widespread acceptance. To date
there have been over 60 million transactions [26] in the Bitcoin network, resulting in an estimated
total market capitalization of 3.3 billion U.S dollars [25]. But, despite its immediate purpose,
Bitcoin has also become the source of innovation for several different reasons. Its open-source
nature and unique implementation features, such as the Blockchain, make it highly attractive to
extension. This is true not only for the development of customized alternate currencies, such as
Bytecoin [31] and Litecoin [73], but also for completely different applications altogether, such as
smart contracts, proof of existence and entirely new technology protocols, often referred to as
Bitcoin 2.0 [83].

2.1.2 Bitcoin

As previously mentioned Bitcoin is a digital cryptocurrency. This means that at its heart it uses
cryptography for transaction validation, managing security and ensuring mathematically fair gen-
eration and distribution of new coins. Cryptography is the study of techniques to allow secure and
secret communication between parties, and is a branch of mathematics and computer science.

In order to understand how Bitcoin works, it is important to clarify exactly how an amount of
money is represented in Bitcoin. With traditional fiat currencies, such as the British Pound for
example, an amount of money is represented by the summation of physical notes and coins. For
example, if I was to tell you that I had £100, I would show you two £50 notes. This is not so with
Bitcoin. Rather than have some representation of a coin, or a note, Bitcoin uses a transaction
ledger, a long chain of transactions effectively proving the derivation of any Bitcoin amount. This
means that if I wanted to show you that I had 100 Bitcoins (BTC for short) I would instead
show you all the transactions of amounts sent me to, to prove to you how I got it. For example,
I would show you the transactions where my dad sent me 50 BTC, my mom sent me 30 BTC
and my friend sent me 20 BTC. All combining to make 100 BTC. Of course, in order for you to
verify that my dad could actually send me 50 BTC, you would need to verify that he had that
amount of BTC in the first place. So you would also need to see the transactions making up his
50 BTCs. He would need to show you the transactions sent to him to make up this amount, and
you would repeat this process all the way down the transaction chain, until you reached the bot-
tom of the chain. The bottom of the chain might be where some sort of trusted authority issued
the money (such as the government), or it may be a proof of how the money was initially generated.

Although this may seem strange at first, it is effectively what banks and many other companies
have to do internally to keep track of finances. For example, what would happen if someone hacked
into the database storing their bank account balance and changed it from £100 to £1,000,000?
The transactions are used as a means for protecting against this and allowing financial auditing
to take place.

Figure 1 represents diagrammatically how this might work.

7

Figure 1: Transaction to Transaction Payments [20]

Note that the diagram uses several phrases that may appear confusing at first. The term satoshi
in the diagram is the smallest fraction of Bitcoin that can be spent. Just like £1 can be split
into 100 pence, with 1 pence being the smallest denomination, a satoshi is the smallest spendable
denomination of Bitcoin, 0.00000001 BTC, or 10 nano Bitcoins. Likewise, TX in the diagram
stands for transaction and UTXO stands for unspent transaction output, an amount of money
that has yet to be spent by another transaction.

In the diagram we have 7 different transactions represented as 7 large boxes. Each is labelled
TX 0 to TX 6. As mentioned above, in order to spend an amount of money, you need to prove
that you own that amount by providing a set of transactions that together sum to atleast the
amount that you want to spend. Therefore, in the diagram every transaction has a set of input
transactions. For example TX 6 at the end of the chain, uses TX 4 and TX 5 as inputs. The
total spend output of TX 6 is 20k, or 20,000 satoshi, which is less than the total input of TX 6,
which is 30,000 satoshi. In a similar manner, transactions can have multiple outputs. For instance
if you want to split some amount of money between different accounts. This is what TX 0 does.
It pays 40k, or 40,000 satoshi, to one account, and 50k, 50,000 satoshi, to another account. This
is also useful for generating change from a transaction. If Alice wants to send 1 BTC to Bob,
but only has a single transaction sent to her of 1.5 BTC, she can create a transaction with two
outputs, one of 1 BTC to Bob and another of 0.5 BTC back to herself.

You may have noticed in the diagram that the sum of the inputs is 10k greater than the sum of
the outputs, such as TX 4 for example, where we have a single input of 20k, but only a single
output of 10k. The 10k difference between these amounts in the example is referred to as the
transaction fee. This fee is paid to the Bitcoin network in order that the transaction would be
validated by the network. This may seem confusing at the moment, however, it will make more
sense when we examine the processes involved with broadcasting these transactions later on. The

8

term unspent transaction output, as with output 0 in TX 6 simply means that this transaction
has yet to be spent or referred to in another transaction.

The Bitcoin network uses a global, public transaction ledger, similar to the diagram, to store every
transaction that has ever been made on the network. This ledger is publicly available and a copy
of it is held by every participant, or authority in the network. Whenever any transaction takes
place on the network, for example Alice sending 1 BTC to Bob, that transaction is broadcast on
the entire network and every participant updates its copy of the ledger. This is why Bitcoin is
referred to as a decentralized currency, as each participant effectively acts as a single authority.

At first this is surprising, because it effectively means that everybody can see everybody else’s
transactions, e.g. Alice sent Bob 1 BTC. What’s more, everybody also knows everybody else’s
total bank balance, simply by calculating every incoming and every outgoing transaction for that
account. How then can Bitcoin be anonymous? The clarification here is that when Alice sends Bob
1 BTC, her and Bob’s names are not associated with the transaction. Instead Alice uses her public
key to send the amount to Bob’s public key. These keys are elements of public key cryptography,
an area of cryptography that uses practically irreversible functions to encrypt secret messages and
create digital signatures. A public key is simply a long alphanumeric string of characters, with
a related private key, together making a key-pair. The idea is that a public key can be shared
and seen by everyone, but the corresponding private key is kept secret. It is this private key that
allows the holder of the key-pair to identify itself, through the use of a digital signature. Because
these keys are nothing more than alphanumeric characters, nobody can identify Alice or Bob from
their public keys. So although you can see a transaction from 1 public key to another, you have
no idea who owns those keys. This is similar to if you intercepted an email sent to an address
2D4nfD434D934@email.com, even if you knew what the email said, you have no idea about who
owns the account.

The way that a Bitcoin bank account is therefore represented in the network is as a private-public
key-pair. Just like a password, whoever has access to the private key has access to the funds in
the account, and can make payments to other accounts via their public keys. The relationships
between these key-pairs is what makes them interesting, i.e. it is easy to derive a public key from a
private key, but not the other way round. Meaning that even though your public key can be seen by
everyone it is practically infeasible for them to try to derive your private key from it. Therefore, by
sending money between public keys, the identities of the people who own those keys are kept secret.

2.1.3 Block Mining

Going back to our example where Alice sends 1 BTC to Bob, one might ask exactly how new
transactions are added to the transaction ledger. Each participant or node in the network stores
the transaction ledger as a linked chain of blocks, called the Bitcoin Blockchain. Each block in
the chain stores a set of transactions that have been validated. When a new block is added to the
chain at any node, that block is broadcast to all other nodes in the network, who in turn check
its validity and then update their own chain with that new block. In order for any node to add a
new block to the blockchain, a large amount of computation or work needs to be performed. This
computation is required to prove the validity of the transactions in the block. The key element
here is that it requires considerable computation for any node to prove a block, but once that
block has been proved, it is fairly easy for any other node to check that proof. The process of
adding a new block to the blockchain is called mining.

The easiest way to think about it is to picture this process as a game. Every node in the network
has a replicated copy of the transaction ledger, stored as a blockchain. As time passes by, new
transactions are broadcast to the nodes in the network, such as when Alice sends some money to
Bob, or Bob sends some money to Eve. As all of these transactions occur, each of the nodes in
the network is competing against each other to try to find a solution to a specific problem that
will allow them to generate a new block. Whichever node finds the solution first broadcasts it to

9

the rest of the network, who in turn check to see if the solution is correct, and if so, updates their
own blockchain with the newly provided block. The node who found the solution first is declared
the winner and the game repeats with the next set of transactions that occur.

Because the solution is difficult to find and requires a large amount of computation, why would
these nodes spend their time trying to solve it? Well just like a game, the winner receives a
prize. In this case, whoever solves the problem first is paid two separate amounts of Bitcoin.
The first amount is the sum of all the transaction fees of the transactions included in the new
block. These fees are the differences between the inputs of a transaction, and the outputs. For
example the missing 10,000 satoshis for each transaction that we identified in figure 1. These fees
will act as an incentive for the miners and because the miner can choose which transactions to in-
clude in the new block, it will naturally choose the transactions paying the highest transaction fees.

The second amount of money the winning miner receives is a pre-defined amount of new bitcoin.
Just like when a central bank prints new coins and notes, the Bitcoin network creates new bitcoins
whenever a block is added to the blockchain. The amount created for each new block depends on
the number of blocks in the blockchain. At present this amount is 25 BTC, but it halves every
210,000 blocks. By halving the amount of newly generated bitcoins at these intervals, it introduces
a fundamental limit in the total number of bitcoins that will ever be produced, a limit of around
21 million bitcoins [122]. This imposed limit therefore makes Bitcoin a deflationary currency.

The process of mining can therefore be considered a game of rounds, where at each round a new
block is generated, validating a set of transactions and rewarding the winner. Because of the
competitive nature of this game, you might try to think of ways of beating it, or increasing your
chances of winning. One way might be to try and throw more and more computing power at the
problem. This is where the ingenuity of the Bitcoin network begins to reveal itself. The difficulty
of the challenge to solve for each block is dynamic and continuously adapts to the power of the
miners. The network tries to keep the difficulty of the problem at a level that limits the generation
of new blocks to around 1 every 10 minutes. This allows it to control the rate of generation of
new coins and the growth of the blockchain. It does this by monitoring the speed at which new
blocks are generated and every 2016 blocks either increases or decreases the difficulty depending
on how the miners coped [125].

The challenge that the miners need to solve in order to generate a new block is to repeatedly hash
the header of the potential block with a random number until the generated answer is less than
or equal to some target shared by the network [125]. Hashing is a cryptographic 1 way function
that is designed to be irreversible. The idea is to take some input, a string or a message, and
apply some function to that input in order to generate a fixed length output string or hash. The
function is designed in such a way that you cannot derive the original message or input from the
output hash. The hashing algorithm used by the bitcoin network is SHA256, an algorithm that
given any length input string produces a hash of length 256 characters. The network can vary the
difficulty of the challenge by increasing or decreasing the network target. One great property of
this challenge is that, arguably, there is no pre-defined method for selecting which random number
to use when hashing the head of the block and so finding a solution to the problem is considered
luck. Therefore the only real approach to solving the challenge is to repeatedly calculate a new
hash each time, brute forcing the possible inputs, until you get lucky.

At the current time, it is estimated that the combined power of the network, measured in hashes
computed per second, is around 3.5 × 1014. This illustrates just how powerful the network has
grown to become. Figure 2 shows the networks combined power in billions of hashes per second,
called the hash-rate, plotted against time for the past 2 years. From this graph we can see that
the hash-rate of the combined Bitcoin network has nearly quadrupled in the past 6 months.

10

Figure 2: The combined power of the Bitcoin network measured in hashes per second [24]

When we consider the nature of the challenge that miners are required to solve in order to mine
a block, we see that the challenge to solve is also ideal when we look at the required number of
transactions per block. As the network enforces no minimum or maximum number of required
transactions per mined block, just some spatial requirements, one might think that the challenge
would be easier to solve with fewer transactions in the block. This however is not the case. As
mentioned above, the challenge is to hash the block header with some random number. Due to
the way in which the block header is derived, through the use of a structure called a merkel tree,
the difficulty of the problem does not depend on the number of transactions per block. Because of
this, it would make sense for miners to want to include as many transactions per block as possible,
because of the additional transaction fees at no increased difficulty. Likewise, during its infancy,
when there were not that many transactions occuring regularly on the network, the ability to
mine blocks without needing transactions was an incentive for miners to invest their computation
power in order to keep the network running.

2.1.4 The Blockchain

With the public transaction ledger replicated across every node in the network, one might ask
what happens in the case that two nodes disagree. For example, if two nodes successfully mine
different blocks at exactly the same time and broadcast them across the network. In order to
answer that it is necessary to understand exactly how the chain is built and what we mean we say
two blocks are chained together.

As mentioned in the previous section, in order to solve a block, a miner needs to solve the challenge
of finding an appropriate hash for the header of a block. The header of a block is dependent on
the transactions in the block, via a merkel tree, as well as on the hash of the header of the previous
block. To illustrate this point take a look at figure 3.

11

Figure 3: Block chaining [19]

In this diagram we can see three block headers represented by big boxes labelled Block 1 Header,
Block 2 Header and Block 3 Header. These block headers correspond to blocks in the blockchain.
If we look at the Block 2 Header, we can see that it depends on the hash of the Block 1 Header,
i.e. the solution to the challenge for block 1. It also depends on the root of the merkel tree
representing the transactions in block 2. This structure is identical for all the blocks in the block
chain right down to the beginning of the chain where the very first block was created, called
the genesis block. The way in which these blocks are chained together has some important and
surprising implications. The first of which is that the solution to each block relies on the solution
to the previous block, meaning that it is impossible to attempt to solve blocks out of order, i.e.
in order to build and solve the second block, you need to have already solved the first block. This
requirement enforces the sequential generation of blocks.

The implications of sequential block generation are actually very strong. We know that the time
taken on average to solve a single block is around 10 minutes, it therefore means that the longer
the block chain, the more time and computational resource that has been invested into it. What’s
more, this dependency also means that the change or corruption of any information in a block in
the chain, will result in the invalidation of that block, as well as every block that comes after it.

For example, imagine if someone was trying to attack the blockchain shown in figure 3. What
they wanted to do was remove the details of a single transaction from block 1, i.e. remove the
transaction where Alice sends Bob 1 BTC from the set of transactions in the block. If they
applied this change, they would need to update the merkel root in the block, as the merkel tree
is calculated based upon the transactions in the block. Likewise, because that would change the
contents of the first block header itself, they would need to re-solve the challenge issued by the
network, as the output hash would change because the input block header changed. This would
change the solution of the first block. Now because the solution to the second block in the chain
depends on the solution of the first block, the solution to the second block would also need to
be recalculated, thereby affecting the solution to the third block, and so on. This cascade causes
every single block after the modified block to change.

This is a powerful property, because it means that if you insert a piece of information into a block
in the blockchain, as you add subsequent blocks to that chain, you increase the amount of work
that would need to be done in order for someone to corrupt that piece of information (i.e. they
would need to recalculate the entire chain after that block). This feature is often called proof of
work and is the way in which the network generates trust. We will revisit this property later.

This mechanism can also be used to solve disputes among nodes and achieve consensus as to the

12

order and outcome of operations. If we go back to the question raised earlier about what might
happen if two nodes were to disagree, we can see how this comes into play. For instance, imagine
that two nodes find a solution to the challenge for the next block at the same time. These nodes
then broadcast their solutions to the rest of the network. Who should the network side with? This
problem is often referred to as blockchain forking. Figure 4 illustrates the problem. We have two
valid solutions to the next block after Block 2, Block 3.1 and 3.2. Both of these solutions were
found at the same time and are valid.

Figure 4: Block forking

What will happen is the two chains will develop side by side simultaneously. Each node will
keep a copy of both chains until one of the chains becomes longer than the other, at which point
the longer chain will be accepted as the real one, and the smaller chain will be discarded (or
orphaned). Why will the network select the longer chain as the correct one? As discussed, the
longer the chain, the more time and computational resource invested into it, meaning a greater
proof of work, and hence more trust.

Furthermore, this property also protects the entire network from corruption. If an attacker wanted
to create its own fake chain fork and trick the network into accepting it, this chain would have
to be longer than the current one. As such, the attacker would need to have more computational
power than the entire network combined to grow its own chain faster than the one produced by
the network. This is extremely unlikely considering the size of the network and it has been argued
that if profit was the main focus of the attacker, they would actually gain more to follow the rules
than to attack it [127]. What’s more, even if an attacker could hold the majority of the power,
the worst they would be able to do is to reverse their own transactions, effectively issuing what is
known as a double spend attack.

A double spend attack is when an attacker is effectively able to spend the same transaction twice.
It is best illustrated with an example. Imagine Alice wants to buy a cup of coffee from Bob using
bitcoin. When she pays Bob, she broadcasts a transaction on the network that sends some amount
of BTC to the address that Bob requested. Bob sees that the transaction has been broadcast,
makes Alice her cup of coffee and Alice leaves the shop. Note that even though Bob saw the
transaction was broadcast, this transaction was unconfirmed, meaning that it had yet to be added
to a new block in the blockchain by a miner. Because Bob didn’t want to have to wait 10 minutes
for the block to be mined, he gave Alice her cup of coffee straight away, trusting that the trans-
action would soon be mined into the chain. The problem with this is that, if Alice was able to
mine blocks more quickly than the rest of the network, she could immediately create a different
transaction, sending the amount of money she sent to Bob back to herself, or to someone else. She
would then add that transaction to a new block, broadcast the solution, and everyone would add
that block to their chains. However, when the transaction that Alice originally sent to Bob was
to be verified and added into a new block, the network would see that the transactions referenced
as input to that payment had already been spent in the block that Alice just recently added. It
would therefore ignore the transaction as invalid and Bob wouldn’t receive his money.

13

What went wrong? The problem with this situation is a result of the way in which the network
solves disagreement. It effectively says that the longest chain, or the chain with the highest proof
of work is correct. If Alice has the ability to mine a block before the rest of the network, she could
spend the transactions referenced in the payment she sent to Bob before the payment is confirmed.
One might intuitively suggest that Bob should simply wait until Alice’s transaction is confirmed
by the network before giving her a cup of coffee. However this is not good enough because Alice,
having a majority of the network power, could fork the blockchain just before the point where
the network accepted Bob’s payment, generate two new blocks invalidating that payment, and
broadcast the longer chain to the network. Theoretically there is no strict limit as to when it
becomes impossible for Alice to generate a longer chain. There are however practical limits and
trade-offs. The practical cost of having a majority of network power completely dwarfs the costs
saved by stealing a cup of coffee. Likewise, even if Alice didn’t have a majority of the network
power, the practical chance of her getting lucky and being able to mine a new invalidating block
before the rest of the network is so low that Bob’s decision not wait for the confirmation is the
practical and correct thing to do.

The story changes however, if instead of Alice purchasing a cup of coffee from Bob, she buys a new
Ferrari. Now the cost trade-off is different, and it would be wise for Bob to wait some amount of
time for new blocks to be added to the chain, re-confirming the transaction. A natural question
to ask is how long should he wait in this case? Although there is no concrete answer it has been
recommended that waiting for 6 block confirmations (or 5 new blocks on-top of the particular
transaction block). This reduces the chance of an attacker successfully performing a double spend
attack to less than 1% if they had more than 10% of the hash rate or computing power of the
network [119]. With around 1 block being mined every 10 minutes, this would require a wait time
of 1 hour, which is more than reasonable considering that banks may take more than 24 hours for
a payment to be processed. In fact, the double spend attack is only one particular example under
a class of attacks called consensus attacks.

2.1.5 Transaction and Scripts

Up until now, whenever we have referred to a Bitcoin transaction we have assumed a construct
that sends money from one public key to another. In reality this is only one type of transac-
tion supported by the network and for the sake of the Alice-Bob example is a simplification of
the protocol. The Bitcoin network can actually support several different and more complicated
types of transactions, allowing much more than direct money transfers from one person to another.

The first thing we need to understand in order to visualise this is the notion of a bitcoin address.
A bitcoin address, like a public key is a string of alphanumeric characters that can be publicly
distributed to allow the transfer of funds. What’s important to note is that in the case of Alice
sending money to Bob, the destination or output address that Alice uses is derived from Bob’s
public key, it is not just Bob’s public key. The bitcoin destination address and Bob’s public key
are not the same thing. In fact, the address can be derived directly from the public key by
using a series of hash functions, such as SHA256 and RIPEMD [6]. In the case that Alice wants to
send money directly to Bob, the address that Alice uses as the bitcoin output address is calculated
directly as:

Bitcoin address = RIPEMD160(SHA256(Bob’s public key))

The resulting address is often displayed to users under a special encoding called Base58Check
encoding to make the output more readable and to protect against errors via a check-sum. This
type of transaction is typically referred to as a Pay-to-Public-Key-Hash or P2PKH for short, as
the amount in the transaction is being paid directly to the hash of the public key. As discussed
earlier, in order to display ownership of a public key, it is sufficient to sign something with the
corresponding private key. Therefore, in this example, if somebody wanted to generate a new
transaction referencing Alice’s payment to Bob as an input, they would need to be able to sign

14

the new transaction using Bob’s private key, which only Bob has.

Whenever a transaction is being validated for use in a new block, the mining node will execute
what is a called a script, or a sequence of instructions, in order to check that the inputs of any
transaction can actually be spent. In order to do this, the mining node executes two scripts, the
locking script, and the unlocking script. The locking script is a form of lock placed on the outputs
of any transaction. In order for someone to spend those transactions (i.e. reference them as inputs
to a new transaction), they need to meet the requirements set by the locking scripts. Likewise, an
unlocking script is a script placed on the inputs of a transaction. These scripts are run in order
to unlock the locking scripts placed on these inputs by the previous transactions.

The easiest way to think about it is like a puzzle. In order to spend any transaction, you need
to solve the puzzle placed on the transaction by that transactions locking script. When you have
found a solution to the puzzle you enter it by writing the steps in the unlocking script. This is
so that when the transactions are being validated by a mining node, these scripts when executed
together will solve the puzzle and at the end of the execution will allow the amount to be spent.
Successfully unlocking the script occurs when after execution of both scripts together, the result
is 1, representing TRUE.

The script language that is used by Bitcoin is a very simple stack-based language. It was deliber-
ately designed not to be Turing complete, meaning that not every program can be represented or
built using it. The reason for this is to protect the network from potential attacks such as infinite
loops or denial of service, by using very long, complex programs in an attempt to slow the network
down.

To provide concrete script examples, imagine Alice constructs a transaction with a locking script
that simply returns 1 or TRUE always. In this case, anybody can spend the transaction because
the answer to the puzzle is trivial, an empty unlocking script will do, because when executed
together the result will be 1 and thus the transaction will be valid. Likewise Alice could also
construct a transaction with a locking script that simply returns 0 in all cases. This transaction
will be provably unspendable, because regardless of any unlocking script, there is no way that the
combined scripts can result in TRUE.

A more common example is that of a Pay-to-Public-Key-Hash transaction. An illustration of this
transaction script can be seen in figure 5 below. Let’s assume that Alice has sent 1 BTC to Bob
and Bob has created a new transaction in order to try and spend Alice’s payment. This new
transaction will need to unlock the locking script that Alice placed on her payment. In order to
do this Bob generates an unlocking script that he thinks will do the job. In figure 5 you can see
Bob’s unlocking script on the left and Alice’s locking script following it on the right. When a
mining node attempts to verify the new transction that Bob has made, it will execute the scripts
together from left to right.

Remembering that the scripting language is stacked based and that in order for verification to
succeed, the result of the entire script must be TRUE, the flow of execution will go as follows: First,
Bob’s signature will pushed onto the stack, this then followed by his public key. The OP DUP
instruction will then be executed, duplicating whatever is at the top of the stack. In this case, it
will pop Bob’s public key off the top of the stack, make a copy of it and then push them both back
onto the stack. The OP HASH160 instruction will then pop the top of the stack, Bob’s public key
copy and hash it, pushing the resulting hash back onto the top of the stack. Next, Bob’s public
key hash as provided by Alice will be pushed onto the top of the stack. The OP EQUALVERIFY
operator will then execute, popping the top two elements off the stack and comparing them. In
this case these will be Alice’s provided version of Bob’s public key hash, and the calculated version
of Bob’s public key hash. These values will be equal, as we assume nothing has gone wrong, and
the OP EQUALVERIFY check will succeed. Finally, the OP CHECKSIG operator will execute,
popping the very last two values off the stack, Bob’s original public key and his signature and
attempt to verify them. This verification will succeed, and a resultant 1 will be pushed onto the

15

stack. Now that the script has finished being executed, the mining node will pop the top value
of the stack, in this case the 1 we just pushed, and check if the final result is TRUE. This will
succeed as 1 and TRUE are the same, and therefore the mining node will accept the transaction
as valid.

Figure 5: Bitcoin Pay-to-Public-Key-Hash Script

At present, the developers of Bitcoin have limited the types of supported transactions on the net-
work to 5 specific constructs. Although this may only be a temporary limitation, these supported
constructs are referred to as standard transactions and are currently supported by all mining
nodes in the network. The 5 supported constructs are Pay-To-Public-Key-Hash, Pay-To-Public-
Key, Multi-Signature, Pay-To-Script-Hash and Data-Output. Although the other script types are
technically unsupported, there are mining nodes who will take these scripts to be valid when gen-
erating new blocks. At the current time however, these transactions are under no guarantee to be
mined. And as such, we will only discuss the 5 supported types below.

As we have previously seen, the Pay-To-Public-Key-Hash transaction type allows a payment to
occur from one party to the public key hash of another. In order for that transaction to be spent by
the receiving party, they need to provide a signature using the corresponding private key from the
key-pair. Likewise, a Pay-To-Public-Key transaction allows the transfer of funds from one party
directly to the public key of another. This is effectively a simpler form of the Pay-To-Public-Key-
Hash transaction and is more commonly associated with older mining nodes. This is because it
requires more space to store a public key than a hash of that key. Similarly, a Multi-Signature
transaction is one that requires multiple signatures in order for the transaction to be spent. For
example, requiring 2 out of 3 signatures in order to release the funds. These types of transactions
support M of N schemes, for example, to provide redundancy and additional security features
such as forms of escrow.

The Pay-To-Script-Hash transaction type was developed to allow a payment to be sent to the hash
of a script. Although this construct seems strange at first, the motivation behind it was to allow
the complexity of implementing scripts to be moved away from the party creating the transaction
to the one wanting to spend it. For example, imagine that a company implements some type
of internal security features to prevent its employees from running away with its money. These
security features are implemented as a complex script that they require all customers to attach to
their transactions. However, as a customer, I don’t want to worry about creating these complex
locking transaction scripts every time I wish to purchase something from the company. Instead,
by using a Pay-To-Script-Hash transaction type the company can be responsible for implementing
those scripts, and the customers can pay to the bitcoin addresses provided by the company, hiding
these complexities.

16

Finally, the Data-Output transaction type, sometimes called the OP RETURN transaction type,
was developed to create provably unspendable transactions. Using this transaction type you can
generate unspendable outputs that contain up to 40* bytes of arbitrary data. This data can be
used to store any type of additional information associated with a transaction. The OP RETURN
transaction type was only later introduced as standard as a response to users wanting to store
Bitcoin related data with various transactions. As mentioned in the Blockchain section above, one
of the great properties of the Bitcoin blockchain is the ability to protect data in the chain from
corruption, through proof of work. This has some interesting consequences and as a result, people
have come up with ingenious and novel ways of using this transaction type to create a whole host
of unique and unrelated applications. Examples include smart contracts, proof of existence and
certification. As you increase the number of blocks on the chain, you increase the amount of work
required to undo the blocks. This effectively adds more and more trust to the existence of the
piece of information stored in a transaction. What’s more, because every block is timestamped,
it is possible to certify exactly when that data piece first existed.

*Note that as of early 2015, the OP RETURN transaction type has had it’s limitation of 40 bytes
increased to 80 bytes [39].

As these novel applications have gained popularity among users, concerns have been raised about
the amount of unnecessary information that the blockchain is currently storing. It has been argued
that adding data to the blockchain that is unrelated to Bitcoin bloats the chain, making it bigger
for no reason. Because the entire blockchain has to be replicated at every node in the network you
effectively waste large amounts of space of many different nodes. However, decentralized replica-
tion and proof of work actually make the blockchain perfect for embedding information without
worry of loss or corruption, and as such users have argued that these applications will only ever
promote the use of Bitcoin as a currency.

Before the existence of the OP RETURN transaction, users came up with other ways of embed-
ding data into the blockchain. One of which was to take some piece of information, hash it to
a fixed length and use the hash as the destination address of a new transaction. This had two
implications. The first of which was that, because the destination address of the transaction does
not correspond to any real bitcoin address, these transactions can never be spent, meaning that
the amount of bitcoin provided as inputs to the transaction are forever lost, decreasing the total
amount of bitcoin available globally. The second implication was that, because mining nodes store
unspent transactions in main memory in order to allow efficient generation of new blocks, these
types of transactions will too be stored in memory. However, because they can never be spent, they
will exist forever in main-memory, effectively requiring miners to continuously increase the size of
their RAM in order to continue operating. The motivation behind the OP RETURN transaction
was to prevent problems like this from occurring. By making the transaction provably unspendable
through the transaction script, the miners will be able to identify these transactions and will not
store them in main-memory. The embedded data however will still exist forever in the block chain.

2.1.6 Wallets

A Bitcoin wallet is a storage container that stores the access information for Bitcoin accounts. As
previously mentioned, a Bitcoin account is a private-public key-pair and in order for someone to
spend the funds in an account, they must have the correct private key to unlock those funds. All
a wallet therefore needs to do is store a set of private keys as public keys are easily derivable from
a private keys. A question one might naturally ask is why then would someone want more than
1 account, or 1 private-public key-pair? Typically the reason for this is anonymity. If someone
were to only use one public key for all of their transactions, although you wouldn’t know who
they were, you would still be able to track all of their expenditures and incomes, and in doing so
you might be able to infer something about them. To protect against this it is common practice
for people to use a new account or key-pair for every transaction that they perform. This makes

17

tracking payments and the flow of money much more difficult.

Although this might seem wasteful, as you effectively create a new account for every transaction,
the length of a private key is 256 bits long. This means that there are 2256 different bitcoin ac-
counts. This number is equivalent to around 1077 and is so sufficiently large that running out of
addresses should not be a concern. Furthermore, it also means that the chance of any two people
generating the same private-public key-pair is nearly impossible, assuming that the generation of
key pairs is randomly and evenly distributed. Note that this may not be the case for incorrect or
insecure implementations of account generators.

A Bitcoin wallet is therefore simply a private key store. It can be in the form of a hard drive, a CD,
an application on your mobile phone or even a piece of paper that you keep in a safe. Anything
that can store data can act as a Bitcoin wallet. Arguably, the biggest problem with wallets today
is that if you lose your wallet, or the keys are removed, you permanently lose access to the money
in those accounts. In fact over the past couple years there have been several unfortunate cases
where people have lost their private keys and hence forfeited large amounts of bitcoin. In one case
a man threw out an old computer hard drive on which he had stored his private keys, resulting
in a loss of 7500 BTC, with an estimated value of £4.6 million [9] at the time. Likewise, because
keys are regularly being generated for new transactions, wallets also need to be backed up on a
regular basis to prevent data loss.

To protect against these problems there have been several developments in wallet technology over
the past few years. These technologies range from software based wallets, such as seeded hierar-
chical deterministic wallets, to hardware based wallets, such as Bitcoin Trezor [113]. Each type
of wallet has its own unique advantages and design purpose. Software based seeded wallets for
instance, only need to be backed up once because the generation of new keys is deterministic
upon some seed. Hardware based wallets on the other hand are designed to protect from viruses,
cyber-attacks and malware. For example, figure 6 shows Bitcoin Trezor, a type of hardware
based wallet. This wallet is designed to prevent private key theft. It does so by never exposing
the private keys stored in the wallet when transactions are signed. This means that regardless
of how insecure the computer is that is being used to generate the transactions, the private keys
will not be made vulnerable. This type of offline Bitcoin storage is often referred to as cold storage.

Figure 6: Bitcoin Trezor Hardware based Wallet [113]

2.1.7 Alt Coins and Chains

A year after the initial Bitcoin whitepaper was released, a reference implementation [18] was
published online by Nakamoto. This implementation was released under an open-source license,
allowing the bitcoin community to verify its correctness and contribute to the project. Since then,
the implementation has been revised and updated by many different bitcoin developers and enthu-
siasts worldwide. In 2011 Nakamoto withdrew from the community, leaving the primary control
of development to a group of community volunteers.

18

By open-sourcing the project, Nakamoto also gave individuals the ability to fork the reference im-
plementation and create their own digital currency based on its design. This decision has resulted
in the release of hundreds of different online alternative currencies. Each currency providing some
unique spin or variant on the original Bitcoin implementation. These alternative currencies are
often referred to as altcoins and usually differ from Bitcoin through some small alterations. For
example some modify the total number of coins that will be released over the currencies lifetime
while others modify the speed at which blocks can be generated or the proof of work algorithm
used to generate those blocks. Although many of these coins are based on bitcoin, some do not
re-use any of its code and instead borrow the principles and ideas behind the currency. Nonethe-
less it is still common for these currencies to be called altcoins.

For example, one of the very first altcoins, Litecoin [73], was released in 2011.Litecoin is the
second most successful digital currency, second only to Bitcoin itself. The primary differences
between Bitcoin and Litecoin are that Litecoin has an average block mining time of 2.5 minutes,
a total number of coins limited to 84 million and it uses a different proof of work algorithm called
Scrypt. The change in the proof of work algorithm used by Litecoin means that the network is
more resistant to rapidly accelerating hardware as the algorithm is very memory intensive and
much more serialised than SHA256 used by Bitcoin. This means that individuals don’t require
large investments in order to remain competitive when mining. They are not quickly outdone by
specialised harware rigs, such as application specific integrated circuits, or ASICs. Furthermore,
the increase in the speed of block mining means that the network can cope with transactions much
more quickly, providing confirmations much earlier.

Another intersting example of an altcoin is Curecoin [43] that was released in 2013. Curecoin
provides an interesting innovation on the foundation already set by Bitcoin. Rather than use
SHA256 as the proof of work, Curecoin uses a protein folding algorithm developed by Stanford
University, called Folding@Home [115]. Folding@Home is an algorithm that simulates protein
folding and performs scientific research calculations, the results of which are useful in helping
to cure diseases such as Cancer and Alzheimer’s. The idea is to replace the wasted computa-
tion in the Bitcoin network with computation that would help medical research at the same time.
Curecoin has a current block generation time of 10 minutes, and an unlimited currency generation.

As well as innovation in proof of work mechanisms, there have also been several alternate curren-
cies based on improving the anonymity of Bitcoin transactions. One such currency is Bytecoin [31],
a currency launched in 2012 based on the CryptoNote [42] reference implementation. The idea be-
hind CryptoNote and Bytecoin was to use ring signatures, a mechanism where transactions between
parties are signed by multiple individuals. The idea is that the verifier of the transaction cannot
distinguish the direct paticipants from the rest of the signing group. This makes blockchain anal-
ysis and transaction tracking much more difficult and thus increases the anonymity of the network.

Figure 7 shows the different logos for each of the digital currencies mentioned above. These logos
are for Bitcoin, Litecoin, Curecoin and Bytecoin respectively.

19

(a) Bitcoin
Logo [123]

(b) Litecoin
Logo [73]

(c) Curecoin Logo [43] (d) Bytecoin Logo [31]

Figure 7: Logos of Various Digital Currencies

In addition to altcoin technology, the open-source nature of Bitcoin has also driven development
in altchain technologies. These type of developments innovate on the block chaining algorithm
used inside Bitcoin in order to achieve consensus on a variety of different problems. For instance,
providing a decentralized DNS registrar, resource distribution and contract generation.

One concrete example of an altchain is Bitmessage [22]. Bitmessage is a distributed secure messag-
ing service. It uses a block chaining algorithm to provide peer-to-peer and trust-less communica-
tion where the parties involved are kept anonymous and their messages hidden through encryption.
Bitmessage circumvents the single point of failure associated with email servers, making denial of
service attacks, eavesdropping and message observation much more difficult. Furthermore mes-
sages are not persistent, they only live for a certain period of time before they disappear from the
chain.

2.1.8 Bitcoin 2.0

Just like alternative currencies and chains Bitcoin has also inspired the development of many dif-
ferent metacoins and metachains. These innovations build software layers and protocols directly
on top of the Bitcoin blockchain, allowing them to support many different applications such as
currencies inside currencies, or the creation of much more powerful protocols. The majority of
these innovations use the OP RETURN construct in Bitcoin’s transaction scripts to embed pieces
of metadata into the blockchain. These types of innovation are much more widely referred to as
Bitcoin 2.0, effectively representing the next generation of Bitcoin technology.

One such example of a metacoin is Mastercoin [76]. Mastercoin is a protocol layer built on top of
the bitcoin blockchain, similar to how HTTP uses TCP/IP. The idea of Mastercoin is to provide
a framework and a set of tools that can be used to develop new applications. One example is
supporting the creation of new user currencies where individuals can build their own customised
currencies without needing to do any software development. Mastercoin uses a special Bitcoin
address, called the Exodus address, to embed data into the blockchain. This allows it to differen-
tiate normal transactions in the network from Mastercoin specific ones. Howevere there are plans
for it to migrate to use the OP RETURN transaction operator in the future. Mastercoin uses
its own currency MST as a token for building Mastercoin transactions. The distribution of MST
was based on early payments to the Exodus address, allowing users to effectively trade Bitcoin for
Mastercoin.

Another example of a Bitcoin 2.0 innovation is Ethereum [48]. Ethereum has been defined as a
“next generation smart contract and decentralized application platform” [49], effectively acting as
a Turing-complete contract programming language. Ethereum is not a copy of Bitcoin, but is it’s
own unique innovation, borrowing several principles from Bitcoins design. Ethereum models its
blockchain as a state transition system and uses it to act as an abstraction layer for a Turing-
complete programming language. This would allow anyone to write decentralized applications and
smart contracts in a very simple way, often reducing the complexity of many existing altchains to

20

a very few lines of Ethereum code. Ethereum uses an internal currrency called Ether to drive the
protocol.

Finally, Counterparty [41] is another Bitcoin innovation that builds a protocol layer on top of a
blockchain. Counterparty provides peer-to-peer financial tools and a platform on which to create
smart contracts, perform asset exchange and generate custom tokens. Counterparty is actually a
port of Ethereums open-source reference implementation. Instead of using a new custom block
chain to build upon, Counterparty uses the Bitcoin blockchain as its foundation, arguing that
there is no need to create a new blockchain as suggested by Ethereum. Counterparty uses the
OP RETURN script construct to embed data into the blockchain and its own internal currency
XCP to drive the protocol. In contrast to how Mastercoin and Ethereum distributes their to-
kens, Counterparty uses a proof-of-burn [124] scheme where miners show that they have burnt an
amount of Bitcoin in order to recieve XCP. Burning Bitcoin effectively means sending an amount
of Bitcoin to an unspendable address. This act effectively bootstraps value, demonstrating a belief
that by burning something valuable, you believe the purpose of that burn to have value too, i.e.
you burn Bitcoin for some XCP. In doing this, XCP is given value through the lost Bitcoin.

Figure 8 shows the different logos for each of the three Bitcoin 2.0 technologies mentioned above.
These logos are for Mastercoin, Ethereum and Counterparty respectively.

(a) Mastercoin Logo [76] (b) Ethereum
Logo [49]

(c) Counterparty Logo [41]

Figure 8: Logos of Various Bitcoin 2.0 Technologies

21

2.2 Online Betting and Gambling

2.2.1 Overview

In addition to virtual and digital currencies, the Internet has also given birth to the global online
gambling and betting marketplace. With the rapid expansion of the World Wide Web, the worlds
first online casino, InterCasino, was opened in 1996 [68]. It was the first casino to offer online
betting and wagering in fiat currency, making use of the Internet as an open, wide-spread and
instantly accessible medium. Online betting and gambling has since grown rapidly. So much so
that, in 2012 it was estimated to be worth in excess of 2 billion pounds in the U.K alone [36].

Despite the border-less nature and freedom of the Internet, online betting is a very highly regu-
lated and complex sector. Different countries around the world hold different laws regarding online
betting. Unsurprisingly, each country also has its own unique definition to describe exactly what
constitutes betting. For example, in the United States it is against federal law for websites to take
sports bets over the Internet. They can however take bets from casinos or poker online, provided
the state in which the participants reside don’t have locally conflicting laws [1]. In South Korea
however, any type of gambling or betting is illegal, regardless of whether or not it occurs online.
This is true in all cases except if the person placing the bet is a tourist, not of Korean, Vietnamese
or Nepalese citizenship. In the United Kingdom, gambling is legal both online and off, provided
the participants are over 18 years of age. Unfortunately, things become even more complicated
when gambling occurs online across several different jurisdictions. For example, an American citi-
zen in Texas placing a bet on a sports website registered in the U.K, on a server running in France.

The outcome and resolution of bets are also highly complicated in their own respects. Gambling
agencies post long and intricate terms of conditions surrounding the outcome of a bet and the po-
tential situations that can arise. For example, what happens if a player retires in a game of tennis
without having finished the match [2]. Or if an athlete wins an Olympic event, but subsequently
has their medal revoked after failing a drugs test [111]. It is the details of these exceptional, but
not uncommon, circumstances that make betting a fascinating and complex area.

In order to understand the various types of wagers and bets available, it useful to understand
exactly what betting and gambling are. It has been said that gambling is the act of “wagering
money, or items, on an event with an uncertain outcome” [128]. The primary motivation for
gambling is to attain a greater wealth or value than what was originally staked. It is often agreed
that any type of wager, regardless of its nature, contains 3 key elements, “prize, consideration
and chance” [100]. The first element, prize, is the incentive or motivation for the parties involved.
The prize provides the participants with a reason to stake something of theirs in order to gain
something of even greater worth. The second element, consideration, requires a specific act by the
participants, such as risk, in order to be considered for the reward or prize. The third element,
chance, requires that the outcome of the event or wager is not predetermined or predefined. It
may involve some element of skill or ability but it should not be deterministic, otherwise there
would be no incentive for the parties to bet against each other.

Wagers can come in many different forms. As long as the 3 key elements are present, a wager can
be placed on just about anything. Traditionally, casino betting often encompass wagers on the
outcomes of various games of chance. The participants or bettors can compete directly against
the casino (or house), or against each other. Examples of casino games include craps, roulette,
poker and blackjack. Some of these games are considered pure games of chance and others a hy-
brid between chance and skill. Roulette, for example, is considered a pure game of chance [23]. A
mechanical wheel is spun and a small ball is placed into the wheel. Eventually the wheel stops and
the ball lands on a number and colour. This game, if implemented correctly, should be random
and fair, with the probability of the ball landing on each of the numbers being evenly distributed.
Because of this casinos often implement a house edge, where the amount paid out to any winning
player is slightly less than would be expected based on probability. This moves the odds into the
casinos favour so that over a long period of time the casino wins more money, on average, than
it loses. In contrast to roulette, poker, is often considered a game of skill. This is because the

22

outcome of the game not only depends on the luck of the cards dealt, but also the moves and
strategies taken by the player.

Sports betting is a different type of betting. Sports betting typically involves wagers on the outcome
of various sporting events, such as tennis matches or football games. Participants can wager, for
example, that a specific team or individual might win a tournament, or that the points difference
between any two teams in a game might be greater than some number. The types of bets that
can be placed on any event are usually called the betting markets. Any specific event, such as
the 2015 NFL Super Bowl Final, will typically have in the range of 1 to 30 markets, each of
which varies from ‘‘which team will win?’’, to ‘‘the total number of yards run in the

3rd quarter’’. Sports betting is extremely popular in the UK and has an estimated net worth
of around £650 million [61]. Other popular types of betting outside of casinos and sports include
lottery betting, such as taking part in the UK National Lottery [75], and buying scratch cards.
Scratch cards are small cards that can be bought from select stores. They are scratched to reveal
some combination of numbers and symbols, which if considered a winning combination can result
in prize money or other valuable items. Figure 9 shows a National Lottery scratch card.

Figure 9: National Lottery Scratch Card [74]

2.2.2 Sportsbooks

A sportsbook is a service that accepts bets on various sporting events. Sportsbooks traditionally
feature fixed-odds and parimutuel betting on different markets. Fixed-odds betting is a style of
betting where specific odds are calculated for each market and offered to bettors. The odds typ-
ically correlate with the probability of the outcome and may include a house edge. A sportsbook
is said to be balanced if the overall outcome is in favour of the individual offering the book, often
called the bookie or bookmaker. This, for example, means that the bookie stands to make an
overall profit regardless of the outcome of the various markets. Creating a balanced book is not
straight forward as it is impossible to know the true probabilities of any event occurring. As such
odds are typically calculated using various pieces of information and heuristics. It is worth noting
here that an arbitrage situation is one that can arise when a bettor takes advantage of a price
difference between two markets. This results in the bettor being guaranteed a profit, regardless of
how the market is settled. Arbitrage situations typically arise due to different odds being offered
by different bookmakers.

Fixed-odds are traditionally offered in three different formats, fractional odds, decimal odds, and
moneyline odds. Fractional odds are most common in the UK and represent the total amount of
money that will be paid to the bettor, should they win. For example, the odds of 10/1, read as
10 to 1, mean that for every £1 staked, the bettor will receive £10 if they win. Therefore if the
bettor bets £2 on some outcome at 10/1 odds, and that outcome is correct, they will receive £20,
in addition to the originally staked £2, making £22 in total. Decimal odds on the other hand are
a little simpler. They differ from fractional odds in that, the odds when multiplied to the original
stake, represent the total amount of money won. For example, if you are given odds of 5.00, that
means for any amount you bet, multiple it by 5.00 and that is the total amount you will receive
if you are correct. So, if you bet £1 at odds of 5.00, you will receive £5 if you are correct, and
if you bet £2 you will get £10. Decimal odds are simpler than fractional odds because you don’t

23

need to add your original stake back onto the total amount of winnings. Decimal odds are used
more commonly in Australia, New Zealand and Canada.

Moneyline odds are a little more complicated and are typically favoured by American bookmakers.
Moneyline odds can be quoted as either being positive or negative. If the odds offered are positive,
such as +500, this represents how much money will be won on a $100 stake. In this case, the
winner will receive $500 plus their original stake of $100, making these odds equivalent to 5/1
in fractional odds format. If odds are negative, such as -500, this represents how much must be
wagered to win $100. In this case, odds of -500 mean that in order for the bettor to win $100,
they must wager $500, making these odds equivalent to 1/5 in fractional odds format. Even odds,
(eg. 1/1 in fractional format) can be represented as +100 or -100.

Parimutuel betting is another style of betting typically offered by bookmakers. In contrast to fixed-
odds betting, parimutuel betting is where all bets on a particular event are pooled together and
when the event is over, the pool is shared among the winners. Parimutuel betting is quite common
for events where participants finish in a ranked order, such as in horse or greyhound racing. For
parimutuel betting the final payout or odds are not determined until the pool is closed and the
commission removed. To illustrate this, in a horse race with 3 competitors, bettors place money
on who they think would win. When the race begins, and the pool is closed, there is £100 on
horse 1, £50 on horse 2 and £150 on horse 3. When the event is finished and horse 3 declared the
winner, the payout would be calculated as follows. First, the commission would be removed from
the pool, lets assume there is 0 commission for the sake of this example. Then the total amount
in the pool, £300, would be split relatively between the parties who bet on horse 3. The odds
for horse 3 in this example would therefore be calculated as £300÷£200 = 1.5, so decimal odds
of 1.5, and fractional odds of 1/2. Before an event begins and the pool for that event is closed
bookmakers typically provide estimates for the current odds in the pool, should no more bets be
placed. This allows bettors to have some idea of the current market return.

Although fixed-odds and parimutuel betting are the more common types of betting, many book-
makers offer various interesting twists and opportunities to their customers. For example, in-play
betting is a betting type where bettors can place bets while an event is currently happening.
Second-half betting is where bets can be placed only on the outcome of the second half of a game.
And Parlay betting allows bettors to chain bets together to receive higher pay-outs and improved
odds. Many of these betting styles depend on the type of event being played, the different possible
outcomes and the bookmaker.

2.2.3 Betting Exchanges

In contrast to sportsbooks, betting exchanges are entities that support peer-to-peer betting. Rather
than betting against a bookie or bookmaker, betting exchanges allow bettors to compete directly
against one another. This typically means that the odds offered on betting exchanges are much
more attractive than those offerred by sportsbooks as there is a lower cost overhead. In addition
to this, betting exchanges also offer increased flexibility as bets can be placed both for and against
a specific outcome. For example, in a horse race, if you think a specific horse will win, you back
them. This is a bet placed for a specific horse to win. However if you think that a horse will lose,
you lay a bet against them. This means that in a race with many different horses, for your bet
to win, any horse can win except for the one you chose to lay. This allows increased flexibility
when matching opposing bettors in the exchange, even if some people find the idea of betting that
someone will lose dubious.

Typically, the operator of the betting exchange takes a small commission on the winning bets, and
takes no commission on losing bets. The amount taken is usually small enough that the odds are
still much more attractive than those offered by sportsbooks. In addition to this, betting exchanges
also offer less restrictions when it comes to betting. Sportsbooks for example may limit the activi-
ties of a bettor, such as the frequency or total amount wagered. This is common if someone wins

24

too much money, putting the bookmaker at a loss. This is not the case with betting exchanges.
As long as there is someone to match the bets placed, the size and frequency of those bets are
unrestricted. Betting exchanges therefore tend to thrive when there is high market liquidity,
as this drives up the number of bets matched. Although betting exchanges are able to offer bet-
ter odds, they still lack many of the exciting features offered by sportsbooks, such as parlay betting.

At this point, it is worth understanding how back bets and lay bets are matched against one
another in a single market. As previously mentioned, a market for an event can have several
outcomes. For example, in a horse race with 8 horses, the market for “Who will win the race?”
can have 8 possible outcomes, one for each horse (or runner). This means that a betting exchange
can match bets in a single market using several possible ways. One way is to match bets across
a single outcome. This means one user chooses to back a specific outcome, and the other user
chooses to lay that very same outcome. If the odds proposed by the users are appropriate, the
bets can be matched against one another.

Another possible way to match bets is when the market has only 2 possible outcomes, for example
if there are only 2 horses in a single race. Because there can only be 2 outcomes (either the
first horse wins, or the second one does) bets can be matched in a slightly more flexible manner.
Matches across a single outcome can still happen as before, but now, we can also match back -back
bets on the two runners, and lay-lay bets on the two runners. For example, if someone chooses
to back horse 1, and someone else chooses to back horse 2, because there can only be 2 possible
outcomes, these bets can be matched against each other (e.g. the first person said horse 1 was
going to win, but the second person said horse 2 was going to win). The same goes for a lay on
horse 1, and a lay on horse 2. Note that we are implicitly making the assumption that we do not
worry about an exceptional outcome, one where no horse wins.

In order for bets to be deemed appropriate for a match, we need to consider the odds that each
bet has been proposed at. For the sake of example, let’s assume that we are dealing with decimal
odds. As mentioned above, decimal odds are odds in decimal format (e.g. 1.5, or 2.3, or 3.7). If
you place a bet at decimal odds of y, for an amount z, and your bet wins, the total amount you
get back is y × z. For example, if you placed a bet of £5 at odds of 1.5, and your bet won, you
will receive £5 × 1.5, 7.50. Naturally, it doesn’t make sense to place a bet with odds less than
or equal to 1, because even if your bet wins, you would still end up with less than or the same
amount of money.

In order for bets to be deemed appropriate for matching the back odds and lay odds need to
correlate. For example, if someone lays a back bet of £5 at odds of 1.5, then that person should
win £7.50 in total if their bet is a winning bet. This means that a lay bet wanting to match this,
needs to put £2.50 into the pot. Now, because the total pot would be £7.50, the odds at which
they are laying is 3.0 (i.e. they put £2.50 in, and if they win, will get £7.50 out). So in order for
bets to matched, the odds at which they are proposed need to have this relationship. The same
goes for back -back matches and lay-lay matches in markets with only 2 outcomes.

Note that things can get slightly more complicated when we see that bet matches do not have to
be complete, but that partial matches are allowed. So in the example above, the lay bettor could
choose to completely match the back bet by placing £2.50 into the pot at lay odds of 3.0, but they
could also partially match the back bet by only placing £1.25 into the pot at odds of 3.0. This
means that the back bet would only be half matched, and so someone else could decide to come
in and lay another £1.25 to match the remaining £2.50 of the back bet.

Examples of two very large and popular online betting exchanges are Betfair.com [13] and Bet-
Daq.com [12]. One thing notable about betting exchanges is that the identities of the bettors
who’s bets are matched are kept anonymous. This means that if you a place a bet and it is
matched by someone else, only the exchange knows how that bet was matched and which parties
were involved. Furthermore, because online betting exchanges only require a minimal amount
of personal informational, and do not check if that information is valid, the level of anonymity

25

is much higher than that of a sportsbook. Figure 10 shows a screen shot of the Betfair betting
exchange website.

Figure 10: Betfair Online Betting Exchange [13]

2.2.4 Bet Resolution and Settlement

When placing a bet or wager via a sportsbook, or betting exchange, there are very long and intricate
terms and conditions surrounding the outcome of a bet. Betfair, for example, provides a lengthy
set of rules and regulations [14] outlining the ways in which way a bet can be settled under various
circumstances. These regulations include a set of general rules as well as sports specific rules. For
example, Betfair provides a sports specific clause relating to shirt number bets in football :

- ’Shirt numbers’ bets will refer to the shirt number allocated at the start

of the match.

- ’Shirt numbers’ bets will include own-goal scorers.

- Any player whose shirt bears no number will be allocated the number 12.

Similarly Betfair also includes a clause relating to the outcome of tennis matches where a player
retires or is disqualified:

- If a player or pairing retires or is disqualified in any match, the player

or pairing progressing to the next round (or winning the tournament in

the case of a final) will be deemed the winner.

- However if less than one set has been completed at the time of the

retirement or disqualification then all bets relating to that individual

match will be void.

These terms and conditions have to be considered carefully by bettors, especially arbitrage bettors,
as the appearance of an arbitrage situation may not be so clear cut when the markets being played
off against each other contain slightly different terms and conditions. Likewise, the sportsbooks
and betting exchanges that offer these bets need to make sure to cover all the possible cases and
situations that can arise surrounding a bet, otherwise they may be left exposed to unexpected
outcomes.

As a result of this complexity, it is not uncommon for disputes to be raised regarding the settlement
of a bet. As such, UK bookmakers and betting exchanges are required to register with third party
adjudication services in order to deal with these disputes. Betfair for example is registered with
the Independent Betting Adjudication Service, or IBAS [63]. IBAS is a third party organisation
that acts an impartial adjudicator for disputes that arise between bet makers and bet operators in
the United Kingdom. It was reported to have awarded over £365,000 to customers over disputes

26

in 2007 [62]. Third party adjudication services typically only ever get involved with disputes
when the bet maker has gone through the internal dispute process of the bet provider, but has
been unhappy with the result.

In addition to third party adjudication services, there is also a regulatory body in the UK re-
sponsible for betting and gambling. This body is called the UK Gambling Commission [57]
and was set up in 2007 as a direct result of the 2005 Gambling Act [56]. The purpose of the
Gambling Commission is “to keep crime out of gambling, to ensure that gambling is conducted
fairly and openly, and to protect children and vulnerable people.” It is therefore responsible for
issuing licenses to gambling operators, prosecuting illegal gambling and for advising government
on gambling related problems.

The outcome of various sports events and matches are typically declared by the official authorities
of that sport. For example the Association of Tennis Professionals, or ATP, are considered the
official authority on tennis rankings and match results worldwide. Likewise, the National Football
League, or NFL are considered the official authorities on American football games and results.
Betting exchanges and sportsbooks will usually settle bets using the result announced by these
sports authorities and the terms and conditions surrounding that bet.

27

2.3 Related Work

There have been many developments in the Bitcoin betting exchange and proof based application
markets over the past few years. These include the invention of various Bitcoin specific casino
games as well as Bitcoin oracles. This section aims to outline, analyse and compare these bodies
of work, partitioning the various solutions into groups based on their purpose and design choices.
We pay particular attention to the attributes that make these solutions unique and focus on the
comparison between them and our project. These groups include fiat-backed betting exchanges,
Bitcoin sportsbooks and betting exchanges, Bitcoin based casino games, proof based data appli-
cations, Bitcoin oracles and Bitcoin 2.0 betting systems.

2.3.1 DirectBet

DirectBet [46] is a Bitcoin based sportsbook. It offers fixed-odds betting on various sports events,
such as Tennis, American Football and Basketball, as well as several casino games, such as All
in Poker. DirectBet is a fiat-backed sportsbook, meaning that it is internally backed by a fiat
based betting exchange, in this case Betfair [13]. Whenever a bet is placed on DirectBet, a bet
for the equivalent amount of fiat currency is placed on the same outcome in the Betfair market.
This means that if the bettor wins, they receive their winnings in Bitcoin from DirectBet, and
DirectBet receives its winnings from Betfair in fiat currency. If the bettor loses, DirectBet keeps
the staked Bitcoin but forfeits the fiat currency it paid to Betfair.

In order to remain profitable DirectBet adds a house-edge to the odds offered by the Betfair bet-
ting exchange. This means that regardless of the outcome of the various bets they will still make
a profit. This will either be in the form of Bitcoin or in fiat currency. DirectBet does not require
participants to register or create an account when betting. Instead, a unique Bitcoin address is
generated for each event, outcome, odd selection and session. The bettor, if interested in the
bet will create a transaction sending their Bitcoins to that specific address. This bet will then
be registered with DirectBet and upon resolution all winnings will be transferred to the Bitcoin
address entered when the bet session was created.

Unlike many other sportsbooks and betting exchanges, DirectBet does not ask users to deposit
funds into an account before placing a bet. This is in contrast to the majority of online betting
exchanges, such as Betfair and BetDaq. Instead, payments only occur when the bet is placed and
there is no withdrawal procedure, any winnings are paid directly to the user immediately after
the bettle has been settled. This means that the amount of time a user needs to trust DirectBet
with their money is dramatically reduced, a point that DirectBet argues is unique to them. Fur-
thermore, by not forcing users to create accounts, it maintains the anonymity of the participants
involved. This is also another property unique to them. DirectBet does however offer bettors the
option of associating an email address with each bet. This provides them with a bet confirmation
and customer loyalty rewards. In addition to supporting Bitcoin, DirectBet also accept payments
in Dogecoin, Litecoin and Darkcoin, allowing a greater number of users to use their service.

Although DirectBet seems to be quite popular, with multiple bets being placed each day [45], there
are several disadvantages to their solution. The first is that they present no way to prove that a
bet has been placed. This means that if a winning bet is placed on DirectBet and the winnings
are not paid to the bettor, the bettor has no conclusive way to dispute their bet, meaning it is the
bettors word against DirectBet. Although bettors can choose to receive an optional confirmation
email, this is not a sound solution as emails can be easily spoofed or falsified. Furthermore, the
initial transaction created by the bettor sending their bitcoins to DirectBet cannot be used as
proof, because you cannot argue that the bitcoin address to which you sent your money (for the
bet) belonged to DirectBet in the first place. Even if you provided a link to your bet page, there
is nothing stopping DirectBet from deleting that page and claiming the bet never existed.

This means that if DirectBet were to act dishonestly and remove all traces of a bet from the user

28

facing side of their website, you would have no conclusive evidence to present against them. This
is actually one of the biggest problems with Bitcoin betting exchanges today, resulting in the
creation of many dishonest betting exchanges, betting scams and hence disputes.

Another problem with the DirectBet model is that they rely entirely on the operation of Betfair.
Whenever the Betfair exchange is down or not working, DirectBet is unable to function too. This
is not ideal in the case that some bets might still be matchable across the Bitcoin network with-
out the need for Betfair, and such it effectively costs them money. Finally, the large house edge
that DirectBet add to some of their bets often detracts users from using their service. The size
of this house edge is more a consequence of profit for DirectBet than it is for the cut that Bet-
fair take on winning bets. Figure 11 shows a screenshot of an unpaid bet on the DirectBet website.

Figure 11: DirectBet Website [46]

2.3.2 NitrogenSports & Anonibet

NitrogenSports and Anonibet are two examples of generic Bitcoin sportsbooks. What makes them
different from DirectBet, analysed above, is that they are not backed by any fiat-based currency
betting exchanges. These sportsbooks instead operate only in Bitcoin and the odds offered are
calculated directly by the bookmakers themselves. In contrast to DirectBet, these sportsbooks
require users to create accounts and to deposit funds into those accounts before they are able to
bet. This requires users to trust the sportsbooks with their money for longer periods of time,
and also negatively impacts their anonymity. This is because the sportsbooks can now associate
bitcoin public keys with their user accounts, effectively allowing them to gather information on
which bitcoin accounts paid money into which sportsbook accounts, and thus which sets of bitcoin
public keys are likely to be owned by the same person.

Figure 12 shows a screenshot of the NitrogenSports website. NitrogenSports offers bets on various
sports events, such as American Football, Basketball and Soccer, as well several casino games,

29

such as Poker and Blackjack. In addition to these, it also supports parlay betting and live in play
betting. One interesting feature to note about NitrogenSports is that it automatically creates new
accounts for individuals based upon their browser cookies. These accounts can be linked to email
addresses and usernames and are represented by long character strings. By default you only need
to be embed the string into the website url to access the account. One example of an account url is:

https://nitrogensports.eu/u/d4f6515f888ab17cef3e245f10d43e7dca42e72b2ef98cf5dc5e6e407e5e6744

Although the chance of correctly guessing an account id is fairly low given the length of the string,
it does pose a potential security problem, and as such NitrogenSports offers the ability to set a
password and provides support for two-factor authentication. These features are not however used
by default.

Figure 12: NitrogenSports Website [84]

Figure 13 shows a screenshot of the AnoniBet website. AnoniBet is almost identical in function-
ality to NitrogenSports, except that it offers bets on a different set of sports and casino games.
It also provides support for mobile and requires users to create an explicit account using a valid
email address.

A property present in both NitrogrenSports and AnoniBet, along with DirectBet, is that they pro-
vide no conclusive way to prove that a bet was made. Users must again trust the sportsbooks to
operate honestly and in the case of disputes or dishonest operation have no verifiable or conclusive
evidence to use against them. This opens up the doors to scams and discourages users from using
their services.

30

Figure 13: AnoniBet Website [5]

2.3.3 Betmoose, BitBet & BetBTC

Betmoose [15], BitBet [16] and BetBTC [11] are three examples of Bitcoin betting exchanges.
In contrast to Bitcoin sportsbooks the bets are matched with other users and not the betting
operators or an external exchange. Betmoose and BitBet offer parimutual style betting, where
bets on a single event or outcome are pooled together and shared among the participants. The
flexibility in this type of betting style means that these sites offer bets on a wide range of different
topics, such as “Who will win Best Picture in the 87th Academy Awards?” or “Will the price of
1 ounce of gold fall below $1175 USD on March 1st, 2015?”. BetBTC on the other hand offers
fixed-odds betting on various sports events, such as Hockey and Soccer. BetBTC is closer to a
typical fixed-odds betting exchange as it allows both back and lay bets to be placed on the various
events. Betmoose and BetBTC require users to create accounts before placing bets and BitBet
requires no such registration. One thing that all three betting exchanges have in common is that
they do not require users to deposit funds into an account before placing a bet. This, as discussed
earlier, is better from the user perspective.

What’s interesting to note about these betting exchanges is the way in which bets are resolved.
Betmoose, for instance, offers parimutuel style betting where users, called hosts, create the topics
and then are responsible for resolving the outcome of those topics. Betmoose allows users 24 hours
to dispute the resolutions made by the hosts of those topics. If a dispute is raised, or the host
fails to resolve a bet, the host loses their commission and a Betmoose moderator manually reviews
and resolves the bet. It is therefore in the hosts best interest to resolve the bet correctly. It’s
important to note here that once the bet has been resolved manually by a Betmoose moderator,
the participants have no way to challenge or dispute that decision.

Betmoose also suffers from the same problems as DirectBet, NitrogenSports and AnoniBet in that
there is no way for users to verify the honest operation of those services. Instead users are forced
simply to trust them to operate correctly. Although BitBet does not allow hosts to resolve bets

31

and instead uses moderators to resolve them manually, this process also suffers the same problem.
BetBTC, although not offering parimutuel style betting, face the same issues with sports betting.
Figure 14 shows the logos of BetMoose, BitBet and BetBTC respectively.

(a) Betmoose Logo [15] (b) BitBet Logo [16] (c) BetBTC Logo [11]

Figure 14: Logos of Various Bitcoin Betting Exchanges

2.3.4 Satoshi Dice & Satoshi Bet

Satoshi Dice [44] and Satoshi Bet [10] are two examples of websites that offer Bitcoin betting on
provable-fair casino games. Provably-fair casino games are games in which the participants are
able to verify each round of execution for fair and honest gameplay. This allows players to check
that the betting website implements each game correctly, providing fair chances of winning to its
users. Satoshi Dice, for example, provides a Blockchain-based Bitcoin Dice game that is provable
fair. These games work similarly to a normal betting website. Users sign up for an account,
deposit an amount of bitcoin into their account and place a bet on the outcome of some event.
In the case of Satoshi Dice the event being bet on is the outcome of a roll of dice. This dice has
65536 possible outcomes, each a number from 0 to 65535. Users can then select exactly what
condition they wish to bet on, for instance, they might bet that the dice roll is less than a specific
number. For the sake of example lets say this number is 32768. If implemented fairly, this should
have a 50 percent chance of happening on a completely random roll of the die. Having selected
their bet, users can then see the roll outcome and instantly be paid any winnings.

What makes this game provably-fair is the way in which the outcome of the dice roll is generated.
Satoshi Dice implement this as follows. First, they create a system secret at the start of each day
that is known only by them. This secret is hashed and the hash published online. The outcome
roll number that is then generated on a dice roll is calculated by hashing a client seed (a random
number provided by the bettor), part of their bitcoin transaction in the blockchain, and part of
Satoshi Dice’s secret. 4 hexadecimal digits are then selected from the resulting hash and this is
used to represent the final outcome of the dice roll, determining if the bet was won or lost. The
way these digits are chosen from the hash depends directly on the secret.

In order for users to verify the outcomes of their bets, the secrets used by Satoshi Dice are pub-
lished online at the end of every day. Users can test the various properties of these secrets and
see that everything hashes to what it should, verifying the derivation of their result. In order to
prevent bettors from gaming the system and carefully constructing bets that have higher chances
of winning, the secrets are only revealed the following day, when no longer in use. Satoshi Dice
add a house edge of 1.9% to every bet placed online in order to remain profitable. Likewise,
Satoshi Bet also provide various provably-fair casino games. These include Roulette, Blackjack
and Poker, and each of them has their own unique methods of verification and corresponding
house edge. Figure 15 shows the logos of Satoshi Dice and Satoshi Bet.

32

(a) Satoshi Dice Logo [44] (b) Satoshi Bet Logo [10]

Figure 15: Logos of Satoshi Dice and Satoshi Bet

One obvious disadvantage with Satoshi Dice and Satoshi Bet is that users are required to cre-
ate accounts and deposit funds before they can place bets. As discussed above, this negatively
impacts the anonymity of the system and increases the amount of trust users need to place in
the operators. One advantage however is that users are able to verify the outcomes of their bets,
thus preventing the operators from acting dishonestly. By using the client seed and parts of the
blockchain transaction in generating the outcome, the operators cannot just generate failing bets
in an attempt to deceive their users. This increases the trust between the users and the betting
operators because it provides users with concrete evidence to use in a dispute over the outcome
of a game.

Early on in its release, Satoshi Dice were open to double-spend attacks. They would process bets
without waiting for any block confirmations in the Bitcoin Blockchain. This was because the
bet outcome transaction would use the output of the original bet transaction, meaning that any
block chain that did not contain the original bet, would also not contain the resulting payment.
This design was flawed however, because once a bet was processed and the result instantly made
known, if the bet was a losing bet users would quickly create a double spend transaction with a
high transaction fee. They would then broadcast this to the network in the hope that the dou-
ble spend would be confirmed before the original bet. Users would effectively use this to game
the system, and to increase their chances of winning. They would let winning bets confirm but
double spend losing bets. Because of this, Satoshi Dice changed their policy to wait for atleast 1
block confirmation before processing any bet. This made the attack more difficult to perform as
attackers would need to create 2 blocks in the time the entire network has to create 1, making the
attack much less likely. This is a great example that highlights just how important it is to wait
for block confirmations in the network before processing bets.

2.3.5 Proof Of Existence & Gradbase

Proof of Existence [85] and Gradbase [7] are two interesting examples of Bitcoin applications that
embed data directly into the Bitcoin blockchain. By using the blockchain as a storage mechanism
they make use of several of the attractive properties that the distributed ledger provides, such
as high replication, fault-tolerance and the proof of work mechanism. This allows them to store,
timestamp and verify the existence of data, entirely anonymously and from anywhere in the world.

Proof of Existence uses the blockchain in order to prove the existence of a document or file. Using
their service, you can anonymously and securely embed the cryptographic digest of any piece of
data into the blockchain. This allows you to prove that a specific piece of information existed
at a certain time. This can be useful for copyrighted material, proof of ownership and document
integrity. Proof of Existence do this by providing a web application that allows users to hash
various files on their computer and upload the hash of those files to the application. A unique bit-
coin address is then generated for that user, allowing them to make a payment to that address in
return for their hash to be embedded in the blockchain. Proof of Existence use the OP RETURN
script tag to embed that data into the blockchain and then provide an easy way for users to check
whether or not a specific hash exists in the chain.

33

One advantage of this application is that you don’t need to reveal anything about the actual
data being hashed. Instead you provide the hash directly to the application. This means that
the data is not left exposed or made publicly visible. Furthermore, hash functions are designed
to contain a property called the avalanche effect, where a very small change in the input results
in a large change in the output. This means that the very slightest change in the document or
file being certified would result in a completely different hash. This allows the owner to ensure
that the data being certified is not later open to change, i.e. somebody couldn’t change the docu-
ment slightly and have it result in the same hash, arguing that the original document was different.

Whenever a transaction is embedded into the blockchain, that transaction block is timestamped
and is used in the proof of work for the next block. This means that every block confirmation
strengthens the existing timestamps, effectively providing proof of data existence at a particular
time. This service therefore can not only prove the existence of a file, but also provide an earliest
estimated time as to when that file did actually exist. In addition to this, because the file hash
is embedded directly into the decentralized ledger of the network, it also means that if Proof of
Existence were to be closed down or later become corrupt, this would not affect the existing file
certificates. Meaning users would still be able to certify the documents already embedded in the
chain and do not need to rely on a single point of failure.

One of the disadvantages of Proof of Existence is that if the owner losses the original file, they
have no way to recover it. The embedded hash cannot be used for data recovery and therefore
becomes meaningless as the proof no longer works. Furthermore, this scheme is also vulnerable to
a collision attack. If an attacker can construct some data that hashes to the same hash embedded
in the blockchain they could use this as evidence against the original proof. Whether or not this
would dismiss the original proof however is debatable as the likelihood of the constructed data
making sense (i.e. being as readable as an English document) is extremely low. This is nonetheless
a concern and is more a limitation of hash algorithms than anything else. Figure 16 shows the
Proof of Existence website.

Figure 16: Proof of Existence Website [85]

Similarly to Proof of Existence, GradBase uses the blockchain to verify degree certification. They
provide a service where universities are able to publish certificates to graduating students. These

34

certificates are hashed and embedded into the blockchain, and employers are able to perform
background checks on students, verifying the credentials students claim to have. This works in a
similar manner to that of Proof of Existence. When a university issues a certificate, they create
and publish transactions with the destination address set to the hash of that degree certification.
Employers can then use GradBase to check degree certifications by supplying the students cre-
dentials and looking for any blockchain transactions that validate those certifications.

This works by having a trusted mapping of public keys to universities, where the universities
publish these transactions using their trusted public key. GradBase are then able to see the pub-
lications made by the various universities and use these to check students credentials. This model
has many of the advantages that Proof of Existence, above, has. It is not centralized, meaning if
GradBase is ever corrupt or shut-down, this does not invalidate the already published certificates.
Furthermore, by storing the data in the blockchain you provide a very open and auditable way to
verify honest operation of the parties involved, as you can see the information needed to perform
these verifications directly in the blockchain.

One of the disadvantages of this approach is that the mapping of public keys to universities needs
to be maintained. This means that either these keys need to be publicly published online (e.g.
under the university website) or they need to be pre-agreed by both parties involved. What’s
more, the safety of the corresponding private keys need to be ensured, as exposing a private key,
or having it stolen, could result in false certificates being published online or the invalidation of
previously genuine ones. This may result in students being accused of falsifying their information,
or people claiming to have qualifications they do not actually have. Figure 17 shows the GradBase
logo.

Figure 17: GradBase Logo [7]

2.3.6 Reality Keys, Orisi & OpiDoki

Reality Keys [70], Orisi [92] and Opidoki [91] are three examples of applications that use Bitcoin
oracles to determine the outcome of various events and statements. A Bitcoin oracle is a Bitcoin
account or authority deemed to have jurisdiction over some piece of information, such as over the
outcome of an event. Reality Keys, for example, provide a Bitcoin oracle service for various facts.
Using their service, you can register to track an event, such as the outcome of a sporting event,
and they will issue 2 public keys, one corresponding to the result of yes and another to no. When
the event is finished, the private key corresponding to the resulting outcome will be published
online and can then be used to sign various transactions or settle various bets. The private key
of the outcome that did not occur is never released.

Reality Keys follow a database of facts and provide API access to their services, allowing you to
build various markets and applications around truth statements. In the event that Reality Keys
incorrectly publishes a result, users can ask an employee to manually double-check that outcome,
usually for a fee. This allows various Bitcoin contracts and infrastructures to be built using their
service. For example, Reality Keys might be used to issue promises between friends, where one
friend promises to do something and offers to stake some amount on that promise. If they keep
their word, their stake is returned to them, but if they fail to do what they promised, their friend
gets to take the stake. This could be done by creating a multi-signature transaction requiring 2
out of 3 private keys to be spent. This transaction would take as input an amount that represents

35

the stake. The three keys requires to spend it could be the private keys of the two friends and
the outcome key released by Reality Keys. In the case that the promising friend kept their word,
they could sign the transaction using their own key and the corresponding private key released
by Reality Keys. This would allow them to regain access their funds. If the promise was not kept
however, the other friend could sign the transaction using their own key and the opposite outcome
key, therefore gaining access to the forfeited stake.

Orisi is another application that makes use of Bitcoin oracles. It is an open-source framework
for constructing Bitcoin contracts around the outcome of various events. They do this through
the use of several independent Bitcoin oracles. This has the advantage that instead of relying on
a single oracle (like Reality Keys), you can choose to rely on a set of oracles, and construct an
m out of n transaction, where atleast m of the trusted oracles must sign a transaction for that
transaction to be spent. This has the advantage that bets are less susceptible to oracle corruption
as an attacker would need to corrupt atleast m oracles to declare an outcome. This solution is
therefore more robust to attack but it requires more oracles to be present in the system and to be
willing to sign a transaction regarding a specific event.

Opidoki is a similar type of application to Reality Keys and Orisi, and is built on top of the
Counterparty protocol. Opidoki provides an oracle programming interface where the outcomes
of various events can be bet on. The way in which their solution works is that users are able
to create an event by providing a snippet of javascript, a website url and a final result time. At
the respective result time a website server will fetch the corresponding website url, run the given
javascript on the webpage and broadcast the execution result in the Counterparty protocol. This
will allow various bets and contracts based on the outcome to automatically settle in Counterparty.

One of the disadvantages of Reality Keys is that by using a single oracle, you make the system
a single point of failure and target for attack. This means that if an attacker were able to cor-
rupt Reality Keys, they would be able to incorrectly settle bets and publish untrue facts. Orisi
overcome this problem by using multiple oracles, all who live in the Bitcoin ecosystem. Because
Orisi require a transaction to be signed by multiple oracles before being spendable, communica-
tion needs to happen between them and this has to occur outside the Bitcoin network. As such,
Orisi use Bitmessage [22], an alt blockchain to conduct this messaging and pass these transactions
around. Unfortunately this adds additional overhead and complexity as you now need to store
mappings between Bitcoin and Bitmessage accounts for each oracle.

Although OpiDoki do not have this problem, because they operate in the Counterparty ecosystem,
their main disadvantage is that their solution is not very user friendly. The idea of placing a bet
on the outcome of a javascript snippet and a url is not very attractive or trustworthy. It is not
robust against human error, such as a mistake in the javascript code, and it is also vulnerable to
network outages and attacks. Furthermore, because the entire system is built on the Counterparty
protocol, it is not easy to see how these results are embedded into the blockchain. It therefore
requires users to blindly trust the Counterparty and OpiDoki implementations, providing no ways
to dispute the outcome of an event (e.g. if the javascript snippet is buggy, or the provided url
is malformed.) In addition to this, OpiDoki requires users to have an account with Counterparty
and some amount of XCP (Counterparty’s internal currency). This adds further overhead and
makes the entire process much more complex. Figure 18 shows the logos of Reality Keys, Orisi
and OpiDoki respectively.

36

(a) RealityKeys
Logo [70]

(b) Orisi Logo [92] (c) OpiDoki Logo [91]

Figure 18: Logos of Various Bitcoin Oracle Applications

37

3. Legal Concerns

Due to the nature of this thesis it is worth paying attention to the potential legal issues and
concerns that may arise when operating an anonymous Bitcoin betting exchange online. To en-
sure that we abide by any laws and legislation that may apply, we will briefly explore why these
concerns are present. This is so that we can identify the potential areas of concern and lay out an
appropriate course of action to address those areas.

3.1 Betting Legislation

As previously touched upon in the Background, section 2.2, online betting is a highly regulated
and complex sector. Different countries around the world enforce strict and varying pieces of
legislation regarding online betting and gambling. In the United Kingdom, where this thesis is
being proposed, gambling is legal both online and off, provided the participants are over 18 years
of age. We could think therefore, that our solution could be published online, as long as it in-
cluded some form of age disclaimer or warning. This, however, is not the case, because our web
application would make no distinction between users who are in locations where online betting
is legal, and those where it is not. Publishing our solution online without enforcing some sort of
location specific blocking would mean that anyone in the world would be able to bet, not just
those in the United Kingdom.

Furthermore, because our solution operates anonymously, requiring no form of identification or
registration from users, if any illegal activities were to occur, we would not be able to provide any
useful information to law enforcement agencies. When you combine this with the fact that our
application runs over an encrypted connection, using https, and that users may be employing some
form of proxy or privacy tools to connect to the website, such as TOR [67], the only information
that we could provide would be the public keys that were used to pay for the bets, information
that is already available in the Blockchain.

3.2 Money Laundering

In addition to concerns about country specific betting laws, there are also other concerns that could
arise if we were to naively host our solution online. As highlighted by Clare Chambers-Jones et
al. in Financial Crime and Gambling in a Virtual World [129], page 155, “the potential for digital
currencies to be used to launder money is similar to that of virtual worlds and or gambling in
general; they may provide a facility to place illegal funds and attempt to conceal their true origins.
Similarly to virtual worlds, regulation is yet to be drafted, which may attract criminal activity”.

The possibility for criminals to use an anonymous Bitcoin betting exchange as a way to launder
money is very real. When you consider that Bitcoin is easily exchanged for real fiat currency
through various exchanges online, it is quite easy to see how this could occur. For instance, a
criminal who wishes to buy something illegal online, using Bitcoin, might purchase some amount
of Bitcoin through a fiat based exchange. Using this Bitcoin they may then try to use our betting
exchange as a way to transfer the amount to an account that will be used to purchase the illegal
goods. However, as the criminal does not want to be associated with that illegal account (e.g. by
sending money directly to it) they might use the exchange as a way to cover their tracks. This
could be done by placing a bet on the exchange, having it matched by the other account, losing
that bet and having the total amount transferred to the illegal account. They could then argue
that they had no association with the account and were simply placing a bet online. Although
this might seem difficult to do at first, given that users are not aware of who their bets have been
matched against before a bet is settled, a criminal might construct a very unappealing bet, at
unattractive odds, that nobody would ever to take, except for the account that they wished to
transfer from. This could then be used to guarantee that the two accounts are matched and that

38

the transfer is successful, assuming the bet is settled the way that they intended.

Money laundering and criminal activity are very common in the Bitcoin world, with many high
profile and serious cases having emerged within the last few years. One example is that of Silk
Road [58], an anonymous black market that allowed users to illegally purchase drugs online. Silk
Road ran as a Tor hidden service, allowing users to anonymously and securely interact with a
website without threat of traffic monitoring. In 2013 Silk Road was shut down by the FBI and
its owner, Ross Ulbricht, was arrested. During the investigation large amounts of Bitcoin, worth
over $34.5 Million US, were seized by the FBI.

Unfortunately, high profile cases such as Silk Road are not isolated, and many other Bitcoin ser-
vices, such as Mt. Gox [82] and Liberty Reserve [107], have been shut-down due to involvement
with illegal activity and money laundering. In fact the case involving the Liberty Reserve was
described by the Department of Justice as the “largest international money-laundering prosecu-
tion in history” [81], worth around $6 Billion US. This shows us just how attractive and popular
Bitcoin has become for criminal activity, due to its anonymous and unregulated nature.

3.3 Our Response

In response to these legal concerns, we have decided to run the Bitcoin Betting Exchange online
using the Bitcoin test network. The Bitcoin test network, also known as the Testnet [126], is
a blockchain run by the developers of Bitcoin that allows users to test various Bitcoin applica-
tions. The difference between the Bitcoin Testnet and the real Bitcoin network, also known as
the Mainnet, is that Testnet coins have no value, meaning they cannot be sold or traded for fiat
currency. By making use of the Testnet in this thesis and avoiding the real Bitcoin network, we
can safely publish our solution online without fear of violating any laws that may apply. This is
because any bets placed by users will be done so using Testnet coins and will therefore be worthless.

Aside from the difference in value between the two networks there are also several small im-
plementation differences. These differences however do not affect the way applications interface
with the network and thus make the test network ideal for testing without fear that migration
to the real network will cause unexpected behaviour. The difference between the two networks
are that the Testnet operates on a different port, uses a different address header (to prevent
Testnet Bitcoin addresses from being valid in the real network) and that it supports some non-
standard transactions. Testnet coins can be freely accessed using various faucets found online [50].

One thing to note is that in order for the developers to ensure that Testnet coins have no value,
they reserve the right to reset the blockchain at any time. This removes all transactions in the
chain and clears the account balances of all Testnet accounts, setting them back to zero. This
occurrence is rare, however, and has only happened twice in the history of Bitcoin. The first time
was due to attempts from people to sell the coins for real money, and the second time was to fix
several problems regarding block confirmation and waiting times.

39

4. Research and Design

In this chapter we outline and explore the potential solutions to the problems of trust in an
anonymous environment and private key security. We identify various ways in which to approach
these problems and discuss them in detail, making note of the benefits and limitations that apply
to each one. We then introduce our proposed solution, explain how it works and analyse the
advantages and disadvantages it provides.

4.1 Trust in An Anonymous Environment

Having analysed the related work in section 2.3, we observe that despite the large number of
existing solutions in this space, we have yet to find a solution that addresses the issue of trust in
an anonymous environment. All of the solutions we looked at require the user to pay for their bet
by sending a payment directly to the Bitcoin account of the website or application. The website
then acts as escrow, holding the user’s funds until the bet has been settled and the winner paid.
This means that the website has full control over the user’s money once the payment has been
received.

In addition, many of the solutions we looked at failed to provide any evidence that the user’s
payment had been received at all. Even the ones that did only provided a confirmation email,
which by no means constitutes valid proof. This forces users to have to trust the service, and its
operators, to act honestly and behave correctly.

4.1.1 The Bitcoin Network as Escrow

In the ideal scenario, a user would not have to trust a betting website or application with their
money at all. Instead, the user and the application could enter into an agreement via a Smart
Contract [120]. This would be a contract built using the scripting language primitives of Bitcoin,
where the terms and conditions would be directly embedded into the user’s payment. This would
mean that the money sent by the user would only be spendable in the case that the appropriate
conditions held. For example, just like you can only spend a Pay-to-Public-Key-Hash transaction
using the correct private key for that transaction, the betting application would only be able to
spend the user’s payment if their bet lost.

A contract of this form would allow the bettor and the betting application to use the Bitcoin
network as escrow, meaning that the funds would be provably unspendable until the bet was set-
tled. In this case, the user would not have to worry about the betting application stealing their
money, and likewise, the betting application would not have to worry about the user trying to
take their money back. The network would act as ecrow, holding the funds until such a time that
the contract could be resolved, at which point, either the user would get their money back and
some winnings, or the betting exchange would get the money.

At a high level, an example of such a contract might appear as seen in figure 19: a user, Alice,
wishes to place a bet that in the 2015 Wimbledon final Roger Federer will win. A different user,
Bob, wishes to match that bet as he believes that Rafael Nadal will win the final. The betting
exchange would sit in the middle of the two users and when Bob matches Alice’s bet, the exchange
would construct a smart contract for the two, saying:

- If Roger Federer wins, Alice will get x Bitcoins.

- If Rafael Nadal wins, Bob will get x Bitcoins.

- Regardless of the outcome the Betting Exchange will get y percent of z Bitcoins.

- But, if something goes wrong, return the payments of Alice and Bob back to them

and terminate this contract.

Note that in this example z is the total amount of Bitcoin in the pot and x is the total amount
minus the house edge of y percent.

40

Figure 19: Alice and Bob paying their bets into an address locked by a Smart Contract.

If such a construct were to exist in a Bitcoin script, this would be the ideal scenario for two
reasons:

1. Firstly, the Bitcoin network would act as escrow, meaning that neither Alice, nor Bob, nor
the betting exchange would have to worry about the other members stealing their money.
This is because the transactions included in the contract would only be spendable under the
conditions of that contract, meaning that no trust would be required between the parties.

2. Secondly, the betting exchange would not need to worry about storing these funds safely,
as the transactions would be provably unspendable until such a time as the conditions were
met. The only keys that would need to be managed in this scenario are the individual keys
belonging to Alice, Bob and the betting exchange, and because the bet would be settled
directly by the contract, the keys would not need to be stored online.

Although this would be ideal, there are multiple problems with this solution:

1. Firstly, how would the transactions generated by Alice, Bob and betting exchange be locked
using a Bitcoin script? At present there are only 5 standard transactions supported by the
Bitcoin network and it is not immediately obvious how those transactions could used to
construct a contract of this form.

2. Secondly, how would the Bitcoin network be able to tell when, and if, any of the conditions
in the contract held? For example, how would it know who won the 2015 Wimbledon final,
Roger Federer or Rafael Nadal?

41

4.1.2 The Data Outside the Blockchain Problem

The idea of using the Bitcoin network as escrow brings us to a fundamental issue currently facing
Smart contracts and Bitcoin scripts. That is, accessing information outside of the Blockchain,
through the Bitcoin network. Gavin Andresen, the chief scientist at the Bitcoin Foundation [52]
and previous lead developer of Bitcoin, referred to this issue as the “data outside the blockchain”
problem [4]. This problem is based on the fact that the Bitcoin network has a very limited
amount of information available to it when executing locking and unlocking transaction scripts.
This means that referencing external information inside a script is not currently possible [121].

In fact, this limitations is stated in the Bitcoin Wiki for Smart Contracts, “Scripts are, by design,
pure functions. They cannot poll external servers or import any state that may change as it would
allow an attacker to outrun the block chain.” [121]. If Alice tried to spend the transaction that
contained the contract, the Bitcoin network would have no way of knowing who won the 2015
Wimbledon final. This means that building a Smart Contract using just the scripting language
primitives of Bitcoin is not currently possible.

4.1.3 Third-Party Escrow

One way around this limitation is to use a third party escrow service. The idea here is much
simpler and revolves around the concept of hiring an impartial third party to hold the funds of all
bettors until the outcomes of their bets have been announced. In exactly the same way that an
escrow works for the purchase of goods and financial deposits online, it would act as an impartial
supervisor of the payments, only choosing to pay the winner when the result of the bet is known.
Figure 20 illustrates the idea. Instead of Alice and Bob creating special locking scripts on their
transactions, they would send their payments directly to a third party responsible for settling
their bets. The third party would be told that these payments are for a bet on the outcome of
the 2015 Wimbledon final and that depending on who wins, the money should be paid to either
Alice or Bob, with a small cut of the winnings to go to the exchange. When the event finishes,
the third party would look up the winner of the event and proceed as required.

42

Figure 20: Alice and Bob paying their bets directly to a third party escrow service. The betting
exchange sends the terms and conditions for those bet payments.

Although this solution is definitely feasible, with several Bitcoin escrow services already operating
online (such as BTCrow [30]), it too has several drawbacks:

1. The first is that this entire process happens manually. Alice, Bob and the betting exchange
need to manually set up an escrow transaction in which the details of the contract are made
known. Furthermore, the parties need to manually agree to the contract before it can be
established. In addition, when the contract comes to be settled or executed, the third party
needs to manually look up the result of the Wimbledon final in order to determine exactly
how to settle the bet.

2. The second problem with this solution is having to pay a fee to the third party for their
services. All of the existing escrow services available online require some form of fee to
initiate an escrow transaction. Although this fee, around 1.55% [30], is minimal for many
use cases, in a betting environment it adds significant overhead to the operation costs. One
of the primary motivations for bettors to use a betting exchange over a sportsbook is that
the odds provided are typically much more attractive (i.e. there is less overhead and bets
can be matched directly between bettors). Employing a third party service to participate in
every bet would significantly affect the odds the exchange is able to offer.

3. The final disadvantage of using a trusted third party is that nothing prevents the third party
from stealing the funds either. Although you would try to reduce this risk by employing
a well-known and trusted third party, the threat still exists. This is made worse by the
fact that Bitcoin is much more attractive to steal because of its anonymous and unregulated
nature. A third party in this situation does not provide much benefit because both Alice
and Bob would have to trust it to operate honestly. It could be argued then that if they
are both forced to trust someone, they may as well be forced to trust the betting exchange
as this would limit the number of people involved, reduce the cost overhead and make the
process simpler.

43

4.1.4 M out of N Transactions

One way in which to prevent a third party from stealing the funds is to use an m out of n Bitcoin
transaction. Figure 21 shows how this would work. Rather then Alice and Bob making their
payments directly to the third party or betting exchange, a multisig address would be constructed
and they would send their payments directly to that address. This would allow a 2 out of 3
Bitcoin transaction to be built, where the multisig address could only be spendable as an input
when 2 of the 3 required keys have signed the transaction. The 3 keys in this example would be
that of Alice, Bob and whatever third party they have decided to trust (e.g. the betting exchange).

By sending their bet payments to a multisig address it allows Alice and Bob to protect themselves
from a corrupt third member while still allowing that third member to arbitrate between them.
For example, if Alice wins the bet, she can create a multisig transaction that spends the funds
provided by both herself and Bob (e.g. a transaction that spends the funds held by that multisig
address). This transaction would include the percentage to be paid to the third member too,
covering the costs of the betting exchange, for example. She can then sign her transaction and
request that the third member sign it too. Now that atleast 2 out of the 3 participants have
signed it, it becomes a valid transaction and she has been granted access to the funds. The same
argument holds if Bob wins the bet. The third member cannot gain access to Alice or Bob’s funds
by itself, it requires the signatures of atleast one of them in order to spend a transaction.

Figure 21: Alice and Bob paying their bets into a 2 out of 3 multisig address. The betting
exchange arbitrates between them.

This construct also allows Alice and Bob to work together if the third member becomes corrupt
or simply refuses to co-operate. Note however, that it is still possible for two of the three partici-
pants to conspire with one another in order to spend the third participants funds. Although this

44

is possible, we can again reduce this risk by selecting a well-known and trusted third member to
arbitrate between them.

Proposing that this third member be a trusted third party outside of the betting exchange does not
make much sense in this scenario. This is because here, the third party is simply acting as arbiter
between the two bettors, to prevent them from stealing one another’s funds. In this case, therefore,
the best course of action would be to have the betting exchange act as the trusted third party,
arbitrating between Alice and Bob. Not only does this reduce the number of people involved in the
process but it also reduces the cost overhead, as now we do not need to hire an external third party.

Despite the benefits that a 2 out of 3 Bitcoin transaction provides, there are still several significant
disadvantages to this solution:

1. The first disadvantage is that in order for the participants to sign an m out of n transaction,
this transaction needs to be passed between them outside the Bitcoin network. This means
that some sort of infrastructure needs to exist that is external to the Bitcoin network in which
messages can be passed between the various members. This is the same problem we identified
when analysing Orisi, in the related work section, section 2.3. In order to overcome this,
Orisi uses Bitmessage, an alt blockchain, to conduct message passing between the various
parties. Unfortunately, requiring an external infrastructure introduces additional overhead
and complexity, as mappings between Bitcoin accounts and Bitmessage accounts need to
be maintained and communication paths made available. In addition, any sort of external
system that need to be setup to allow message passing has the potential to negatively impact
anonymity.

2. A second and perhaps more serious issue concerning the use of a 2 out of 3 transaction is
the practicality of building a betting exchange around the transaction type. In order for
Alice, Bob and the betting exchange to build a multisig address (an address to which Alice
and Bob can send their payments), all three parties need to be known before the multisig
address is generated. This is because in order to generate a multisig we require the n public
keys of that multisig address (e.g. the n people who can sign it). This means that a bet
match between Alice and Bob needs to have occurred before the address can be created and
payments sent to it. In a betting exchange environment one member typically always places
a bet before the other. The problem here therefore is that Alice and Bob can’t pay for their
bets until they know who they have been matched with, as the public keys of the bettors
and the betting exchange need to be known in order to generate the multisig address.

These two disadvantages mean that interaction with the betting exchange from the user’s side will
be constrained and therefore need to look something like as follows: Alice comes to the betting
exchange and registers her interest in placing a bet on Roger Federer for the 2015 Wimbledon
final. She doesn’t pay for that bet yet, but she makes a note that she is interested in it and
specifies her bet information. Bob then comes to the betting exchange and sees Alice’s interest in
the bet. Because Bob believes that Rafael Nadal will win the final, he decides to match Alice’s
bet. At this point both users are interested in the bet and a multisig address can be generated
using Alice, Bob and the betting exchange’s public keys. Unfortunately a problem now arises. We
need to notify Alice and Bob that they can pay for their bets. Because you cannot notify Bitcoin
addresses in the Bitcoin network, Alice and Bob will need to provide contact information outside
of the network. Not only does this compromise anonymity, but it also significantly increases the
amount of time taken for the parties to successfully create and pay for a bet. In this time, Alice
may no longer be interested in the bet, the odds of the market may have changed, or the event
already begun. Unfortunately, this user flow is not very practical given the constraints present in
a Bitcoin betting environment.

4.1.5 Bitcoin Oracles

One attempt to solve the “data outside of the blockchain” issue is to make use of a Bitcoin oracle.
A Bitcoin oracle is a Bitcoin account, or authority, deemed to have jurisdiction over some piece

45

of information or state, such as over the outcome of an event. We have already seen several dif-
ferent Bitcoin oracle services when we looked at Orisi, Reality Keys and Opidoki in the related
work section, 2.3. Bitcoin oracles try to make payment resolution much simpler by providing
an API (application programming interface) to fetch external information that lives outside the
Blockchain. This is done by making use of the Bitcoin m out of n transaction type, similar to
what we have seen in the previous section.

Orisi for example, do this by providing a set of oracles, all of whom have knowledge about a
specific event or outcome (e.g. “Who Won the 2015 Wimbledon Final?”). The idea is that when
an event has finished, we ask each of the oracles for the outcome by giving them an m out of n
transaction to sign. This transaction will be associated with a contract that was originally speci-
fied and so when asking the oracles to sign the transaction, they will only provide their signature
if the terms of the contract hold.

For example, lets take a look at the case of Alice and Bob who wish to bet on the 2015 Wimbledon
final. Figure 22 shows how this might work. Just like in the previous example, once we have
identified that Alice and Bob wish to bet against each other, we can construct a multisig address
that references each of the oracles online. Once this address is generated, Alice and Bob will each
send their bet payments to the address. When we generate this address we associate it with a
contract (i.e. “If Roger Federer wins, pay Alice. If Rafael Nadal wins, pay Bob... etc.”). This
contract will be shared with the oracles when the multsig address is generated, so that the oracles
will know whether or not they should sign any transaction that tries to spend the money held in
the multisig address. So, in the case that Roger Federer wins the final, Alice will contact each of
the oracles in turn and ask them to sign a transaction that she generated. Her transaction would
spend the money stored in the multisig address, sending the majority to herself and some percent
to the betting exchange. When the oracles receive this transaction, they will only sign it if the
transaction conforms to the original contract that was associated with the address. Because these
oracles have access to sports data they can see who won the event, and so they know that Alice
should be paid the winnings, with a small portion going to the exchange. If all of the various
conditions hold, each will sign the transaction in turn and Alice will be able to spend her winnings.
If not, the oracles will refuse to sign the transaction.

46

Figure 22: Using a set of Bitcoin oracles to construct a multisig address and associating a contract
with that multisig address.

Depending on how you set up the multisig address and what kind of parameters you assign the m
out of n transaction, you can make the transaction specific to each bet. For example, increasing
m and n will provide more protection from corrupt oracles, but make the signing process longer
as more signatures are required. Likewise, if you want to factor in some sort of override, you
can make m smaller and n larger, so that there are more possible ways in which to spend the
transaction, trading off security for practicality.

Although Bitcoin oracles have many useful and interesting benefits, they all ultimately suffer from
the same problem. This problem stems from that fact that they all rely on m out of n transactions,
and as already mentioned, the construction of an m out of n address can only be done after the
n public keys are known. Likewise, the contract that is to be shared with the oracles when the
multisig address is created can only be specified after the bettors are known. We are therefore
forced to identify the matching bettors before they can pay for their bets, and as discussed in the
previous section, this restriction is not very practical in the case of a betting exchange.

4.1.6 Proof of Bet & Outcome

Due to the challenges and limitations currently surrounding m out of n transactions
and Bitcoin oracles, we propose our own solution to address the problem of trust in
an anonymous environment .

47

Instead of trying to remove the need for trust between the betting parties, as a Smart Contract
does, we aim rather to minimize the amount of trust required between the parties. Our idea is to
provide a proof of bet and proof of outcome system that allows third parties to verify the honest
and correct operation of the betting exchange. By providing proof that a user has placed a bet,
and proof that a bet has been settled, it means that if the exchange acts dishonestly (e.g. refusing
to pay out winnings or incorrectly settling a bet), the bettor will be able to prove it to the rest of
the world. This removes the need for users to blindly trust the exchange, as the proof would be
enough to see exactly what happened and reveal which party was in the wrong. The same holds
if a bettor makes false claims against the betting exchange.

It only takes one act of dishonesty from any of the participants to completely ruin their reputation.
This is because the proof held by the other parties is enough to reveal exactly who misbehaved
and is strong enough to prevent them from trying to argue against it. What’s more, the proof
also protects the reputation of the parties who behaved correctly and prevents false claims being
made against them. In addition, the proof of bet and proof of outcome system that we propose
also respects the anonymity of the bettors and their bets, and does not negatively impact or slow
down the way in which users are able to interact with the exchange when placing a bet.

One might argue that a simple bet confirmation email or a screen-shot of the bet page would be
enough to prove a user’s bet. Emails, however, cannot be considered concrete evidence as they
are easily forged. Furthermore, requiring an email address for each bet would compromise user
anonymity. Likewise, screen-shots also cannot be considered concrete evidence, as they, too, are
very easily manipulated. For example, someone might alter the HTML of their bet page and take
a screen-shot of that, claiming to have won a bet. Or, alternatively, they might just alter the
image directly using image manipulation software. In this situation, it would be the word of the
user against the betting exchange and without concrete evidence it is very difficult to tell which
party acted dishonesty.

Inspired by the way that Proof of Existence uses the Blockchain to timestamp the existence of
documents, as discussed in section 2.3, we propose using the Blockchain to create, announce and
store proofs. Whenever a bet is created by a user, we take the bet and the information given by
that user, such as their wallet address, hash this information, and publish it into the Blockchain
using the OP RETURN transaction type. This transaction is embedded into the Blockchain us-
ing the Bitcoin account that belongs to the betting exchange. The idea here is that if a user has
access to the original bet information, hashes it and proves that the resulting hash was embedded
into the Blockchain by the betting exchange, then they can prove that any payment they sent to
that address represents a payment for that bet. This process effectively allows a user to prove
that the Bitcoin address they paid their bet into represents a bet payment. Similarly to Proof
of Existence, this proof relies on the fact that a single change in the unhashed data produces a
completely different outcome hash when compared to the original.

We can illustrate this concept by returning to the example of Alice who wishes to place a bet
on the 2015 Wimbledon final. Figure 23 illustrates this process in 3 steps. First, Alice goes to
the betting exchange and selects to place a bet on the 2015 Wimbledon final. In her bet she
selects Roger Federer as the winner. At this point, in the second step of the process, the betting
exchange generates a completely unique Bitcoin address just for Alice’s bet and announces this
into the Blockchain. The new address is owned by the betting exchange and will ultimately be the
address that Alice sends her payment to. Now, before she sends her payment to this address, the
betting exchange shows her that the address and the information of her bet have been publicly
embedded into the Blockchain together. This means that if Alice sends any money to the new
address, she can prove to the rest of the world that the money she sent represents a bet for Roger
Federer in the 2015 Wimbledon final.

48

Figure 23: Illustration of how Alice would place a bet on Roger Federer.

Figure 24 illustrates how the process of announcing a new bet into the Blockchain works. When
a bet is created, and before it has been paid for by the user, we hash the details of that bet
(such as the event, the outcome and the user’s address) and embed the resulting hash into the
Blockchain. We do this by creating a new OP RETURN transaction using the private key of the
betting exchange. Seeing this hash embedded into the Blockchain and signed by the private key
of the betting exchange, users are able to prove that any payment sent to the bet address is a
payment for that exact bet (e.g. the event, market, outcome and odds in the data). Because these
hashes are timestamped when they are embedded users can also show that the proofs existed
in the Blockchain before any money was paid to those addresses. Note that we are implicitly
assuming here that the public key of the betting exchange is considered common knowledge and
that users know what public key to trust. This requires the public key of the betting exchange to
be published somewhere safely online, for example under some form of trusted or signed manner
(e.g. through a trusted keyserver [86]).

49

Figure 24: Hashing a bet and embedding it into the Blockchain.

Using OP RETURN transactions we can automatically create new bet proofs whenever a user
creates a new bet and allow them to verify it before sending their payment across. By embed-
ding the proof into the Blockchain through a transaction, rather than sending it via an email, we
have the advantage that proofs cannot be forged because a proof requires the private key of the
exchange. Furthermore, proofs are also timestamped, globally accessible, stored on a distributed
and replicated ledger and forever publicly available. Note that by embedding the hash of the bet
and not the bet string itself, we still maintain anonymity for each bet. This is because a hash, by
nature, is a one way function, meaning it is impossible for someone to recreate the original bet
data from the hash. It is very easy, however, to verify that the hash represents the bet if you have
access to the original data.

The proof of bet, when combined with the public transaction ledger, are enough for a user to prove
the betting exchange dishonest. For example, imagine that a user places a winning bet and that
the betting exchange refuses to pay them their winnings. They could prove this using just two
transactions, the OP RETURN transaction published for their bet and their payment. First, they
present the OP RETURN transaction created by the exchange and provide the data that hashes
to the string embedded in that transaction. This proves that any payment to the bet address is a
payment for that specific bet. Then they present their transaction that pays into the bet address,
showing that the payment occurred after the betting exchange published the hash. They can then
use the Blockchain to show that no transaction exists that spends their original payment and
sends them their winnings (this would be in addition to some other transaction from the losing
side of the bet, making up the total amount won). In this case the user has proven the betting
exchange to have acted dishonestly.

There are three interesting observations we can make at this point:

1. The first is that this proof format works for any possible set of actions taken by the various
participants. For example if the betting exchange pays the user less than they should have
won, this too can be proven. The original payment transaction is public, and the data used
to produce the hash includes the bet odds, so the user can use these two pieces of information
to show that the actual payment is less than the expected payment. Likewise, if the user
cancels their bet and their money is not returned to them, this too can be proven. Because
all of the steps are auditable, dishonest behaviour by either party can be identified.

50

2. The second interesting observation to make is that if a dispute were to be raised and a
user wanted to make a claim against the betting exchange, they would not have to release
any personal information in order to do so. Instead, they would anonymously present the
evidence and demand that the exchange takes an appropriate course of action (i.e. by paying
them the correct amount). At no point does a user need to release any more information
than is already available in the Blockchain. The only insight available to the outside world
is that a specific Bitcoin address bet on a specific market, but the identity of whoever owns
that address is not known.

3. The last interesting observation to make here is that when verifying these proofs there is
only one step that needs to be performed manually. That is, looking up the result of the
event and the market that the user bet on. Up until now we have assumed that results of
events and markets are common knowledge (i.e. that everybody knows who won a match
and what the final score was). This is because finding the result of a sporting event is
generally considered simple when done outside the Blockchain. Results are available both
online and off, and easily found through many different sources (e.g. news websites and
television programs). Although looking up this information manually is relatively straight
forward, complications can arise. For example, what if two sources seem to disagree on how
to settle a market (i.e. because of some unusual circumstance). Or what if finding a reliable
source is difficult because the event being bet on is not very well known (e.g. a local football
game, or a small league match). In these cases, it slows down the verification process and
weakens the proof, making it open to attack. For example, what if an attacker publishes
a website that contains sports results, all of which are correct, except for the result they
bet on. In this case, without looking at any other sources, it would appear that the betting
exchange incorrectly settled their bet. Alternatively, what if the attacker instead changed
the result of an event on a trusted website by injecting a piece of javascript into that page.
Looking at this result without consulting other sources would also show the betting exchange
to be dishonest. With so many markets and events being bet on daily, oversight is possible
and mistakes can slip through.

In order to avoid issues with verifying the outcome of a bet, we can take our proposed idea one
step further. Instead of requiring proof of outcome outside the Blockchain (e.g. through a link,
or url) we propose that we make the outcome available inside the Blockchain (similarly to how
we have already done for proof of bet). This will allow anybody who wants to verify the correct
settlement of their bet to see the proof of outcome directly in the Blockchain, without needing
access to third party websites or sources.

Our proposal is as follows: we assign the responsibility for declaring the outcome of a market
to the official sports authority for that market. For example, in a tennis event, we assign the
responsibility of announcing the results to the Association of Tennis Professionals [87], the ATP.
Likewise, for an international cricket event we assign the responsibility to the International Cricket
Council [40], the ICC. Doing this removes the ability for the exchange to announce an incorrect
outcome and thus prevents them from being able to lie to users about who won in order to steal
funds.

Similarly to how Gradbase assign a single public key to each university and trust it to announce
valid certificates (see section 2.3), we can assign a single public key to each sports authority
and trust it to announce valid market outcomes. When an event finishes, the sports authority
can announce the winner of the event into the Blockchain by hashing the outcome they wish
to announce and embedded into the Blockchain using an OP RETURN transaction. Figure 25
illustrates how this works. The outcome is hashed, and the resulting hash is embedded into the
Blockchain. This is very similar to how bet proofs are embedded into the Blockchain, except the
public key announcing these OP RETURN transactions belong to the sports authorities and not
us. Because we only trust transactions that are signed by the public keys of the trusted sports
authorities it means that even if somebody else were to embed these hashes in the Blockchain,
they would not be able to settle these markets. This means that we do not need to worry about
an attacker embedding these in an attempt to settle a market.

51

Figure 25: A sports authority hashing the outcome data and embedding it into the Blockchain.

One question to ask regarding this process is what exactly is the motivation for sports authorities
to use our system and to settle these bets? Because sports betting and gambling make up such
large proportions of revenue for many professional sports teams and events (e.g. through spon-
sorship and endorsement), providing a system that makes online betting more trustworthy and
reliable for users will help promote these activities. This will not only make betting safer and more
accessible to the average Bitcoin user, but also to the general population. In addition, because
these sports authorities are already having to publish these results online manually anyway (e.g.
through various websites), by providing a much more secure way for them to announce results
they become less open to attack and inconsistency (i.e. they can have a single source of truth for
event results that cannot be tampered with or altered). As such, we believe that our system would
not only benefit Bitcoin users and bettors, but also the sports authorities and teams surrounding
the events.

One advantage of our solution is that it does not interfere with the way that users are already used
to interacting with a betting exchange. They are not required to create special locking transac-
tions, sign various contracts or contact external Bitcoin oracles in order to spend their winnings.
They simply pay for their bet by sending their money to an address and their winnings are au-
tomatically returned to them. This is especially important for Bitcoin users who are not versed
with exactly how the latest transactions work and instead just want to bet.

Furthermore, our solution is much more practical than that of a Bitcoin oracle or m out of n
transaction. This is because bets can be paid for immediately when they are placed and matches
can happen instantly. No users have to be contacted or notified when they can pay for their bet
and the wait time between potential matches is much lower. In addition, our solution does not
compromise user anonymity and does not require any personal information from the user other
than the address of where to send their winnings.

Another advantage of our solution is that by assigning the publication of event outcomes to the
sports authorities responsible for that event, we prevent the betting exchange from being able to
declare incorrect or false event outcomes into the Blockchain. This prevents them from being able
to act dishonestly in order to incorrectly settle a bet.

One disadvantage of our proposed solution however, is that it is still possible for the betting ex-
change to steal money. For example, it is still able to refuse to pay a user. As soon as it does
so however, the user will be able to prove it and the reputation of the betting exchange will be
destroyed. This means that no users will ever trust the site again. Furthermore, this proof can-

52

not be disputed against by the betting exchange, as it clearly reveals which party was in the wrong.

Another disadvantage of our solution is that event outcomes have to be manually embedded into
the Blockchain by a sports authority. Although manually announcing results is not ideal, you
could argue that sports authorities still have to do this anyway. For example, Bitcoin oracles
require some form of data feed or API in order to know the outcomes of various events. Because
these data feeds are ultimately being populated manually at the source (e.g. by the sports au-
thorities through their websites), the amount of work required does not change. Furthermore, our
solution actually provides a much more secure way for them to announce results when compared
to that of a website. For example, websites can easily be attacked, altered, brought down or
corrupted. Announcing results through the Blockchain instead provides a single source of truth
that is distributed, globally accessible, timestamped and cannot be altered or changed.

4.1.7 Bet Verification Check

By combining the proof of bet and proof of outcome mechanisms we saw above, with the informa-
tion in the public transaction ledger, we can construct a bet verification check that ensures the
correct settlement of any bet. Because the proof of bet contains the exact details of a users bet
and the public transaction ledger shows all incoming and outgoing payments for that address, we
can tell exactly how much was placed on a specific outcome at what odds. Furthermore, when
you combine the proof of outcome declared by the trusted sports authorities to this information,
we know exactly how much the user should be paid.

By monitoring all incoming and outgoing payments to the unique Bitcoin address that represents
the user’s bet, we can see exactly how much was initially paid, how much was returned (for the
unmatched portion), and how much was won. By combining all of this information with the
proofs, a user can not only verify the correct settlement and appropriate payments for their bet,
but any third party with access to the information can do so as well. We call the process of veri-
fying this information for a single bet a verification check. This check has several interesting and
useful properties that we can later exploit when addressing the concerns of private key security.
In addition, this verification check also allows a third entity who wishes to audit the exchange
to do so without requiring the exchange to explicitly search for and collect all the appropriate
information.

4.2 Private Key Security

Our solution to the problem of trust in an anonymous environment requires the betting exchange
to securely manage and store many public and private keys. These keys give access to the various
Bitcoin accounts that users send their bet payments to and so careful consideration needs to be
given to the way in which they are managed. If an attacker can get access to the private keys
stored by the exchange, they will be able to steal the money held in those accounts. This will
not only be a financial catastrophe but it will also severely damage the reputation of the betting
exchange. Because of the sensitive nature of private key security, the majority of the betting
websites and applications that we analysed do not openly discuss how their keys are stored and
secured. As such, it is difficult to analyse the specifics of many of the existing solutions. We
can however, pay close attention to the way in which we architect our own solution in order to
minimize security vulnerabilities and push back against various threats.

4.2.1 Generation of Keys

The first issue we need to address when thinking about private key security is key generation.
It does not matter how securely we store our private keys if they can ultimately be generated
by someone else. This is because Bitcoin private keys are essentially just 256-bit numbers in the
range of:

53

0x1, to

0xFFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFE BAAE DCE6 AF48 A03B BFD2 5E8C D036 4140

Or in decimal format:

1, to

115792089237316195423570985008687907852837564279074904382605163141518161494337.

Almost any 256-bit number is a valid ECDSA private key (Elliptic Curve Digital Signature Al-
gorithm private key). This means that every possible private key is known because it is just a
number within a very large range of possible numbers. In fact, directory.io [47] lists every possible
private key imaginable!

What makes private keys secure is the randomness in which they are selected. Because the key
space is so large, in the order of 2256, the chance of two users selecting the exact same private
key is exceedingly small, so much so that it is almost inconceivable. In addition, because private
keys are kept secret and not derivable from public keys, it is not possible to tell which private
keys have already been selected and which haven’t. It is therefore almost not worth worrying
about another user selecting the same private key as you, assuming a truly random and evenly
distributed selection of keys.

Unfortunately, however, random number generators that are typically used to generate private keys
are not truly random. Instead, they are pseudorandom, deterministic upon some seed. Although
many of these algorithms, when appropriately seeded are good enough for purpose, weaknesses can
arise from insufficiently seeded generators, incorrect implementations and mistakes. It is therefore
important to pay attention to the way in which these private keys are selected. For example, by
appropriately seeding random number generators and using trusted and well-known implementa-
tions we can reduce the risk of this happening.

One example that highlights the weakness in deterministic key selection is a Bitcoin Brainwal-
let [118]. A Bitcoin Brainwallet operates using the idea of storing Bitcoin private keys by mem-
orizing a passphrase. It works similarly to that of storing a password in one’s head, rather than
writing it down on a piece of paper, or in a file. Brainwallets are able to take a passphrase, and
deterministically generate a private key from that passphrase. The idea is that, if the passphrase
is not written down, the private key and funds stored in the account remain secure. When a user
wants to make a payment or use their account, they will deterministically generate their private
key from their passphrase, use it to sign a transaction and then safely discard the private key. This
means that private keys are not physically stored anywhere but generated using the passphrase
that has been memorised.

Despite the obvious disadvantage that if you forget your passphrase you permanently lose access
to your funds, Brainwallets are actually very insecure. This is because the passphrases that hu-
mans typically choose to remember relate to various aspects of their life, such as quotes from
books, movies, or names of places. This means that the key space by which to choose private
keys actually becomes significantly smaller, and so people typically end up choosing passwords
and phrases that can be guessed through trial and error (e.g. brute force). For example, by using
simple a dictionary-attack [101] you can search through many well known words, phrases and
quotes in order to find private keys that have already been used. In fact, many dictionary attacks
have already been performed on several brain wallet services online, with concerning results [94].

The point to take away here is that in any Bitcoin related service or application, attention needs
to be paid to the way that private keys are generated.

54

4.2.2 Backing up Keys

In addition to private key storage, one element of Bitcoin security that is often overlooked is that
of maintaining private key backups. One of the limitations of using Bitcoin when compared to a
centrally government currency is that if you lose your private keys, you have no way in which to
regain access to your accounts. Unfortunately, this means that any money held in those accounts
are forever lost. For example, there was one case that recently occurred where someone threw
out an old computer hard drive that had been used to store their private keys. Losing this hard
drive meant that around 7500 BTC were permanently lost. This had an estimated value of £4.6
million [9] at the time.

These types of losses are actually quite common, and estimates have been published online stating
that around 30% of all mined Bitcoins are in fact, zombie bitcoins, Bitcoins belonging to private
keys that have been lost. This equates to a total of £625 Million [109] in losses. As such, it is
important to maintain regular backups of private keys in order to prevent such catastrophes.

There have been several interesting developments in the last few years regarding regular backups
of Bitcoin wallets. One approach is to make use of hierarchical deterministic wallets. As previously
touched upon, hierarchical deterministic wallets generate new private keys based upon a seeded
value. The idea is that generation of these keys is deterministic upon that seed, and means that
in order to backup all of the private keys one owns, they only need to backup the seed. Bitcoin
Trezor, for example, makes use of this. Although this is beneficial for backup purposes it means
that anybody who knows the seed can generate all of the private keys for that seed and so in
one sense it might suffer the same vulnerabilities as that of Brainwallets above, if the seed is not
appropriately chosen.

Other approaches to secure private key backups include copying the keys and storing them in
some form of encrypted or secure manner, printing them out and storing them in a safe location,
or simply creating a snapshot of your wallet application every few weeks.

Of course, regardless of how you choose to backup your private keys, specific attention still needs
to be given to the security of those backups. By nature, a backup prevents you from losing your
private keys, but that means that whoever can get access to your backup has access to your keys.
As such, the same amount of attention that is given to the security of key storage needs to be
given to the security of backup storage.

4.2.3 Storage of Keys

Storing private keys securely is perhaps the most important aspect of any Bitcoin based web ap-
plication or service. This is because typically, private keys need to be accessible by the application
in order to send and receive payments and interact with the Bitcoin network. Depending on the
requirements surrounding the application there are many different ways to store keys, and each
method has its own advantages and disadvantages.

One primary characteristic that can be used to split up many of the existing storage techniques is
whether or not the keys need to be accessible online or offline. Online storage is typically referred
to as hot storage because the keys are available to some application or process that is connected
to the Internet. Offline storage however, is often referred to as cold storage because the keys do
not need to be available a service running online. The advantage of cold storage is that users can
physically secure their keys by storing them in a vault or safe, or by hiding them in an appropriate
place. This means that if an attacker wanted to gain access to their funds, they would physically
need to locate and steal those keys.

Cold storage by nature tends to be more secure, because private keys do not need to be accessible
at all times. Examples of cold storage include paper wallets, where private keys are written on a

55

piece of paper, and hardware wallets, where the keys are stored on a hardware device that is not
connected to the Internet. Figure 26 shows an image of a Bitcoin paper wallet that can be printed
on to a piece of paper and stored in a safe location. Encrypted storage of keys online can also be
considered cold storage if the encryption key required to decrypt the Bitcoin keys is stored offline.

Figure 26: A Bitcoin paper wallet.

In contrast, hot storage is required where the keys need to be accessible to a running service or
application, as is the case with the majority of betting websites. Hot storage, or wallets, are often
more vulnerable to attack than cold storage. This is because the keys and accounts are being used
and accessed in a continuous manner. For example, whenever a user places a winning bet on a
betting website, the application needs to pay that user in real time and so must be able to access
the private keys when needed. As such, a vulnerability that allows an attacker to gain access to
a web server, or read its local storage, will allow that attacker to gain access to the keys.

Examples of hot storage include physical storage on a webserver, where the private keys are simply
written to disk, or a database, where the keys are held in a structured format. There are of course
various ways in which to increase the security of private keys held in hot storage. Good security
practices, for example, encourage the use of additional security layers to make it more difficult for
an attacker to read the keys. Encryption, for instance, is one example of an added security layer.
By not storing the keys in plain-text, it means that an attacker would need the decryption key in
order to read the private keys. Of course, the application would also need access to the decryption
key as well, so the attacker could just monitor the application to see how it gets access to that
key. In general, however, security layers make it more difficult for malicious parties to perform
these types of attacks.

In addition to hot and cold storage, you can also use a multi-tiered approach when storing private
keys. A multi-tiered approach makes use of both hot and cold storage in order to regulate and
limit the amount of money that is most vulnerable to attack at any one time. Figure 27 shows a
diagram of a multi-tiered architecture. As can be seen in the diagram, we have a betting applica-
tion that communicates directly with a hot wallet. It uses this hot wallet to receive payments from
users and send payments to users, and so it has access to all of the funds in that wallet. However,
when the amount of money in that wallet increases above a specific threshold, the application

56

sends the excess money to a Bitcoin account held in cold storage. This reduces the amount of
money that is vulnerable to a hot wallet attack at any one time. Likewise, whenever the amount
of money in the hot wallet becomes less than a certain threshold, the operator of the website will
manually send a payment from the account in cold storage to the account held by the hot wallet.
This idea is similar to how a bank or shop will limit the amount of money held on the shop floor
at any one time. This is to guard against theft.

Figure 27: A multi-tiered approach to storing Bitcoin private keys.

The nice thing about this approach is that there can be more than just 2 tiers. Additional layers
of storage can be added in between the hot wallet and the cold wallet in order to guard against
other threats and provide further benefits. For example, you can add a slightly more secure hot
wallet in between the two layers. This wallet would only be accessible from specific addresses, such
as from internal traffic. Doing this provides a slightly more practical approach to topping up the
hot wallet as it doesn’t have to be done manually by the operator. In addition, the server would
be slightly more secure than the first hot wallet because it is not open to general communication
and can only be accessed on-site.

Another approach to storing keys is to use a hardware based private key store. Hardware based
private key stores are specialized pieces of hardware that have been designed to operate in a very
controller manner. This is in order to minimize and push back against the possible threats that
arise from storing private key data. As previously mentioned, Bitcoin Trezor is one example of a
hardware based private key store. Bitcoin Trezor physically stores the private keys on a hardware
device, in a cold offline manner. It allows users to interact with it by connecting the device to a
computer. Bitcoin Trezor operates in such a way as to never expose the private keys of the device
to the computer and instead signs transactions internally, inside the device. This means that re-
gardless of how insecure the computer is that it is connected to, it will not expose the private keys
to the external environment. Furthermore, Bitcoin Trezor takes into account the fact that the
user’s computer may contain viruses, keyloggers and other malware, and so provides a secure way
for users to interact with the device, without allowing the computer to make unauthorized requests.

One of the advantages of using a hardware based private key store is specialization. By physically
building the device in hardware you can enforce certain characteristics in the way that the device
operates (e.g. Bitcoin Trezor don’t ever send the private keys to the computer). This limits the
number of attacks that a malicious party can perform in order to gain access to the private keys
stored on the device. As previously mentioned, Bitcoin Trezor uses a hierarchical deterministic
wallet in order to generate new private keys. This means that should the device fail, you will still
be able to regain access to your private keys if the seed has been backed up.

57

4.2.4 A Smart Private Key Store

Taking the concerns of private key generation, storage and backup into account, we
propose our own solution to address the issue of private key security in a betting
exchange. We do this by suggesting the design of a hardware based, smart, private
key store, built specifically for our purpose.

Inspired by the design of Bitcoin Trezor we propose our own concept for a smart, private key
store that makes use of bet verification checks to sign payments and settle bets. The smart key
store performs these actions without ever exposing the private keys to the betting exchange or to
the outside world. This means that under a threat model where an adversary has control over the
web application, the private keys and funds for the exchange still remain intact.

We do this by creating a hardware device designed specifically for our needs. The hardware device,
just like Bitcoin Trezor, will store the private keys of the betting exchange internally, physically
on the device. The device will be plugged directly into the server that runs the web applica-
tion for the exchange, and so will only be able to communicate with that server. In addition,
the device will provide a fixed and limited set of communication functions in order to allow the
betting exchange to operate effectively. Just like Bitcoin Trezor, the signing of transactions will
only happen internally, inside the device, and so the private keys will never be exposed to the
computer in which it is connected. Furthermore, in order for the computer to get the hardware
device to sign a transaction, such as when a user has placed a winning bet and needs to paid,
the web application is required to provide adequate proof that the signing request is genuine and
valid. This is what makes the device smart.

Figure 28 illustrates this concept. As can be seen in the diagram, the smart, private key store is
physically connected to the computer, or server, that runs the betting exchange. When Alice and
Bob access the betting exchange via their browser, they do so by connecting directly to the server.
The betting exchange web application communicates with the private key store through a physical
connection (e.g. a usb connection) in order to generate new addresses and sign transactions.

Figure 28: A hardware based, smart, private key store connected to a web server that hosts the
betting exchange.

We gain several advantages by implementing the key store as a hardware device:

1. Firstly, by designing the device to never expose the private keys to the outside world, it
means that in order for an attacker to gain access to the keys, they need to physically read

58

the device’s storage or memory when it is running. Given that the device will be connected
to a web server and located in a room where the server is held, gaining physical access to it
will be all the more difficult.

2. Secondly, by implementing the device as a hardware device, we have the advantage that
under periods of significant attack, or when the betting exchange is not operational (e.g.
under maintenance), the device can be unplugged and stored in a safe or vault, making it
an effective means of cold storage.

3. Finally, by using hardware we are able to hard code, or bootstrap, certain pieces of information
to the device to make it more secure. This could be through a one time setup, or by physically
embedding the information into the device when constructed. For example, a shared secret
or encryption/decryption key-pair could be hard coded into the device to make sure that it
only ever communicates with a source that can provide that shared secret. This means that
if the device were to be connected to another computer, it would refuse any attempts at
communication unless that computer could authenticate itself by proving it has the shared
secret.

In order to make key storage on the device slightly more secure, we can also encrypt the private
keys before they are written to the device. This will prevent someone with physical access to the
device from simply reading the private keys off it. Instead, they would now require the decryption
key in order to decrypt the Bitcoin keys. The decryption key can be stored outside of the device
and passed in to it as necessary, for example, when it needs to sign a transaction. Of course,
an attacker could just wait for the decryption key to be passed into the device before extracting
the private keys out of memory, but, if we minimize the amount of time that the decryption key
is available in memory and encrypt the communication link, it makes this type of attack more
difficult.

As described above, what makes the device smart is the way in which the server is able to interface
with it. The device only supports a limited number of interface operations and so restricts how
the betting exchange is able to use it. In addition, whenever the private key store is asked to sign
a transaction and release funds, it requires the betting exchange to provide valid proof that the
transaction to be signed is correct and authentic.

The best way to illustrate how the key store works is through an example. Imagine that Alice
and Bob have bet against each other on the outcome of the 2015 Wimbledon final, with Alice
betting for Roger Federer and Bob betting for Rafael Nadal. Let’s say that the outcome of the
final was that Roger Federer was declared the winner and so Alice won the bet. Figure 29 shows
the interactions between Alice, Bob, the betting exchange, the Blockchain, the private key store
and the sports authority. In the diagram we can see that both Alice and Bob paid into separate
and unique bet addresses for their bets on the final. As previously discussed, the betting exchange
takes Alice and Bob’s bet information and embeds it into the Blockchain. This allows them to
prove that their payments were for their bets. When the event began, any unmatched portions of
Alice and Bob’s bets were returned to them. When the event finished the sports authority settled
the bets by announcing that Roger Federer won the final and embedded this outcome into the
Blockchain. The betting exchange then paid Alice her winnings.

59

Figure 29: An example of Alice and Bob who bet on the 2015 Wimbledon final. This diagram
highlights the interactions between the various parties.

All throughout the example, the betting exchange has been communicating with the private key
store. Looking again at the interactions we can see that there are effectively just 4 operations the
betting exchange requires from the key store. These are, to generate a new address, to create a
bet proof, to return an unmatched portion of a bet, and finally, to pay the winning amount. This
means that the hardware device only needs to provide 3 interface functions:

1. The first function required from the key store is to generate a new bet address and a signed
proof for that bet. When a user creates a new bet, the betting exchange contacts the key
store and asks it to generate a new Bitcoin address for that bet, as well as to sign a bet
proof that it can send to the Bitcoin network. Figure 30 shows how this function works.
The betting exchange gives the key store the bet information when it makes a request for
a new address. The information included in the request contains the event, the market,

60

the odds, and the outcome the user selected, as well as the user’s Bitcoin address and a
template transaction to sign. The key store then generates a new Bitcoin private key and
address, uses that address along with the given information to calculate the bet hash, sets
the OP RETURN in the transaction and signs the bet proof for the exchange. The pri-
vate key is encrypted before it is written to the device, using a public encryption key that
has already been bootstrapped to the device. The nice thing to note here is that the key
store does not need to share the private key with the exchange, but instead just returns
the new bet address and the signed transaction that contains the bet proof. The new bet
address is returned to the user and the signed transaction is finally broadcast to the network.

It is worth noting here that when the private key is written to the hardware device, the bet
and user information it was given is also associated with that key. This has some useful
safety properties we can draw upon in the next function.

Figure 30: The betting exchange making a request for a new bet address and signed bet proof
from the key store.

2. The second function that is required from the key store is to return an unmatched portion
of a bet. Because bets can be both partially matched and unmatched, when an event begins
the unmatched portion of a user’s bet needs to be returned to them. This is because our
solution does not support in-play betting and so once the event begins, no more bet matches
can occur. Therefore, it makes sense to send the unmatched portion of a user’s bet back to
them when the event begins. This also reduces the amount of time we need to hold excess
money. One of the nice properties about storing the bet information along with the private
key in the hardware device is that when a request is made to return an unmatched portion
of the user’s bet, the device will only sign a transaction if the return address is the one that
was originally specified by the user when the bet was created. This prevents an attacker
from asking the wallet to return the amount to a different address.

When this request is made, the amount to return is specified by the betting exchange.
Figure 31 shows how this function works. The betting exchange passes the key store an
unsigned transaction that returns this amount to the user. The key store then takes the
requested amount and unsigned transaction and validates the transaction before signing it
internally, in the device, and returning the signed transaction to the betting exchange. In
order to prevent this function from being abused by an attacker (e.g. requesting the return

61

of an amount greater than what was originally paid or is actually unmatched), we require 2
additional functions. The first function will tell the key store how much was paid into the
bet address by the user, by passing in the raw signed transaction that was used to make their
payment. The key store validates this transaction, and if it is correct, stores the amount
received by the user and associates that amount with the bet address. Once this amount
has been set, it cannot be changed.

The second additional function that we require is one that continuously updates the amount
matched for a bet. Initially this amount is zero, but as other users decide to match this bet,
the amount increases. We therefore keep the key store up to date with the amount currently
matched for a bet. In order to secure this function, we can impose a strictly monotonic re-
quirement for the values it is given. This means that as the amount matched is continuously
updated by the exchange, the amount matched in the key store can never be set to a value
lower than what it was previously at.

Figure 31: The betting exchange making a request to return the unmatched portion of a user’s
bet.

Integrating these two additional functions into the interface of the key store allows us to pre-
vent an attacker from requesting more than what was originally paid, and also prevents them
from requesting more than is currently unmatched. In addition, because the key store signs
the given transaction template internally, the private keys held inside it are never exposed
outside the device. The only thing an attacker could therefore do to abuse this interface
call, assuming they had access to the server, is to return the currently unmatched portion
of a user’s bet back to them. As previously mentioned, we can pass the decryption key to
the key store when a return request is made. This is so that the key store can decrypt the
appropriate key on the device and sign the transaction. When the transaction is signed, the
key store writes over the decryption key and destroys it. Note that in an implementation of
this, the communication between the betting exchange and the key store will be encrypted
via a shared and bootstrapped encryption scheme. This is to prevent an attacker from read-
ing any information sent between the two entities.

3. The final function that we require from the key store is to pay the winner. Rather than
simply requesting the key store to pay a specific amount to some address, we can make use
of the bet and outcome proofs that were embedded into the Blockchain earlier. Figure 32
shows how this function works. In our example, when the request to pay Alice’s winnings is

62

made to the key store, we pass in the entire group of bets that were matched together (e.g.
Alice and Bob’s bets). We also pass in the bet and outcome transactions embedded into the
Blockchain, the original data that hashes to the OP RETURNS in those transactions, and
finally an unsigned template transaction that pays Alice her winnings.

Figure 32: The architecture of the Bitcoin Betting Exchange

The key store can then use all of this information to verify that the unsigned transaction is
indeed the settlement of this bet group. It does so by checking firstly that the bets in the
group are valid (e.g. that they were generated by the key store originally, that they have
been paid for using a signed transaction from the user, that they can be matched appro-
priately for the specified odds, and that the amounts matched for those bets are consistent
with the received payments). The key store can then check that the data for those bets hash
correctly to the signed bet proofs it has been given. It can also check that the outcome proof
it has been given is also correct (e.g. that it is an outcome for the same event and market
as the bets and that it has been signed by the appropriate sports authority).

Having checked that the bets and outcome are all valid and for the same event, the key store
can then check that the unsigned transaction it has been given by the exchange is for the
appropriate address and amount. This can be done by looking up the odds of the original
bet and the amount currently matched to determine the amount to pay (minus the fee from
the betting exchange). It can then double check that this payment is going to the correct
account by looking at the original user address given to it when the bet was generated. If all
of these checks hold, the key store is then happy to sign the transaction locally and return
the signed transaction back to the betting exchange. If not however, it refuses to sign the
transaction.

Just like in the previous function that returns the unmatched bet amount to the user, we
also pass the decryption key to the key store when a payment request is made. In addition,
this request is also encrypted.

All in all, our hardware based, smart private key store device supports 5 interface functions, or
methods, in total. These are:

63

1. Generating a new Bitcoin address and signed bet proof for a specific bet.

2. Updating the payment received for a specific bet. This is the payment sent by the user.

3. Updating the amount matched for a specific bet.

4. Returning the unmatched portion of a specific bet. This is the remaining amount of the
user’s payment not yet matched when the event began.

5. Paying the user for their winning bet.

The hardware device could make use of hierarchical deterministic generation of Bitcoin addresses
when generating new addresses for users. The advantage of this is that in order to backup the
keys held on the device, we would not need to repeatedly and manually copy the private keys off
the device. Instead, we could just store the seed used to generate those addresses. Of course,
this seed would need to be appropriately chosen to prevent weak-seed attacks and could be hard
coded into the device under encryption to prevent it from being modified by an attacker. The
backup of the seed would also need to be stored safely, preferably using a paper wallet, in a vault,
under several layers of encryption. The decryption keys for that seed could then be fragmented
and distributed amongst various parties to make it more difficult for an attacker to gain access to
the original seed. Bitcoin Trezor also take this approach to address generation and backup the
seeds that are used to deterministically generate new addresses. This prevents against hardware
failure.

In addition, to protect the money that the betting exchange makes from each bet, when a bet
group is settled, the portion that goes to the betting exchange could be transferred directly into
a cold wallet. This cold wallet, just like the back-up of the seed, could be stored as a paper wallet
and kept securely locked away under several layers of encryption.

4.2.5 Security Recommendations for Sports Authorities

As our solution also relies the security of the private keys held by the sports authorities, we
recommend that careful consideration is given to the way in which their keys are protected.
Exposing these keys to an attacker could not only be disastrous for them, but also allow an
attacker to announce incorrect event outcomes and hence have devastating consequences for us.
In order to prevent this, significant attention needs to be paid to the way in which these keys are
secured. For example, they could use Bitcoin Trezor to announce event outcomes. The operator
responsible for announcing these outcomes can be given the hash that they need to embed by
our website. They can then use Bitcoin Trezor to embed these outcomes into the Blockchain by
connecting it to a computer, signing the transaction in the hardware, and then disconnecting and
safely storing the device until another event outcome needs to be made known. As discussed,
Bitcoin Trezor never exposes the keys to the outside environment, which is ideal in this scenario.
Physical access to the Bitcoin Trezor device also needs to be monitored.

64

5. The Bitcoin Betting Exchange

In this chapter we introduce the Bitcoin Betting Exchange. We discuss how it works from a user
perspective, showcasing the web application’s front-end design and run through several examples.
We also look at the way in which sports authorities are able to interact with our platform to
perform bet settlement and announce event outcomes. Finally, we explore how bets and outcomes
are verified and how the results of those verifications are presented to the user.

5.1 Introduction

The Bitcoin Betting Exchange is an anonymous betting exchange that allows users to place bets
on various sports events using Bitcoin. As previously mentioned, in the background, section 2.2,
betting exchanges match bets across users and take a small commission from the winner. Users
are able to back an outcome in a specific market, choosing to place a bet for that outcome to
occur. Likewise, users are also able to lay a specific outcome, choosing to place a bet that says
the outcome does not occur. These two types of bet can therefore be matched against each other,
assuming appropriate odds, and the bets settled when the outcome is determined.

The Bitcoin Betting Exchange is fully operational and currently running online at:
https://bitcoin-betting.herokuapp.com.

Likewise, a software implementation of the smart, private key store is also fully operational and
currently running at:
https://bitcoin-betting-wallet.herokuapp.com.

Figure 33 shows a screen-shot of the home page displayed to users:

Figure 33: The Bitcoin Betting Exchange Homepage

In order to make it easy for users to understand exactly how our application works and why they
might want to use it, the very first option available to them is to view a summary of what our
solution provides. This is accessible by clicking on the Tell Me More button, or by simply scrolling
down the page. The main selling points that we provide are that our platform is automatic (set-
tling bets and paying out winnings immediately), it is accountable (giving them concrete proof of

65

https://bitcoin-betting.herokuapp.com
https://bitcoin-betting-wallet.herokuapp.com

any bets they place and the outcome of those bets) and it is anonymous (requiring no personal
information or user sign up). We also provide brief instructions on how to get started. Figure 34
shows a screen-shot of this information.

Figure 34: Automatic, Accountable and Anonymous

The floating navigation bar at the top of the page provides users with quick access to the most
important links, such as Check My Bet and How Does it Work. Furthermore the dropdown menu
in the navigation bar provides direct access to the sports that users can choose to bet on.

When a sport is selected users are shown the current events for that sport. For convenience,
these events are ordered by start time, meaning that the events shown first are the ones closest to
starting (and the ones earliest to finishing). Figure 35 shows a screen-shot of the events available
for Tennis. In addition, all events are searchable by keyword, giving users the ability to quickly
access the events they wish to bet on. Searchable keywords include the title of the event, the
competition the event is in, the players taking part and the date of the event. Note that because
we do not support in-play betting, bets can only be placed on an event before the event has begun.

For convenience we only display events starting within the next 3-7 days to prevent an excessive
number of events being displayed at once. There is an exception that large and popular events
further in the future are also displayed. This allows users to bet on current events as well as gives
them early notice of their favourite events in the future. Likewise if there are not many events
occurring within the near future, we choose to display the earliest events for that sport regardless
of whether or not they fall within the 3-7 day window. Note that the starting time for each event
is displayed using the time zone of the users location, meaning that these times are relative to
each user depending on where they are accessing the site from.

66

Figure 35: The Tennis Events Displayed

When a user has decided the event on which they wish to bet, they can select it and will be shown
the markets (types of bets) available for that event. Figure 36 shows a screen-shot of the various
markets available for a tennis event.

Figure 36: The Markets for a Tennis Event

67

Within each market users can see the currently available or unmatched bets placed by other users.
This allows them to easily match a bet already offered, or to propose their own by entering their
own odds. They also have access to a help button that displays additional information about
the market, such as how the market works, and its rules and regulations. Figure 37 shows a
screen-shot of the currently unmatched bets available for a specific market. Unmatched bets are
displayed using a format that is common to many existing betting exchanges, that is, to display
the bet odds and amount that are currently available for the user. Note that by default we use
decimal odds. For example, in figure 37, there are currently 250,000 satoshi available to back
Phillip Kohlschreiber at odds of 1.4. This means that someone has already layed Phillip at the
appropriate odds and amount to offer you the chance to back him.

Likewise, there are current 40,000 satoshi available to lay Phillip at back odds of 1.5. Note here
that lay bets are always presented using the back odds of the bets that were already placed by
other users. We do not show the lay odds available in this view. This might seem confusing to
someone who has not used a betting exchange before. Odds are always shown in back format
because it makes it easier to view the difference between what odds people are willing to back
at, and what odds people are willing to lay at. For instance, if you were to choose to lay Phillip
in this example by selecting the button displaying odds of 1.5, your lay odds would actually be
3.0. If this is unclear, it may be helpful to re-read the background on betting exchanges and to see
the relationship between back and lay odds. In addition, if there are currently no unmatched bets
available, users can choose to back or lay at their own proposed odds.

Figure 37: The Open Bets for a Tennis Market. The Market is Winner : “Who will win?”

Depending on whether or not users choose to match an existing bet, or propose their own, they
can create a bet by clicking on one of these buttons and completing a bet form. To do this, they
enter their own Bitcoin address (the address where their winnings will be sent) and a pass-phrase
for their bet (to prevent others from being able to cancel it). No other information is required.
Figure 38 shows a screen-shot of a user creating a back bet.

68

Figure 38: A user creating a back bet for a specific market and outcome.

When a bet is created, a Bitcoin address is generated that represents the bet for the user. This
bet address is unique to each bet and is ultimately where the user will send their Bitcoin to. When
the user creates a bet they will automatically be taken to the bet page, where they are able to
monitor and interact with their bet. Figures 39 and 40 show screen-shots of this page for a bet
that has just been created.

This page provides the user with all of the information that they might need to know regarding
the current status of their bet. As we can see in the screen-shots below, the current status of the
created bet is Waiting For Bet Payment, telling the user that we are still waiting to receive their
payment. Each bet page highlights the bet address that the user needs to pay into and provides
a scannable QRcode for use with mobile Bitcoin wallets.

When the user has paid into this address, the bet automatically updates with the amount received,
without having to refresh the page. If their bet can be matched, or partially matched, with an
existing bet, the two bets are updated and the status shown. Figures 41 and 42 show screen-shots
of a bet that has been paid for and is completely matched. Note that users cannot see know who
their bet was matched with.

Looking at figure 42 we can see that the amount received for the bet was 15,000 satoshi. Like-
wise, we were able to match that amount with another bet, so the total matched amount is also
15,000 satoshi, making the bet a complete match. Next to the payment received we also show
an approximate value for the amount in British Pounds. This value is calculated using the ex-
change rate and so may change as the exchange rate fluctuates. Note that as is typical of betting
exchanges, users are unable to cancel their bets once they have been matched or partially matched.

69

Figure 39: The bet page for an unpaid bet. Screen-shot 1.

Figure 40: The bet page for an unpaid bet. Screen-shot 2.

70

Figure 41: The bet page for a matched bet. Screen-shot 1.

Figure 42: The bet page for a matched bet. Screen-shot 2.

At this stage, when a bet has been matched or partially matched, the next step in the process is
to wait for the event to finish and the result of the market to be announced. If a bet has only
been partially matched, it can continue to be increasingly matched as time goes on, all the way
up until the event begins. At this stage markets are closed and the winnings paid out only once
the event has finished and the outcome made known.

71

Some bets may contain portions that are unmatched when the event begins, for example, if a
bet has received no matches, or if a bet is only partially matched. In these cases the unmatched
portions of the bets are returned to the user at the start of the event.

Figures 43 and 44 show screen-shots of a winning bet. If you look at figure 44 you can see a
summary of the bet. The bet was placed at odds of 2.0, 60,000 satoshi was paid by the user,
only 40,000 was matched and 70,000 was won. If we perform a quick calculation, we can see
that 20,000 satoshi should have been returned when the event started (as this was the unmatched
portion of the bet). The bet was made at odds of 2.0, meaning the total winnings of the matched
portion should be 40, 000 × 2.0, equalling 80,000 satoshi. The user only received 70,000. This
might seem strange at first, but if you remember back to the background section of Bitcoin, the
Bitcoin network requires 10,000 satoshi as a miner fee, making up the missing portion of the win-
nings. Note that in this example, we, the betting exchange, have taken zero commission on this bet.

Figure 43: The bet page for a winning bet. Screen-shot 1.

72

Figure 44: The bet page for a winning bet. Screen-shot 2.

Users are always able to look-up their bet status using the Check My Bet page. This can be done
by entering the Bitcoin address corresponding to their bet into a search box on that page. If
the user loses their bet address, they can always find it again by looking up the transaction in
the Bitcoin wallet they used to make the payment. Figure 45 shows a screen-shot of this page.
Entering the bet address of the bet into the search box directs the user back to their bet page.

Figure 45: The bet page for a winning bet. Screen-shot 2.

5.2 Proof of Bet

In the previous section, we saw a user create a bet, pay for it, win that bet, and receive their
winnings. But, what if the betting exchange decided not to pay the user’s winnings, and instead
pocketed the money, removing all traces of the bet from the website. One might argue that the
user could still prove their payment, because the transaction exists publicly in the Blockchain.
Although this is true, they wouldn’t be able to say that this transaction was for their bet. This
is because the transaction only shows a payment from one address to another address, and the
destination address of that transaction could be owned by anyone. The user has no way to prove
that the destination address of their transaction was for their specific bet.

What makes the Bitcoin Betting Exchange unique is that despite the anonymity it provides, it also
gives users a concrete way to verify and prove that the bet address they have paid into is owned by
the betting exchange. What’s more, they can not only prove ownership of that address, but also
that the address represents their exact bet (i.e. the event, the market, the outcome and the odds

73

they selected). This proof is provided before any payment to the address is required, allowing
users to verify this information before they make their payment. Furthermore, this proof can also
be used as concrete evidence in the event that a dispute occurs between the betting exchange and
the bettor.

As discussed in section 4.1.6 we make use of the OP RETURN transaction type to publicly an-
nounce and store bet proofs whenever a new bet is created. The Bitcoin Betting Exchange makes
it easy for users to check these proofs and verify that these hashes exist in the Blockchain before
making a payment into their bet address. It does so by providing a link on the bottom of every
bet page that gives users direct access to the proof. Figure 46 shows a screen-shot of an unpaid
bet and a link, highlighted in red, that allows users to verify their bet before paying.

When a user clicks on the “Show Me Proof of My Bet” button at the bottom of the page, they are
taken to the Bet Announcement page. The Bet Announcement page contains all the information a
user needs to verify that their bet and data has been hashed correctly and announced (embedded)
into the Blockchain. This page contains step by step instructions on how this bet proof works, as
well as explanations on how to go about verifying it. It also gives users the option to download a
pdf of the proof to keep for their own records, so they never have to worry about losing the original
(unhashed) data. Figures 47, 48 and 49 show screen-shots of the Bet Announcement page.

Figure 46: The link on a bet page that takes users to their bet proof.

74

Figure 47: The Bet Announcement Page. Screen-shot 1.

Figure 48: The Bet Announcement Page. Screen-shot 2.

75

Figure 49: The Bet Announcement Page. Screen-shot 3.

If we look at figures 47 and 48 we can see that the Bitcoin Betting Exchange embedded the hash
LYhbGCVgZMD2Pa9sJlDk6uwE22tmr3BtpsA7Divc into the Blockchain on the 31st May at 11:49 AM
(highlighted in red). Underneath the hash (in the black box) a summary of the original data is
displayed. This is the data that was hashed and represents the unique bet. As well as an expla-
nation on what this information represents, we also provide a direct link to the transaction in the
Blockchain, so that users can see the OP RETURN transaction for themselves and verify that it
embeds the correct hash.

Clicking on “Show Me The Hash In The Blockchain”, highlighted in red, figure 48, forwards
the user to Blocktrail.com [27], a third party website. Blocktrail.com is a Bitcoin transaction
explorer that allows users to manually view and explore raw blocks and transactions in the
Blockchain. Figure 50 shows a screen-shot of the bet OP RETURN transaction on Blocktrail.com.
By looking at this screen-shot we can see that this transaction contains a single input, high-
lighted in red, and two outputs, also highlighted in red. The input belongs to the Bitcoin address
mqvFANKWckVg4Dxujt7wUJtCE9CRZL7Qwp, which is the known public address of the Bitcoin Bet-
ting Exchange. The first output is an OP RETURN transaction embedding a “decoded message”,
the second transaction sends the remainder of the spent input back to the Bitcoin Betting Ex-
change. If a user clicks “view decoded message” they will see the value of the string embedded
into the OP RETURN transaction. Figure 51 shows what is displayed. Highlighted in red is the
alpha-numeric (base64) representation of the OP RETURN that was embedded. This shows the
string LYhbGCVgZMD2Pa9sJlDk6uwE22tmr3BtpsA7Divc, which is the same string that represents
the bet. Note that Blocktrail.com choose to prepend an open bracket to the beginning of the their
OP RETURN strings.

76

Figure 50: The transaction that embedded the bet hash into the Blockchain, as viewed by Block-
trail.com

Figure 51: The decoded message embedded into the OP RETURN transaction.

Having manually verified that the hash has been embedded into the Blockchain by the Bitcoin
Betting Exchange, the next step for the user is to verify that the bet data does in fact hash to the
string that was embedded. The Bet Announcement page, figure 49, explains that the hashing algo-
rithm used to produce this hash is SHA256, the very same hashing algorithm used predominantly
throughout Bitcoin (see section 2.1). The Bet Announcement page provides two ways for users
to verify that the data does in-fact hash to the same result. The first way is performed directly
in the browser when the user clicks the “Check the Hash in My Browser” button, figure 49. On
the client side the data is hashed using a javascript implementation of SHA256, and the result is
compared to the hash that was embedded in the Blockchain. A pop-up box displays the result
to the user, showing the expected hash, the calculated hash and the result of the comparison.
Figure 52 shows this result.

77

Figure 52: The result of the client-side SHA256 hashing operation on the bet data.

The second way for a user to verify the hash is through a third party website. In order to prevent
the Bitcoin Betting Exchange from just claiming that the hashes are the same, we also provide
a way for users to perform the hash outside of our application. To do this, users can select the
“Check The Hash Through Another Website” button, figure 49, and they will be forwarded to
online-convert.com [90], a website that calculates various encryption, hashing and data conversion
operations. The data to hash is passed in directly as a query parameter to the url, and so the user
can enter this string into the website and calculate the SHA256 hash. Figure 53 shows the user
passing the string into a text-box on online-convert.com (highlighted in red). Figure 54 shows
the result. As can be seen in figure 54 the base64 representation of the result, also highlighted
in red, is LYhbGCVgZMD2Pa9sJlDk6uwE22tmr3BtpsA7DivczYI=, the first 40 characters of which
match the embedded hash. Note here that we only embed the first 40 characters of any hash due
to the previous limitation that existed on the OP RETURN transaction type.

Having analysed the OP RETURN transaction in the Blockchain manually and verified that the
data does correctly hash to the embedded hash, we provide the user with the ability to download
this bet proof as a pdf. This allows them to always have access to this proof, should they ever
need to use it in the case of a dispute. It also means that should the Bitcoin Betting Exchange
ever try to remove this proof from the website in an attempt to misbehave, users will still be able
to prove their bets. We chose to allow users to download the pdf instead of having the proof sent
to them automatically via email because, as previously mentioned, requiring email addresses from
users compromises their anonymity. Figure 55 shows a downloadable bet proof in pdf format. The
pdf includes all of the same steps and instructions as the web page.

Similarly to how users can look up a bet using their bet address on the “Check My Bet” page,
users can also look up a bet proof using the hash that was embedded into the Blockchain. This
provides quick access to a bet proof without needing to go via the bet page. Figure 56 shows a user
searching for their bet proof. Note that in order to look up a bet proof via this page, the user needs
to enter the pass-phrase for the bet. This is important because it prevents an attacker from being
able to abuse the system. For example, an attacker might collect all the OP RETURNS published
into the Blockchain by our public address. They could then take these OP RETURNS and look
them up using the “Check My Bet” page. This would give them access to the bet proofs and also
bet pages, meaning they could perform two types of attack. Firstly, if the bet was unmatched, it
would allow the attacker to cancel the bet without the users knowledge or consent. Although the

78

user wouldn’t lose any money as their bet would simply be returned to them, this would be incon-
venient and annoying. Secondly, it would allow an attacker to monitor exactly what people bet
on (e.g. by seeing which Bitcoin addresses make payments to these bet addresses). Requiring the
user to enter their pass-phrase in order to look up a bet proof prevents this. Note that users can
still access their bet and hence bet proof using their unique bet address without the pass-phrase.
In this case we rely on the uniqueness of the bet address to prevent an attacker from being able to
get unauthorised access to this information. Figure 57 shows a user entering their bet pass-phrase.

Figure 53: Using the online-convert.com tool to hash the bet data.

79

Figure 54: The resulting hash shown by online-convert.com

Figure 55: The pdf download available for a bet proof.

80

Figure 56: A user searching for their bet proof via the “Check My Bet” page.

Figure 57: A user entering the pass-phrase for their bet proof.

5.3 Proof of Outcome

We assign the responsibility for announcing event outcomes to the sports authorities for that
event. When an event finishes, the authority can come to the Bitcoin Betting Exchange and select
the “For Sports Authorities” section on the navigation bar. This will bring up a web page that
allows the various sports authorities to see the currently unsettled markets and view the possible
ways in which to settle those markets. Figure 58 shows a screen-shot of this page. As can be seen
in the screen-shot, there is currently only one market that is yet to be settled. This is a Match
Odds market for a tennis event, S Robert v Ghem in the French Open 2015.

81

Figure 58: The page for sports authorities that shows the currently unsettled markets.

When a sports authority comes to this page they can see the various outcomes that can be an-
nounced for each market. In order to announce the correct result for each unsettled market they
can click on the “?” button to bring up more information about the market. Figure 59 shows a
screen-shot of the additional information displayed for the Match Odds market. Having read the
description and rules surrounding the market, the sports authority then has enough information
to be able to decide the appropriate settlement for that market. In the case of a normal market
settlement, the sports authority can select to declare one of the outcomes. This will open up a
pop-up box displaying the OP RETURN that the sports authority should announce. Figure 60
shows a screen-shot of the pop-up box displayed when Andre Ghem is selected the winner. This
pop-up box also provides a quick link for the sports authority to verify that the hash displayed is
correct for the selected outcome. This takes them to online-convert.com where they can hash the
outcome data manually to be sure.

In addition to settling a market normally, sports authorities also have the option to settle a market
with an “Exceptional Outcome”. This means that having read the rules of the market, the sports
authority feels that none of the normal outcomes would be fair to the parties involved. Instead,
they can choose to declare an “Exceptional Outcome”. In this case the payments of the bettors
will be returned to them and the market will be declared void. This is required when unforeseen
and exceptional circumstances occur, for example, if an event is terminated prematurely or can-
celled. Figure 61 shows a screen-shot of the pop-up box displayed when an Exceptional Outcome
is selected.

82

Figure 59: Additional information regarding the match odds market.

Figure 60: The OP RETURN for the sports authority to broadcast (declaring Andre Ghem the
winner).

83

Figure 61: The OP RETURN for the sports authority to broadcast (declaring an Exceptional
Outcome).

Note that in order for these markets to be settled the sports authority needs to embed the selected
hash into the Blockchain using an OP RETURN transaction. As discussed in 4.1.6 this is very
similar to how bet proofs are embedded into the Blockchain, except the private key announcing
these OP RETURN transactions belong to the sports authorities and not us. Because we only
trust transactions that are signed by the public keys of the trusted sports authorities, it means
that even if somebody else were to embed these hashes in the Blockchain, they would not be able
to settle these markets. This means that we do not need to worry about displaying these hashes
publicly.
When a sports authority declares one of these outcomes in the Blockchain, we settle the various
bets that have been placed on the market and provide each bet with a link to validate the outcome
of their bet. In the exact same manner that users are able to validate their bet address in the
previous section, they can also validate the outcome of their bet. Figure 62 shows a screen-shot
of the link presented to a user when their bet has been settled. The link is highlighted in red.

84

Figure 62: The link on a bet page that takes users to the proof of outcome.

Clicking on the proof of outcome link on the bet page takes the user to the Outcome Announce-
ment page. This page is very similar to the Bet Announcement page presented earlier, where
users are able to verify that their bet address represents their exact bet. Similarly to the Bet
Announcement page, the Outcome Announcement page explains how the proof works, provides
links to view the transaction made by the sports authority, allows the user to verify the hash of
the outcome (both in their browser and on an external site) and allows them to download the proof
in pdf format for their own records. Figure 63 shows a screen-shot of the Outcome Announcement
page.

85

Figure 63: The Outcome Announcement Page.

In addition to users being able to verify the outcome of their bet by going through their bet page,
they also have the option to look up an outcome proof using the hash that was embedded into the
Blockchain by the sports authority. This provides quick access to the proof without needing to go
via the bet page. Figure 64 shows a user searching for an outcome proof using the OP RETURN
that was announced. Note that when users wanted to look up their bet proof via this page, they
were required to enter the pass-phrase for their bet. In this case a pass-phrase is not required be-
cause revealing what an outcome announcement means does not reveal anything about individual
users, only how a market was settled.

Figure 64: A user searching for an outcome proof via the “Check My Bet” page.

5.4 Audit Trail

The Bitcoin Betting Exchange makes it easy for users to track their bets and see the individual
steps taken by both parties at various stages throughout the bet. It does this by displaying an
audit trail at the bottom of the bet page. As actions occur, this audit trail is updated with all

86

the pieces of information the user needs to effectively verify the current status of their bet. For
example, if we take a look at the figure 65 we can see a complete audit trail, or list of steps taken,
for a bet that was settled and won. The bet in this example is the winning bet we previously
looked at, a summary of which can be seen in figure 66.

As previously discussed, in this example, 60,000 satoshi was paid by the user, and only 40,000
was matched. This means that 20,000 should have been returned to the user at the start of the
event. Likewise, because the bet was made at odds of 2.0, the winner should have received 80,000
satoshi (or 70,000 when you take into account the miner fee). The audit trail shows us all this
information in a step by step process. The very first step shown is that of the original bet proof
published by the exchange. Once the user has verified the proof and is happy with it, they can
then send their payment to the bet address. When a payment has been received by the exchange,
the payment transaction is shown as the next step. Clicking the link provided takes the user
directly to the transaction in Blocktrail.com. Figure 67 shows a screen-shot of the original bet
payment. Highlighted in red we can see that the payment sent 60,000 satoshi to the bet address.

In this example, only 40,000 satoshi was matched, meaning when the event began 20,000 satoshi
should have been returned to the user. When a transaction returning an unmatched bet portion
is created by the exchange, this is displayed in the audit trail, with a link to the transaction. This
is so that the user can verify the payment. We explain, as we did previously, that 10,000 satoshi
is required for the miner fee when a return transaction is generated, meaning only 10,000 satoshi
was sent back to the user. Figure 68 shows a screen-shot of the unmatched amount returned.
Highlighted in red we can see that the transaction sent 10,000 satoshi back to the users address
and left 40,000 satoshi in the bet address as the matched portion.

Figure 65: The audit trail for a winning bet.

87

Figure 66: The bet page for a winning bet.

Figure 67: The original payment, of 60,000 satoshi, received for the bet.

When the event is finished and the outcome is announced, the user is then paid their winnings,
an amount of 70,000 satoshi. Included in the audit trail is a link to the transaction that paid
the user’s winnings. Figure 69 shows a screen-shot of this payment. Highlighted in red we can
see that the payment sent 70,000 satoshi (in total, made up of 59,999 + 10,0001) to the user’s
address. Finally, the last piece of information displayed in the audit trail is that of the outcome
proof, so that if the user is not happy with how the market was settled (e.g. they lost), they can
see the proof of outcome and verify it for themselves.

88

Figure 68: The unmatched amount returned to the user, 10,000 satoshi and 40,000 satoshi left in
the bet address.

Figure 69: The payment sent to the user, 70,000 satoshi in total, for winning their bet.

89

6. Implementation

In this chapter we discuss the general implementation details of the Bitcoin Betting Exchange.
We explore the overall architecture, detailing and discussing the user-facing web server and our
smart, private key store. We explain how our application interacts with the outside world, such as
how it communicates with the Bitcoin network and how it provides real-time event data. We also
highlight several interesting challenges that arose when implementing our solution, and discuss
the approaches we took to solve those problems.

6.1 Architecture

The Bitcoin Betting Exchange is comprised of two distinct parts. Figure 70 highlights these parts
and outlines the general architecture of our solution. The first part of the Bitcoin Betting Ex-
change is a public facing web application that users visit to bet on sports events and markets. In
the diagram we can see that when Alice and Bob visit the betting exchange online, they do so by
connecting directly to the server that runs the web application. This is the web application that
users primarily know as the Bitcoin Betting Exchange. The second distinct part of our solution
is a software implementation that mimics the hardware based private key store we outlined in
section 4.2. Due to the specific nature of this project it was considered out of scope to build a
hardware prototype of the private key store. As such, we have used a secondary, stripped-down,
web application to mimic the behaviour of the key store. When the betting exchange needs to
communicate with the private key store, it does so by sending requests directly to the server that
is running the second web application.

Both web applications have their own databases that they communicate with in order to store
information specific to them. The web application that mimics the private key store has been
designed in such a way as to ignore all requests from the outside world, except those made by the
betting exchange. The private key store therefore only communicates with the betting exchange
and its own database. All other connections are refused. This is so that the entire system is
implemented in a way to reflect the original hardware proposal.

In addition to its own database, the web application for the betting exchange also communicates
with several external APIs (application programming interfaces). These APIs allow the betting
exchange to retrieve the latest sport and event data, communicate with the Bitcoin network, and
lookup the latest Bitcoin price index and conversion rates.

One thing to note about our architecture is that all communication paths operate under encryp-
tion, using SSL (secure sockets layer). For example, when Alice and Bob connect to the betting
exchange in their browser, the betting exchange operates over HTTPS (HTTP over SSL). Like-
wise, when the betting exchange communicates with the private key store, this too is over HTTPS.
All communication with external APIs are over HTTPS and the connections between the web
applications and their databases use SSL. Using an encrypted connection is essential when running
a service that operates over the Internet. This is because encrypted communication paths prevent
an attacker from simply reading the information that flows between the two end points.

For example, if the communication path between Alice and the betting exchange is not encrypted,
an attacker might be able to monitor all the url requests she makes. This would allow the at-
tacker to read all the information embedded in the url, and, for example, they would be able to
find the unique bet address for Alice’s bet (as this is embedded directly into the url when a bet
is requested). By encrypting the url an attacker can only see that Alice is making a request to
the Bitcoin Betting Exchange, but they cannot see what pages or paths she is visiting or what
operations she is performing. This is extremely important for anonymity.

90

Figure 70: The architecture of the Bitcoin Betting Exchange.

6.2 The Bitcoin Betting Exchange

6.2.1 Infastructure & Platform

When deciding on what tools and platforms to use to build our user-facing web application, there
were several factors that heavily influenced our decisions. Because the web application would be
the first prototype of our proposed solution, we required something that would allow us to iterate
rapidly and react to any challenges that might arise. As such, it should be something that is well
suited to an agile work flow, being well supported and documented, with a large community. The
platform we choose should also allow us to produce a solution that is user-friendly, attractive and
stable. In addition it should already be in wide-scale use, provide a strong focus on testing and
allow us to easily host it online, at a low cost.

After looking at various options we ultimately decided that Ruby on Rails[106] would be the most

91

appropriate choice for us. This is because Ruby on Rails is a free, open-source platform that
has been around for many years, with a large community and a wide-array of publicly provided
libraries, called Ruby Gems. Ruby on Rails is well suited to an agile test-driven development work-
flow by providing templates of many kinds to allow rapid iteration, as well supporting many test
suites. Ruby on Rails is powered by Ruby, a dynamic and general purpose programming language
that supports many programming paradigms and is easy to read and understand. In addition,
Ruby On Rails already provides support for many different types of databases, such as Postgres,
MongoDB and Oracle. This makes it ideal for our requirements.

We therefore implemented our web-application in Ruby on Rails. One of the great things about
using Ruby on Rails is that Rails applications are typically very easy to host online, as there
any many different services who provide support specifically for Rails applications. Furthermore,
the process of deploying a Rails application is typically fairly straightforward and simple. We
therefore decided to host our application online using Heroku, “A platform as a service (PaaS)
that enables developers to build and run applications entirely in the cloud” [66]. Heroku is a cloud
platform that provides online web hosting for many different types of web applications. Internally,
Heroku runs on Amazon EC2, the Amazon Elastic Compute Cloud [65] platform and so, just like
EC2, it support scaling of hosting and different price tiers for users.

The very first price tier that Heroku offers is completely free of cost. Although this is ideal for a
prototype application, it does come with restrictions on the amount of requests it can serve per
month and the size of the database it supports. Because the focus of our application is to produce
a working prototype and not a solution that is commercially optimized, this tier was adequate for
our needs.

When considering the type of database we would need for the betting exchange, there was a dis-
tinct trade-off to be made between relational databases and non-relational databases. Given that
our betting exchange would only need to store a limited amount of sport and bet data it was clear
that choosing to use a non-relational database, such as nosql, would be unnecessary. The reasons
behind this decision were that, firstly, the type of data we were going to store was naturally struc-
tured, fitting in well with the constrains of a relational database quite nicely (e.g. sports have
many events, and events have many markets and so on). Secondly, because the amount of data we
planned on storing was not excessive, with no storage of user data required, sacrificing structure
for scalability seemed unnecessary. This was because given that our primary motivation behind
the project was to build a prototype, and not a commercially scalable solution, the benefits a
non-relational database would provide would be minimal. As such, we therefore opted to use a
relational database to back our web application.

Heroku provide free support for Postgres [59] databases when using Ruby on Rails applications.
Postgres is an open-source relational database system that has been around for many years. It
is widely used, well supported and generally considered quite stable. Given that Heroku provide
Postgres free of charge for their most basic tier, this was ideal for our requirements, and thus we
opted to use a Postgres database for our web application.

In addition to hosting, Heroku also provide support for continuous integration. Using Heroku, you
can setup a continuous integration and deployment pipeline that automatically tests and pushes
new versions of the application directly to the users. This works simply by connecting the hosting
server to a GitHub [53] repository. Given that version control is a fundamental requirement in
any software development project, and that Git is very widely used and trusted, we used this
feature to set up a continuous integration and deployment pipeline for our web application. This
was especially useful given our adoption of an agile approach to development, as it allowed us to
continuously roll-out of each iteration of the project. This provided us the ability to gain imme-
diate feedback on the current state of the solution from users.

92

6.2.2 Live Event Data

In order to take bets on real sports events and markets, we needed to find a source of real-time
sport data. Given that Betfair [13] is currently the world’s largest online betting exchange and
offers free API [97] access to their exchange for non-commercial use, it seemed appropriate to use
their service. Not only has their API been around for a long time, but it is used by many different
financial applications and systems worldwide, and so it is generally considered quite stable and
well-documented. In addition to this, because Betfair is the most popular betting exchange on-
line, it provides a very high degree of market liquidity. Integrating Betfair data into our solution
would allow us in the future to provide bet matching across fiat currency. This would allow bets
placed in Bitcoin to be matched with bets placed in fiat currency, and vice versa. This offers a
higher degree of flexibility and increased market liquidity. We have already seen this done when we
looked at DirectBet. DirectBet use the Betfair betting exchange to power their Bitcoin exchange,
by matching bets across Bitcoin and normal fiat currencies.

As mentioned, one of the benefits of using Ruby on Rails is its large collection of public libraries,
called Ruby Gems. Because Betfair is quite well known, there were already several Ruby Gems
available online that provided Betfair API integration. This meant that we would not be required
to manually construct API requests using JSON, but instead could use the methods and response
objects provided by those gems. The Ruby Gem we used to integrate the Betfair API into our
application was betfair api ng rails [72], a gem built specifically for Rails applications. Using this
gem and our Betfair API credentials, we were able to make API calls to Betfair to get various
sports, events and market data.

Figure 71 below shows a code snippet of an API call that fetches the list of all available sports
from Betfair. Note that the BetfairApiNgRails module in the snippet refers to the gem we are
using to communicate with Betfair. In addition, a MarketFilter is used to filter the results of
our API call. The MarketFilter we create in this example is empty, meaning that all available
sports are returned. Further, we specify that the language, or locale, of the response should be in
English. When we are given a response from Betfair we map across the list of response objects
and extract the event type object out of the response body.

1 # Loads all of the event types (eg. sports) from Betfair

2 def g e t ev en t t ype s ()
3 e v e n t t y p e r e s u l t s = Bet fa i rApiNgRai l s . l i s t e v e n t t y p e s (f i l t e r :
4 Bet fa i rApiNgRai l s : : MarketF i l t e r . new , l o c a l e : : en)
5
6 event types = ev e n t t y p e r e s u l t s .map { | e v en t t yp e r e s u l t | e v en t t yp e r e s u l t .

event type }
7 return event types
8 end

Figure 71: A method that fetches all of the available sports from the Betfair API.

Due to the way that the Betfair API works and the limitations that exist on the frequency and
size of client requests, we were required to build several database models and tables to store the
sports data. The reason for storing the data locally was that, if the data was not stored in some
form of local storage or database, the application would need to make API requests to Betfair
on the fly. This would not only be slow for users visiting the site, given that multiple requests
would be required for each page, but the solution would also not scale. This is because as you
increase the number of users visiting the web application concurrently, you will very quickly reach
the request limits of the API and therefore, requests will be refused and users will not be able to
access the sport data. In addition, you will also be breaking the terms and conditions provided
by the API regarding these limits. By storing the sport data locally, it would not only provide a
more responsive web application, but make it much easier to associate bets with various events
later on.

93

In order to store the various pieces of sport and market information, we were required to build
several tables to model the data we received from Betfair. One of the benefits of using Ruby on
Rails is its Active Record Query Interface [105], an interface that makes it easy to construct var-
ious database objects and create associations between those objects. By using Active Record we
could communicate with the database using a much higher level of abstraction than that provided
by SQL. This made writing the logic to manipulate the data much easier.

Figure 72 below shows a simplified entity relationship diagram of our database. As can be seen in
the diagram, there are 5 unique database objects that make up a market and outcome. The first
object is an EventType, which represents a unique sport, such as Tennis or Cricket. The second
object is an Event, which represents a unique event for a single sport, such as a tennis match
of Roger Federer vs. Rafael Nadal. An EventType has many Events, and each Event belongs to
a single EventType. In addition, each Event may be associated with a single Competition, such
as the event of Roger Federer vs. Rafael Nadal belonging to the 2015 Wimbledon tournament.
Likewise a Competition may contain several events. Furthermore, each Event has many Markets,
with a single Market belonging to a single Event. A Market for a tennis event may be “Winner:
Who Will Win the Match?” or “First Set: Who Will Win the First Set?”. Finally, each market
has many Runners, or outcomes, and each Runner might belong to many Markets. For instance,
Roger Federer is a runner in the market of “Who Will Win the Match?” for the Roger Federer vs.
Rafael Nadal tennis event. Likewise, Roger Federer may also be a runner in a different market for
a different match.

Figure 72: A simplified entity-relationship diagram of the database that stores the sport and
market data.

Each entity in the diagram represents a single table in our database, with one-to-many associ-
ations implemented using foreign key constraints and many-to-many associations implemented
using join tables. As can be seen in figure 72 each database object stores information specific
to its function. For example, an EventType stores the name of the sport it represents, an Event
stores the date and time at which it starts, and a Runner stores any handicap assigned to it. In
addition, we store the unique Betfair id of the object when we write it to our database. This is
so that we are still able to map between objects in our own application, and objects in the Betfair
store. Figure 72 shows a very simplified view of our database, with many fields removed for illus-

94

tration purposes. For a complete entity relationship diagram of our database, refer to Appendix A.

At present our application supports around 20 different sports, and over 1000 different events at
any given time. Figure 73 shows a screen-shot of the sports currently supported by the Bitcoin
Betting Exchange.

Figure 73: A screen-shot of all the available sports currently supported by the Bitcoin Betting
Exchange.

In order to keep up to date with the current sports and market information available through
Betfair, we need to continuously keep polling the API and re-syncing our database. Performing a
complete re-sync of the database takes around an hour to complete. Given that the rate at which
new events are announced is fairly low (e.g. every 1-2 days) we would only need to perform a
complete re-sync of the database every day. When you consider that a re-sync puts additional
load onto the database, it would make sense not to perform this operation too often, otherwise it
might slow down the rate at which it could respond to user requests. As such, we needed to find
a way to periodically schedule these updates at a time that the application is not under heavy load.

To do this, we employed the use of a well-known task scheduler built specifically for Rails ap-
plications, rufus-scheduler [77]. The rufus-scheduler Ruby Gem is a job scheduler for ruby that
supports background scheduling of various tasks and jobs. It provides a very easy way to schedule
repetitive tasks and supports cron format. As such, we decided to use rufus-scheduler to re-sync
the database at around midnight every night in the UK. We chose midnight because it signifies
the start of a new day and would be a time at which there is not much user activity occurring.

Figure 74 shows a code snippet of the scheduler that updates the database with new sport and
market data every night. As can be seen in the figure the job runs every night at 5 minutes past
midnight and calls the fetch and update method on the EventAndMarketPopulator module. We
wrap this call in a database transaction using ActiveRecord::Base.transaction to prevent the
database from being updated to an inconsistent state in the case that the job fails. We catch any
failures, roll back the transaction and write the exception to the server log for later inspection.

95

Under failure, our application continues to work with the old data.

1 # Update Betfair Data at 12:05 every night

2 schedu l e r . cron ”5 0 ∗ ∗ ∗” , : over lap => false , : mutex => ”database ” do

3 begin

4 ActiveRecord : : Base . t r an s a c t i on do

5 EventAndMarketPopulator . f e t ch and update
6 end

7 rescue => e
8 Ra i l s . l o gg e r . i n f o ”Error in EventAndMarketPopulator : #{e . i n sp e c t } ” + Time .

now . t o s
9 Ra i l s . l o gg e r . i n f o ”Back Trace : #{e . backtrace } ”

10 end

11 end

Figure 74: A scheduled job written using rufus-scheduler to update the database with new event
and market data every night.

There were two interesting challenges we faced when integrating the Betfair API into our web ap-
plication. The first was discovering a number of unfortunate bugs in the betfair api ng rails gem.
One of which was a missing MarketFilter attribute that allowed you to search for information
relating to a specific market when an API call is made. In order to overcome this, we cloned the
gem locally and added the market id filter to the source code ourselves, before recompiling the
gem. We then highlighted this issue to the original developers online. Figure 75 shows a code
snippet of the class we modified. The attribute we added to the MARKET FILTER ATTRS field is at
line 9. This allowed us to search by market ids when making an API call.

1 class MarketFi l t e r < Api : : Data : : Base
2 . . .
3 MARKET FILTER ATTRS = [
4 : text query ,
5 : exchange ids ,
6 : ev en t type id s ,
7 : event id s ,
8 : compet i t i on id s ,
9 : market ids , # Our solution - add the attribute to search by market ids

10 : venues ,
11 . . .
12 : market s ta r t t ime ,
13 : w i th o rde r s
14]
15 end

Figure 75: Our fix to a missing attribute for a MarketFilter in betfair api ng rails gem.

The second interesting challenge we faced was to do with Heroku deployment. As previously men-
tioned, online sports betting is illegal in the US, and by default Heroku deploy web applications
using a web server based in the US. Unsuspectingly to us, when we first deployed the scheduler
online, it failed every time the database task ran, displaying an error that Betfair could not be
contacted. This was due to the fact that Betfair is not accessible in the US, as it solicits online
sports betting, which is illegal. Therefore any and all requests to Betfairs APIs originating from
an ip address in the US are blocked. In order to overcome this, we re-deployed the application to
a server based locally in the UK. This also provided the added benefit that the web application
responded much more quickly to local requests as there was less latency in the connection.

96

6.2.3 Integration with the Bitcoin Network

In order to allow our web application to communicate with the Bitcoin network (e.g. when it
needs to broadcast a new transaction or check if a payment has been sent by the user) we make
use of several different Bitcoin APIs. Instead of running our own Bitcoin node and having our
application talk directly to that node, we communicate with the Bitcoin network through various
online APIs. These APIs run their own Bitcoin nodes and communicate directly with the Bitcoin
network. Choosing to use an existing API over running our own node reduces the amount of
infrastructure we need to build, deploy and maintain. As such, it decreases the overall complexity
of our design. In addition, because we generate and store our own private keys locally, and con-
struct signed transactions ourselves, we only need to use these APIs to broadcast transactions to
the rest of the world and to fetch existing transactions from the Blockchain. This means that we
never expose any of our private keys or sensitive information to the APIs.

There are three separate Bitcoin APIs that we use to connect to the Bitcoin network. These are
Chain.com [33], Chain.so [35] and Test.Webbtc.com [112]. The primary API we use is Chain.com.
Chain.com is an API built specifically for web applications that use Bitcoin, providing both paid
(commercial) and free access to the API. One of the benefits of using the Chain.com API is that
it provides explicit support for fetching and decoding strings embedded in OP RETURN transac-
tions. Because our application uses OP RETURN transactions to announce bet proofs, by using
the Chain.com API we can easily query and look up the OP RETURN transactions that we have
announced into the Blockchain. This makes interfacing with the Blockchain much easier.

In addition, Chain.com also provides support for applications that use Ruby. They do this by
providing a Ruby Gem, chain-ruby [34], that makes it simpler and more straight forward to com-
municate with their API. Figure 76 shows a code snippet of a method that fetches all of the
OP RETURN transactions created by a specific Bitcoin address, from the Bitcoin network. It
does this by making an API call (get address op returns(...)), to Chain.com with the given
Bitcoin address. The @bitcoin chain client variable is an instance variable that represents the
Chain.com API module provided by the Ruby Gem.

1 # Gets all of the OP_RETURN transactions created by the given bitcoin address

2 def g e t o p r e t u r n s f o r a dd r e s s (b i t c o i n add r e s s)
3 return @b i t c o i n c h a i n c l i e n t . g e t add r e s s op r e t u rn s (b i t c o i n add r e s s)
4 end

Figure 76: An API call to Chain.com that gets all of the OP RETURN transactions created by
a specific bitcoin address

One of the problems we faced when using the API provided by Chain.com was that the free version
provided no explicit up-time guarantees. As such, we found that the API could sometimes fail,
refusing to accept requests for temporary periods of time. In order to overcome this we needed to
make our solution resistant to API failure. In certain scenarios this meant waiting for a specific
period of time before making the API request again. In other scenarios however, we opted to
forward our request to a backup API, such as those provided by Chain.so and Test.Webbtc.com.
For example, when broadcasting a new transaction to the Bitcoin network there is no constraint
that says we we have to broadcast that transaction using Chain.com. As such, we can make use
of the other APIs to perform the same task. When a transaction is broadcast to the network it
should ultimately be relayed to every node in the network and so as soon as the Chain.com node
resumes operation, it too will receive the new transaction. This highlights the distributed nature
of the Bitcoin network.

Another problem we faced with the Chain.com API was that due to its infancy it did not pro-
vide support for generating new OP RETURN transactions. Although we could fetch existing
OP RETURN transactions from the network, we could not create them using the API. This

97

meant that we needed to manually construct the raw OP RETURN transactions ourselves. To
do with we used the bitcoin-ruby [116] Ruby Gem. This gem provides an implementation of the
standard Bitcoin protocols and utilities in Ruby. Using bitcoin-ruby we were able to manually
create, manipulate and sign OP RETURN transactions ourselves.

Although using the bitcoin-ruby gem to create raw transactions was not too difficult, we did run
into several problems regarding the compatibility of internal representations between bitcoin-ruby
and the chain-ruby gems. Internally, both of these gems represent a transaction differently before
it is broadcast to the network. As such, this led to us having to manipulate the internal representa-
tions of the transactions when we passed them between the gems. For example, in order to create
a raw OP RETURN transaction using bitcoin-ruby, you need to specify the input transactions to
spend. In order to fetch those input transactions from the Bitcoin network we used the chain-ruby
gem to communicate with the Chain.com API. Unfortunately, the representation of a transaction
fetched by chain-ruby is different to the representation expected by bitcoin-ruby and so we needed
to modify the fetched input transaction before passing to bitcoin-ruby. Figure 77 shows a code
snippet of part of the transformation we had to perform on the given input transaction. As can
be seen in the snippet, we had to manually set the version of the transaction to 1 to maintain
backward compatibility with the gem. We also had to modify each of the inputs in the transaction
by renaming the keys that were used to look up the values of the previous transaction hash and
the signature.

1 # Transforms a transaction object fetched from Chain.com to a transaction object

that can be used by the ’bitcoin -ruby’ gem.

2 def t r an s f o rm to b i t c o i n r uby t r an s a c t i o n (i npu t t r an s a c t i on)
3 i npu t t r an s a c t i on [” ve r s i on ”] = 1
4
5 i npu t t r an s a c t i on [” inputs ”] . each do | input |
6 input [” p r ev i ou s t r an s a c t i on ha sh ”] = input [” output hash ”]
7 input [” s c r i p t ”] = input [” s c r i p t s i g n a t u r e ”]
8 end

9
10 . . .
11
12 return t r an s a c t i on
13 end

Figure 77: Modifying a transaction fetched by chain-ruby to a format expected by bitcoin-ruby.

In order to monitor payments and settle bets, we needed to find a way to check whether or not
a bet has been paid for or an outcome announced. Because this is a continuous process, with
different bets being created, paid for and settled all the time, we used rufus-scheduler to create
a background job that periodically polls the Bitcoin APIs. This job runs every few minutes and
performs three functions:

1. The first function performed by the job is to update all unpaid bets with their respective
payments. We do this by contacting the Chain.com API to find any payments that have
been made by the user to the unique bet address given to each bet. When a payment is
found the bet is updated with the amount received and immediately becomes eligible for
matching.

2. The second function performed by the job is bet matching. Any bets that contain unmatched
portions are eligible for matching. The pattern we use to match bets is described in the
Background, section 2.2.3. This involves matching back and lay bets on the same outcome
together, assuming appropriate odds. In addition we also match back-back bets and lay-lay
bets if the market only has two outcomes. It is worth noting that in order to minimize
rounding errors regarding bet payments, bet odds and matched portions we make use of Ruby
BigDecimal [104].

98

3. The final function performed by the job is to check whether or not an outcome has been
announced for any finished events. For all matched and partially bets we monitor any
announcements made into the Blockchain regarding the outcome. We do this by using
the Chain.com API to search for any OP RETURN transactions created by the sports
authorities. When an outcome is found, we update and settle the bets in the bet group,
paying the winner. Payment for a bet occurs as described in the Research and Design
section, 4.2, and uses the private key store. When a payment request is generated we
send the request, along with the appropriate proof to the key store. Assuming everything
is correct, the key store returns a transaction for the winning payment that can then be
broadcast to the network.

Figure 78 shows a code snippet of the background job. As can be seen, this job is very similar
to that of the background job that populates the database with sport and market information.
Each of the three functions performed by the job are wrapped in a database transaction. This
is to avoid any failures leaving the database in an inconsistent state. Under failure we simply
roll-back the transaction, log the error and resume operation. It is also worth noting the ":mutex

=> ’database’" annotation associated with the task. We use this to associate the task with a
database mutex, or lock. This locks the database when the task is running, preventing other
background tasks from interfering with it during this time. Note that all other requests to the
database are still handled as normal and that this does not affect user requests.

1 # Poll the Bitcoin Blockchain for updated payments and settlements every 3

minutes

2 schedu l e r . every ’ 3m’ , : over lap => false , : mutex => ’ database ’ do

3 begin

4 ActiveRecord : : Base . t r an s a c t i on do

5 update unpa id bets ()
6 end

7 ActiveRecord : : Base . t r an s a c t i on do

8 match bets ()
9 end

10 ActiveRecord : : Base . t r an s a c t i on do

11 s e t t l e b e t s ()
12 end

13 rescue => e
14 Ra i l s . l o gg e r . i n f o ”Error when updating bets : #{e . i n sp e c t } ” + Time . now . t o s
15 Ra i l s . l o gg e r . i n f o ”Back Trace : #{e . backtrace } ”
16 end

17 end

Figure 78: A background task written using rufus-scheduler that periodically updates, matches
and settles bets.

6.2.4 Live Financial Data

Whenever a bet is displayed on the bet status page we provide real time estimates for the value
of that bet in pounds (GBP). Figure 79 shows a screen-shot of a winning bet. Highlighted in red
are the estimated values in GBP for the original payment and for the winnings the user received.
In order to calculate these estimates and convert between Bitcoin and GBP we require real-time
currency data. To do this we use the BitcoinAverage [78] API. BitcoinAverage is an aggregated
price index for Bitcoin that averages data from over 30 different Bitcoin exchanges online. It
provides many different types of Bitcoin price index, including a 24 hour rolling average and the
most recent sell and buy prices for Bitcoin.

99

Figure 79: A screen-shot of a winning bet showing the estimated value of the original payment
and the received winnings in GBP.

To use the BitcoinAverage API we make use of the bitcoinaverage [17] Ruby Gem. This Ruby Gem
provides a set of methods that make it easy to communicate with the API and keep up to date with
the latest prices. Just like our live event and market data, we store the price indexes for Bitcoin in
our database. This allows quick access to the latest price index without concern of going over the
API request limit with many concurrency users. Furthermore, in order to keep this value up to
date, we make use of rufus-scheduler to run a background task that updates the value every hour.
Because this information is only used for display purposes and not for critical financial operations,
we felt it would be unnecessary to update the value more often. Figure 80 shows a code snippet
for this background task. Note that again we wrap the call to update the database in a trans-
action to protect against failure. We also write any failures to the server log for debugging later on.

1 # Update BitcoinAverage data every 1 hour

2 schedu l e r . every ’ 1h ’ , : over lap => false , : mutex => ’ database ’ do

3 begin

4 ActiveRecord : : Base . t r an s a c t i on do

5 BitcoinAverageDatumPopulator . f e t ch and popu la t e
6 end

7 rescue => e
8 Ra i l s . l o gg e r . i n f o ”Error in Bitco inAverage populator : #{e . i n sp e c t } ” + Time .

now . t o s
9 Ra i l s . l o gg e r . i n f o ”Back Trace : #{e . backtrace } ”

10 end

11 end

Figure 80: A scheduled job written using rufus-scheduler to update the database with new Bit-
coinAverage data every hour.

Figure 81 shows a screen-shot of the various types of BitcoinAverage data we store in the database.
As can be seen in the screen-shot we store the latest ask and bid prices for Bitcoin, as well as the
24 hour rolling average.

100

Figure 81: A screen-shot of the BitcoinAverage data stored in the database.

6.2.5 Testing

Given that our application operates using the Bitcoin currency and is designed to handle finances,
it was essential that we thoroughly tested all of the critical aspects of our code. This is because
a single mistake in a calculation could result in an incorrect payment or incorrect bet match.
Given the delicate nature of Bitcoin (e.g. the fact that any money that is incorrectly sent to the
wrong address cannot be re-claimed) this could have devastating consequences for us and our users.

One aspect that provided relief from these concerns was the fact that our private key store val-
idates bet information and payments before signing transactions. This means that if a bug did
exist in our implementation and we incorrectly paid a user, it would not go unnoticed by the key
store. Nevertheless, it was still important to thoroughly test the critical aspects of our code.

In order to do this we made use of RSpec [102], a very popular behaviour driven development
testing framework for Ruby. By default Rails applications come with the rspec-rails [103] gem
installed and as such provide a very easy way to begin testing Rails applications. Using RSpec
we can write many different types of tests for our application, such as unit tests, end-to-end tests
and integration tests. Given that we were taking an agile and test driven development approach
to our application, where tests are written before features are implemented, RSpec was incredibly
useful during development.

In addition, RSpec supports mockist testing, providing easy ways to mock various objects that the
class under test communicates with. This was especially useful when testing the communication
and interaction between the classes in our application and external APIs. For example, when writ-
ing the code to poll the Bitcoin network to check whether or not a user has paid for their bet, it is
much more appropriate to mock the API we are using than to use the real API in our tests. This is
because, firstly we don’t want to be making real API calls in our tests, as this slows down the test
infrastructure and requires real data to exist. Secondly, API calls can also fail too, and so we don’t
want multiple failing tests to show a feature not working when it is in fact the API that has failed.
Instead, we can mock the API and specify exactly what calls we expect to be made on it and what
those calls should return. This makes it much easier to test communication with the external APIs.

101

For example, figure 82 shows a code snippet of a test for the BitcoinBlockchainPoller. The
BitcoinBlockchainPoller is the class that polls the Bitcoin network in order to update, match
and settle bets. This is described in section 6.2.3 above. As can be seen in the code snippet, we
have a single test that checks that the poller correctly updates the status of a bet that has been
paid for by the user. It does this by mocking the Chain.com API client (@mock chain client)
and telling it to expect a call to get the unspent transactions for a given bet address. In addition,
we also tell the mock that when it receives this call it should return a single transaction. The
object under test, in this case the BitcoinBlockchainPoller, then updates the unpaid bets and
we check that the bet has been appropriately updated with the users payment. This example
highlights the benefits of using mockist testing.

1 de s c r i b e B i t co inB lo ckcha inPo l l e r do

2 . . .
3 i t ” should update the s t a tu s o f the bets that r e c e i v e payments” do

4 unpaid bet = c r ea t e unpa id be t (TEST BITCOIN ADDRESS 1 , TEST BITCOIN ODDS 1)
5 t r an sa c t i on = c r ea t e new t ran sa c t i on (TESTTRANSACTIONAMOUNT)
6 expect (@mock cha in c l i ent) . to
7 r e c e i v e (: g e t addr e s s unspen t s) . with (TEST BITCOIN ADDRESS 1) . and return (

t r an sa c t i on)
8
9 @b i t c o i n b l o c k cha i n po l l e r . update unpa id bets

10
11 expect (unpaid bet . s t a tu s) . to eq (STATUS PAYMENT RECEIVED)
12 expect (unpaid bet . payment rece ived) . to eq (TESTTRANSACTIONAMOUNT)
13 end

14 . . .
15 end

Figure 82: A code snippet of one of our tests that checks whether or not the Bitcoin Blockchain
Poller correctly updates bets that have been paid for. This test mocks the API we are using.

In order to help guide us when testing our code and protect us from missing important behaviours,
we added the simplecov [89] Ruby Gem to our test framework. The simplecov gem provides code
coverage metrics for Rails applications. It highlights areas that need improvement, such as those
with a very low test coverage and also provides a line-by-line view of all files, showing you exactly
which lines have been covered and which haven’t. Although code coverage does not provide an
absolute indicator of how well a file is tested it does give us some idea about the areas that need
improvement. As such we used simplecov to help guide us when writing tests for the most critical
areas of our code.

For example, figure 83 shows a screen-shot of the output produced by simplecov. As can be seen in
the screen-shot, the BitcoinBlockchainPoller module has a code coverage of over 98%. Given
that the BitcoinBlockchainPoller is quite a crucial aspect of our application, as it is responsible
for updating, matching and settling bets, it is important to have adequate test coverage for this
part of the application. Furthermore, we can use simplecov to look up exactly which lines were
missed in order to see how we can improve our tests. Figure 84 shows a screen-shot of a line that
was missed when testing the BitcoinBlockchainPoller. This is highlighted in red. In order to
get to this line, you would need to be in a state that after fetching the transactions for a specific
bet address from the network, one of the transactions you fetched is not for that address. This
scenario is incredibly unlikely given the expected behaviour of the API. As such, assuming there
are no bugs in the API, it could be considered a false alarm. If however, you were pushing for
100% test coverage, you would create a test runs through this exact scenario. This highlights the
benefits of using simplecov.

102

Figure 83: A screen-shot of the output produced by simplecov. This shows us that the
BitcoinBlockchainPoller module has coverage of over 98%, with only 4 lines missed.

Figure 84: A screen-shot of the output produced by simplecov. This shows us one of the lines not
covered by our BitcoinBlockchainPoller tests.

6.2.6 User Interface and Experience

Twitter Bootstrap

When designing and building the user interface for our web application, we made use of Twitter
Bootstrap [114] for the majority of our layouts and components. Twitter Bootstrap is a free and
open-source collection of components that can be used for web applications and design. It is very
commonly used in scenarios that require rapid prototyping and fast iteration, as it provides a
standard set of commonly used web components without having to build them from scratch. We
used Bootstrap for many of the components on our web application, for example, the buttons,
grid system and navigation bar. Although Twitter Bootstrap provides a standard styling for all
of its features, we added a large amount of customization to our interface. This was to avoid our
website appearing identical to many of the generic web applications that also use Bootstrap.

One of the great things about Bootstrap is that it is responsive by design, meaning that by default
it has been designed with mobiles and tablets in mind. This is useful for our application as it
allows users to view the website on both mobile and tablet devices, as well as larger screens.
Figure 85 shows a screen-shot of the Bitcoin Betting Exchange as it would appear on a smaller
screen, such as a tablet. As can be seen in the screen-shot, the navigation bar at the top of the
site collapses and the breadcrumbs shorten to fit on the smaller screen.

103

Figure 85: A screen-shot of the Bitcoin Betting Exchange that highlights its responsible design.

AJAX

In order to improve the overall user experience of the website, we also added several useful fea-
tures to make it more responsive, interactive and intuitive for the user. The first of these features
is implementing AJAX [99] calls to our bet pages. As previously mentioned when a user visits
their bet status page, they are presented with all of the information relating to their bet. As this
information might update according to various actions, we use AJAX to automatically reload part
of the page in background. For example, when a user has paid for their bet and their bet status
is updated, they do not need to manually refresh the page as it automatically reloads for them.
Figure 86 shows a screen-shot of the bet status page that automatically reloads without interfering
with the user.

104

Figure 86: A screen-shot of the Bet Status page that uses ajax to automatically reload whenever
it is updated.

QR Code Generation

To make it easier for users to pay for their bets we provide a unique QR code for each bet. This
QR code uses Bitcoin Improvement Protocol 21 (BIP0021) [117] and the rqrcode-with-patches [28]
Ruby Gem to generate a unique URI so that it can be scanned by any Bitcoin wallet. Providing a
QR code is much safer than expecting users to enter the address into their wallet manually. This
is because Bitcoin addresses are not very user friendly and hence prone to human error. As such
a mistake would result in the money being sent to the wrong address and would be permanently
lost forever. Instead a user can simply scan the code with their wallet and a payment will be
automatically generated by that wallet. This provides a much more user friendly experience when
paying for bets. Figure 87 shows a screen-shot of a unique QR code generated for a bet.

Figure 87: A screen-shot of a QR code generated for a bet.

105

Events Displayed in Local Time

Another improvement we made to our user interface was to display the starting time and date
of each event in the user’s local time. This allows each user to have a customized view of the
events page that depends on exactly where in the world they are located and what time zone
their browser has been set to. We do this using the local time [8] Ruby Gem. This allows users to
know exactly when each event begins relative to them, regardless of whether or not the event is
being held in their local time zone. Figure 88 shows a screen-shot of the Tennis events currently
available, displayed in Greenwich Mean Time.

Figure 88: A screen-shot of the Tennis events displayed in Greenwich Mean Time.

PDF Generation

Another improvement we made to our website was to provide downloadable PDFs of bet and
outcome proofs. Instead of requiring the user to save the proof by hand (e.g. copy the proof
into a text document or save the web page locally), we allow them to download a clearly laid out
and well-explained copy of their proof in PDF format. To provide these PDFs we make use of
the wisepdf [3] and wkhtmltopdf-binary [130] Ruby Gems. These gems enable us to automatically
generate PDFs of various templates as required. A PDF download, as opposed to a confirmation
email, maximises user anonymity. Figure 89 shows a screen-shot of a PDF generated for an
outcome.

106

Figure 89: A screen-shot of a PDF generated for an outcome proof.

Attractive URLs

The final change we made to our website to improve the overall user experience was to implement
attractive urls. By default Rails embeds the unique id of each database object into the url when it
is viewed by the user. This produces urls that not very user friendly and difficult to understand.
Figure 90 shows an example of a url produced for a tennis event.

Figure 90: A screen-shot of the default url provided by Rails. This url embeds the unique ids for
each object.

In order to overcome this we use the friendly id [37] Ruby Gem. This gem allows us to substitute
user friendly strings for unique ids in urls. This produces permalink urls that are easier to under-
stand and improves the user experience. Figure 91 shows the same url as that in figure 90 but
this time using custom strings. As can now be seen in this url, the sports event is a tennis event
for the match of Nadal vs. Baghdatis.

Figure 91: A screen-shot of a much more user friendly url for the Tennis event of Nadal vs.
Baghdatis.

In addition to string based urls being more user-friendly, they also help prevent implementation
leakage. Although knowing the id of a database object is not a vulnerability in itself, it does allow
an attacker to infer information about how the application is built and so it may aid them in
finding weaknesses. For example, DirectBet currently suffer from this problem. Their urls contain
the unique ids of their database objects and so by poking around and comparing these ids to the
ones provided by Betfair for the same events, you can find that the id’s are identical, telling us
that DirectBet get their data from Betfair. This means that if an attacker wanted to attack them

107

in some way, a possible place to start would be to monitor the communication between DirectBet
and Betfair. Figure 92 shows the url displayed by DirectBet for a tennis event.

Figure 92: A screen-shot of the url displayed by DirectBet for a tennis event.

6.3 The Smart Private Key Store

6.3.1 Infastructure & Platform

When deciding on what tools and platforms to use to build our software implementation of the
smart private key store, it was clear that in order to make the key store as secure as possible, it
would be wise to use as minimal a server as possible. This is because the more features, layers,
and parts you add to the server, the more potential there is for vulnerabilities to arise. As is often
stated, “complexity is the enemy of security”, and this is especially true when operating a web
application that can be accessed by anyone online.

Because our software implementation does not have the benefits that a hardware implementation
has, there will nonetheless be issues present in our implementation that will not be a concern for
the hardware device. For example, in order to communicate with a hardware device connected to
an external server, you would either need to have physical access to that device or find a vulnera-
bility in the server that allows to you to communicate with it. This therefore adds some protection
to the hardware key store that is not present in an online web application.

Because of the numerous benefits that Ruby on Rails provides, such as its many external libraries,
the ability to host it online easily at low cost and its large support community, we thought it
would be appropriate to implement our key store using Ruby on Rails. Rather than using a nor-
mal Rails application which has many separate and moving parts, we opted instead to use a much
simpler, stripped-down, API-only version of Rails. To do this we used the rails-api [95] Ruby
Gem. This gem transforms a normal Rails application into one that is a subset of the original by
completely removing many of the unnecessary and unneeded components from the application.
This produces a much simpler and lightweight application. Considering that our key store does
not need to provide any user interface, templates or content, an API-only application is perfect
for our needs. This is because communication between the betting exchange and the key store
can be modelled using an API.

Just like our betting exchange web application, the key store will make use of a database to mimic
local storage. As mentioned, all communication between the application and its database is en-
crypted, preventing an attacker from simply listening to the information that flows between them.

6.3.2 API

As described in the Research and Design chapter, section 4.2, our key store only needs to provide
5 API methods to satisfy the needs of the betting exchange. These are:

1. Generate a new Bitcoin address and signed bet proof for a specific bet.

2. Update the payment received for a specific bet. This is the payment sent by the user.

3. Update the amount matched for a specific bet.

4. Return the unmatched portion of a specific bet. This is the remaining amount of the user’s
payment not yet matched when the event began.

5. Pay the user for their winning bet.

108

In order to keep the representation of Bitcoin transactions consistent across the betting exchange,
the APIs and the private key store, we decided to implement our API as a RESTful JSON API[96].
REST typically stands for “REpresentational State Transfer” and is a state-less client server pro-
tocol. The advantages of using a RESTful API are that it requires no state to be stored by the
server regarding the client. Instead each client request is self contained and uniquely identifies a
resource it requires. This reduces the coupling between the server and the client and improves such
as scalability, simplicity and performance. This therefore reduces the complexity of the key store
and makes it easier to model and reason about. In addition, we decided to use JSON (Javascript
Object Notation) as our data representation because Bitcoin transactions are already represented
as JSON when sent between the betting exchange and the various Bitcoin APIs we use. This has
that added benefit that we can keep communication between all parties consistent and so again,
reduce the complexity of our design.

In order to implement this API we configured 6 specific routes in our Rails application. Each route
represents a unique API method, with an additional route for the homepage of the key store, which
is just for demonstration purposes. By explicitly adding these routes to the Rails application, all
other paths and requests are ignore, meaning we only need to worry about securing these paths.
Figure 93 shows a code snippet of our application’s routes file. As can be seen there are 6 specific
routes, the first of which is the default route that handles all requests to the homepage, and the
other 5 are for each of the API methods in turn. Note that we explicitly limit the type of HTTP
method that can be performed on each path (e.g. GET or POST). This means that all other
HTTP method requests to these paths are ignored. Again, this simplifies the number of routes we
need to secure. All API requests are routed through the path “.../api/{REQUEST}” making it
easy to see exactly which request is being made.

1 Ra i l s . a pp l i c a t i o n . route s . draw do

2 # HOMEPAGE

3 root . . .
4
5 namespace : api , d e f a u l t s : { format : ’ j s on ’ } do

6 # GET /api/get_new_bet_address

7 get ’ g e t new bet addre s s / : r e tu rn addr e s s ’ . . .
8
9 # POST /api/payment_received

10 post ’ payment rece ived ’ . . .
11
12 # POST /api/update_matched

13 post ’ update matched ’ . . .
14
15 # POST /api/sign_bet_return

16 post ’ s i g n b e t r e t u r n ’ . . .
17
18 # POST /api/settle_bets

19 post ’ s e t t l e b e t s ’ . . .
20 end

21 end

Figure 93: A code snippet of our application’s routes file. This file only exposes 6 routes in the
key store API.

We implement each method exactly as described in section 4.2, performing the necessary checks
on each API call before constructing the appropriate response. Similarly to the betting exchange
we use the bitcoin-ruby and chain-ruby gems to perform transaction validation and signing locally.
This means that that private keys are never exposed to the outside world and that our key store
never has to communicate with any external APIs. Whenever a request is made to our API, we
require the arguments of the request to be in JSON and appropriately formatted. Likewise each
of our responses returns JSON and a status code depending on the response. Figure 94 shows
a screen-shot of the homepage of the key store when visited through a browser. This request

109

returns a 401 unauthorized status code and an error message rendered in JSON. This is because
the request made by the browser was not authenticated and so the request was ignored.

Figure 94: A screen-shot of the default route of the private key store when accessed through a
browser. This returns a 401 unauthorized status code and displays an error because the request
has not been authenticated.

One benefit of targeting simplicity in our design is that we only need to define 6 methods in our
application, one for each API call. This allows us to pay careful attention to each method and
to avoid introducing vulnerabilities into our application. For example the implementation of the
method that handles requests to the homepage can be seen in figure 95. The request object is
passed directly to the method when the API call is made. If the request cannot be authenticated
the API call is refused. This highlights the simplicity of our implementation.

1 module Api
2 . . .
3 def home
4 if (! au th en t i c a t e r e qu e s t (r eque s t))
5 render j son : {” e r r o r ” : ”Welcome ! Unfortunate ly your r eque s t was not

authent i ca ted . This means that i t w i l l be ignored . ” } , s t a tu s : 401
6 else

7 render j son : {”message” : ”Welcome ! Your r eque s t was s u c c e s s f u l l y
authent i ca ted ! ” } , s t a tu s : 200

8 end

9 end

10 . . .
11 end

Figure 95: A code snippet of the method that handles requests to the homepage of our wallet.

6.3.3 Authentication

To prevent anyone from being able to communicate with the private key store, we require all
requests to be authenticated. As described in section 4.2, this can be done by bootstrapping a
shared secret or key to the hardware device and sharing this key with the betting exchange. In
this case any requests made from the exchange to the device will have to be authenticated using
the shared secret. If authentication fails, the private key store will treat the request as coming
from someone other than the exchange, and simply refuse it. This requires all requests to be
authenticated using the shared secret.

To perform authentication of requests we use the api auth [54] Ruby Gem. The api auth gem
provides support for adding message authentication codes to API requests. It does this by using
HMAC-SHA1, a keyed-hash message authentication code that allows us to verify both authenti-
cation of requests (e.g. that the request came from the betting exchange) as well as integrity of
requests (e.g. that the request was not changed along the way). HMAC-SHA1 is quite well known,
generally understood and currently considered safe (i.e. it has not yet been broken). For example,
Amazon Web Services currently use it as their client-server API authentication mechanism. As
such, we felt it appropriate to use HMAC-SHA1 in our solution.

Figure 96 shows how HMAC-SHA1 works. In the figure we can see that the betting exchange
wants to send a request to the key store. In order to produce a keyed-hash message authentication
code for the request, it takes the request and the shared secret and runs them through the HMAC-
SHA1 algorithm to produce a valid MAC tag for the request. The betting exchange then sends
the original request as well as the MAC tag to the key store. In order to verify authentication and

110

integrity of the request, the private key store takes the given message and calculates the MAC tag
itself. It then compares the calculated tag to the one given by the betting exchange. If these are
identical it knows that the request was generated by the exchange and that it was not modified
along the way.

Figure 96: A diagram illustrating how a keyed-hash message authentication code is calculated for
a specific API request.

The api auth Ruby Gem does exactly this. It generates these MAC tags for every request that
the betting exchange sends to the key store. In addition, in order to avoid replay-attacks (where
the same message is sent to the key store again by an attacker) api auth implements a time-out
mechanism where requests expire automatically after a specific amount of time. Similarly api auth
also provide several useful methods to generate strong shared secrets, preventing our applications
from authenticating using secrets that are weak and vulnerable to attack.

Figure 97 shows a code snippet of our implementation of the method that authenticates all given
requests. This was seen previously when we looked at the implementation of the method that
handles requests to the default route of our key store. As can be seen in the figure 97, we require
all API requests to include an ACCESS ID. This is just another shared secret required between the
two applications, and hence adds another layer of security to communication. This means that
all API requests need to present this shared ACCESS ID in the request as well as authenticate the
request using the shared secret key. The method therefore checks that the ACCESS ID is correct
before verifying the HMAC-SHA1 MAC tag of the request using the SHARED SECRET KEY.

111

1 . . .
2 def au th en t i c a t e r e qu e s t (r eque s t)
3 g i v e n a c c e s s i d = ApiAuth . a c c e s s i d (r eque s t)
4
5 if (g i v e n a c c e s s i d != SECRET ACCESS ID)
6 return false

7 end

8
9 return ApiAuth . authent i c ?(request , SHARED SECRET KEY)

10 end

11 . . .

Figure 97: A code snippet of the method that handles authentication of API requests.

6.3.4 Communication with the Betting Exchange

As mentioned, all communication between the betting exchange, private key store, external APIs
and databases are encrypted using either HTTPS or SSL. This means that whenever an API call
is made to the key store from the exchange, it does so over HTTPS and therefore an attacker
cannot monitor the parameters and API calls being made by the exchange. To implement HTTPS
in our Rails applications we piggyback [60] on the “*.herokuapp.com SSL certificate” provided by
Heroku and force our applications to respond only to HTTPS requests. This allows us to pro-
vide an encrypted communication for our users, as well as between our services. Note that in a
commercial setting it would be more appropriate to purchase our own domain names and SSL
certificates. This would mean that users would not have to trust the SSL certificate provided by
Heroku, but instead trust only ours. Figure 98 shows a screen-shot of the SSL certificate provided
by Heroku for our applications.

Figure 98: A screen-shot of the HTTPS certificate provided by Heroku for our web applications.

112

In addition to HTTPS we also encrypt all of the parameters passed between the exchange and
the key store using RSA 2048 bit encryption. This is because some of the information we pass
between the applications is highly sensitive. If this information was leaked due to a bug in Rails’
SSL implementation, it would open our application up to many types of attack. Although a bug
in the standard OpenSSL Ruby library should not exist, with the announcement of the HeartBleed
bug only a few months ago, it is better to err on the side of caution. In addition, because our API
does not need to handle an incredibly large load, the extra time required to encrypt and decrypt
this information is not a concern.

Figure 99 shows a code snippet of the API method that updates the amount matched for a specific
bet. Assuming the request has successfully authenticated, we decrypt the given bet address and
total matched parameters using the decrypt api parameter method. We then validate that the
given parameters are correct (e.g. we will check here that the bet address represents a valid bet
and that the total matched is greater than what has been previously matched). The method that
decrypts the given parameter can be seen in figure 100. Note that in order to construct the RSA
private key to decrypt the given string we require the RSA private key file as well as the password.

1 # Update the amount matched for a specific bet

2 def update matched
3 . . .
4 be t addre s s = decrypt ap i paramete r (params [: b e t addre s s])
5 tota l matched = decrypt ap i paramete r (params [: tota l matched])
6 if (! i s v a l i d b e t a d d r e s s (be t addre s s) | | ! i s v a l i d t o t a l ma t c h ed (

tota l matched , be t addre s s))
7 render j son : {” e r r o r ” : ” I nva l i d Arguments Given” } , s t a tu s : 400
8 else

9 . . .
10 end

11 . . .
12 end

Figure 99: A code snippet of the API method that updates the amount matched for a bet.

1 # Decrypt the given parameter

2 def decrypt ap i paramete r (en c ryp t ed s t r i n g)
3 p r i va t e key = OpenSSL : : PKey : :RSA. new(F i l e . read (PRIVATE KEY FILE) ,

PRIVATE KEY PASSWORD)
4 return pr i va t e key . p r i va t e de c ryp t (en c ryp t ed s t r i n g)
5 end

Figure 100: A code snippet of the method that decrypts a given API parameter using an RSA
2048 bit private key.

6.3.5 Database Encryption

In order to prevent an attacker from reading the private keys directly off the hardware private
key store, we suggested encrypting those keys before storing them on the device. The decryption
key can then be passed to the device when needed and discarded after use. This prevents an
attacker from simply picking up the device and reading the information held on it. The same can
be argued for our software implementation. Storing private keys as plain-text in the database of
our application is not wise. This is because if an attacker could connect to the database they
could extract all of the private keys out of it. Instead we store the private keys in the database
under encryption, with the key to decrypt the information held externally to the application. We
do this using using the strongbox [64] Ruby Gem.

113

Strongbox provides a public key encryption mechanism for Active Record. It uses RSA 2048 bit
encryption to encrypt the data before writing it to the database. Because it uses public key
encryption, it means that the key store can write data to the database without requiring the
decryption key. The decryption key is only required when the key store needs to read and decrypt
information from the database. As such, we hold the decryption key in the betting exchange and
pass it directly to the key store when the key store needs to sign a transaction. This means that
the database decryption key only needs to be passed to the key store for 2 API calls. These are:

1. Return the unmatched portion of a specific bet. This is the remaining amount of the user’s
payment not yet matched when the event began.

2. Pay the user for their winning bet.

Because the database decryption key is passed from the betting exchange to the key store it high-
lights the need for secure communication between the two. This confirms the importance of the
communication scheme we set out in section 6.3.4.

In order to minimize the potential vulnerabilities that can arise when the key store has access to
the database decryption key, we minimize the amount of time that the key is held in memory. We
do this by:

1. Only ever decrypting the database key as the very final step in our implementation. Re-
membering that we encrypt the parameters passed to the key store, it means we can keep
the database key encrypted for as long as required. This means that we validate everything
about the API call before ever decrypting the database key. This makes it slightly more
difficult for an attacker to try to extract the key out of memory because they will first have
to construct an API call that is valid and deemed appropriate by the key store.

2. The second step we take to minimize the amount of time the database key is held in memory
is to use it as quickly as possible and then to discard of it immediately. This means as soon
as the database key has been decrypted, we sign whatever transaction we need to, and then
instantly remove the key from memory. We do this by first writing over the variable that
stores the database key and then manually call the Ruby Garbage Collector to deallocate that
memory. Figure 101 shows a code snippet of the API method that returns the unmatched
portion of a users bet back to them. At this point in the code snippet, the API request has
been fully checked and validated. The next step then is to decrypt the database key, sign the
transaction, and then immediately overwrite the database key and manually call the Ruby
Garbage Collector. This is seen in the snippet.

1 # Return the unmatched portion of the bet back to the user

2 def s i g n b e t r e t u r n
3 . . .
4 database key = decrypt ap i paramete r (params [: database key])
5 s i g n ed t r an s a c t i o n = s i g n t r a n s a c t i o n (database key , t emp la t e t r an sa c t i on)
6 database key = ”WRITE OVER THE DATABASE KEY”
7 GC. s t a r t # Manually Call the Garbage Collector

8 render j son : {” s i gn ed t r an s a c t i o n ” : s i g n ed t r an s a c t i o n } , s t a tu s : 200
9 . . .

10 end

Figure 101: A code snippet of the method that returns the unmatched portion of a users bet back
to them.

6.3.6 Testing

Given the critical nature of our key store and the API it provides, it was essential that we thor-
oughly tested and verified our implementation. Considering that a simple bug or mistake in our

114

code could open up significant security vulnerabilities it was essential that we thoroughly locked
down our implementation. As such we aimed to test all of the behaviours of our API and pushed
for a very high code coverage on the API implementation. To do this we used the same test frame-
works and tools we used to test our web application, RSpec and simplecov. Figure 102 shows a
screen-shot of the output produced by simplecov. As can be seen we achieved 100% code coverage
on our application. Given that the application did not contain many files or parts, the majority
of our testing took place in the key pair controller.rb file, where the logic for our API lives.
Although code coverage does not provide an absolute indicator of how well a file is tested, it does
give us some idea about the areas that need improvement. As such we used simplecov to help
guide us when writing tests for the most critical areas of our API.

Figure 102: A screen-shot of the code-coverage of our key store API.

Figure 103 shows a code snippet of a test for the API method that updates the total amount
matched for a bet. The test in the snippet checks that setting the amount matched to a value
lower than the amount already matched fails, returning a 400 bad request error. As can be seen
in the snippet, a bet is created that has received a payment of 10,000 satoshi. We set the amount
matched for that bet to 5,000 satoshi. An API call is then made to update the amount matched to
4,950 satoshi. Because this new amount is less than the previous amount matched (which doesn’t
make sense because the amount matched should always be increasing) the API call fails.

1 . . .
2 i t ” should not accept an i n v a l i d t o t a l amount matched : amount matched l e s s than

a l ready matched” do

3 enc rypted be t addre s s = en c r yp t s t r i n g (TEST BET ADDRESS)
4 e x i s t i n g b e t = crea te new bet (TEST BET ADDRESS)
5 s e t be t payment r e c e i v ed (e x i s t i n g b e t , ”10000”)
6 s e t b e t t o t a l ma t ched (e x i s t i n g b e t , ”5000”)
7 new total matched = ”4950”
8 encrypted new tota l matched = enc r yp t s t r i n g (new total matched)
9

10 post ’ / api /update matched ’ , : format => ’ j s on ’ , : b e t addre s s =>
encrypted bet addre s s , : tota l matched => encrypted tota l matched

11 expect (re sponse . s t a tu s) . to eq (400)
12 expect (j son [” e r r o r ”]) . to eq (TEST INVALID ARG STRING)
13 end

14 . . .

Figure 103: A code snippet of an API test that tests a call to update the amount matched for a
specific bet. This test checks to see that setting the amount matched to an amount less than the
current amount matched fails.

115

7. Evaluation

The Bitcoin Betting Exchange is the first publicly available betting exchange that uses the Bit-
coin Blockchain as a way to announce bet and outcome proofs. It is the only betting exchange
currently available online that provides complete transparency to its users, allowing them to use
signed proofs and transactions as a way to verify the honest operation of the exchange. In addition,
the Bitcoin Betting Exchange is the only betting exchange to provide complete user anonymity,
requiring no personal information and no user sign-up.

Furthermore, our Smart Private Key Store is the first Bitcoin wallet to use proofs embedded
into the Blockchain as a way to determine whether or not a payment should be generated. This
key store provides several interesting and attractive properties that give it improved security over
generic hot wallets.

In order to effectively evaluate our proposed solution, there are two important areas that we must
look at. The first is user experience and the second is security.

7.1 User Experience Evaluation

7.1.1 Online Feedback and Discussion

Given that our project lies in the intersection between Bitcoin and betting, we thought it best to
solicit user feedback from users who are well versed in both of these areas. This is because users
interested in both Bitcoin and betting are ultimately our target users and are the users we are
most interested in getting feedback from. Once our solution was in an appropriate state, we pub-
licly released the Bitcoin Betting Exchange online, under BETA. Figure 104 shows a screen-shot
of the homepage of the Bitcoin Betting Exchange when it first opened for BETA.

Figure 104: A screen-shot of the BETA release of the Bitcoin Betting Exchange

To announce the release of the Bitcoin Betting Exchange to the Bitcoin community we created
two posts online. The first was a post in the Betting and Gambling section of the BitcoinTalk [21]
forum and the second was a post in the Bitcoin subreddit [98]. Figures 105 and 106 show screen-
shots of these posts.

116

Figure 105: A screen-shot of the BitcoinTalk post about the release of the Bitcoin Betting Ex-
change.
https://bitcointalk.org/index.php?topic=1070926.0

Figure 106: A screen-shot of the Reddit post about the release of the Bitcoin Betting Exchange.
https://www.reddit.com/r/Bitcoin/comments/37d28s/provably_fair_games_what_about_

provable_bets/

The purpose of these posts was to advertise our solution to the right types of users, those specifi-
cally interested in Bitcoin and betting in general. This was so that they might visit our application,
hold conversations about it, and provide us with much needed feedback. In order to monitor user
interaction with our website, we used Google Analytics [55]. Google Analytics is a web analytics

117

https://bitcointalk.org/index.php?topic=1070926.0
https://www.reddit.com/r/Bitcoin/comments/37d28s/provably_fair_games_what_about_provable_bets/
https://www.reddit.com/r/Bitcoin/comments/37d28s/provably_fair_games_what_about_provable_bets/

service that tracks and analyses website traffic. It allows you to gain insight into the way that
users interact with your application. For example, you can track the number of page views per day
and the average amount of time a user spends on your application. By adding Google Analytics
to our website, it enabled us to gather quantitative information and feedback about the way that
users interacted with our application.

Looking at the posts we published online, we received some very useful feedback. In total our
posts were read over 800 times, with 11 comments left by users. 5 out of the 11 comments (∼
45%) suggested interest in using our application but were unimpressed with the number of sports
currently on offer (e.g. at the time we only supported around 5 different sports). 6 out of the 11
comments (∼ 54%) mentioned that they specifically liked the design and layout of our application.
3 out of the 11 comments (∼ 27%) mentioned dislike for the domain name. Understandingly all
of these comments were made on the Gambling forum of BitcoinTalk and so as you would expect
with a forum devoted to Bitcoin betting, the majority of these users were primarily focussed on
placing bets. As such, their motivations for reading the post were more than likely to bet and not
so much to discuss the unique ideas we propose.

Responding to this feedback, we increased the number of sports we provided from 5 to around
20. Unfortunately however, given the time constraints of the project, we were unable to move our
hosting away from Heroku or to purchase our own domain name. Migrating to a better platform
and custom domain name is something that will only be done after this project is complete. In-
terestingly however, 3 out of the 11 comments (∼ 27%) mentioned that they specifically liked the
unique aspects that our solution provides, such as anonymity and bet proofs. On the reddit post
for example, one user discussed with us the design of our proof of bet and outcome system and
agreed that it provides an advantage over traditional betting exchanges. This tells us that the
features that make our betting exchange unique did not go unnoticed.

During the short period under which our site operated in BETA (around 3 weeks in total) we
received around 1,660 page views from over 520 different users. Interestingly the mean session
duration of each user was around 30 seconds in total, with a bounce rate of around 70%. Note
that a bounce means that a user only reads the first page of the website and then leaves. One
speculation as to why the bounce rate was so high is that our solution was only released on the
Bitcoin Testnet. For many users who wish to bet using real Bitcoin, our website is not useful
to them, and so once they see this limitation on the homepage, they leave the site. Figure 107
shows a graph of the number of website session per day during the BETA release. On the y-axis
is the number of sessions, and on the x-axis is the date. Each dot represents a different day. The
first red circle on May 22 highlights the date our posts were made public and the Bitcoin Betting
Exchange released. As can be seen the number of sessions grew steadily over time, stabilizing and
then dramatically dropping on May 30 at the second red circle. This dip was due to downtime
we experienced when updating the number of sports provided by the application.

Figure 107: A graph of the number of website sessions per day during the BETA release.

One interesting observation we made during this period was about the locations of the users who
visited the site. Figure 108 shows a table of the percentage of users coming from different loca-
tions around the world. As is immediately obvious, around 28% of all requests came from users

118

in the United States. This is very interesting to note because online sports betting is illegal in the
United States. This means that those users who visited our site were more than likely interested
in pursuing illegal activity. Furthermore, 19 percent of user locations were hidden and 2% came
from Russia where online betting is also illegal. Assuming the 19% percent of hidden locations
were hidden for a reason, around 50% of all the traffic to our website was questionable. Only 21%
of the users came from the UK.

Figure 108: The percentage of users coming from different locations around the world.

During our public release we only had 9 bets placed by users who visited the site. Unfortunately,
only around 3 of those bets were paid for using a Testnet wallet. Our suspicion as to why this
number is so low (∼ 33%) is because many users will not own a Testnet wallet, and because
Testnet coins have no value, there is little motivation for them to get access to one.

Our takeaway points from this analysis are that firstly, our solution has potential. Having our
posts read over 800 times, with 520 different users visiting our site, it tells us that our solution has
generated interest from real users. Furthermore, the various comments and feedback we received
on our posts in such a short period of time acknowledge and agree with this statement. Users
also actively mentioned interest in the unique features that our solution provides. However, the
biggest obstacle we face in getting users to engage with our site is the fact that it does not run
on the production Bitcoin network. This was a decision we made at the beginning of our project
to avoid any potential legal issues from arising. Although this does reduce the amount of interest
currently generated in our application, we feel this decision was correct given that around 30% of
all our user traffic came from locations where online sports betting is illegal.

In terms of performance and website speed, the average page load time during the BETA period
was around 0.55 seconds, with the worst load time being around 5.2 seconds. Given that our
solution was hosted online for free, we feel an average load time of anywhere around half a second
is good. Furthermore, after looking into why the worst load time was so high, we noticed that
this occurred when the server was under an abnormally heavy load. This was due to an excessive
number of requests being sent to the server in a short period of time. This is discussed later in
the security evaluation. Based on response times and speed we think that the performance of our
application is acceptable.

119

In terms of usability and user experience it is clear that in order for our solution to compete with
the already existing solutions we need to add support for as many sports as we can. Specifically, we
should add soccer, as this was the number one requested sport to add to our exchange, requested
in at least 3 out of the 11 comments (∼ 27%). Likewise, if our solution was to be released fully
online, we would need to migrate our application to better servers and purchase our own domain
name.

7.1.2 User Experience Feedback

In addition to collecting feedback from users online, we also conducted an in-depth user study.
This was done at the departmental Project Fair and gave us the opportunity to gather much
more detailed and in-depth feedback about our application. To collect this feedback we per-
formed 5 in-depth user interviews, each of around 15 minutes long. Each user interview had a
short pre-interview and post-interview questionnaire with the remainder of the interview being
an interactive session. In the interactive session users were asked to perform specific tasks using
our application and were timed and monitored. The focus of this was to observe how the users
interacted with our site without guidance or assistance. We encouraged all users to think out loud
and recorded these sessions using a screen and microphone recorder.

The purpose of the pre-interview questionnaire was to assess each user’s background and expe-
rience with Bitcoin and betting. Unsurprisingly, given the technical background of the students
in the department, all 5 of our test subjects had heard of Bitcoin before. They all knew vaguely
what it was and how it worked. Surprisingly however, none of them had ever used Bitcoin to send
or receive a payment and none of them owned a Bitcoin account. In addition, for all 5 of our test
subjects betting was an area they had never had any experience with before. None of our subjects
had ever placed a bet online, or in person, and none of them had ever used a betting website or
visited a sportsbook.

After conducting the user interview, we then gave users access to our website and asked them to
perform a set of specific tasks. These tasks included creating a bet, paying for a bet, cancelling a
bet, looking up a bet and verifying a bet. During this time we did not give assistance to the user
(unless asked) and recorded their interactions with the website. The various insights we were able
to gather from the interactive sessions were:

1. 4 out of the 5 users (80%) got stuck at the point just before placing a bet on an event. This
was because they were confused with the back and lay terminology, having never used a
betting exchange before. All 4 of those users proceeded to click on the “?” help button in
an attempt to see if they could find out what back and lay meant. This help button did not
answer their question however, and so we were forced to explain the terminology. Figure 109
shows the point at which these users got stuck.

120

Figure 109: A screen-shot of the point at which 80% of our test subjects got stuck as they hadn’t
come across the terms back and lay before.

2. 3 out of the 5 users (60%) had to visit the How it Works page in order to clarify how the
process of paying for a bet worked. After which, all 3 were able to pay for their bets without
assistance from us.

3. 2 out of the 5 users (40%) struggled at certain times to navigate the website. This was
because, after clicking a button, they weren’t sure whether or not the website was loading
or if the click hadn’t registered and so ended up clicking multiple times.

4. 3 out of the 5 users (60%) commented that they thought the progress bar at the bottom of
the page was a good idea, but 1 of those 3 struggled to see what stage of the bar we had
progressed to. This was because they were uncertain about how the bar fills up.

5. 4 out of the 5 users (80%) commented that they liked the design of the website and felt that
it was attractive.

6. 2 out of the 5 users (40%) commented that when entering a passphrase for their bet, they
would like that passphrase to be covered up, or starred out. Figure 110 shows an uncovered
passphrase.

121

Figure 110: A screen-shot of an exposed passphrase when entered.

In the post-interview questionnaire we asked each user about the proof of bet and proof of outcome
schemes that we use in our application. This was to assess how well they understood these proofs
and whether or not our explanations were clear enough. In the discussions with our test subjects
we found two important insights.

1. The first was that 80% of them (4 out of 5 of them) did not trust the in-browser validation
that happens when a user clicks “Validate My Bet Proof”. Instead they all preferred to
us the external website to validate this hash. This is because by not seeing exactly what
the browser does, they have no way of knowing whether or not the check is actually being
performed. Figure 111 shows a screen-shot of the validation result that the test subjects did
not trust.

122

Figure 111: A screen-shot of the page that verifies that the bet information hashes to the correct
hash.

2. The second insight was that 2 out of the 5 users found the ability to download the proof as
a PDF reassuring. This was because even if they didn’t fully understand the proof at the
time, by downloading the PFD they will always have access to it, and so can always read
more about how it works later on.

In response to this feedback we made several needed changes to our application. For example, we
added a loading icon to the website so that users know exactly when the website is loading and
can know whether or not to wait for it. We added a help section to the back and lay pages so
that users who are unfamiliar with betting exchanges can find out about what these terms mean.
We improved the progress bar by adding explicit text that lets the user know exactly what stage
they are at. We also star out passphrases when they are entered into the website to prevent them
from being read by someone else. Figure 112 shows a screen-shot of the loading icon added to the
website. This icon is displayed in the top right hand corner.

123

Figure 112: A screen-shot of the loading icon that is displayed when the web page is loading.

7.1.3 Professional Feedback

In addition to user feedback we also reached out to a company currently developing their own
Bitcoin betting exchange. The founder of the company, William Hanbury, has been following our
project closely from the beginning and so we were able to gather some useful insight from his side.
Similarly to how we orchestrated our user tests, we showed William our working solution, allowed
him to test it and had an in-depth discussion with him regarding our ideas. Some of the useful
insights we found were:

1. From William’s perspective, our proof of bet system and the way that we prove that a
specific bet address corresponds to a specific bet is probably the most interesting part of our
application. This was one issue William and his team had been trying to solve and the way
in which we proposed to solved it incited interest.

2. In William’s opinion, the proof of outcome system was not as interesting a problem to solve.
This is because, from his experience, it is easy to find out who won an event, and so he
had difficulty in seeing the benefit a proof of outcome provides. However, once we explained
to him how our key stores uses these two proofs in combination, the value of the proof of
outcome immediately became apparent because it enables our key store to protect its funds
by acting as an adjudicator.

Overall, the feedback we received from William was very positive and as such, he expressed his
interest in further exploring some of the ideas we had proposed together.

7.2 Security

Given that our project is security conscious, it is essential that we analyse it from a security
perspective. This means studying the potential security vulnerabilities and issues that are present
in our design and overall solution. It is worth noting here that our primary focus is not to find
small implementation specific vulnerabilities (e.g. a bug in some component of Rails) but to
instead analyse the larger security consequences of our design. Although we will no doubt find

124

smaller implementation specific issues, these will need to be put into perspective regarding the
overall solution.

7.2.1 Hacking Challenge

One of the first ways we wanted to evaluate our design was by issuing a hacking challenge online.
This was a challenge inviting anyone interested in doing some white hat hacking to try to penetrate
our website and key store. A challenge of this nature would not only test the robustness of our
design, but also the implementation, and so it would allow us to gain insight into the vulnerabil-
ities that exist. As such, we issued this challenge online as part of our post on the BitcoinTalk
forum. The challenge invited anyone interested in hacking the site to contact us and we would
provide them with an overview of the architecture as well as some insider information.

Unfortunately, we did not receive any formal replies to this challenge. We did however notice that
a few days after it was published online, there were several attempts made at various different
types of attack on our solution. The first of which was a brute-force attack. On the 27 May, just
5 days after the post was published online, there was a 2 hour time window in which the server
logs looked as follows (figure 113):

1 2015−05−27T15 :13 :16 .847155+00 :00 app [web . 1] : Rendered layout s /
be t f o rm wi th odd input . html . erb (0 . 7ms)

2 2015−05−27T15 :13 :16 .850310+00 :00 app [web . 1] : Rendered layout s /
be t f o rm wi th odd input . html . erb (0 . 7ms)

3 2015−05−27T15 :13 :16 .853488+00 :00 app [web . 1] : Rendered layout s /
be t f o rm wi th odd input . html . erb (0 . 7ms)

4 2015−05−27T15 :13 :16 .856608+00 :00 app [web . 1] : Rendered layout s /
be t f o rm wi th odd input . html . erb (0 . 7ms)

5 2015−05−27T15 :13 :16 .859724+00 :00 app [web . 1] : Rendered layout s /
be t f o rm wi th odd input . html . erb (0 . 7ms)

6 2015−05−27T15 :13 :16 .862865+00 :00 app [web . 1] : Rendered layout s /
be t f o rm wi th odd input . html . erb (0 . 7ms)

7 2015−05−27T15 :13 :16 .866006+00 :00 app [web . 1] : Rendered layout s /
be t f o rm wi th odd input . html . erb (0 . 7ms)

8 2015−05−27T15 :13 :16 .869194+00 :00 app [web . 1] : Rendered layout s /
be t f o rm wi th odd input . html . erb (0 . 7ms)

9 2015−05−27T15 :13 :16 .876236+00 :00 app [web . 1] : Rendered layout s /
be t f o rm wi th odd input . html . erb (0 . 8ms)

Figure 113: A code snippet of our server logs under a brute-force attack.

As can be seen in the server logs, our server was continuously reloading the bet form every 0.7ms.
During this time someone was trying to brute force the form that creates bets (this is the same
form seen we have already seen where users create a bet and enter their passphrase). Given that
when the attack was over no bets had been created, it indicated to us that whatever they tried
had failed, and that the validation we put on this form was strong enough to prevent their attack.

In addition, just two days later, on the 29 May, a denial-of-service attack was made against our
application. This was done by making an excessively large number of requests to the web server
in a short period of time. These requests were more than our application could handle, and so
it brought our betting exchange down for around 3 hours. It was during this period that we
experienced the slowest response times. A denial-of-service attack however, does not indicate a
serious vulnerability in our application as it is just a generic type of attack.

In order to prevent these types of attack from occurring in the future, we made use of the rack-
attack [71] Ruby Gem. The rack-attack gem provides middleware for Rails applications that allows
it to provide blocking and throttling of requests. Using the gem we limited the number of requests
to our application to 5 requests per second, per IP address. Although this does not completely
stop these types of attacks, it does slow them down enough to make it more difficult to effectively

125

perform.

It is worth noting that several other brute-force attacks of the same nature were also made on
various other forms, with no repercussions. Overall, the insight we gained from this was that the
validation on our forms are appropriately secure to prevent SQL injections and invalid information
being accepted.

7.2.2 Security Scanners

Another method by which we evaluated the security of our solution was to use dynamic and static
security scanners. These are scanners that crawl through websites and source code looking for
security vulnerabilities. The first scanner we tried on our solution was the ScanMyServer.com[108]
web security scanner. We ran this tool on the Bitcoin Betting Exchange. This scanner searches
for many types of security vulnerability, such as SQL Injection, Code Injection and Cross-site
scripting. After running this scanner on our website, the result produced was pleasantly surprising.
Out of a possible 20,000 tests run, only 3 failed. Figure 114 shows the summary produced. The 3
tests that failed were infrastructure tests of low severity. They were Timestamp Retrieval, HTTP
Inspection and HTTP Trace. These three vulnerabilities could allow an attacker to estimate the
uptime of the server, inspect certain details about the HTTP protocol used (such as the version),
and reveal any proxies used. As such, all of the vulnerabilities were of low concern and categorized
under “intelligence gathering”, meaning that no serious vulnerabilities were found. Running the
web security scanner on our key store API produced no vulnerabilities.

Figure 114: A screen-shot of the summary produced by ScanMyServer.com security vulnerability
scanner.

Having tried a dynamic web security scanner, we decided next to use a static web security scan-
ner. Brakeman [29] is a well-known and popular static vulnerability scanner built specifically for
Rails applications. It analyses the source code of Rails applications and searches for common
Rails vulnerabilities, such as calls to eval with unsanitized input, which would allow an attacker
to execute code on the server. Running Brakeman on the source code for our key store API
produced no errors, which was a good sign. Running Brakeman on the source code for the betting
exchange, however, produced 2 errors. Both of these errors appeared to show a cross-site scripting
vulnerability in one of our pages. This was the page that displayed bet and outcome proofs and

126

Brakeman complained that there was a cross-site scripting vulnerability in the link that allowed
users to check their hashes on a different site. Figure 115 shows one of the two lines that flagged
the vulnerability. In the code snippet we render a link (or button) that takes a user to the online-
convert.com page where they can verify their bet hash. When we forward them to this page, we
pass the string to hash as a query parameter. Brakeman flagged this as a vulnerability as it was
unsure about whether or not the variable string to hash was user derived (e.g. set by a user)
or set by us. If string to hash was user derived it would allow them to inject Javascript code
into the page when the link is displayed. Fortunately however this was a false positive because
the string to hash variable was in fact set by the server and could not be modified by a user.
False positives of this nature are very common when using Brakeman.

1 . . .
2 <%= l i n k t o ”Check the hash through another webs i te ” ,
3 ”http :// hash . on l ine−convert . com/sha256−genera to r ? s t r i n g t o ha s h=” +

s t r i n g t o ha sh ,
4 %>
5 . . .

Figure 115: A code snippet of our bet proof page that produced a false positive for cross-site
scripting when analysed with Brakeman.

7.2.3 Security Audit

Given the limited success we had finding any serious vulnerabilities with the security scanners, we
reached out to a penetration tester and Internet Services developer, Charlie Hothersall-Thomas.
Charlie works at an Internet security and data mining company and has a keen interest in Bitcoin.
As such, we felt that he might be interested to hear about our project and provide some insight
relating to the overall security of our solution. Thankfully, he spent several hours of his time
looking at our solution and trying to find security vulnerabilities in our implementation. Charlie
was able to provide several useful insights as well as found two serious vulnerabilities in the betting
exchange:

1. The first vulnerability he found was that he was able to view bets without needing access to
the unique bet address of that bet. He did this by exploiting a bug in our implementation
that allowed bets to be looked up by both bet address as well as bet id in the database.
Naturally, given that bet ids typically start from 1 in the database and increase by 1 each
time, he was able to get access to all of the bets by simply searching for bets using their
database id. Although this vulnerability is very easily fixed, and has since been patched, if
it was not noticed the implications would mean that an attacker could view and cancel all of
the bets placed by other users. Even though this wouldn’t allow the attacker to get access
to the funds, it would still be an annoying problem for our users.

Figure 116 shows a code snippet of the method that contained the vulnerability. When a user
visits a bet directly though the url (e.g. bitcoin-betting-exchange.com/bet/{BET ADDRESS})
the show bet method below is called with the BET ADDRESS value passed in as a parameter.
Unfortunately, the call to Bet.friendly.find(...) supports both bet addresses as well as
bet ids and so a user can simply visit a bet using the url (e.g. bitcoin-betting-exchange.com/bet/1).
This was easily fixed by restricting the lookup to only work for bet addresses.

127

1 # The controller method called when a bet is shown

2 def show bet
3 @bet = Bet . f r i e n d l y . f i nd (params [: be t addre s])
4 . . .
5 end

Figure 116: A code snippet of the method that contained the vulnerability allowing users to access
bets directly through the bet id.

2. The second vulnerability Charlie found relates to the implementation that hides (or stars
out) users’ passphrases as they type them in. Due to a bug in the Javascript, instead of
sending the unstarred passphrase to be hashed and stored by the application, the stars are
sent to the application. And so all passphrases end up being of the form *, **, ***, ****,
etc. This allows an attacker to look up a bet by simply trying all lengths of strings made
up of stars. Again, this bug was easily fixed. But if it had been unnoticed it would have
allowed an attacker to access and cancel users bets.

3. One additional insight Charlie provided was that one of the weakest points of our bet and
outcome proofs were the bootstrapping of keys. As mentioned, in order to prove that the
private key of the Bitcoin Betting Exchange is a specific key (e.g. the key of the betting
exchange is x), that key needs to be used to sign a document or statement, or it needs to be
published online under a trusted key server. In addition, the keys of the sports authorities
also need to be provided in a trustworthy manner as to prove that they are owned by the
authorities themselves, and not by someone else. Due to the constraints of this project and
the fact that it is currently operating on the Bitcoin Testnet, we have not requested key
publication on a trusted key server. If however this project is released commercially and
migrated to the Bitcoin Mainnet, these publications will be made.

The outcome of this evaluation was positive in general. Charlie noted that our design was well
thought through and even though some vulnerabilities were found, none of them would allow an
attacker to get access to our funds or our private keys. As such, this is a good indication that our
system has been implemented to operate as designed.

7.2.4 Threat Analysis

In addition to analysing the security vulnerabilities of our implementation, it also necessary to
analyse the potential vulnerabilities in our overall design. To do this, we need to think about how
an attacker could abuse our system at a high-level and under what threat models they might be
able to gain access to our private keys.

Creating Many Empty Bets

One way in which an attacker could abuse our system is by creating an excessively large number
of bets that are never paid for. Because our proof of bet system creates a single OP RETURN
transaction for every new bet, creating this transaction costs us a single miner fee. Because
this proof has to be embedded into the Blockchain before a user pays for their bet, an attacker
could simply create many bets that they never pay for. As such, this would end up costing our
application money. However, given that a single miner fee is currently around 10,000 satoshi and
only worth £0.01, an attacker would have to create many new bets for the cost to be significant.
Furthermore, in order to reduce the chance of this occurring we can limit the amount of unpaid
bets for a single IP address per day. This will make it more difficult for an attacker to perform this
type of attack. If however, this does not deter an attacker and the problem becomes more serious,
we could implement a scheme where a user would have to deposit a small amount of money into
each bet to cover the fee of the bet proof.

128

Collision Attacks

One type of attack that our application is susceptible to is a collision attack. As with all hashes,
because the input space is larger than the output space, collisions can occur. In our application
this means that if an attacker can find two separate pieces of bet information that hash to the same
string, with one of those strings already embedded in the Blockchain, they can use the collision
to prove that the betting exchange has been dishonest. For example, figure 117 illustrates how
this might work. Imagine that Alice placed a bet on the 2015 Wimbledon final, and when her bet
was created the betting exchange hashed her bet information and embedded the hash into the
Blockchain using an OP RETURN transaction. Eve can use this OP RETURN transaction as
bet proof against the exchange. If Eve can construct some bet information that hashes to the same
string as Alice’s bet did, Eve can pretend that the hash embedded into the Blockchain for Alice’s
bet was actually for her bet. This means that if she sends a payment to the bet address in the
fake bet information and the outcome of that fake bet was correct, she can use the OP RETURN
transaction and her payment to prove that the betting exchange did not pay her the winnings she
deserves.

Figure 117: A diagram showing Eve perform a collision attack on the betting exchange.

129

Although this is possible, this type of attack is very difficult to perform from Eve’s point of view.
Firstly, the fake bet information that Eve constructs has to be in a valid format, for a real sports
event, real market and real outcome selection. Also, the outcome in the fake bet needs to have
occurred. Furthermore, the Bitcoin addresses in the fake bet information will both need to be
valid addresses, with a payment existing that goes to the bet address. In addition, the payments
she presents will need to be appropriately timestamped (e.g. she cannot present a payment made
four years ago before the event was even announced). All of these constraints make performing
this type of attack much more difficult. In order to push back against these attacks we must en-
sure that the hashing algorithm we use to hash bet information has not been broken. In addition,
with the recent introduction of 80 character OP RETURN transactions, increasing the size of the
output space from 40 characters to 80 characters will make this type of attack even more difficult.
Likewise, a similar sort of attack is possible for an outcome hash announced by a sports authority.
But again, this is very difficult to perform.

Multiple Bet Payments

Another way in which an attacker could try to attack our system is by sending multiple bet pay-
ments to the same bet address. Given that our implementation only supports a single payment to
a bet address, an attacker might try to send multiple payments to the address and claim wrong
doing. For example, if an attacker places a small bet, pays for that bet and sees just before the
event has finished that their bet will win. They might try to send another, much larger payment
to the address and claim that they were paid the incorrect amount when the bet is settled. They
would make this claim by presenting their bet proof, the larger payment to the bet address and
the outcome proof. Although an attacker might think they could get away with this, they will
be caught out. This is because every transaction in the Blockchain is timestamped and so using
the timestamp of the second payment we could show that the payment was actually sent after
the event began and so was not valid for matching. Likewise to prevent this being a problem for
our users, any additional payments sent to a bet address are simple returned. This means that
we can always show that subsequent payments made for a bet are returned, preventing attackers
from trying to perform these types of attack.

Matched but the User Claims Cancelled

Another way in which a user might try to abuse our system is by claiming that they cancelled a
bet when they in fact didn’t. For example, imagine that a user places a bet, has that bet matched,
but ends up losing the bet. The user might then claim that they cancelled their bet before it was
even matched at all but the exchange refused to cancel it. Although a user could do this, and that
this is a problem in any betting exchange, we can push back against it. Firstly, we can show that
actually their bet was ultimately matched with someone else as it was used to pay a winning bet
to someone else and so we didn’t just keep the money. What’s more we can also use the bet proofs
to show that the bets that were matched together were in fact appropriate to match together and
were matched in a timely fashion. Although this doesn’t totally disprove their claim, if attacks of
this type become a significant problem we can implement some form of cancellation proof, where
the user who paid for the bet embeds a cancellation message into the Blockchain using the account
used to pay for the bet. This will timestamp their cancellation and allow them to prove that we
didn’t cancel their bet. Likewise, it will also protect users from making false claims against us as
they will have had to embed this cancellation message into the Blockchain.

Tracing Bet Matches

Another potential concern regarding our design is that it is possible for users to see who their
bets have been matched with. When a bet is settled and the winner is paid, the winner is paid
using the payments of the losing bets and so it is possible for users to track their payments. This
means that users can see which bet addresses their bets have been matched with and which Bitcoin

130

accounts have paid into those addresses. Although this isn’t a vulnerability or an attack in itself,
it does allow users to see who they have been matched with and so they can tell which Bitcoin
addresses have been used to place a specific bet on the exchange. However, this is the only thing
they can infer and they cannot tell who owns those accounts. One way in which to prevent this
is to have every user pay into a single Bitcoin address owned by the exchange. That way, with
enough bets going in and out, it is difficult to track which payments have been matched together.
Doing this however, means that you can no longer prove that a payment into a specific address is
a payment for a specific bet, and so the proof of bet would no longer work.

Double-Spend Attack

One possible attack to take into consideration is that of a double-spend attack. As previously
mentioned, a double-spend attack is where an attacker is able to spend the same input twice, in
order to steal an item or use a service. This can be done by spending the input again before it
has been mined by the network, or by creating a Bitcoin fork and constructing a new Blockchain
longer than the original. As discussed, when SatoshiDice originally opened they were very sus-
ceptible to double-spend attacks. This was because they did not wait for the user’s payment to
be accepted by the network before releasing the outcome of the user’s bet. This allowed users to
quickly create a double-spend transaction with a high mining fee that sent the same input back
to themselves. This was in the hope that the network might mine the second transaction before
the first and so they would not lose their money.

Due to the way in which our solution works, it is possible for an attacker to execute a double-spend
attack on our exchange. The likelihood of this occurring depends on how quickly an attacker can
determine whether or not their bet lost. For example, imagine that an attacker places a bet right
before the beginning of a horse race, and that their bet is immediately matched. If the horse being
bet on falls and is disqualified when the event beings, the attacker knows immediately that their
bet will have lost. As such, they can create a double-spend transaction with a high mining fee in
the hope that the network will mine it before the original payment. Alternatively, if the attacker
has a lot of computing power, they might create a fork of the Blockchain longer than the original
and mine the new transaction instead of the old one.

The probability of an attacker performing this type of attack depends on the length of time be-
tween when the bet is placed and when the attacker knows the outcome of the bet. The longer the
period between these two points, the less chance there is for an attacker to perform a double-spend
attack. This is because as the time between the two points increases, so does the computing power
required to re-solve the blocks in the Blockchain. As such, to defend against this attack we can
propose stipulations on the times up to which we accept bets for certain events. These stipulations
will depend on the length of the sporting event as well as the amount being bet. So, for example,
really large bets placed on quick events (such as horse races) might have a stipulation saying that
bets are only accepted up to an hour before the event begins. In contrast, very small bets placed
on longer events (such as football matches) might have a stipulation saying that bets are accepted
right up until the event begins. This time constraint can be therefore be a function of the event
length and bet amount.

Replay and Man-in-the-Middle Attacks

Another security concern of ours is replay attacks. A replay attack is when an attacker re-sends
or delays a valid message sent by a client to a server. This is in the hope that they might exploit
some vulnerability present in the way that the systems are implemented. Our solution guards
against replay attacks in several different ways. Firstly, our implementation requires requests to
be authenticated when sent from the client to the server and vice versa. These authentication
signatures expire after 15 minutes and so an attacker would have to replay a message within that
period. Furthermore, because our implementation requires a response from the server when a

131

client makes a request, if an attacker were to prevent a message from being received by the server,
the client would simply retry again. Secondly, because communication between the two parties
uses HTTPS over SSL, the MAC used in each request includes a sequence number and so the
server would not accept a request it has already seen before. Similarly, because communication
between the client and server occurs using HTTPS over SSL we can avoid man-in-the-middle
attacks. This can be done by always ensuring that we communicate over HTTPS (e.g. that we
are not redirected to an HTTP connection) and that we always validate the certificate presented
(e.g. don’t accept incorrect certificates or trust an untrustworthy certificate authority).

Physical Access to the Hardware Device

Perhaps one of the most straight forward ways for an attacker to gain access to our keys is to
try to attain physical access to the hardware device. Given that the device will be plugged in
to the server running the betting exchange, for an attacker to steal it, they will need access to
the location where the server is running. Because this area is a high security area with controlled
and monitored access, it will be hard for an attacker to steal the device unnoticed. Furthermore,
because the private keys are encrypted when written to the device, the attacker will also need
access to the decryption key. As such, this will require the attacker to either steal the key from the
betting exchange or wait until the key is passed to the device and decrypted in memory. Requiring
both the device and the decryption key make it difficult for an attacker to read the keys off of the
device.

Private Keys of the Sports Authorities

Another critical aspect of our design is the security of the private keys owned by the sports
authorities. As previously discussed in section 4.2.5, attention needs to be given to the way
in which the sports authorities manage and store their keys. If an attacker can get access to
these keys, they can announce incorrect outcomes into the Blockchain. This would allow them
to incorrectly settle bets in their favour. However, under the recommendations we made for the
secure storage and management of these keys, an attacker would need physical access to the Bitcoin
Trezor device used to hold them. Furthermore, they would also need access to the passwords set
on the device and so this type of attack would be difficult to perform.

Seed Theft

The private key seed used to generate the private keys is perhaps the most critical link in our
entire system. Using a seed to generate new Bitcoin addresses allows us to keep a back up of our
private keys without ever having to copy them off the private key store. However, it does mean
that whoever has access to the seed on the device, or the back up of the seed, can derive the private
keys and so would be able to spend all of the money in our Bitcoin accounts. As suggested, to
make it as difficult as possible for an attacker to get access to the seed, we recommend storing
the back up safely. This can be done using a paper wallet, in a vault, under several layers of
encryption. The decryption keys for that seed could then be fragmented and distributed amongst
several trusted parties. Likewise, to prevent weak seed attacks, the chosen seed needs to be strong
and generated appropriately. Therefore for an attacker to gain access to the seed, they would
either need direct access to the hardware device or they would somehow have to get access to the
physical back up of the seed. Given that both of these will be stored in high security areas, it
makes this type of attack incredibly difficult.

Control of the Web Server

Under a threat model where an attacker can execute all 5 API calls from the betting exchange
and can communicate with the web application’s database, it is interesting to note that there are
not many attacks that can be performed:

1. As already discussed, an attacker could keep making API calls to generate a new bet address
and bet proof. The worst this would do however is cost the exchange money due to the

132

number of OP RETURNS generated. The attacker wouldn’t be able to get access to any
funds.

2. An attacker could cancel a users bet by making an API call to return the unmatched portion
of the bet back to the user. Again however, this wouldn’t allow the attacker to gain access to
any of the funds because they cannot change the address to return the amount to. Instead
the amount would be returned to the address originally given when the bet was created.

3. An attacker could increase the amount matched for a bet regardless of whether or not that
amount was actually matched. Although this would be annoying, it would not allow the
attacker access to any funds. Instead it could be fixed manually by waiting for the bet to be
settled and then manually signing a transaction returning the remainder of the unmatched
portion back to the user.

4. In fact, the worst an attacker could do is equivalent to a double spend attack. This attack is
somewhat intricate and relies on the fact that the private key store does not have an active
connection to the Bitcoin network, and so it doesn’t know which transactions have been
mined and which haven’t. An attacker with access to both the website and the website’s
database could create a bet on an event. This would be through the API and the attacker
would broadcast the bet proof into the network as per normal. Next the attacker would
sign and create a transaction paying into the bet. Note that he wouldn’t broadcast this
transaction to the network but would instead just send it to the key store, telling the key
store that a payment has been received. Then the attacker would wait for his bet to be
matched by the application and this would would occur as per normal.

When the time comes for the bet to be settled the attacker is in a special position. This is
because if his bet lost, he would simply discard the bet payment he signed, making it so that
it never existed. When the betting exchange tries to broadcast the winning transaction to
the network, paying the other party, the network would reject it as it never saw the original
bet payment made by the attacker. If however the attacker’s bet won, he would broadcast
his original payment to the network and then his winnings would be sent to him as per
normal. This allows the attacker to protect himself from losing bets. However, given that
this requires the attacker to be able to execute all the API calls from the website and to
communicate with the website’s database, we feel that the vulnerability is not that bad.
This is because given that the attacker has access to such a large portion of our system, if
the worst they could do is prevent themselves from losing a bet (but not get access to anyone
else’s funds) this trade-off is much better than a normal hot wallet.

To protect ourselves from this attack, we could add a requirement to the API that says in
order to set the amount paid into a bet, you have to present the signed transaction sent
to the bet address as well as a signed statement that says how many confirmations that
transactions has in the network. This statement could come from an external server that
the betting exchange communicates with in order to fetch the current number of transac-
tions. The private key store could be bootstrapped to trust the external server and that
would prevent an attacker from not broadcasting their payment to the network. In order
to perform the same attack, an attacker would have to somehow get a signed statement
from the external server that says his transaction has a valid number of confirmations in the
network, which makes the attack more difficult.

7.3 Strengths & Limitations

In this thesis we present the Bitcoin Betting Exchange, the first publicly auditable, anonymous
and fully automatic betting exchange of its kind.

The main strengths of our work are:

133

• Our betting exchange is fully transparent and provably honest. It is the only betting ex-
change that protects its users and itself by publicly announcing bet and outcome proofs. This
means that dishonest behaviour by any of the parties can be identified and shown.

• At the same time as being fully transparent, the betting exchange protects the anonymity
of its users. It requires no personal information and no user sign up. What’s more, even in
the case of disputes where a bettor argues against the exchange, the identities of the parties
do not need to be known.

• Interaction with our betting exchange is simple. It doesn’t require the user to create special
Bitcoin transactions or to communicate with several oracles in order to spend its money.
Instead the user pays for their bet using their Bitcoin wallet and their winnings are auto-
matically paid to them. No deposit is required and the amount of time we hold their funds
is minimized.

• By not requiring the services of a third party escrow and by operating solely on the Bitcoin
network we can offer competitive odds that are uncapped and unconstrained, with immediate
resolution and automatic payout.

• Under a threat model where an attacker has access to a significant portion of our system,
such as the betting exchange and the database, our private key store provides improved
security over generic hot wallets. Furthermore, it operates automatically and requires no
manual topping up or human intervention.

Although the work presented in this thesis has many strengths, it is not without its limitations:

• It is still possible for the betting exchange to steal a user’s payment or refuse to settle a bet.
Should it wish, nothing physically prevents it from acting dishonestly because during the bet
process it has full access to the user’s payment. However, as soon as it acts inappropriately,
the user will be able to prove it and the reputation of the betting exchange will be destroyed.
This means that no users will ever trust the site again.

• The speed at which payments can be sent to and received by the exchange are ultimately
limited by the speed of the network. This means that depending on how many confirmations
you require for a transaction, we have to wait for the network to mine these transactions
and create new blocks in the Blockchain. Unfortunately, we are bound by this speed and at
present there is no way to quicken this process.

• Event and market outcomes have to be manually embedded into the Blockchain by a sports
authority. This means that there is still some manual intervention required in order to settle
a bet. However, you could argue that regardless of the solution, sports authorities still have
to do this anyway and so the same problem ultimately exists with any other betting website
or oracle service. At some point or other the outcome of an event and market will still need
to be published manually whether it is on website, API or by hand.

• Our solution relies heavily on the Bitcoin network and generates many Bitcoin transactions
for a single bet. This means that for every proof we create, payment we accept, and settle-
ment we pay, we place a load on the network to mine those transactions. One of the main
concerns for the Bitcoin community at present is how the network will respond to growth in
the future. Understandably, if many applications adopt proof mechanisms such as the ones
we’ve proposed, the load placed on the network will be significant and there will pressure
on the Bitcoin development community to find a way to support it.

134

8. Conclusion

8.1 Lessons Learnt

Throughout the duration of this project we have faced many interesting challenges. Facing these
issues first hand has allowed us to gain insight into the way that Bitcoin works and the problems
it is currently facing. Notably, we have seen just how powerful the idea of a Smart Contract is, but
we have also learnt that Smart Contracts currently face strict limitations. The idea of building
a provably secure contract directly into the primitives of Bitcoin are exciting, but until a way
is found to effectively communicate with the outside world, these contracts are constrained and
impractical for the purposes of a betting exchange.

In addition, we have witnessed the benefits that m out of n transactions and Bitcoin oracles
provide, but also learn that until a stable ecosystem exists in which these oracles can be ques-
tioned, the impracticalities of m out of n transactions for automatic settlement are extremely
high. Furthermore, we have also identified that these types of transactions severely impact the
way in which a betting exchange can match bets. This is because the n individuals in the m out
of n transactions need to be known before a payment can be sent and so the betting exchange
cannot dynamically match bets without manual user intervention.

Surprisingly to us, we have also seen just how attractive Bitcoin is for criminal activity. With
around 30% of all user requests coming from locations in which sports betting online is illegal,
it has opened our eyes to the legal and social ramifications of operating an anonymous Bitcoin
betting exchange online.

We have also been able to see the benefits that specialized Bitcoin wallets and hardware devices
provide over generic hot wallets and multi-tiered approaches. Using proofs embedded into the
Blockchain we can build a device that is resilient to many types of attacks. Regardless of the
number of security layers present in a system there is always a weakest link.

Finally, we have seen first hand just how quickly Bitcoin and its ecosystem are evolving. Even
throughout the duration of this project there have been several significant changes made to the
way in which Bitcoin works. Even now, Bitcoin is undergoing many changes in order to support
the demand that will be placed on it in the future.

8.2 Future Work

Given additional time and resources there are several improvements and extensions that can be
made to this project:

• The first improvement we propose relates to the market liquidity of the exchange. As
originally mentioned, one of the reasons we chose to use Betfair as our source of sport and
market data is because it allows us to integrate the Betfair betting exchange with our own.
This means we will be able to match bets across Bitcoin and fiat currency, similarly to how
DirectBet currently do. This improvement would increase the volume of bets on our site and
therefore make it more attractive to potential users. Furthermore, assuming that Betfair
agree with the settlements published by the sports authorities (which they should, as the
terms and conditions are exactly the same), this will not affect the proof of bet and outcome
system.

• The second improvement we can propose for our solution is to design and implement an API
for the betting exchange. This API will allow developers and bettors to build automated
services and programs around our ecosystem. For example, using the API they could fetch
the events and markets currently available, see the bets that are eligible for matching and
place their own bets. This would make the exchange more accessible to the outside world
and help to increase the number of bets available.

135

• Another improvement we would like to make to the project is to use Chain notifications [33].
At present our application polls various Bitcoin APIs to see the latest transactions, events
and outcomes in the network. Instead we could make use of the notification service that
Chain.com provide. This service would notify our application whenever an action takes place
on the network that we are interested in, such as a payment to a specific bet address or an
outcome announcement. This will avoid unnecessary polling and make our application more
responsive as it will be notified immediately when the action occurs. It is worth noting that
the reason we decided not to use this service originally is because the notification system is
currently only available in BETA and provides no guarantees regarding uptime.

• Another improvement we propose is to update the length of the bet and outcome proof
hashes. As mentioned, two thirds of the way through our project the Bitcoin developers
announced a change to the number of characters supported by the OP RETURN [39] trans-
action. In this change they increased the size of the OP RETURN string from 40 characters
to 80 characters to allow more data to be stored in the Blockchain. Due to the time con-
straints of our project our implementation still operates under the 40 character limit and as
such, one way to improve our system would be to update the number of characters embedded
into the Blockchain. As discussed in the security section, this will make our solution more
robust to collision attacks.

• In order to make the Bitcoin Betting Exchange available online and run using the Bitcoin
Mainnet there are several improvements and administrative tasks that need to be performed.
Firstly, we will need to purchase our own domain names, SSL certificates and migrate to
paid hosting with increased capacity. Secondly, we will need to publish our Bitcoin keys
online using a trusted key server or by presenting a signed certificate to the users along with
our SSL certificate. Thirdly, we will need to enforce location specific blocking and require
users to provide their age and personal information in order to bet. This is to prevent the
exchange from encouraging illegal activity. And finally, to see our system in its full form, a
prototype of the Smart Private Key Store will need to be built in hardware .

136

137

A. Bitcoin Betting Exchange Entity Relationship Diagram
B

it
co

in
E

xc
h

an
g

e
d

o
m

ai
n

 m
o

d
el

A
ct

iv
e

R
e

co
rd

::S
ch

e
m

aM
ig

ra
ti

o
n

ve
rs

io
n

st
rin

g
∗

B
e

t

be
t_

ad
dr

es
s

st
rin

g
be

t_
ty

pe
 s

tr
in

g
ex

ce
pt

io
n_

re
tu

rn
_t

ra
ns

ac
tio

n
te

xt
m

ar
ke

t_
id

 in
te

ge
r

F
K

m
at

ch
ed

_a
m

ou
nt

 s
tr

in
g

od
ds

 s
tr

in
g

op
_r

et
ur

n_
fo

un
d

te
xt

op
po

si
te

_m
at

ch
ed

_a
m

ou
nt

 s
tr

in
g

ou
tc

om
e

in
te

ge
r

ou
tc

om
e_

tr
an

sa
ct

io
n

te
xt

ow
n_

op
_r

et
ur

n
te

xt
ow

n_
tr

an
sa

ct
io

n
te

xt
pa

ss
w

or
d_

ha
sh

 t
ex

t
pa

ym
en

t_
re

ce
iv

ed
 i

nt
eg

er
pa

ym
en

t_
tr

an
sa

ct
io

n
te

xt
re

tu
rn

_a
dd

re
ss

 s
tr

in
g

re
tu

rn
_t

ra
ns

ac
tio

n
te

xt
ru

nn
er

_i
d

in
te

ge
r

F
K

st
at

us
 i

nt
eg

er
w

in
ni

ng
s_

tr
an

sa
ct

io
n

te
xt

B
e

tM
at

ch

am
ou

nt
_m

at
ch

ed
 s

tr
in

g
be

t_
on

e_
id

 i
nt

eg
er

 F
K

be
t_

tw
o_

id
 i

nt
eg

er
 F

K

B
it

co
in

Av
e

ra
g

e
D

at
u

m

as
k

st
rin

g
av

g_
24

h
st

rin
g

bi
d

st
rin

g
cu

rr
en

cy
 s

tr
in

g
da

ta
_t

yp
e

st
rin

g
la

st
 s

tr
in

g

C
o

m
p

e
ti

ti
o

n

be
tfa

ir_
id

 s
tr

in
g

na
m

e
st

rin
g

E
ve

n
t

be
tfa

ir_
id

 s
tr

in
g

co
m

pe
tit

io
n_

id
 i

nt
eg

er
 F

K
co

un
tr

y_
co

de
 s

tr
in

g
ev

en
t_

ty
pe

_i
d

in
te

ge
r

F
K

na
m

e
st

rin
g

op
en

_d
at

e
da

te
tim

e
sl

ug
 s

tr
in

g
tim

ez
on

e
st

rin
g

ve
nu

e
st

rin
g

M
ar

ke
t

be
tfa

ir_
id

 s
tr

in
g

ev
en

t_
id

 i
nt

eg
er

 F
K

m
ar

ke
t_

de
sc

rip
tio

n
te

xt
na

m
e

st
rin

g
sl

ug
 s

tr
in

g
to

ta
l_

m
at

ch
ed

 f
lo

at

E
ve

n
tT

yp
e

be
tfa

ir_
id

 s
tr

in
g

na
m

e
st

rin
g

sl
ug

 s
tr

in
g

M
ar

ke
tR

u
n

n
e

r

m
ar

ke
t_

id
 in

te
ge

r
F

K
ru

nn
er

_i
d

in
te

ge
r

F
K

O
p

R
e

tu
rn

da
ta

 t
ex

t
op

_r
et

ur
n_

ha
sh

 t
ex

t
tr

an
sa

ct
io

n_
ha

sh
 t

ex
t

R
u

n
n

e
r

be
tfa

ir_
id

 s
tr

in
g

ha
nd

ic
ap

 f
lo

at
na

m
e

st
rin

g
sl

ug
 s

tr
in

g
so

rt
_p

rio
rit

y
in

te
ge

r

Figure 118: Entity Relationship Diagram for the Bitcoin Betting Exchange.

138

References

[1] 87th United States Congress. Interstate Wire Act of 1961. 1961. http://www.gpo.gov/

fdsys/pkg/STATUTE-75/pdf/STATUTE-75-Pg491.pdf, Last accessed: 24 January 2015.

[2] Rediff India Abroad. Nadal in final after Djokovic retires. http://www.rediff.com/

sports/2007/jul/07nadal.htm. Last accessed: 24 January 2015.

[3] Igor Alexandrov. Ruby Gem: WisePdf. https://github.com/igor-alexandrov/wisepdf.
Last accessed: 9 June 2015.

[4] Gavin Andresen. Bit-thereum. http://gavintech.blogspot.co.uk/2014/06/

bit-thereum.html. Last accessed: 3 June 2015.

[5] AnoniBet. AnoniBet: Since 2011. https://www.anonibet.com/default.aspx. Last ac-
cessed: 14 February 2015.

[6] Andreas M Antonopoulos. Mastering Bitcoin: Unlocking Digital Cryptocurrencies. “O’Reilly
Media, Inc.”, 2014.

[7] Grad Base. The 21st century resume. http://www.gradba.se/. Last accessed: 20 February
2015.

[8] Basecamp.com. Ruby Gem: LocalTime. https://github.com/basecamp/local_time. Last
accessed: 9 June 2015.

[9] BBC. Quest for lost harddrive with £4m stored bitcoins. http://www.bbc.co.uk/news/

technology-25138627. Last accessed: 29 January 2015.

[10] Satoshi Bet. Fair Bitcoin Casino. https://satoshibet.com/. Last accessed: 20 February
2015.

[11] BetBTC. The Unique Bitcoin Sports Betting Exchange. https://www.betbtc.co/. Last
accessed: 14 February 2015.

[12] Betdaq.com. Betdaq Betting Exchange. http://www.betdaq.com/. Last accessed: 8 Febru-
ary 2015.

[13] Betfair.com. Betfair Betting Exchange. http://www.betfair.com/exchange. Last accessed:
8 February 2015.

[14] Betfair.com. Betfair Rules and Regulations. www.betfair.com/www/GBR/en/aboutUs/

Rules.and.Regulations/. Last accessed: 8 February 2015.

[15] BetMoose. Bet on Anything with Bitcoin. https://www.betmoose.com/. Last accessed: 14
February 2015.

[16] BitBet. BitBet.us Got Milk? https://bitbet.us/. Last accessed: 14 February 2015.

[17] BitcoinAverage.com. BitcoinAverage Integration API. https://bitcoinaverage.com/api.
Last accessed: 9 June 2015.

[18] Bitcoin.org. Bitcoin Core. https://github.com/bitcoin/bitcoin. Last accessed: 6 Febru-
ary 2015.

[19] Bitcoin.org. Developer Guide: Block chain. https://bitcoin.org/en/developer-guide#

block-chain. Last accessed: 29 January 2015.

[20] Bitcoin.org. Developer Guide: Block chain overview. https://bitcoin.org/en/

developer-guide#block-chain-overview. Last accessed: 28 January 2015.

[21] Bitcointalk.org. BitcoinTalk Forum. https://bitcointalk.org/. Last accessed: 11 June
2015.

139

http://www.gpo.gov/fdsys/pkg/STATUTE-75/pdf/STATUTE-75-Pg491.pdf
http://www.gpo.gov/fdsys/pkg/STATUTE-75/pdf/STATUTE-75-Pg491.pdf
http://www.rediff.com/sports/2007/jul/07nadal.htm
http://www.rediff.com/sports/2007/jul/07nadal.htm
https://github.com/igor-alexandrov/wisepdf
http://gavintech.blogspot.co.uk/2014/06/bit-thereum.html
http://gavintech.blogspot.co.uk/2014/06/bit-thereum.html
https://www.anonibet.com/default.aspx
http://www.gradba.se/
https://github.com/basecamp/local_time
http://www.bbc.co.uk/news/technology-25138627
http://www.bbc.co.uk/news/technology-25138627
https://satoshibet.com/
https://www.betbtc.co/
http://www.betdaq.com/
http://www.betfair.com/exchange
www.betfair.com/www/GBR/en/aboutUs/Rules.and.Regulations/
www.betfair.com/www/GBR/en/aboutUs/Rules.and.Regulations/
https://www.betmoose.com/
https://bitbet.us/
https://bitcoinaverage.com/api
https://github.com/bitcoin/bitcoin
https://bitcoin.org/en/developer-guide#block-chain
https://bitcoin.org/en/developer-guide#block-chain
https://bitcoin.org/en/developer-guide#block-chain-overview
https://bitcoin.org/en/developer-guide#block-chain-overview
https://bitcointalk.org/

[22] Bitmessage.org. Bitmessage: A Peer to Peer Message Authentication and Delivery System.
https://bitmessage.org/bitmessage.pdf. Last accessed: 6 February 2015.

[23] Kevin Blackwood. Casino gambling for dummies. John Wiley & Sons, 2011.

[24] Blockchain.info. Hash Rate Chart. https://blockchain.info/charts/hash-rate. Last
accessed: 29 January 2015.

[25] BlockChain.info. Market Capitalization. https://blockchain.info/charts/market-cap.
Last accessed: 24 January 2015.

[26] BlockChain.info. Total Number of Transactions. https://blockchain.info/charts/

n-transactions-total. Last accessed: 24 January 2015.

[27] Blocktrail.com. Powering Bitcoin Apps: Bitcoin API for developers and enterprise. https:
//www.blocktrail.com/. Last accessed: 30 May 2015.

[28] Bjorn Blomqvist. Ruby Gem: QRCodeWithPatches. https://github.com/

bjornblomqvist/rqrcode. Last accessed: 9 June 2015.

[29] BrakemanScanner.org. Static analysis security scanner for Ruby on Rails. http://

brakemanscanner.org/. Last accessed: 11 June 2015.

[30] BTCrow.com. BTCrow.com: The Bitcoin Escrow Service. https://btcrow.com/. Last
accessed: 3 June 2015.

[31] Bytecoin.org. Bytecoin. http://www.bytecoin.org. Last accessed: 24 January 2015.

[32] Scott Campbell. Bitcoin exchange MtGox faced 150000 hack attacks ev-
ery second. http://www.telegraph.co.uk/finance/currency/10686698/

Bitcoin-exchange-MtGox-faced-150000-hack-attacks-every-second.html. Last
accessed: 22 May 2015.

[33] Chain.com. Connect to the Financial Cloud. https://chain.com/. Last accessed: 11 June
2015.

[34] Chain.com. Ruby Gem: ChainRuby. https://github.com/chain-engineering/

chain-ruby. Last accessed: 11 June 2015.

[35] Chain.so. SoChain’s fast blockchain API is the easiest, most cost-effective way to build
applications on Dogecoin, Bitcoin, and Litecoin. https://chain.so/api. Last accessed: 11
June 2015.

[36] G. Charlton. EConsultancy: U.K Online Gambling Sector. https://econsultancy.

com/blog/62407-uk-s-online-gambling-sector-worth-2bn-in-2012-stats/. Last ac-
cessed: 24 January 2015.

[37] Norman Clarke. Ruby Gem: FriendlyId. https://github.com/norman/friendly_id. Last
accessed: 9 June 2015.

[38] C. Cohen and N. Forrester. Beenz.com. http://www.beenz.com, 1998. Last accessed: 24
January 2015.

[39] Coinprism. 80 bytes OP RETURN explained. http://blog.coinprism.com/2015/02/11/

80-bytes-op-return/. Last accessed: 30 May 2015.

[40] International Cricket Council. Live Cricket Scores and News. http://www.icc-cricket.

com/. Last accessed: 30 May 2015.

[41] Counterparty.io. Counterparty: Financial Tools on the Bitcoin Network. http://

counterparty.io/. Last accessed: 7 February 2015.

140

https://bitmessage.org/bitmessage.pdf
https://blockchain.info/charts/hash-rate
https://blockchain.info/charts/market-cap
https://blockchain.info/charts/n-transactions-total
https://blockchain.info/charts/n-transactions-total
https://www.blocktrail.com/
https://www.blocktrail.com/
https://github.com/bjornblomqvist/rqrcode
https://github.com/bjornblomqvist/rqrcode
http://brakemanscanner.org/
http://brakemanscanner.org/
https://btcrow.com/
http://www.bytecoin.org
http://www.telegraph.co.uk/finance/currency/10686698/Bitcoin-exchange-MtGox-faced-150000-hack-attacks-every-second.html
http://www.telegraph.co.uk/finance/currency/10686698/Bitcoin-exchange-MtGox-faced-150000-hack-attacks-every-second.html
https://chain.com/
https://github.com/chain-engineering/chain-ruby
https://github.com/chain-engineering/chain-ruby
https://chain.so/api
https://econsultancy.com/blog/62407-uk-s-online-gambling-sector-worth-2bn-in-2012-stats/
https://econsultancy.com/blog/62407-uk-s-online-gambling-sector-worth-2bn-in-2012-stats/
https://github.com/norman/friendly_id
http://www.beenz.com
http://blog.coinprism.com/2015/02/11/80-bytes-op-return/
http://blog.coinprism.com/2015/02/11/80-bytes-op-return/
http://www.icc-cricket.com/
http://www.icc-cricket.com/
http://counterparty.io/
http://counterparty.io/

[42] CryptoNote.org. CryptoNote: an open-source technology. https://cryptonote.org/. Last
accessed: 6 February 2015.

[43] Curecoin. The Cure for Common Crypto-currency. https://www.curecoin.net/. Last
accessed: 6 February 2015.

[44] Satoshi Dice. The Original Blockchain-based Bitcoin Casino Dice Game. https://

satoshidice.com/. Last accessed: 20 February 2015.

[45] DirectBet. DirectBet Twitter Account. https://twitter.com/DirectBetEU. Last accessed:
14 February 2015.

[46] DirectBet. Sports Betting with Bitcoins, Litecoins, Dogecoins & Darkcoins. http://www.

directbet.eu/. Last accessed: 14 February 2015.

[47] Directory.io. The Bitcoin private key database. http://directory.io/. Last accessed: 7
June 2015.

[48] Ethereum.org. A Next Generation Smart Contract and Decentralized Application Platform.
https://www.ethereum.org/pdfs/EthereumWhitePaper.pdf. Last accessed: 7 February
2015.

[49] Ethereum.org. Ethereum Website. https://www.ethereum.org/. Last accessed: 7 February
2015.

[50] TP Faucet. TP’s TestNet Faucet. http://tpfaucet.appspot.com/. Last accessed: 25 May
2015.

[51] Bitcoin Forum. Bitcoin Gambling Forum. https://www.bitcoinforum.com/gambling/.
Last accessed: 22 May 2015.

[52] Bitcoin Foundation. Bitcoin Foundation: What We Do. http://bitcoinfoundation.org/.
Last accessed: 3 June 2015.

[53] Inc. GitHub. GitHub is the best place to share code with friends, co-workers, classmates, and
complete strangers. Over eight million people use GitHub to build amazing things together.
https://github.com/about. Last accessed: 9 June 2015.

[54] Mauricio Gomes. Ruby Gem: Api Auth. https://github.com/mgomes/api_auth. Last
accessed: 11 June 2015.

[55] Google. Google Analytics:Turn insights into action. https://www.google.com/analytics/.
Last accessed: 11 June 2015.

[56] UK Government. 2005 Gambling Act. http://www.legislation.gov.uk/ukpga/2005/19/
contents. Last accessed: 8 February 2015.

[57] UK Government. Gambling Commission. http://www.gamblingcommission.gov.uk/

Home.aspx. Last accessed: 8 February 2015.

[58] Andy Greenberg. FBI Says It’s Seized $28.5 Million In Bitcoins From Ross Ulbricht, Al-
leged Owner of Silk Road. http://www.forbes.com/sites/andygreenberg/2013/10/25/

fbi-says-its-seized-20-million-in-bitcoins-from-ross-ulbricht-alleged-owner-of-silk-road/.
Last accessed: 25 May 2015.

[59] The PostgreSQL Development Group. The world’s most advanced open-source database.
http://www.postgresql.org. Last accessed: 9 June 2015.

[60] Heroku.com. Announcing Better SSL For Your App. https://blog.heroku.com/

archives/2012/5/3/announcing_better_ssl_for_your_app. Last accessed: 11 June
2015.

141

https://cryptonote.org/
https://www.curecoin.net/
https://satoshidice.com/
https://satoshidice.com/
https://twitter.com/DirectBetEU
http://www.directbet.eu/
http://www.directbet.eu/
http://directory.io/
https://www.ethereum.org/pdfs/EthereumWhitePaper.pdf
https://www.ethereum.org/
http://tpfaucet.appspot.com/
https://www.bitcoinforum.com/gambling/
http://bitcoinfoundation.org/
https://github.com/about
https://github.com/mgomes/api_auth
https://www.google.com/analytics/
http://www.legislation.gov.uk/ukpga/2005/19/contents
http://www.legislation.gov.uk/ukpga/2005/19/contents
http://www.gamblingcommission.gov.uk/Home.aspx
http://www.gamblingcommission.gov.uk/Home.aspx
http://www.forbes.com/sites/andygreenberg/2013/10/25/fbi-says-its-seized-20-million-in-bitcoins-from-ross-ulbricht-alleged-owner-of-silk-road/
http://www.forbes.com/sites/andygreenberg/2013/10/25/fbi-says-its-seized-20-million-in-bitcoins-from-ross-ulbricht-alleged-owner-of-silk-road/
http://www.postgresql.org
https://blog.heroku.com/archives/2012/5/3/announcing_better_ssl_for_your_app
https://blog.heroku.com/archives/2012/5/3/announcing_better_ssl_for_your_app

[61] James Hudson. UK sports betting market continues to grow driven by gen Y and mobile bet-
ting apps. http://www.favourit.com/en/content/uk-sports-betting-stats-mobile.
Last accessed: 7 February 2015.

[62] ibas uk.com. 2007 Annual Report. http://www.ibas-uk.com/pdf/IBAS_Annual%

20Report_07.pdf. Last accessed: 8 February 2015.

[63] ibas uk.com. Independent Betting Adjudication Service. http://www.ibas-uk.com/. Last
accessed: 8 February 2015.

[64] Spike Ilacqua. Ruby Gem: Strongbox. https://github.com/spikex/strongbox. Last
accessed: 11 June 2015.

[65] Amazon Web Services Inc. Amazon Elastic Compute Cloud (Amazon EC2) is a web service
that provides resizable compute capacity in the cloud. http://aws.amazon.com/ec2/. Last
accessed: 9 June 2015.

[66] Heroku Inc. A platform as a service (PaaS) that enables developers to build and run ap-
plications entirely in the cloud. https://dashboard.heroku.com/. Last accessed: 9 June
2015.

[67] The Tor Project Inc. Tor: Anonymity Online. https://www.torproject.org/index.html.
Last accessed: 25 May 2015.

[68] InterCasino. InterCasino History. https://www.intercasino.com/en/about. Last ac-
cessed: 24 January 2015.

[69] D. Jackson and B. Downey. E-Gold Ltd. http://www.e-gold.com, 1996. Last accessed: 24
January 2015.

[70] Reality Keys. Facts about the future, cryptographic proof when they come true. https:

//www.realitykeys.com//. Last accessed: 20 February 2015.

[71] Kickstarter.com. Ruby Gem: Rack-Attack. https://github.com/kickstarter/

rack-attack. Last accessed: 11 June 2015.

[72] AlterEGO Labs. Ruby Gem: BetfairApiNgRails. https://github.com/alterego-labs/

betfair_api_ng_rails. Last accessed: 9 June 2015.

[73] Litecoin.org. Litecoin. https://www.litecoin.org. Last accessed: 24 January 2015.

[74] Lotology.co.uk. 40 Million in Winnings. http://lotology.co.uk/

40-million-scratchcard-winnings/. Last accessed: 7 February 2015.

[75] National Lottery. The UK National Lottery. https://www.national-lottery.co.uk/.
Last accessed: 7 February 2015.

[76] Mastercoin.org. Mastercoin Spec. https://github.com/mastercoin-MSC/spec. Last ac-
cessed: 7 February 2015.

[77] John Mettraux. Ruby Gem: Rufus-Scheduler. https://github.com/jmettraux/

rufus-scheduler. Last accessed: 9 June 2015.

[78] Erik Michaels-Ober. Ruby Gem: BitcoinAverage. https://github.com/sferik/

bitcoinaverage. Last accessed: 9 June 2015.

[79] David Zeiler Money Morning. Why Virtual Currency is Here to
Stay - Bitcoin or No Bitcoin. http://moneymorning.com/2013/11/22/

why-virtual-currency-is-here-to-stay-bitcoin-or-no-bitcoin/. Last accessed: 24
January 2015.

[80] S. Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System. 2008. https://bitcoin.

org/bitcoin.pdf, Last accessed: 24 January 2015.

142

http://www.favourit.com/en/content/uk-sports-betting-stats-mobile
http://www.ibas-uk.com/pdf/IBAS_Annual%20Report_07.pdf
http://www.ibas-uk.com/pdf/IBAS_Annual%20Report_07.pdf
http://www.ibas-uk.com/
https://github.com/spikex/strongbox
http://aws.amazon.com/ec2/
https://dashboard.heroku.com/
https://www.torproject.org/index.html
https://www.intercasino.com/en/about
http://www.e-gold.com
https://www.realitykeys.com//
https://www.realitykeys.com//
https://github.com/kickstarter/rack-attack
https://github.com/kickstarter/rack-attack
https://github.com/alterego-labs/betfair_api_ng_rails
https://github.com/alterego-labs/betfair_api_ng_rails
https://www.litecoin.org
http://lotology.co.uk/40-million-scratchcard-winnings/
http://lotology.co.uk/40-million-scratchcard-winnings/
https://www.national-lottery.co.uk/
https://github.com/mastercoin-MSC/spec
https://github.com/jmettraux/rufus-scheduler
https://github.com/jmettraux/rufus-scheduler
https://github.com/sferik/bitcoinaverage
https://github.com/sferik/bitcoinaverage
http://moneymorning.com/2013/11/22/why-virtual-currency-is-here-to-stay-bitcoin-or-no-bitcoin/
http://moneymorning.com/2013/11/22/why-virtual-currency-is-here-to-stay-bitcoin-or-no-bitcoin/
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf

[81] BBC News. Liberty Reserve: Barclays aiding money-laundering probe. http://www.bbc.

co.uk/news/business-22746768. Last accessed: 25 May 2015.

[82] CBC News. Mt. Gox shutdown a major blow for bitcoin. http://www.cbc.ca/news/

technology/mt-gox-shutdown-a-major-blow-for-bitcoin-1.2550256. Last accessed:
25 May 2015.

[83] Cryptocoin News. Bitcoin 2.0. https://www.cryptocoinsnews.com/

bitcoin-2-0-will-big-deal/. Last accessed: 24 January 2015.

[84] NitrogenSports. Changing the way the world bets on sports. https://nitrogensports.eu/.
Last accessed: 14 February 2015.

[85] Proof of Existence. Select a document and have it certified in the Bitcoin blockchain. http:
//www.proofofexistence.com/. Last accessed: 20 February 2015.

[86] Massachusetts Institute of Technology. MIT PGP Public Key Server. https://pgp.mit.

edu/. Last accessed: 29 May 2015.

[87] Association of Tennis Professionals. ATP World Tour - Official Site of Men’s Professional
Tennis. http://www.atpworldtour.com/. Last accessed: 30 May 2015.

[88] Organ Ofcorti. Estimating the Number of Bitcoin Miners. http://organofcorti.

blogspot.co.uk/2014/05/165-estimating-number-of-bitcoin-miners.html. Last ac-
cessed: 27 January 2015.

[89] Christoph Olszowka. Ruby Gem: Simplecov. https://github.com/colszowka/simplecov.
Last accessed: 11 June 2015.

[90] Online-Convert.com. Calculate a SHA hash with 256 bits. http://hash.online-convert.
com/sha256-generator. Last accessed: 30 May 2015.

[91] Opidoki. Oracle Programming Interface for Counterparty. https://github.com/

brighton36/opidoki. Last accessed: 20 February 2015.

[92] Orisi. Distributed Bitcoin Oracles. http://orisi.org/. Last accessed: 20 February 2015.

[93] Charlie Osborne. Bitstamp exchange reopens doors after $5m hack. http://www.zdnet.

com/article/bitstamp-exchange-reopens-doors-after-5m-hack/. Last accessed: 22
May 2015.

[94] Palkeo.com. How to Steal Bitcoins. http://www.palkeo.com/code/stealing-bitcoin.

html. Last accessed: 7 June 2015.

[95] Santiago Pastorino and Carlos Antonio da Silva. Ruby Gem: Rails-Api. https://github.

com/rails-api/rails-api. Last accessed: 11 June 2015.

[96] Abraham Polishchuk. Building a RESTful API in a Rails
Application. https://www.airpair.com/ruby-on-rails/posts/

building-a-restful-api-in-a-rails-application. Last accessed: 11 June 2015.

[97] Betfair Developer Program. Betfair Exchange API. https://developer.betfair.com/.
Last accessed: 9 June 2015.

[98] Reddit.com. The front page of the Internet. https://www.reddit.com/. Last accessed: 11
June 2015.

[99] RichOnRails. Basic AJAX in Ruby on Rails. https://richonrails.com/articles/

basic-ajax-in-ruby-on-rails. Last accessed: 9 June 2015.

[100] I Nelson Rose. Gambling and the Law. Gambling Times Los Angeles, 1986.

143

http://www.bbc.co.uk/news/business-22746768
http://www.bbc.co.uk/news/business-22746768
http://www.cbc.ca/news/technology/mt-gox-shutdown-a-major-blow-for-bitcoin-1.2550256
http://www.cbc.ca/news/technology/mt-gox-shutdown-a-major-blow-for-bitcoin-1.2550256
https://www.cryptocoinsnews.com/bitcoin-2-0-will-big-deal/
https://www.cryptocoinsnews.com/bitcoin-2-0-will-big-deal/
https://nitrogensports.eu/
http://www.proofofexistence.com/
http://www.proofofexistence.com/
https://pgp.mit.edu/
https://pgp.mit.edu/
http://www.atpworldtour.com/
http://organofcorti.blogspot.co.uk/2014/05/165-estimating-number-of-bitcoin-miners.html
http://organofcorti.blogspot.co.uk/2014/05/165-estimating-number-of-bitcoin-miners.html
https://github.com/colszowka/simplecov
http://hash.online-convert.com/sha256-generator
http://hash.online-convert.com/sha256-generator
https://github.com/brighton36/opidoki
https://github.com/brighton36/opidoki
http://orisi.org/
http://www.zdnet.com/article/bitstamp-exchange-reopens-doors-after-5m-hack/
http://www.zdnet.com/article/bitstamp-exchange-reopens-doors-after-5m-hack/
http://www.palkeo.com/code/stealing-bitcoin.html
http://www.palkeo.com/code/stealing-bitcoin.html
https://github.com/rails-api/rails-api
https://github.com/rails-api/rails-api
https://www.airpair.com/ruby-on-rails/posts/building-a-restful-api-in-a-rails-application
https://www.airpair.com/ruby-on-rails/posts/building-a-restful-api-in-a-rails-application
https://developer.betfair.com/
https://www.reddit.com/
https://richonrails.com/articles/basic-ajax-in-ruby-on-rails
https://richonrails.com/articles/basic-ajax-in-ruby-on-rails

[101] Margaret Rouse. Dictionary Attack Definition. http://searchsecurity.techtarget.com/
definition/dictionary-attack. Last accessed: 7 June 2015.

[102] RSpec.info. Behaviour Driven Development for Ruby. Making TDD Productive and Fun.
http://rspec.info/. Last accessed: 11 June 2015.

[103] Rspec.info. Ruby Gem: Rspec-Rails. https://github.com/rspec/rspec-rails. Last ac-
cessed: 11 June 2015.

[104] RubyDoc.org. Ruby BigDecimal. http://ruby-doc.org/stdlib-1.9.3/libdoc/

bigdecimal/rdoc/BigDecimal.html. Last accessed: 11 June 2015.

[105] RubyOnRails.org. Active Record Query Interface. http://guides.rubyonrails.org/

active_record_querying.html. Last accessed: 9 June 2015.

[106] rubyonrails.org. Ruby on Rails is an open-source web framework that’s optimized for pro-
grammer happiness and sustainable productivity. It lets you write beautiful code by favoring
convention over configuration. http://rubyonrails.org/. Last accessed: 9 June 2015.

[107] Katherine Rushton. Liberty Reserve shut down in $6bn money
laundering case. http://www.telegraph.co.uk/finance/10085600/

Liberty-Reserve-shut-down-in-6bn-money-laundering-case.html. Last accessed: 25
May 2015.

[108] ScanMyServer.com. Test the Security of Your Website or Blog, Free. https://www.

scanmyserver.com/. Last accessed: 11 June 2015.

[109] Matthew Sparkes. The £625m lost forever - the phenomenon of disap-
pearing Bitcoins. http://www.telegraph.co.uk/technology/news/11362827/

The-625m-lost-forever-the-phenomenon-of-disappearing-Bitcoins.html. Last
accessed: 7 June 2015.

[110] Bitcoin Sportsbook. 8 Bitcoin Betting Scams and Lessons to Learn. https://www.

bitcoinsportsbooks.com/blog/8-bitcoin-betting-scams-lessons-to-learn/. Last
accessed: 22 May 2015.

[111] The Telegraph. Bahrain Olympic champion Rashid Ramzi in positive drugs
test. http://www.telegraph.co.uk/sport/othersports/drugsinsport/5243525/

Bahrain-Olympic-champion-Rashid-Ramzi-in-positive-drugs-test.html. Last
accessed: 24 January 2015.

[112] Test.Webbtc.com. The Testnet 3 API. http://test.webbtc.com/api. Last accessed: 11
June 2015.

[113] Bitcoin Trezor. The Bitcoin Safe. https://www.bitcointrezor.com/. Last accessed: 29
January 2015.

[114] Twitter. Twitter Bootstrap: get bootstrap. http://getbootstrap.com/. Last accessed: 9
June 2015.

[115] Stanford University. Folding at Home. http://folding.stanford.edu/. Last accessed: 6
February 2015.

[116] Lian Uphnix. Ruby Gem: BitcoinRuby. https://github.com/lian/bitcoin-ruby. Last
accessed: 11 June 2015.

[117] Bitcoin Wiki. BIP 0021: URI scheme. https://en.bitcoin.it/wiki/BIP_0021. Last
accessed: 9 June 2015.

[118] Bitcoin Wiki. Brainwallet. https://en.bitcoin.it/wiki/Brainwallet. Last accessed: 7
June 2015.

144

http://searchsecurity.techtarget.com/definition/dictionary-attack
http://searchsecurity.techtarget.com/definition/dictionary-attack
http://rspec.info/
https://github.com/rspec/rspec-rails
http://ruby-doc.org/stdlib-1.9.3/libdoc/bigdecimal/rdoc/BigDecimal.html
http://ruby-doc.org/stdlib-1.9.3/libdoc/bigdecimal/rdoc/BigDecimal.html
http://guides.rubyonrails.org/active_record_querying.html
http://guides.rubyonrails.org/active_record_querying.html
http://rubyonrails.org/
http://www.telegraph.co.uk/finance/10085600/Liberty-Reserve-shut-down-in-6bn-money-laundering-case.html
http://www.telegraph.co.uk/finance/10085600/Liberty-Reserve-shut-down-in-6bn-money-laundering-case.html
https://www.scanmyserver.com/
https://www.scanmyserver.com/
http://www.telegraph.co.uk/technology/news/11362827/The-625m-lost-forever-the-phenomenon-of-disappearing-Bitcoins.html
http://www.telegraph.co.uk/technology/news/11362827/The-625m-lost-forever-the-phenomenon-of-disappearing-Bitcoins.html
https://www.bitcoinsportsbooks.com/blog/8-bitcoin-betting-scams-lessons-to-learn/
https://www.bitcoinsportsbooks.com/blog/8-bitcoin-betting-scams-lessons-to-learn/
http://www.telegraph.co.uk/sport/othersports/drugsinsport/5243525/Bahrain-Olympic-champion-Rashid-Ramzi-in-positive-drugs-test.html
http://www.telegraph.co.uk/sport/othersports/drugsinsport/5243525/Bahrain-Olympic-champion-Rashid-Ramzi-in-positive-drugs-test.html
http://test.webbtc.com/api
https://www.bitcointrezor.com/
http://getbootstrap.com/
http://folding.stanford.edu/
https://github.com/lian/bitcoin-ruby
https://en.bitcoin.it/wiki/BIP_0021
https://en.bitcoin.it/wiki/Brainwallet

[119] Bitcoin Wiki. Confirmation. https://en.bitcoin.it/wiki/Confirmation. Last accessed:
29 January 2015.

[120] Bitcoin Wiki. Contracts. https://en.bitcoin.it/wiki/Contracts. Last accessed: 2 June
2015.

[121] Bitcoin Wiki. Contracts: Using External State. https://en.bitcoin.it/wiki/Contracts#
Example_4%3a_Using_external_state. Last accessed: 3 June 2015.

[122] Bitcoin Wiki. Controlled Supply. https://en.bitcoin.it/wiki/Controlled_supply. Last
accessed: 29 January 2015.

[123] Bitcoin Wiki. Promotional Graphics. https://en.bitcoin.it/wiki/Promotional_

graphics. Last accessed: 6 February 2015.

[124] Bitcoin Wiki. Proof of Burn. https://en.bitcoin.it/wiki/Proof_of_burn. Last ac-
cessed: 7 February 2015.

[125] Bitcoin Wiki. Target. https://en.bitcoin.it/wiki/Target. Last accessed: 29 January
2015.

[126] Bitcoin Wiki. Testnet. https://en.bitcoin.it/wiki/Testnet. Last accessed: 25 May
2015.

[127] Bitcoin Wiki. Weaknesses. https://en.bitcoin.it/wiki/Weaknesses. Last accessed: 29
January 2015.

[128] Wikipedia.org. Gambling. http://en.wikipedia.org/wiki/Gambling. Last accessed: 7
February 2015.

[129] C. Chambers-Jones with H. Hillman. Financial Crime and Gambling in a Virtual World.
Edward Elgar Publishing Limited, 2014. ISBN: 978 1 78254 520 0.

[130] Wopata.com. Ruby Gem: wkhtmltopdf-binary. https://github.com/wopata/

wkhtmltopdf-binary. Last accessed: 9 June 2015.

145

https://en.bitcoin.it/wiki/Confirmation
https://en.bitcoin.it/wiki/Contracts
https://en.bitcoin.it/wiki/Contracts#Example_4%3a_Using_external_state
https://en.bitcoin.it/wiki/Contracts#Example_4%3a_Using_external_state
https://en.bitcoin.it/wiki/Controlled_supply
https://en.bitcoin.it/wiki/Promotional_graphics
https://en.bitcoin.it/wiki/Promotional_graphics
https://en.bitcoin.it/wiki/Proof_of_burn
https://en.bitcoin.it/wiki/Target
https://en.bitcoin.it/wiki/Testnet
https://en.bitcoin.it/wiki/Weaknesses
http://en.wikipedia.org/wiki/Gambling
https://github.com/wopata/wkhtmltopdf-binary
https://github.com/wopata/wkhtmltopdf-binary

	Introduction
	Motivation
	Objectives
	Contributions

	Background
	Digital and Virtual Currencies
	Overview
	Bitcoin
	Block Mining
	The Blockchain
	Transaction and Scripts
	Wallets
	Alt Coins and Chains
	Bitcoin 2.0

	Online Betting and Gambling
	Overview
	Sportsbooks
	Betting Exchanges
	Bet Resolution and Settlement

	Related Work
	DirectBet
	NitrogenSports & Anonibet
	Betmoose, BitBet & BetBTC
	Satoshi Dice & Satoshi Bet
	Proof Of Existence & Gradbase
	Reality Keys, Orisi & OpiDoki

	Legal Concerns
	Betting Legislation
	Money Laundering
	Our Response

	Research and Design
	Trust in An Anonymous Environment
	The Bitcoin Network as Escrow
	The Data Outside the Blockchain Problem
	Third-Party Escrow
	M out of N Transactions
	Bitcoin Oracles
	Proof of Bet & Outcome
	Bet Verification Check

	Private Key Security
	Generation of Keys
	Backing up Keys
	Storage of Keys
	A Smart Private Key Store
	Security Recommendations for Sports Authorities

	The Bitcoin Betting Exchange
	Introduction
	Proof of Bet
	Proof of Outcome
	Audit Trail

	Implementation
	Architecture
	The Bitcoin Betting Exchange
	Infastructure & Platform
	Live Event Data
	Integration with the Bitcoin Network
	Live Financial Data
	Testing
	User Interface and Experience

	The Smart Private Key Store
	Infastructure & Platform
	API
	Authentication
	Communication with the Betting Exchange
	Database Encryption
	Testing

	Evaluation
	User Experience Evaluation
	Online Feedback and Discussion
	User Experience Feedback
	Professional Feedback

	Security
	Hacking Challenge
	Security Scanners
	Security Audit
	Threat Analysis

	Strengths & Limitations

	Conclusion
	Lessons Learnt
	Future Work

	Bitcoin Betting Exchange Entity Relationship Diagram

