
Optimally Solving a Rubik’s Cube Using
Vision and Robotics

Le Thanh Hoang

Imperial College London
Department of Computing

Supervised by Andrew Davison

June 15, 2015

Abstract

The Rubik’s Cube, often referred to as ‘The Cube’, is a puzzle that has troubled many for over 40 years.
A puzzle that most people keep in their drawer gathering dust as their previous attempts at solving it have
only ended in mindnumbing frustration. With 43,252,003,274,489,856,000 possible combinations in its state
space, the cube has a rich and deep mathematical theory attached to it. As daunting as this number may
seem, we know that the maximum number of turns required to solve any scrambled state is just 20. We call
this: God’s Number.[18]

Whilst it is well known that the fastest human solvers need just a few seconds to solve this puzzle, their
solutions are far from optimal. In fact, the best human speedsolvers use on average 50-60 moves per solve,
simply because a human does not know the entire solution to the cube by just looking at it. In essence,
they must solve the cube section by section by putting each colour where it belongs. What humans lack in
insight, they make up for in dexterity. The best human speedsolvers can turn up to 10 faces per second.

We take a different approach to solving the cube by using three major components: A vision system that is
able to accurately track the cube and its colours using a Smartphone camera so that we can read its state,
an algorithm that can find a solution to most cube states in just 22 turns or under, and a robot that is able
to reliably turn and solve the cube.

We are able to point our smartphone’s camera at each face regardless of background, lighting colour or
cube position within the camera frame in order to read any cube state. We are also able to intelligently
search through the 43 quintillion combinations to find a close to optimal (sometimes even optimal) solution.
Thanks to this, our robot is able to, on average, solve the cube in just 74 seconds.

Acknowledgements

I would like to thank my supervisor, Professor Andrew Davison, for his support throughout the project, his
guidance and ideas in the vision and robotics components, funding the Lego and providing MindStorm kits
as well as Raspberry Pis and BrickPis. I’d also like to thank Julia Wei for her support, being an excellent
proofreader and for providing some suggestions for the robot design. Finally, I would like to thank my
parents for supporting me throughout my life.

Contents

1 Introduction 5
1.1 Motivation and Aims . 5
1.2 Contributions . 5

2 Background 7
2.1 Fundamental Structure . 7

2.1.1 Rubik’s Cube Jargon . 7
2.1.2 Face Notation . 8
2.1.3 Move Notation . 8
2.1.4 Rotation Notation . 10
2.1.5 Cube Notation . 10
2.1.6 Cubie Notation . 11
2.1.7 Singmaster Notation . 12

2.2 The Mathematics . 13
2.2.1 Laws & Lemmas . 13
2.2.2 Problem space . 15
2.2.3 Group Theory . 16
2.2.4 Numbering Schemes . 17

2.3 Existing Optimal Algorithms . 19
2.3.1 The Obvious Algorithm: Brute Force . 19
2.3.2 The First Real Attempt: Thistlethwaite’s Algorithm 20
2.3.3 A Different Approach: Korf’s Algorithm . 22
2.3.4 Improving Thistlethwaite’s Algorithm: Kociemba’s Algorithm 24
2.3.5 Why Not Human Algorithms? . 25

2.4 Existing Visioning Systems . 26
2.4.1 Colour Schemes . 26
2.4.2 Hardware . 27
2.4.3 Object tracking . 28
2.4.4 Colour balancing . 29

2.5 Existing Robots . 31
2.5.1 MindCuber . 31
2.5.2 JPBrown’s CubeSolver . 31
2.5.3 Cubestormer . 32

2.6 PID Controller . 33
2.6.1 Open loop vs closed loop . 33
2.6.2 What is PID specifically? . 33
2.6.3 What’s so great about PID? . 34

3 Design 35
3.1 Overall Design . 35

3.1.1 Algorithm Design . 35
3.1.2 Vision Design . 36

1

3.1.3 The Robot Design . 36
3.1.4 Summary of Design . 37

4 Implementation 39
4.1 Korf’s Algorithm . 39

4.1.1 Cube representation . 39
4.1.2 Heuristic generation . 41
4.1.3 Improvements . 45
4.1.4 HPPC Java Library . 48

4.2 Kociemba’s algorithm . 48
4.2.1 Coordinate Labelling . 48

4.3 Combining Kociemba’s and Korf’s . 49
4.3.1 Time to Solve Estimation . 50

4.4 Searching for shortest number of robot moves . 50
4.4.1 Dynamic Costing . 50
4.4.2 Reducing the branching factor . 50
4.4.3 Search speed . 51

4.5 Vision System . 52
4.5.1 Cube Recognition . 52
4.5.2 Recognising Colour . 56

4.6 Robot . 59
4.6.1 Hardware Design . 59
4.6.2 Movements . 62
4.6.3 Software . 63

5 Evaluation 66
5.1 Vision . 66

5.1.1 Vision accuracy . 66
5.1.2 Vision limitations . 68

5.2 Algorithm . 70
5.2.1 Algorithm speed . 70
5.2.2 Algorithm solution length . 71
5.2.3 Algorithm Summary . 72

5.3 Robot . 72
5.3.1 Robot Accuracy . 72
5.3.2 Robot Speed and TPS . 73
5.3.3 Robot Limitations . 74
5.3.4 Robot Summary . 74
5.3.5 System . 74

6 Conclusions 75
6.1 Future work . 75

6.1.1 Improving the Algorithm . 75
6.1.2 Improving vision . 76
6.1.3 Improving the Robot . 76

A System User Guide 80
A.1 Prerequisites . 80

A.1.1 Hardware requirements . 80
A.1.2 Setup . 80

A.2 Using the system . 80
A.2.1 Reading the state . 80
A.2.2 Find a solution . 82
A.2.3 Solving the cube . 83

2

List of Figures

2.1 Labelled Cube . 8
2.2 Face Notations . 8
2.3 Move Notation Table . 9
2.4 Cube Rotations . 10
2.5 Cube Net . 11
2.6 Cubie Notation . 11
2.7 Illegal States . 13
2.8 Corner states . 14
2.9 Illegal state corner flip . 14
2.10 Search Tree . 19
2.11 Nodes generated at each depth . 19
2.12 A visual representation of each group . 21
2.13 Thistlethwaite’s group transition size . 22
2.14 Thistlethwaite’s group transition worst case . 22
2.15 Iterative Deepening vs IDA* . 23
2.16 HSV Colour Wheel . 26
2.17 HSV Saturation Demo . 27
2.18 An example of an RGB sensor implementation . 27
2.19 We wish to determine edges of this . 28
2.20 Getting the first derivative . 29
2.21 Second Derivative . 29
2.22 MindCuber . 31
2.23 CubeSolver . 32
2.24 Open vs Closed Feedback loop . 33

3.1 The insides of a servo motor . 36
3.2 Overview of system through each stage . 38

4.1 Corner labelling . 40
4.2 Edge labelling . 40
4.3 Move method . 41
4.4 Main Corner generation loop . 43
4.5 Main IDA* loop . 44
4.6 Search function . 45
4.7 How we split our search space . 47
4.8 Contrast and Brightness Adjustment . 52
4.13 Finding Stickers . 55
4.14 Finding Stickers . 55
4.15 HSV colour thresholds . 56
4.16 Yellow vs white light . 57
4.18 Two different views of the claw . 59
4.19 Turn circle of the cube . 60
4.20 Two different views of the claw . 60

3

4.21 Overview: Birdseye view . 61
4.22 Configuration by Arm vs Job . 62
4.23 move method . 63
4.24 Moves . 64
4.25 An example of the whole protocol . 64
4.26 The rotational gear ratio . 65
4.27 Degree rotation table . 65

5.1 Test Results For Vision . 67
5.2 Sample images of each light scenario . 68
5.3 A rare case . 69
5.4 Speed of algorithms in Milliseconds . 70
5.5 Solution Lengths . 71
5.6 A perfect alignment . 72
5.7 Number of face turns and cube rotations until failure . 73
5.8 Solve times table . 73

A.1 U Face . 81
A.2 F Face . 81
A.3 D Face . 81
A.4 R Face . 82
A.5 B Face . 82
A.6 L Face . 82
A.7 First Connection Failure . 83

4

Chapter 1

Introduction

1.1 Motivation and Aims

Rubik’s Cubes are dead. A mechanical puzzle from the 20th Century in the 21st Century world of computers.
However, there is more to the cube than meets the eye. Although to some, it may just be a mindless pastime,
to us it presents many interesting challenges in both the underlying Mathematical theory and as a Computer
Science search problem. In this project we explore the deep and rich mathematics behind the Rubik’s Cube
and show how we can exploit this to search for close to optimal solutions using Kociemba’s algorithm[14].
We also show how we can intelligently search for optimal solutions using Korf’s algorithm[15].

Our end goal is to build a system that is able to read the state of the Rubik’s Cube reliably, find a so-
lution and then solve the cube using a robot. We want to demonstrate the challenges associated with
building puzzle solving robots. From the real world challenges in vision and robotics down to the theoretical
challenges that lie in the search space, this is not a trivial task.

The accuracy needed by the robot should not be overlooked. An error of millimeters from a perfectly
aligned 90 degree turn on any face can lead to a disaster for turning adjacent faces. Likewise, the complexity
of the vision system should not be underestimated - a single wrongly recognised colour leads to a completely
different cube state. As mentioned earlier, finding an optimal solution is difficult in a state space of size
4.3 ∗ 1019. In comparison, a fifteen sliding tile puzzle has only 1013 possible states. Unlike many other
projects, we are not trying to solve a problem. Instead, we are trying to detail and demonstrate techniques
and challenges that are often initially overlooked by those who try to build similar systems.

1.2 Contributions

Although Rubik’s cube solving robots already exist, they are very rarely documented in any detail at all.
In fact, the world’s fastest Rubik’s Cube solving robot, CubeStormer III[24], has kept almost all of its
implementation a complete secret. In this project, we want to be able to contribute the following to the
SpeedSolving community:

1. We present a reliable vision system for reading the state of the Rubik’s Cube using Edge Detection,
Adaptive Thresholding, pattern recognition, automatic white balancing and square prediction (section
4.5).

2. We detail a fast multithreaded implementation of Korf’s algorithm using a perfect minimal hash
function similar to a technique used in finding God’s number [18] to save 75x more memory over
a generic implementation and to speed up heuristic database lookups down to just O(1).

3. We present a new algorithm that is variation of Korf’s algorithm using multithreaded Fringe Searching
instead of IDA* as well as an algorithm that combines Korf’s and Kociemba’s algorithm that can

5

outperform Kociemba’s algorithm at shorter solution lengths and detail the shortcomings of Fringe
Search within this particular use case.

4. We evaluate and compare the performance of different algorithms in terms of the speed that they can
find a solution and the length of solution they give. In particular we compare, Korf’s, Kociemba’s and
our various improvements and variations of Korf’s algorithm.

5. We compare existing designs and explore grabbing mechanisms, gearing and motor controllers to
demonstrate how accurate turning can be achieved using basic Lego Mindstorm kits. As well as
evaluating our particular design to highlight the major hardware challenges in designing such a robot.

6

Chapter 2

Background

2.1 Fundamental Structure

The Rubik’s Cube has many components to it and in order to obtain a model that we can reason about,
we must have a consistent way of referencing distinct sections of the cube. This section details the most
common basic notation.

2.1.1 Rubik’s Cube Jargon

1. A face refers to a single side of the cube comprised of 9 stickers.

2. A cubie refers to a smaller ‘sub-cube’ that builds up the bigger cube.

3. An edge is a type of cubie. It refers to the cubies that only have 2 colours attached to them. Figure
2.1 Light Grey.

4. A corner is another type of cubie. It refers to the cubies that have 3 colours attched to them. Figure
2.1 Dark Grey.

5. A centre is also a type of cubie. It refers to the cubies that only have 1 colour attached to them.
Figure 2.1 White.

6. A move is the movement of a particular face by 90, 180 or 270 degrees.

7. A rotation is the movement of the whole cube without moving any faces.

8. A facelet refers to a sticker on a face.

9. A speedsolver refers to a person who attempts to solve the cube in the fastest time possible.

7

Figure 2.1: Labelled Cube

2.1.2 Face Notation

Usually one labels the faces of a Rubik’s cube using the colour of its faces. E.g, For the official international
colour scheme: Red, Blue, Yellow, etc. However, it is more useful to have a notation that is independent of
face colour. This is because colour schemes vary from cube to cube. Instead we can label the cube using the
direction that the face faces. Assume we have the official Rubik’s cube with international colour scheme in
a position such that the blue face faces upwards and the white face faces towards ourselves, we can label the
faces as follows: F (Front), R (Right), L (Left), B (Back), U (Up) and D (Down)[5]. Figures 2.2a and 2.2b
below shows this:

Figure 2.2: Face Notations

(a) Front side (b) Back side

2.1.3 Move Notation

Now that we’ve seen a notation for which we can refer to faces, we can now define a notation that defines
moves that we can perform on the cube. We need two pieces of information to define a move: the face and
the number of 90 degree turns clockwise[5]. For example: R1 is a 90 degree clockwise turn of the right face,
L2 is a 180 degree turn of the left face and B3 is a 270 degree clockwise turn (or a 90 degree anticlockwise
turn) of the back face. The table below shows all moves:

8

Figure 2.3: Move Notation Table

Move Image Move Image

R R3

U U3

F F3

L L3

D D3

B B3
9

2.1.4 Rotation Notation

So far, we have only defined which faces we can move. We can also express cube rotations[5] that rotate the
whole cube. We can define how to rotate the entire cube by defining the axis of rotations X, Y and Z. If we
draw a line through the R face to the L face as per figure 2.4, we define the clockwise rotation X as following
the clockwise direction turn of the move R. Similarly, the Y clockwise rotation would follow the clockwise
rotation of U in Figure 2.3 and Z clockwise rotation would follow the clockwise rotation of F.

Figure 2.4: Cube Rotations

2.1.5 Cube Notation

Now that we have face notation, we can introduce a notation to represent a cube state. If we imagine
flattening out the cube into a net, we can label each of the 9 squares on each face as per Figure 2.5. Note,
to prevent confusion with move notation, we will label each square with lowercase. E.g. r2 is not the same
as R2. R2 refers to a 180 degree movement of the R face whereas r2 refers to the square r2. Since we only
define moves where we move outer faces of the cube, the centres of each face remain fixed in their respective
initial positions. This allows us to consistently map colours to faces. For example, if the blue centre piece is
on the U face, all blue coloured squares could also be labelled as U.

We can now represent a cube state using a 54 character string. In the following order:

u1u2u3u4u5u6u7u8u9r1r2r3r4r5r6r7r8r9f1f2f3f4f5f6f7f8f9d1d2d3d4d5d6d7d8d9l1l2l3l4l5l6l7l8l9b1b2b3b4b5b6b7b8b9

10

Figure 2.5: Cube Net

This notation is often useful for human input as we can just read the colours directly off the cube. It
may sometimes be refered to as Facelet Level notation [13]

2.1.6 Cubie Notation

Sometimes it is easier to reason about the cube as being constructed of 3x3x3 cubies. Excluding the smaller
cube that is directly in the centre, a cube consists of 26 total cubies: 12 Edge pieces, 8 Corner pieces and 6
Centre pieces. An edge piece can be uniquely identified using just the two faces that it touches. Similarly, a
corner can be uniquely defined by the three faces it touches. Below shows a diagram where the cube is split
into three layers by slicing twice through the XZ plane, creating a bottom, middle and top layer so that we
can label all pieces:

Figure 2.6: Cubie Notation

(a) Top Layer (b) Middle Layer (c) Bottom Layer

11

2.1.7 Singmaster Notation

Another way of representing a cube is to use Singmaster Notation[21]. Singmaster Notation uses the piecewise
notation and allows us to represent the cube in a much more compact form. The Singmaster Notation needs
to account for two properties of a piece: its permutation (position in the cube) and its orientation (which
way the piece is facing). Using the piece notation, we can define a cube as follows: UF UR UB UL DF DR
DB DL FR FL BR BL UFR URB UBL ULF DRF DFL DLB DBR. That is, we put the actual piece that lies
in each position UF, UR, UB, UL, etc. This determines the permutation. The orientation is determined by
the order of how the piece is input. For example, if we defined a cube state as starting with UB FD..., this
tell us that the piece that was in position UB in the solved state, is now in position UF. Similarly, the piece
FD is in position UR. Notice the distinction between FD and DF: FD means that the F colour is facing the
U direction and the D colour is facing the R direction. DF would mean a flipped version of this where the
D colour is facing the U direction and the F colour is facing the R direction. This notation is often useful to
reason about the Mathematics behind the number of states a Rubik’s cube has.

12

2.2 The Mathematics

2.2.1 Laws & Lemmas

There are certain laws a Rubik’s cube has which are often overlooked[11]. These properties are crucial to
reach the true number of the size of the problem space, since it proves that some states are unreachable by
using the moves defined in section 2.1.3 .

2.2.1.1 All swaps are even

All reachable states are those which can be obtained using only an even number of swaps. A swap is defined
as exchanging the position of a piece for another. This means the diagram in figure 2.7a shows an impossible
state since the two pieces UF and UR have only performed one swap. A simple proof for this lemma is as
follows: Using the legal moves defined in section 2.1.3 we can see that any move will always perform an even
number of piece swaps. This means any combinations of moves will only perform an even number of swaps
in total. Imagine a U move, this requires 4 edge swaps and 4 corner swaps. The same argument can be made
for any other 90 degree move. Any 180 degree move, e.g. U2 requires 2 edge and 2 corner swaps.

2.2.1.2 All edge flips are even

Similar to section 2.2.1.1 above, all reachable states are those which can be obtained using only an even
number of edge flips. For example, the state in Figure 2.7b below is unreachable since it requires only 1 edge
flip. In order to reason about this, we must first define what a ‘good’ edge or a ‘bad’ edge is. A ‘good’ edge
is an edge which can be permuted back to its original position and orientation using only moves involving
faces U, R, D and L. A ‘bad’ edge would be an edge that cannot satisfy the ‘good’ edge condition. We can
see that using only moves U, R, D and L from a solved cube state, all edges must be ‘good’ and can never
turn ‘bad’. This is because no matter how many moves we make, we can always recover the position and
orientation of any edge piece by simply reversing the U, R, D or L moves performed. This means no number
of U, R, D or L moves can flip an edge.

Figure 2.7: Illegal States

(a) Illegal state edge swap (b) Illegal state edge flip

With the remaining faces: F and B, any 90 degree move will flip all 4 edges on that face. We prove this
by simply performing an F move and then attempting to flip any flipped edges on the F face using only U,
R, D or L. We previously proved that U, R, D or L cannot flip edges so it will be impossible to return any
edges on the F face to back to their original positions and orientations. Again, since we can only flip 4 edges
at a time, the total number of edge flips for any reachable cube state must be even.

13

2.2.1.3 All corner orientation totals are divisible by 3

So far, we’ve only seen laws associated with edges. It is slightly harder to reason about corner orientations
since there are 3 possible orientations per corner. Let us label the orientations by labelling the solved state
as 0, solved state twisted clockwise as 1 and solved state twisted anti clockwise as 2. The diagram below
shows all three corner orientation states and their labels:

Figure 2.8: Corner states

(a) Corner 0 (b) Corner 1 (c) Corner 2

If we sum the labels of all corners of any reachable state of a cube, the total is divisible by 3. The diagram
below shows a state that is not reachable since the sum of all the labels is 1.

Figure 2.9: Illegal state corner flip

Once again, we must define what it means to have a ‘good’ corner or a ‘bad’ corner. Notice that all
corners lie on the U face or D face. This means for each corner, there is always a sticker that faces the U or
D direction. A ‘good’ corner is defined as a corner where the sticker that faces the U or D face is of either
U or D colour. Any other corner orientations are defined as ‘bad’.

Using these definitions, we can see that any moves involving the U or D faces cannot change the orien-
tation of any corners. For example, take solved cube and only perform U or D moves. All corners are ‘good’
in a solved cube state. No number of U or D moves can change these corners from ‘good’ to ‘bad’. For the
other R, F, L and B moves, a 90 degree turn will increment the orientation label of 2 corners by 1 and add 2
to the orientation label of another 2 corners (modulo 3). The total change is therefore 1+1+2+2 = 6 since
each R, F, L, B will only add 6 to the total label sum. Since the total label sum of a solved cube is 0 and
any move can the total change is can either be 6 or 0, the corner orientation totals must be divisible by 3.

14

2.2.2 Problem space

Now that we have an idea of the structure and laws of the Rubik’s cube, we can now begin to reason about
the problem space[20].

2.2.2.1 Orientations

We define the number orientation as the number of directions a piece can face towards.

Any edge piece can only have 2 orientations. This is obvious if we define some edge piece as XY, its
other orientation is YX. There are no other possible orientations. Since there are 12 edges, we would think
that the total number of edge orientations is 212. However, using the edge lemma in section 2.2.1.2, we can
reason that half of all edge orientations are unreachable since all odd numbered edge flips cannot be reached.
This reduces the number of reachable edge orientations to only those with even edge flips:

Edge Orientations = 212/2 = 211 = 2048 (2.1)

.

Similarly, any corner piece can have 3 orientations. Since there are 8 corners, we would think that the
total number of corner orientations is 38. However, using the corner lemma in section 2.2.1.3, we can prove
that only a third of all corner states are actually reachable since only those with a total corner label sum
divisible by 3 can be reached. This reduces the number of corner orientations to:

Corner Orientations = 38/3 = 37 = 2187 (2.2)

2.2.2.2 Permutations

We define the number of permutations as the number of positions a cubie/piece can be in.

Let us take any corner piece from the 8 corners. For any cube state, this corner piece can be in any 1
of 8 positions. We then choose a second corner piece. Since the first piece has already claimed a position,
the second piece can only choose from 1 of 7 positions. This continues until the last piece. This gives us
8 ∗ 7 ∗ 6 ∗ 5 ∗ 4 ∗ 3 ∗ 2 ∗ 1 possible corner permutations. The total number of corner permutations is:

Corner Permutations = 8! = 40320 (2.3)

.
A similar argument can be made for edge permutations.

Edge Permutations = 12! = 479, 001, 600 (2.4)

One may then argue that the total number of permutations is 8!∗12!. However, only half of these permutations
are actually reachable using the legal moves defined in 2.1.3. Using our even swap lemma from section 2.2.1.1,
we can reason that all states that have an odd number of swaps are not reachable which halves the number
of permutations to 12! ∗ 8!/2.

2.2.2.3 Total state space

Using the values above, we can calculate the total size of the state space:

Edge Size = Edge Orientations ∗ Edge Permutations (2.5)

Corner Size = Corner Orientations ∗ Corner Permutations (2.6)

Total Size = (Edge Size ∗ Corner Size)/2 (2.7)

This gives a total state size of 43,252,003,274,489,856,000.

15

2.2.3 Group Theory

2.2.3.1 What are groups?

A group is a structure which consists of a set and an operation that can combine any two elements[4]. There
are four conditions called ‘group axioms’ that the set and operation combination must satisfy. Let G be our
set and OP be our operator:

1. Closure - Any two elements combined using the operator must given another element that is in the
set. That is:
∀a, b ∈ G,∃c ∈ G : a OP b = c

2. Associativity - Order of evaluation does not matter. That is:
∀a, b, c ∈ G : a OP(bOP c) = (a OP b)OP c

3. Identity - The set must contain the identity element under the operation. That is:
∃a ∈ G,∀b ∈ G : a OP b = b

4. Invertibility There is an inverse element for every element in the set. That is:
∀a ∈ G,∃b ∈ G : a OP b = i
Where i is the identity element defined previously.

An example of a group is the set of integers Z and the operation +. It is easy to see how Associativity
is satisfied. Closure is satisfied since the addition of any two integers will give another integer in Z. The
identity element is 0 since 0 added to anything will just give itself. Invertibility is satisfied because the
inverse element of any integer i is −I.

2.2.3.2 How is this relevant to Rubik’s Cubes?

As it turns out, the set of all reachable Rubik’s Cube states with an operator that applies moves (let’s call
this operator: ∗) forms a group[4]. Any cube state can be expressed as a combination of move applications
from the solved state. For example, let the solved state be C. We can say something like this: C ∗ R ∗ R =
C ∗R2 = C ∗L ∗L3 ∗R ∗R. That is, applying two R moves gives the same state as applying R2 which also
gives the same state as applying L , L3, R, R. You may notice that applying moves to a cube state should be
an illegal operator since our operator should be combining cube states and not states and moves. However,
we are combining 2 cube states. R is shorthand for C ∗R. So C ∗ (C ∗R) ∗ (C ∗R) = (C ∗R ∗R).

Let us call the group that contains all reachable states and the move application operator: G0.
Let us prove G0 is in fact a group by stepping through all the axioms[4]:

1. Closure - Since the group contains all the states reachable using legal moves and we can only apply
legal moves using *, it is impossible to generate unreachable states and we therefore have closure.

2. Associativity - Let us take any cube states S1, S2 and S3: (S1 ∗ S2) ∗ S3 = S1 ∗ (S2 ∗ S3). We can
see that this is the case since taking S1 and applying the sequence of moves that took C to S2 and
then applying the sequence of moves that took C to S3 is exactly the same regardless of the evaluation
order. For example, let’s use (C ∗R) ∗ U = C ∗ (R ∗ U). We can see that if we take a solved cube and
apply the move R and then U is the same as taking a solved cube and then applying the cube state
(R ∗ U) which is just R followed by U.

3. Identity - The identity is our solved state, C. Since C is the same as applying no moves.

4. Invertibility - All reachable cube states must have an inverse. Let us take a cube state C ∗S where S
is a sequence of moves. We can reverse any sequence by simply ‘undoing’ all the moves. For example,
the cube state C ∗R3 ∗ U ∗B has an inverse C ∗B3 ∗ U3 ∗R.
Proof: (C ∗R3 ∗ U ∗B) ∗ (C ∗B3 ∗ U3 ∗R)
= (C ∗R3 ∗ U ∗B ∗B3 ∗ U3 ∗R)(by def. of identity C and associativity)
= (C ∗R3 ∗ U ∗ C ∗ U3 ∗R)(by def. of B inverse)
= (C ∗R3 ∗ U ∗ U3 ∗R)(by def. of identityandassociativity)

16

= (C ∗R3 ∗ C ∗R)(by def. of U inverse)
= (C ∗R3 ∗R)(by def. of identityandassociativity)
= (C ∗ C)(by def. of R inverse)
= C

2.2.3.3 Parity

We can define the parity of a permutation as whether the number of swaps required to obtain that permu-
tation is even or odd[12]. An even permutation is a permutation that requires an even number of swaps.
An odd permutation is one that requires an odd number of swap. Notice how this relates to the even swap
lemma in section 2.2.1.1. Another way of expressing this lemma would be to say that the parity of all edge
and corner permutations must be even.

2.2.4 Numbering Schemes

Numbering schemes become useful for reducing memory consumption. To see how we use these numbering
schemes see section 4.1.2.2.

2.2.4.1 Factorial Numbering

Assume we have 4 numbers: {0,1,2,3}. There are 4! = 24 possible permutations. A factorial numbering
gives us the ability to number each unique permutation with an integer between 0 and 23[25]. The easiest
way to describe a factorial numbering scheme is to step through an example:

Let’s assume we wish to number the permutation {1,3,0,2}

• 0 is the first element in the original set of numbers. Now it lies in index 2

• 1 is the second element in original set of numbers. Now it lies in index 0

• 2 is the third element in the original set of numbers. Since the indexes 0 and 2 have already been
taken, there are only two positions left that 2 could be in. If we label these positions as 0 and 1 from
left to right then 2 lies in index 1

• 3 is the fourth element in the original set of numbers. There is only one position left for it to be in so
it lies in index 0

From this, we see that our number is 2010, but we aren’t quite finished yet. This number is represented as
a mixed radix number. We need to convert this to base 10.

Our factorial number can be expressed as follows 24031201 where xb is x expressed in base b. To con-
vert to base 10:
base10(24031201) = 2 ∗ 4! + 0 ∗ 3! + 1 ∗ 2! + 0 ∗ 1! = 5010

2.2.4.2 nPr Numbering

Assume now that we have 6 numbers {0,1,2,3,4,5} but we can only use 4 of 6 numbers at any time. This
gives us 6P4 = 6C4 ∗ 4! = 360 possible permutations. Again, we would like to label these permutations from
0 to 359[1]. For each digit we need to calculate:

(n− (i+ 1))!

(n− r)!
∗ number of unused preceding digits (2.8)

Where i is the index of the number in the smaller set, n is the size of the set to choose from and r is the size
of the smaller set and number of preceding digits are the number of digits preceding the current digit in the
original set that have yet to be used. We then take the sum. The easiest way to describe this numbering
scheme is to step through an example:

Let’s assume n = 6 and r = 4 and we wish to number the permutation {5,0,2,3}

17

• 5, (6−1)!
(6−4)! ∗ 5 = 300

• 0, (6−2)!
(6−4)! ∗ 0 = 0

• 2, (6−3)!
(6−4)! ∗ 1 = 3, since 0 has already been assigned

• 3, (6−4)!
(6−4)! ∗ 1 = 1, since 2 and 0 have already been assigned

Therefore the number for this permutation is 300 + 0 + 3 + 1 = 30410

18

2.3 Existing Optimal Algorithms

This section aims to detail the existing algorithms for finding optimal solutions.

2.3.1 The Obvious Algorithm: Brute Force

The most obvious way to find a solution to a Rubik’s cube is to just brute force search. That is, we can
systematically (or randomly) explore all potential solutions until we find one. We can imagine our search
space as a tree, using the diagram below:

Figure 2.10: Search Tree

Scrambled

B3

...

...

U

...

R

...

D3

...

...

U

...

R

...

...R2

...

...

U

...

R

...

B

...

...

U

...

R

...

D

...

...

U

...

R

...

L

...

...

U

...

R

...

F

...

...

U

...

R

...

U

...

...

U

...

R

...

R

...

...

U

...

R

...

2.3.1.1 Breadth First Search

A breadth first search of a search tree aims to search each child of a node first before furthering the search
to all grandchildren and great grand children...and so on. In the case of a Rubik’s cube, we would try all
1 move solutions. Then all 2 move solutions and then 3...etc. In other words, let our scrambled cube state
be S. We first try S*R, S*U, S*F, S*L, S*D, etc all the way until S*B3. If we do not find a solution, then
we try S*R*R, S*R*U, S*R*F, etc. If we perform a breadth first search of this tree then we will eventually
find an optimal solution. However, there are many problems with this approach:

• Exponentially increasing size - With each increasing depth level of our search tree, the branching
factor of 18 means that the number of solutions we are required to look at will increase by a factor of
18. This will explode very quickly and become infeasible to search within a reasonable time.

• Exponential increase in memory consumption - A non-recursive implementation of a breadth
first search requires a queue to store the child nodes to be explored. In the worst case, a 20 move
solution would require searching 1820 nodes. It is clearly not feasible to maintain a queue of this size.

To show the extent of how the number of nodes increase with depth up to 10:

Figure 2.11: Nodes generated at each depth

Solution Length Nodes
1 18
2 324
3 5832
4 104,976
5 1,889,568
6 34,012,224
7 612,220,032
8 11,019,960,576
9 198,359,290,368
10 3.5704672 ∗ 1012

19

2.3.2 The First Real Attempt: Thistlethwaite’s Algorithm

The first attempt at creating an optimal solution finder used group theory. Thistlethwaite’s algorithm aims to
break down the Rubik’s cube into smaller sub-problems that can be calculated within a reasonable time[19].
The algorithm works by splitting the solve into 4 phases where we increasingly restrict certain moves. This
will reduce the number of reachable states gradually until there is only one state left: the solved state.

Let us define the following groups:

G0 = 〈L,R, F,B,U,D〉 (2.9)

G1 = 〈L,R, F,B,U2, D2〉 (2.10)

G2 = 〈L,R, F2, B2, U2, D2〉 (2.11)

G3 = 〈L2, R2, F2, B2, U2, D2〉 (2.12)

G4 = {C} (2.13)

2.3.2.1 Group G0

G0 is the group of all states reachable using moves L,R,F,B,U,D. Notice how this is just all reachable
states using any of the legal moves defined in section 2.1.3 since we can perform any L2,R2,F2, etc moves
by simply performing L * L , R * R, F * F, etc. Similarly we can perform any L3, R3, F3, etc by
performing moves L * L * L, R * R * R, F * F * F, etc. Our aim is to move from G0 → G1 →
G2 → G3 → G4. Where G4 contains only the solved cube state.

2.3.2.2 Group G1

G1 is the group of all states reachable using moves L,R,F,B,U2,D2. In contrast to group G0, the reachable
states are smaller. G1 contains only ‘good’ edges. To see why this is so, let us look back to our edge flip
lemma in section 2.2.1.2. To explain why there are always an even number of flips, we proved that using
only moves U, R, D and L, it is not possible to flip any edges. Instead of moves U, R, D and L, let
us prove the same result is possible using moves L, R, F, B, U2 and D2.

Let us perform an X rotation (described in section 2.1.4). Notice that if we rotate the cube, in order to
rotate the same faces as in our previous orientation, our previous U moves would now be B moves, D moves
would now be F moves and R and L moves would remain the same. This means that moves L, R, F and B
also have the same property in that they cannot flip any edges. Now let’s look at moves U2 and D2. Since
we’ve performed an X rotation, previous F moves are now U moves and previous B moves are now D moves.
Remember in our edge flip lemma in section 2.2.1.2 we said that quarter turns of these faces would flip 4
edges. However, we don’t have quarter turns. Instead, in G1, we only have U2 and D2 (180 degree turns). If
we imagine these as 2 quarter turns, the first quarter turn would flip the 4 edges of that face. However, the
next quarter turn would flip the same 4 edges back to their original orientations so these 180 degree moves
cannot possibly flip any edges. This mean that if we start from the solved state where all edges are ‘good’,
all edges will remain ‘good’ assuming we only use moves L,R,F,B,U2,D2.

2.3.2.3 Group G2

G2 is the group where we further restrict the reachable states to those reachable using moves L,R,F2,B2,U2,D2.
G2 contains only ‘good’ corners where ‘good’ corners are now defined as the corners which have an R or L
sticker facing the R or L direction. To see why this is so, let us take moves L and R. None of these moves
can change the orientation of the corners. Now let’s look at F2, B2, U2 and D2, none of these moves can
change the ‘good’-ness of a corner since they make any stickers facing left face right and any stickers facing
right face left.

As well as only containing ‘good’ corners, we also fix edges in the centre layer in between the R and L
faces. This means all edges that belong on the centre layer are on the centre layer but not necessarily

20

permuted correctly. To see why this is so, consider moves R and L. These cannot affect any edges in this
middle layer. The remaining F2, B2, U2 and D2 moves can only change the permutation of the edges on the
middle layer, it can never move them out.

2.3.2.4 Group G3

G3 is the group where we restrict all quarter turn moves. G3 contains the states where the edges in the L
and R faces are in their correct slices. Where slices are defined as the middle layer between any two opposite
faces, the UD slice is the middle layer between U and D, the FB slice is the middle layer between F and B and
the RL slice is the middle layer between faces R and L. G3 only contains edges in their correct slice because
all 180 degree turns can only permute edges within their respective slices. In addition, G3 enforces that the
parity of the edge permutations is made even (i.e. we need an even number of edge swaps). This is easy to
see if we start from the solved state and only perform 180 degree turns - we only ever swap the positions of
2 edges. Using our even edge swap lemma in section 2.2.1.1, we can also say that the permutation of the
corners is also even since the total number of swaps must be even in any cube state.

Figure 2.12: A visual representation of each group

2.3.2.5 Pattern Databases

Most implementations of Thistlethwaites algorithm use large pattern databases in order to quickly search
for which moves are required for each transitioning phase. These pattern databases map substates of the
cube to a sequence of moves that would take that state to the next phase. In this case, substates could be
to only look at edge orientations for G0→G1. We would store which moves we would need for each possible
edge orientation to move that orientation into a state where we would only have ‘good’ edges.

2.3.2.6 What makes Thistlethwaites algorithm so good?

This algorithm is effective because we reduce our search space to just searching for moves to transition
between each group in a database. The size of each sub problem space is much smaller and therefore more
manageable.

Below shows a table of the search space for each group transition:

21

Figure 2.13: Thistlethwaite’s group transition size

Groups Size
G0 → G1 2048
G1 → G2 1,082,565
G2 → G3 29,400
G3 → G4 663,552

2.3.2.7 What’s so bad about it?

Although fast, this algorithm is not guaranteed to give an optimal solution. Below shows the worst case
scenario in terms of number of moves to transition from one stage to another.

Figure 2.14: Thistlethwaite’s group transition worst case

Groups Worst Case
G0 → G1 7
G1 → G2 13
G2 → G3 15
G3 → G4 17

This gives a worst case scenario of 52 moves to solve a cube which is far from optimal.

2.3.3 A Different Approach: Korf’s Algorithm

Korf’s algorithm[15] takes a different approach to Thistlethwaites algorithm. With Korf’s algorithm, we
move back to using the idea of brute force searching but we search a little more intelligently by using
heuristics to prune branches from our search tree.

2.3.3.1 Depth First Search

In contrast to Breadth First Search described in section 2.3.1.1, Depth First Search systematically searches
the tree depth wise. That is, it explores the left-most child and then the left-most grandchild and then great
grandchild... and so on until we hit a leaf node. For example, for a scrambled state S, we try S*R, S*R*R,
S*R*R*R. In this case, since we know the maximum solution length is 20, we can stop going deeper after a
solution of 20 is tried. So after (S ∗R)20, we try (S ∗R)19 ∗ U . The problem with depth first search is that
it will not be guaranteed to find an optimal solution. This is because since we are sweeping the tree from
left to right, we may well find longer length solutions first and terminate early when there may be a shorter
solution later.

2.3.3.2 IDA* (Iterative deepening A*)

The basis of Korf’s algorithm is the IDA* search algorithm. The IDA* algorithm aims to reduce the search
space by intelligently pruning branches that we know could never lead to a valid solution. It starts by search-
ing for 1 move solutions using depth first search. If it finds nothing then it starts its search from the root
again and tries 2 move solutions, then 3... and so on until it eventually finds a solution. This is the iterative
deepening aspect of the algorithm. It solves the memory consumption problem that we had with breadth
first search (since the most memory we would have to use is proportional to the depth of the tree, 20) whilst
maintaining the requirement to find an optimal solution. This is because it always tries shorter solutions first.

The A* part of the algorithm comes from the fact that it use heuristics to estimate its ‘distance’ to our
goal. In this case our goal is the solved state and the ‘distance’ is the number of moves required to solve a
given state.

22

Figure 2.15: Iterative Deepening vs IDA*

(a) Iterative Deepening Bound 8 (b) IDA* Bound 8

The highlighted areas in figure 2.15b and figure 2.15a represent what we actually search for a bound of
8. We can see that in IDA*, we only search a subset of all possible states for a given bound since some
branches have been pruned.

2.3.3.2.1 Heuristics The heuristic used must be admissible i.e it never overestimates the distance to
the goal. Since there is currently no way to estimate the solution length for any arbitrary cube state, Korf’s
algorithm breaks down the heuristic into three smaller and easier to measure sub state estimates:

1. Corners - Number of moves to solve corners only

2. 6 of 12 Edges - Number of moves to solve any 6 of the 12 edges only

3. Remaining 6 of 12 Edges - Number of moves to solve the remaining 6 of 12 edges only

The heuristic then combines all 3 estimates to form the heuristic h:

h(s) = max(sc, se1, se2) (2.14)

where h(s) is the heuristic value of some state, s, sc is the number of moves needed to solved the corners,
se1 is the number of moves needed to solve the first 6 of 12 edges and se2 is the number of moves needed to
solve the rest of the edges. Since the maximum number of moves to solve any of these sub states would be
less than or equal to the moves required to solve the whole cube, the heuristic is admissible.

2.3.3.2.2 Using the heuristic We first set up our search tree with the scrambled cube as the root node.
We start searching the tree and fixing the bound to 1, i.e we try all 1 move solutions using a depth first
search. We then try all 2 move solutions in a depth first fashion. When we wish to expand a cube state
to explore its children, we use the heuristic measure to estimate the number of moves required to solve the
cube from the given state.

Let the initial scrambled state be called m. Also, let the cube state we are questioning if we should ex-
pand be called n, we need two things to estimate the number of moves required to solve the scrambled cube.
The first is the number of moves we have already executed to get from m to n, let’s call this g(m,n). The
second is the estimate of the number of moves required to solve the cube from state n, h(n). We can now
estimate the length of the solution that goes through node n, f(m,n) = g(m,n)+h(n). If the current bound
of our search is b, we know that if f(m,n) > b, then there is no point in exploring any paths involving n
since we are looking for a b move solution and so we can prune this branch.

As an example, let’s assume we are currently searching for a 10 move solution. i.e. we’ve tried all 9,8,7,etc
solutions and have found nothing. Let’s now assume that we encounter a node n that we got to via 5 moves

23

from a scrambled state m. i.e. g(m,n) = 5. Additionally, let’s estimate that from this point, we require 7
moves to solve. i.e. h(n) = 7. In this case, since we have a bound of 10, there is no point in expanding this
node since our admissible heuristic told us that we would need at least 12 moves to solve it. We can prune
this branch which significantly reduces the number of nodes we need to search.

2.3.3.3 What makes Korf’s algorithm so good?

Although a standard depth first search is not guaranteed to find an optimal solution, Korf’s algorithm is.
This is because of the iterative deepening aspect of the algorithm. We first successively explore solutions of
greater length until we find the first and shortest solution. E.g it is impossible to find a 10 move solution if
the optimal solution is only 9 moves. This is because if we find a 10 move solution, that would have meant
we explored all viable 9 move solutions first and found nothing which contradicts the fact that there is an
optimal solution of length 9. Another advantage is that the IDA* algorithm is very memory efficient. Since
the maximum number of moves required for any solution is 20, the maximum stack size will also only be 20.

2.3.3.4 What’s so bad?

Although Korf’s reduces the search space, the average branching factor is still around 13[15]. This is still an
exponential number of nodes to search with a worse case of around 1320. Korf’s experimental results show
that at a solution of depth 17 took around 2 days to finish and estimated that a depth of 18 would take
around 18 weeks.

2.3.4 Improving Thistlethwaite’s Algorithm: Kociemba’s Algorithm

Kociemba’s algorithm[14] improves upon Thistlethwaite’s by reducing the number of phase transitions to
just 2 instead of 4. This means we only need to transition between 3 groups:

G0 = 〈U,D,R,L, F,B〉 (2.15)

G1 = 〈U,D,R2, L2, F2, B2〉 (2.16)

G2 = {C} (2.17)

2.3.4.1 Group G0

The group G0 is the same as Thistlethwaite’s algorithm. (All reachable states).

2.3.4.2 Group G1

The group G1 is equivalent to Thistlethwaite’s algorithm’s groups G2 〈L,R, F2, B2, U2, D2〉 but we’ve
rotated the cube using a Z rotation which would make all previous L , R, F2, B2, U2, D2 moves into U, D,
F2, B2, R2, L2 moves respectively. G0→ G1 is the same as Thistlethwaite’s G0→ G1→ G2. Therefore the
same properties hold: ‘good’ edges are always preserved, edges that belong on the UD-slice (layer between
U and D faces) are now fixed but not necessarily permutated in their correct positions.

2.3.4.3 Group G2

The group G2 is just the solved state. To transition directly from G1→ G2 using only moves in G1 we must
restore the permutations of all 8 corners. The 8 edges that lie on the U and D faces and the permutation of
the 4 edges on the UD slice is the same as Thistlethwaite’s G2 → G3 → G4.

2.3.4.4 The big difference

The major difference between Kociemba’s and Thistlethwaite’s stems from the consequence of merging
together 4 phases into 2. Previously in Thistlethwaite’s algorithm, we could generate pattern databases for
moves to transition between each group. However, in Kociemba’s, the transitions between each group are
far too large. Instead, we have to perform smaller tree searches within each group in order to search for

24

a solution that will transition us from one group to another. The good news is that the maximum depths
of these search trees are smaller than in Korf’s. The maximum number of moves to transition between G0
and G1 is 12 and the number of moves to trainsition between G1 and G2 is 18. Most implementations of
Kociemba’s algorithm use IDA* for this search.

2.3.4.5 What’s makes Kociemba’s Algorithm so good?

Kociemba’s algorithm is a good compromise between speed and length of solution. As mentioned in section
2.3.4.4, the maximum number of moves to transition between G0 and G1 is 12 and the maximum number
of moves to transition between G1 and G2 is 18. This gives a maximum solution length of 30 which is not
far from God’s number: 20[18].

2.3.4.6 What’s so bad?

Although Kociemba’s algorithm gives a close to optimal solution, we cannot guarantee that the solution is
optimal. This is because when we search for solutions to transition from G0 to G1, we search for the shortest
number of moves. Once we reach some state in G1, we look for the shortest number of moves from G1 to
G2. Let us take an example where it takes us 11 moves to get from G0 to G1 and then 12 moves from G1
to G2. There may be a solution that costs 12 moves to get from G1 to G2 and then only 10 moves to get
from G1 to G2 which gives an overall shorter number of moves. There are implementations of Kociemba’s
algorithm which continue to search for solutions so that we search the whole tree until we can prove that
the solution we’ve found is actually optimal. However, these are exponentially slower and just like Korf’s
algorithm.

2.3.5 Why Not Human Algorithms?

So far, we’ve only looked at existing computing algorithms for find optimal solutions, but why not look at
human algorithms? Most speedsolvers will not prioritise move count but instead turn speed. For a right-
handed speedsolver, R and U moves are much easier to perform than other moves. Therefore, they tend to
favour solutions that contain a lot of R and U moves. For a robot, this should only matter if the robot is
restricted to perform R and U moves faster. Most human speedsolvers average around 50 - 60 moves which
is far from optimal.

25

2.4 Existing Visioning Systems

Our aim is to somehow feed in data about the cube state so that we can begin to find a solution. There are
some requirements we are looking to satisfy:

• Fast Must be able to quickly read the cube state colours

• Reliable Must be able to reliably read the colours of the cubes under certain lighting conditions

• Robust Must be able to read colours of the cubes under variable lighting conditions

2.4.1 Colour Schemes

In order to be able to read the colours of the cube state, we need to understand how colour can be
represented[8].

2.4.1.0.1 RGB Colour Scheme All light is made from 3 component colours: Red, Green and Blue.
We can create any colour using these 3 component colours by varying the intensities on each component. We
can create white by having maximum intensity for all components, on the other hand, black can be made by
having 0 intensity for all components. This is why any grey colour can be represented using a single intensity
value.

2.4.1.1 HSV Colour Scheme

HSV takes a different approach to representing colour. HSV uses three components: Hue, Saturation and
Value. The hue determines the ‘wavelength’ of the colour within the visible light spectrum. In order words,
it determines the ‘colour’ of the colour. Usually hue is represented as a colour wheel ranging from 0 to 360
degrees as show in figure 2.16 1.

Figure 2.16: HSV Colour Wheel

Saturation determines the perceived intensity of the colour. It determines how ‘colourful’ the colour is.
The closer the saturation is to 0, the more ‘dull’ it will look. A saturation of 0 will just give a grey image.
Below shows an image of varying saturation for red2.

1http://i.imgur.com/PKjgfFXm.jpg
2http://en.wikipedia.org/wiki/Colorfulness#/media/File:Saturationdemo.png

26

Figure 2.17: HSV Saturation Demo

Value determines the brightness of the colour. The higher the value, the closer the colour will appear to
white. The lower it is, the closer it will be to black.

2.4.2 Hardware

2.4.2.1 RGB sensors

The most primitive implementations of Rubik’s Cube state readers use RGB sensors. The sensor will hover
over each sticker of the cube in a pre-determined order to read the colour. As suggested by the name, the
sensor reads the RGB values of the sticker, we can then manipulate this input to try to identify the colour.

Although simple, the major drawback with this approach is that it is difficult to distinguish between colours
in varying lighting situations. E.g. if a cube is placed in a room with yellow light then the white may be
mistaken for yellow. It is also very slow since we have to read one colour at a time. This is shown below3:

Figure 2.18: An example of an RGB sensor implementation

2.4.2.2 Camera

More advanced implementations of Rubik’s Cube state readers use cameras to take pictures of each face.
Attempts at this have previously been made and documented by Yakir Dahan and Iosef Felberbaum[6] in
their CubeSolver4 Android application in which the user is instructed to move the cube in front of the camera
until their algorithms detect where the cube is and what the colours of each sticker are. There are other
implementations of such a vision system out there and assumptions vary widely between them. Here are a
few:

3http://imageshack.com/f/607/imag0130ql.jpg
4https://play.google.com/store/apps/details?id=com.rubik.cubesolver

27

• Fixing cube position - We assume the position of where the cube appears in the camera frame is
fixed. We can then make assumptions about which coordinate a specific sticker of the cube would lie
in. This is not reliable if the cube does not lie perfectly within the specified boundaries.

• Fixed predictable lighting conditions - We assume that the pictures taken of the cube are in
predictable lighting conditions. This is so we can assume that colour values will always lie within
specific boundaries. This is not robust if we take the cube into a different kind of lighting. E.g. if we
assumed we would always have natural white light but we take the cube into a room with yellow light.

• Fixed cube distance - As the distance between the camera and cube increases, the cube will appear
smaller and it will be harder to differentiate distinct squares. Similar to fixing the cube position within
the camera frame, if the cube is too far away, then the vision system will be unreliable.

The sections below show potential ways to work around these assumptions.

2.4.3 Object tracking

In order to combat assumptions made about a fixed cube position in the camera frame and fixed distance
assumptions between the cube and the camera, we can try to track where the Rubik’s cube lies within the
frame.

2.4.3.1 Laplacian Operator

The Laplacian operator5 can be used to detect the edges of an image[16]. If we are able to detect the edges
of an object then we can begin to identify the object within the frame. Let us take a greyscale image. Edges
in an image usually share a particular property: A major shift in intensity of the pixels around the edges.
The more of a difference we have with neighbouring pixels, the more likely we are at an edge.

Figure 2.19: We wish to determine edges of this

Suppose we wish to detect the edges of the image above. Let us reduce this problem into a 1 dimensional
problem and first plot the intensities of each pixel within the drawn square.

5All images and content adapted from: http://docs.opencv.org/doc/tutorials/imgproc/imgtrans/laplace operator/laplace operator.html

28

Figure 2.20: Getting the first derivative

The graph above on the left shows the plot of intensities of the pixels, f(t). Let us take the first derivative
of the graph. The graph in figure 2.20 shows the first derivative on the right, f ′(t), i.e. the change in pixel
intensity. When the change in pixel intensity is at its highest (peak in the graph), we assume that this is an
edge. So how do we find peaks in the graph? We know at the peak of a curve, the gradient is 0. So if we
take the second derivative, f ′′(t) and look for values of t where f ′′(t) = 0, we can identify the peaks of f ′(t).

Figure 2.21: Second Derivative

More strictly, since we are working on a 2 dimensional image, in a 2 dimensional space, the laplacian
operator is defined as:

Laplace(f) =
∂2f

∂x2
+
∂2f

∂y2
(2.18)

2.4.4 Colour balancing

In order to combat the assumption made about predictable lighting, we can use colour balancing algorithms
to neutralise any colour cast by coloured illumination on the cube. This will allow us to recognise colours
independent of light source.

2.4.4.1 Gray World Assumption

The Gray World Assumption[17] is a white balancing algorithm that assumes in a perfectly white balanced
picture, the average colour is grey. That is, using the RGB colour scheme, the Red, Green and Blue values
are all approximately equal. This essentially assumes that we have a good distribution of colours in the
image.

29

2.4.4.1.1 Estimation of illumination This is the estimate of the colour casted by the incoming light.
In its simplest form, Gray World Assumption computes the average of each colour channel of the image. Let
us assume we have an N ∗M pixel image. Let’s further assume that pixels are represented using the RGB
colour scheme. The average of any given colour channel c, can be computed by:

avgc =

∑m=M−1
m=0

∑n=N−1
n=0 pixelc(m,n)

M ∗N
(2.19)

where pixelc(m,n) is the colour channel c value of pixel(m,n)

2.4.4.1.2 Using the illumination estimate Now that we have an average for each of the colour
channels, avgr, avgg, avgb, we must work out how much we need to normalise each pixel to make them
a more neutral colour. Again, in its simplest form, the Gray World Assumption uses the average of all 3
channels to calculate the coefficient of adjustment for each channel. Let us name the coefficient of adjustment
for channel c be Sc

avg = (avgr + avgg + avgb)/3 (2.20)

Sc = avg/avgc (2.21)

We can now adjust each channel of each pixel:
Let pixelorig be the original unadjusted pixel and pixelbalanced be the colour balanced pixel

pixelorig = (Rorig, Gorig, Borig) (2.22)

pixelbalanced = (Sr ∗Rorig, Sg ∗Gorig, Sb ∗Borig) (2.23)

2.4.4.1.3 Variations The standard Gray World Assumption algorithm works well in most cases. There
are variants that can improve the algorithm in some use cases.

Normalising using max A variant of normalisation is to use:

max = max(avgr, avgg, avgb); (2.24)

Sc = max/avgc (2.25)

Normalised Minkowski P-norms Although in its simplest form, we use the average of each channel
for our illumination estimate, another method of illumination estimate is to use p-norms in order to calculate
avgc. A p-norm as avgc is defined as:

avgc = (

∑m=M−1
m=0

∑n=N−1
n=0 pixelc(m,n)p

M ∗N
)1/p (2.26)

Notice how the 1-norm just gives the average formula in equation 2.19

30

2.5 Existing Robots

There are currently a few Rubik’s cube solvers out there. Each of them have various advantages and
disadvantages to their designs.

2.5.1 MindCuber

2.5.1.1 Design

MindCuber[2] is a single armed solver by David Gilday. The single arm is responsible for holding the cube
in place whilst the lower platform rotates the D face of the cube. The single arm is also responsible for
performing cube rotations. This robot can be built using an EV3 Lego Mindstorms set which gives it the
advantage of being cheap to build. This can be seen in figure 2.226. The limitations lie with its design. Since
only a single side can be turned at a time, the cube needs to be rotated every time we wish to change the
face we want to turn. This is extremely time consuming. The MindCuber uses a single RGB sensor to read
each square individually.

2.5.1.1.1 Algorithm MindCuber is powered solely on the ‘EV3 Intelligent Brick’ .With only 64 MB
of RAM and ARM-9 processor, the method used for solving the cube uses an undisclosed ‘block-building’
method which is far from optimal. Optimal algorithms require significantly more processing power and RAM
in order to find a solution within a reasonable time.

Figure 2.22: MindCuber

2.5.2 JPBrown’s CubeSolver

2.5.2.1 Design

JPBrown’s CubeSolver[3] was one of the first serious attempts to build a cube solving robot. The robot uses
3 arms built from Lego as shown in figure 2.237. This allows it to move 3 independent faces without cube
rotations. JPBrown’s clamping mechanism uses a complex gearing system which makes the face move slowly
but accurately. The vision system is webcam based. The cube must be presented in a very specific area of
the camera frame. The robot itself is powered by 2 RCX Intelligent Bricks and a PC. The PC is responsible
for finding an solution and parsing the camera frames for the vision. The Bricks are responsible for robot
movement.

6http://robotsquare.com/wp-content/uploads/2013/12/mindcub3r s.jpg
7http://jpbrown.i8.com/cubesolver.html

31

Figure 2.23: CubeSolver

2.5.2.1.1 Algorithm Since the CubeSolver has a PC at its disposal, Kociemba’s algorithm was the
algorithm of choice. This is because it will find a solution within a relatively short time and since the
execution of moves is slow, the solution needs to be short.

2.5.3 Cubestormer

CubeStormer was developed by David Gilday and Mike Dobson[24]. CubeStormer uses 4 arms but not much
else is known about its design since there is no official documentation. CubeStormer III took 18 months of
development to improve on their previous Cubestormer II design. The robot is powered by an ARM CPU
Smartphone and uses some variation of Kociemba’s algorithm judging by the solutions it generates.

32

2.6 PID Controller

The PID (Proportional-Integral-Derivative)[7] controller is used in a closed feedback loop mechanism.

2.6.1 Open loop vs closed loop

What are open and closed loops? Let us take an example of a robot who wants to travel some distance X.
An open loop approach would simply calculate how much time we want the motors of the robot to run based
on its speed and the distance we want to travel. This is fine if the environment the robot runs in is always
the same and the motors always spin at the same speed, but what do we do if the environment changes? For
example, some sand gets stuck in the robot’s motor and slows it down. The robot would stop short of our
desired distance X. An open loop is not very effective for accurate and repeatable movements and therefore
not very ideal for turning a Rubik’s Cube face. We need the movements to be both repeatable and accurate.
This is where the closed loop comes in. A closed loop uses a feedback mechanism in order to give the robot
information about how its motors are spinning. This way the robot can adjust its movements based on the
feedback.

Figure 2.24: Open vs Closed Feedback loop

(a) Open loop (b) Closed loop

We can see in the diagram above, the difference between an open and closed loop. The open loop gets a
single input and then blindly attempts reach a goal given this piece of information. On the other hand, a
closed loop has a few stages:

1. Input goal distance X

2. Calculate difference between current distance and goal distance X. (Error)

3. The controller then inputs the time to run to the motor. If the motor isn’t as far as it expected to be,
then we can tell it to run for slightly longer. Likewise, if the motor is closer than expected, we can tell
it to run shorter.

4. The motor then outputs the distance it has moved back to the controller so it can repeat the same
thing again.

This continues until the robot reaches its goal.

2.6.2 What is PID specifically?

There are many controllers but the PID controller is the most popular controller for its simplicity and
robustness. The PID controller is defined as:

PID Controller = Kpe(t) +Ki

∫ t

0

e(τ)dτ +Kd
d

dt
e(t) (2.27)

where t is time and e(t) is the error term at time t.

The PID controller is constructed from 3 terms:

33

• Kpe(t) This proportional term determines how much we scale up or down the error term by adjusting
the gain, Kp. A higher gain makes the system more sensitive and responsive to change. If the gain is
too high, the system can become unstable and oscillate and never reach the goal. If the gain is too
low, the system may be unresponsive to small errors.

• Ki

∫ t

0
e(τ)dτ This integral term determines the accumulated offset up until time t. In effect, if we

were to plot our error against time, it is summing the area under the curve until time t. Imagine a
case where we use a motor on a sticky floor. As we approach the goal distance, we want to reduce
the amount of power we give to the motor to make sure we don’t overshoot the goal. If the power
becomes too low, we end up standing still and not moving towards the goal, the sum of errors becomes
increasingly large and this would then give more power to the motors. We adjust this term by scaling
Ki. A high value will accelerate the error towards 0. Too high and it may overshoot.

• Kd
d
dte(t) This derivative term calculates the change in error over time. It is scaled using Kd. This

term helps to improve stability and can reduce the settling time.

We tune each of the K constants for different use cases.

2.6.3 What’s so great about PID?

PID controllers give very accurate movement because they dampen the motor speed as we approach the goal
distance. Not only does this give us a lower chance of overshooting the goal distance, it also means we have
time to make minute adjustments as we approach the goal. This makes it fantastic for applications which
require a high degree of accuracy.

34

Chapter 3

Design

In this chapter we detail and discuss the design of the system.

3.1 Overall Design

The system can be broken down into three components:

1. Algorithm - The algorithm used to find a solution to the Rubik’s cube.

2. Vision - The method used in reading the state of the cube.

3. The Robot - The robot used to physically solve the cube.

3.1.1 Algorithm Design

The search algorithm we will use to find a solution for the Rubik’s cube will be run from a PC. We chose
to use a PC so that we have more RAM and CPU power to find better solutions. The algorithm will be
a mixture of Korf’s and Kociemba’s algorithm. Since Korf’s algorithm does not guarantee that it can find
a solution within a reasonable amount of time, a key aspect of this project will be to attempt to speed up
Korf’s algorithm as much as we can. Kociemba’s algorithm will be used in cases where it is not possible for
Korf’s algorithm to return within a reasonable time (a ‘fall-back’ if you will). To keep the coding language
consistent with the vision aspect of the system, Java will be the language of choice. Additional advantages
include: simple networking API to allow the Android Smartphone to communicate with the PC, platform
independence and garbage collection. Garbage collection is particularly useful for complex algorithms that
generate many search nodes. With so many aspects to the project, any way to simplify the implementation
will be welcome.

3.1.1.1 2s Notation vs 1s notation

There are 2 main types of move notation we must consider for our search algorithm. The first, 2s notation,
allows 180 degree movements to be counted as 1 move. This gives 18 possible one move moves in total:
R,R2,R3,U,U2,U3,F,F2,F3,L,L2,L3,D,D2,D3,B,B2,B3. The second, 1s notation, only allows 90
degree turns. This gives 12 possible one move moves in total: R,R3,U,U3,F,F3,L,L3,D,D3,B,B3. It
has been proven that the maximum number of moves required to solve any state using 2s notation is 20 and
the maximum number of moves required to solve any state using 1s notation is 26[18].

3.1.1.1.1 Which one is better for searching? Although initially it may seem that 1s notation should
be favoured since it explodes less quickly than 2s notation (12 vs 18), if we compare them when searching
for long solutions, we will see that 2s notation produces less nodes: 1s notation has 1226 ≈ 1.14 ∗ 1028 nodes
for a 26 length solution whereas 2s notation has only 1820 ≈ 1.27 ∗ 1025 nodes for a 20 length solution - 1000
times less! 1s notation may find short solutions more quickly since it explodes less quickly, but in reality,
most solutions will require at least 10 moves in 2s notation, which definitely gives 2s notation the edge.

35

3.1.2 Vision Design

The aim of the vision system is to be able to detect the position of the cube within the camera frame re-
gardless of where the cube is placed and independent of background, as well as have robust colour detection.
This will be coded in the form of an Android application in Java to make use of an Android Smartphone
camera.

In order to accomplish this, we will use a well known Open Source Computer Vision (OpenCV) library.
OpenCV provides a myriad of tried and tested Computer Vision methods such as Canny Edge Detection,
Laplacian Operators, Gaussian Blur, etc. The OpenCV library is available for Android which is perfect as
we are using an Android Smartphone. This will allow us to quickly build an app that can scan all the sides of
the cube without having to worry about the deep technical details of individual Computer Vision methods.
We can use Android’s built in video API and OpenCV’s video frame processing libraries in order to achieve
most of what we want.

3.1.3 The Robot Design

We decided on a Lego MindStorms robot for a number of reasons:

• Availability - The Department of Computing Robotics department already has several Mindstorm
kits. This means we can build the robot without having to worry about resource limitations.

• Flexibility - A Lego system gives us flexibility. That is, we can build almost any design without
limitation.

There were a number of options available for the actual robot design. On one hand, a 1 armed robot would
be fairly simple to implement and cheap to build. Since we had so many sets of Lego Mindstorms at our
disposal, we could afford to have more than a single arm. A four armed robot was chosen over a three armed
robot for a number of reasons including:

• Stability - Having more arms allows us to grip the cube more easily, allowing for a more stable design.

• Speed - Having more arms means we don’t have to rotate the whole cube as many times during a
solve. Less moves means fast solve times.

• Simple - Less cube rotations also reduces the complexity of the solve.

We chose to have 4 arms that grasp onto faces R, L, B and F as it means our robot can lie horizontally flat
on the ground which is a stable structure.

3.1.3.1 NXT Servo Motors

NXT Servo Motors give us the ability to measure speed and distance. They have built-in rotation sensors
that allow for motor movement accurate to ±1 degree. The motors also have a series of gears inside of the
housing so they are capable of producing a lot of torque. This can be seen in figure 3.1 1.

Figure 3.1: The insides of a servo motor

1http://www.philohome.com/nxtmotor/motor1 3.jpg

36

3.1.3.2 NXT Intelligent Brick vs BrickPi

A major choice we had to make was whether we wanted to use the classic NXT Intelligent Brick or BrickPi2.
The BrickPi offers many advantages over the NXT. The BrickPi runs on top of a Raspberry Pi and along
with this gives us a Linux programming environment, WiFi capabilities and capacity to control more motors.
Naturally, BrickPi was our first choice.

There was a major drawback, however. We found the motor controllers on the BrickPi board were very
temperamental. The torque needed to turn the cube face would often burn out the motor controller. Nu-
merous attempts to change design and power parameters were unsuccessful and would slow down the arm
movements.

Another major problem we found was that when we tried to power 4 motors simultaneously, the volt-
age supplied with a DC 12v battery would not be sufficient to power all 4 motors and the Raspberry Pi.
The Raspberry Pi would often reboot when the voltage would drop below its operating threshold. Halfway
through the project we decided to make the switch to NXT instead. The NXT motor controllers are far
more robust than those of their BrickPi counterparts, and we did not suffer from any power issues. The
drawback is that we are only able to control 3 motors at most with each Brick and we are forced to use Blue-
tooth instead of WiFi. The NXT Bluetooth interface can only have 1 inbound connection and 3 outbound
connections which is sufficient for a master-slave configuration but does not give us any room to change into
a more complex configuration.

3.1.3.3 Lejos

Lejos3 is an NXT firmware that gives us a Java programming environment. This makes the programming
language consistent with the rest of the system. It also offers a well documented Robotics API which is
great for those who have never tried Lego programming before. The Lejos libraries also give us a lot of other
useful functionality such as an automatic closed feedback PID controller to keep motors in their positions
after moving. This is particularly useful for holding the Rubik’s cube in place. The PID controller also gives
us far more accurate movement than BrickPi’s basic API. We can see why this is so in our PID controller
explanation in section 2.6.

The BrickPi API offers a very simple motor controller. In essence, it works as follows: We move our
motor for 100ms at a constant speed, and then check if we’ve reached our goal distance. If not, we repeat
the motor moverment for another 100ms. This continues in a loop until we hit the goal distance. Since
there is no dampening towards the goal, the BrickPi motors are very likely to overshoot the goal distance.
A disaster for this system because we need very accurate movements. An error of millimetres off a perfect
90 degree turn could cause chaos!

3.1.4 Summary of Design

The aim of the system will be to do the following:

1. Take pictures of each side of the cube using the Smartphone’s camera

2. Build the cube state

3. Send the cube state from the Android Smartphone to the PC via WiFi

4. Compute the solution to the given cube state on the PC

5. Send the solution from the PC back to the Android Smartphone

6. Use the Smartphone to control each of the 4 arms of the robot to solve the cube

2http://www.dexterindustries.com/BrickPi/
3We specifically used NXJ version 0.9.1beta-3 from: http://www.lejos.org/nxj.php

37

Figure 3.2: Overview of system through each stage

38

Chapter 4

Implementation

4.1 Korf’s Algorithm

We have already seen in section 2.5 that most systems with enough RAM and CPU power will use Kociemba’s
algorithm for its speed to find a sub-optimal solution. Korf’s is rarely ever used even with the RAM and CPU
power, since it still has a branching factor of about 13, meaning it will not terminate within a reasonable
time. In reality, we have 15 seconds to search for solution (Official SpeedSolving Rules1) before the stopwatch
starts. So how far can we search in Korf’s algorithm within these 15 seconds? This chapter details our
implementation of Korf’s algorithm and attempts to speed up searching.

4.1.1 Cube representation

Our cube representation attempts to compact the cube into as small a representation as possible[18]. When
generating our heuristic pattern databases, we will need to store millions of cube states at once so a saving
of a few bytes now could snowball into larger savings later. Remember from section 2.1.7 that a cube can
be represented by where each of the corners and edges lie using Singmaster notation. The problem with
Singmaster notation is that it requires a 48 character String (3 chars for each corner and 2 chars for each
edge). In Java, we can estimate the amount of memory that this String would take up. If we assume each
character takes up 2 bytes then each cube representation is 96 bytes! This is pretty expensive: around 10
million states would cost close to 1GB of memory. We can do better than this, so let’s see how small we can
go.

4.1.1.1 Corners

Since there are 8 corners, we can represent the position of any of the 8 corners by an integer from 0 -7 which
can easily be represented by 3 bits per corner, giving a total of a 24 bits. However, we still need to handle
orientation of the corner. Since a corner can only have three states, we can represent this with an integer
between 0-2 which can be represented in 2 bits. This means any corner can be represented in 5 bits. Since
the smallest amount of declarable memory in Java is a single byte, we can represent any corner using a single
byte. This gives us an 8 byte representation of the state of all corners. In our implementation we store an
array of 8 bytes. Below shows a table of how we’ve chosen to label our corners:

1Rule A3a1: https://www.worldcubeassociation.org/regulations/#article-10-solved-state

39

Figure 4.1: Corner labelling

Corner Label Corner Label Corner Label
UBL 00000000 LUB 00001000 BLU 00010000
URB 00000001 BUR 00001001 RBU 00010001
ULF 00000010 FLU 00001010 LFU 00010010
UFR 00000011 RUF 00001011 FRU 00010011
DLB 00000100 BDL 00001100 LBD 00010100
DBR 00000101 RDB 00001101 BRD 00010101
DFL 00000110 LDF 00001110 FLD 00010110
DRF 00000111 FDR 00001111 RFD 00010111

The byte in an element of the array gives the orientation of the corner in the first 2 least significant bits
and the remaining 3 bits gives the position of where that corner lies on the cube.

4.1.1.2 Edge

Edges are expressed analogously to corners but since there are 12 edges, we need 4 bits to represent an
edges position. Edges can only have 2 orientations so only a single bit is required. Just like corners, we can
represent any edge with just 5 bits. Again, since Java’s smallest unit of declarable memory is a single byte,
we require 12 bytes to represent all edges. In our implementation we store an array of 12 bytes. Below shows
a table of how we’ve chosen to label our edges:

Figure 4.2: Edge labelling

Edge Label Edge Label Edge Label
UB 00000000 LB 00001000 DB 00010000
BU 00000001 BL 00001001 BD 00010001
UL 00000010 RB 00001010 DL 00010010
LU 00000011 BR 00001011 LD 00010011
UR 00000100 LF 00001100 DR 00010100
RU 00000101 FL 00001101 RD 00010101
UF 00000110 RF 00001110 DF 00010110
FU 00000111 FR 00001111 FD 00010111

The byte in an element of the array gives the position of where that edge lies in the first 4 least significant
bits and orientation in the final bit.

4.1.1.3 Pulling it all together

We can now express any cube by combining our Edge and Corner arrays. This gives a total size of just 20
bytes for any cube state - almost 5 times smaller than Singmaster Notation! This representation also brings
many other advantages:

• Faster reads - We can obtain any edge or corner status with just a single read in the compact form.
Reading a piece’s state from Singmaster Notation, we would need at least 2 reads (for an edge).

• Fast writes - If we wish to change the state of the cube, we can just write to an array with a single
write. Since Strings are immutable in Java, an edit to the cube state in Singmaster notation would
require us to build a new object each time we wrote. This is wasteful and slow.

4.1.1.4 Move transition

Being able to move the cube is one of the most important operations. This operation will be happening
billions if not trillions of times per search. That is why it is important to have this operation be as fast as

40

possible. In order to move as quickly as possible, we precompute move tables that tell us how a corner’s or
edge’s position and orientation wll change given a move. No computation is needed during the search since
we’ve already predetermined where each piece will go. This will allow us to move with just 20 reads and 20
writes:

Figure 4.3: Move method

1 public class CompactCube{
2
3
4 public void move(int move){
5 corners[0] = cornerTransitions[move][corners[0]];
6 corners[1] = cornerTransitions[move][corners[1]];
7 corners[2] = cornerTransitions[move][corners[2]];
8 ...
9

10 edges[0] = edgeTransitions[move][edges[0]];
11 edges[1] = edgeTransitions[move][edges[1]];
12 edges[2] = edgeTransitions[move][edges[2]];
13 edges[3] = edgeTransitions[move][edges[3]];
14 ...
15 }
16 ...
17 }

You may notice that this method could have easily been written as two for loops. The reason why we
chose not to use a loop is because a loop would translate to jumps in the code. This is not necessary for
something so simple and the sequential code will be much faster to execute. In this case, we sacrificed code
size for a little bit of extra speed. The same technique was used in the God’s number experiment[18].

4.1.2 Heuristic generation

Now that we have a representation of the cube that we can manipulate, we can begin to generate our heuristic
pattern databases. Remember that Korf’s algorithm needs three pattern databases for its heuristic:

• Least number of moves to solve any corner states. There are 8! ∗ 37 = 88, 179, 840 possible corner
states.

• Least number of moves to solve 6 of 12 edges. There are 12P6 ∗ 26 = 42, 577, 920 possible 6 edge states.

• Least number of moves to solve the remaining 6 edges. There are 12P6 ∗ 26 = 42, 577, 920 possible 6
remaining edge states.

4.1.2.1 Heuristic storage: First Attempt

Heuristic pattern database lookups need to be fast. The heuristic look ups will happen as many times as
nodes are generated. A possible way to do this is to use a HashMap. In the best case, a HashMap will have
a O(1) lookup, the worst case will have a O(n) lookup. However, there are a couple of problems:

• Memory size - Java HashMaps have a large memory overhead for each entry in the table. The
overheads will become excessive once we have 88 million entries.

• File size - When it comes to storing the database on file, we will need to store up to 88 million hashed
corner states and the number of moves required to solve them.

HashMaps in Java generally dynamically change their capacity depending on the load factor given. The
load factor is a number between 0 and 1 which determines how full the HashMap can be before we have to
expand it. This is to maintain its O(1) lookup time. Each entry in the HashMap uses 32 ∗ Size bytes. As

41

well as this, it uses 4 ∗ Capacity for each entry array (for when collisions occur). The default load factor is
0.75. We can use this to estimate the size of a HashMap implementation in memory[22]:

HashMap Mem Consumption ≈ 4 ∗ Capacity + 32 ∗ Size Bytes (4.1)

We can estimate the capacity by using 0.75 ∗ Size. For our corners table, this is: 4 ∗ 0.75 ∗ 88179840 + 32 ∗
88179840 ≈ 2.9GB! Likewise, both edge tables would take 2∗(4∗0.75∗42577920+32∗42577920) ≈ 2.8GB.
That’s almost 6GB of memory on heuristic pattern databases alone! We can do better.

4.1.2.2 Minimal Perfect Hash Function: Second Attempt

A perfect hash function one that can take a key set of size N and map it to a set of integers of size N with
no collisions. A minimal perfect hash function is one that can map a key set of size N and map it to a set
of N sequential integers.

4.1.2.2.1 Corners Ignoring orientations, corners can have 8! permutations. Since we’ve labelled our
corners from 0 - 7 (ignoring orientations), we can use the Factorial Numbering Scheme in section 2.2.4.1 to
number each permutation of our corners.

We can then number the number of corner orientations[25]. There are 38 possible orientations but the
orientation of 7 corners automatically gives the orientation of the last corner. Using the corner lemma men-
tioned in section 2.2.1.3, we can prove that there are actually only 37 orientations. Since each orientation is
a number between 0 and 2, we can concatenate 7 of 8 corner orientations which gives a number in base 3.
Since each orientation in base 3 is unique, when converted to base 10, it will give a unique numbering for
each orientation.

Now we can combine the permutation number and orientation number using a cartesian product count-
ing scheme:

minimal hash(cornerState) = perm number ∗ 37 + orientation number (4.2)

4.1.2.2.2 Edges Ignoring orientations, edges have 12P6 = 655280 permutations. We can use the nPr
numbering scheme described in section 2.2.4.2 to give each permutation a unique numbering.

There are 26 possible orientations for 6 of 12 edges. In this case, since every orientation is a number
between 0 and 1, we can concatenate 6 of 12 edge orientations to give a binary value. We can convert this
to base 10 to give a unique mapping.

We can now combine the permutation and orientation number using a cartesian product counting scheme
analogous to corners:

minimal hash(EdgeState) = perm number ∗ 26 + orientation number (4.3)

4.1.2.2.3 Faster Heuristic Lookup Now we have a way of encoding corner and edge states into se-
quential integers! We can now store a byte array where the index is the encoded state. Indexing by index i
will give us the minimum number of moves required to solve state i. A similar technique was used in finding
God’s Number[18].

4.1.2.2.4 NibbleArray We can still do better! After the first set of pattern database generation, we
found that the maximum minimal number of turns required to solve any corner state is 11 and the maximum
minimal number of moves to solve any 6 of 12 edge states is 10. This means we need just 4 bits to
represent each state’s move count. Since Java’s minimum size for memory declaration is a single byte, we
decided to write a custom NibbleArray class that allows us to store 4 bits. Even for our largest table
of 88,179,840 corner states we only use 4 ∗ 88, 179, 840 bits ≈ 42MB. For both edge arrays we only use
4 ∗ 2 ∗ 42, 577, 920 ≈ 40MB giving us a memory consumption total of 82MB. That’s a massive 75x smaller
than the HashMap implementation!

42

4.1.2.2.5 Using the Heuristics So how can we generate these tables? In our implementation, we’ve
used a work queue approach. Let’s use the corner heuristic generation as an example. Figure 4.4 shows some
Pseudo Java-like code for corner generation:

Figure 4.4: Main Corner generation loop

1 while(!workQueue.isEmpty()){
2 cornerState = workQueue.pop();
3 moveCount = cornerStates[encodeCorners(state)];
4
5 for(int move = 0; move < NUMMOVES; move++){
6 //Move corners
7 newCornerState = moveCorners(move, cornerState);
8
9 //The new corner encoding

10 cornerEncoding = encodeCorners(newCornerState);
11
12 if((cornerStates[cornerEncoding] == 0 ||
13 cornerStates[cornerEncoding] >
14 (moveCount + moveCost[move]))
15 && cornerEncoding != 0){
16
17 workQueue.add(newCornerState);
18 cornerStates[cornerEncoding] =
19 (moveCount + moveCost[move]));
20 }
21 }
22 }

The work queue starts with the solved cube state. On each iteration, we take a corner state from the
workqueue and find its corner encoding described by the perfect minimal hash function in section 4.1.2.2.
We look up the current number of moves we have calculated for this corner state. Then, for each of the
18 moves from this state, we calculate the 18 different corner states that it can generate. For each of these
new states we find the new corner encoding and check to see if the moveCount we calculate is less than our
current ‘best guess’. If it is, then we need to add it to the work queue so that we can further expand this
state as it may change other ‘best guesses’ we have for the shortest number of moves to solve a state. When
the work queue is empty, it means we’ve found no states that can be reached in a shorter number of moves,
which gives us the shortest number of moves for any corner state.

4.1.2.2.6 The Search Now that we have the pattern database generated, the the searching is fairly
simple. Our search follows the typical IDA* algorithm described in section 2.3.3 of the background. Firstly,
we load our pattern databases into memory. This can take a few seconds but we keep the pattern database
in memory for all susequent solves so we only have to do this once. We take the cube state and maximum
depth to search as arguments. The maximum depth is 20 by default since this is God’s number: public
static String idaStarKorfs(int maxDepth, Cube cube). We take the cube state and use our
perfect hashing scheme to number it. We can now lookup this number as an index into our pattern database
to obtain the estimated moves to being solved. This is our first bound because we know that the number of
moves required to solve the cube will be at least as much as this estimate.

Some implementations of Korf’s algorithm increment the bound when we fail to find a solution for that
bound, but we can do better than this. Since the heuristic for Korf’s algorithm is admissible, we know that
the real number of moves needed to the goal can not be better than the number of moves given by our
heuristic. Assuming we’ve searched every node at a specific bound, we know that the solution length will be
at least as long as the minimum estimate to the goal for every node. We can recursively track the minimum
bound in our tree whilst we traverse it so we will not waste time attempting to sort through lots of heuristic
values.

43

Figure 4.5: Main IDA* loop

1 public static String idaStarKorfsStock(int maxDepth, Cube cube){
2 ByteDeque solution = new ByteArrayDeque();
3 int result = 0;
4 if(Cube.isSolved(cube)){
5 return "";
6 }
7
8 int bound = getH(cube);
9 while(bound < maxDepth){

10 result = searchStock(cube, 0, bound, solution);
11 if(result == FOUND){
12 return giveSolution(solution);
13 }else if(result == NOT_FOUND){
14 return null;
15 }else{
16 bound = result;
17 }
18 }
19
20 return null;
21 }

We then proceed to try all 18 moves on our current state: R, R2, R3, U, U2, U3, etc. This will give 18
new states. For each of these 18 states, we must recurse.We first check if any of these states are solved. If
one is solved, we return FOUND. For each of these states, we must recursively lookup the estimated number
of moves to goal and then check if the current number of moves we’ve done added to the estimated number
of moves to goal exceeds our current bound. If it does, we return the bound immediately for this branch
which stops any further searching of this branch. Otherwise, we continue to recurse. Notice how at the
end of each search, we must undo our last move using cube.move(Cube.INV MOVES[move]). This is
because we don’t want to spawn a new child state in memory everytime we move, so we reuse the original
cube object and just undo our previous moves to get back to our original state.

44

Figure 4.6: Search function

1 static int searchStock(Cube cube, int g, int bound, ByteDeque solution) {
2 //Check if the cube is solved
3 if(Cube.isSolved(cube)){
4 return FOUND;
5 }
6
7 //Estimate the number of moves to solve
8 int h = getH(cube);
9 int f = g + h;

10
11 //Return if the estimate is too high
12 if(f > bound){
13 return f;
14 }
15
16 int min = Integer.MAX_VALUE;
17
18 //Try every move
19 int t = 0;
20 for(int move = 0; move < Cube.NUMMOVES; move++){
21 //Try the move and add it to our solution stack
22 cube.move(move);
23 solution.addLast((byte) move);
24 //Search the subtree from this new state
25 t = searchStock(cube, g + moveCost[move], bound, solution);
26 if(t == FOUND){
27 return FOUND;
28 }
29 if(t == NOT_FOUND){
30 return NOT_FOUND;
31 }
32 if(t < min){
33 min = t;
34 }
35 //Undo moves and move onto next move
36 cube.move(Cube.INV_MOVES[move]);
37 solution.removeLast();
38 }
39 return min;
40 }

4.1.3 Improvements

Implementing Korf’s algorithm, we can only make so many design decisions about the base Korf’s algorithm
until we can get no faster. Eventually, we need to make tweaks to the algorithm. The main drawback of
Korf’s algorithm is the time it takes to find an optimal solution. This is due to its average branching factor.
Although a reduction from 18 to 13 is a significant reduction, a branching factor of 13 is still relatively large.
In this section, we detail attempts at speeding up Korf’s algorithm.

4.1.3.1 Randomisation

Korf’s algorithm uses a systematic depth first search until the branch it is searching reaches the specified
bound, but why should we search systematically when the cube isn’t scrambled systematically? Assume R is
always the first branch, further assume we have a cube state which can be solved in 3 moves. What are the
chances that 2 of 3 of these moves are an R move? Additionally, by searching systematically, solutions that
start with moves involving the last branch will always take significantly longer to find than earlier branches.

Instead of systematically searching, we choose to explore branches randomly to eliminate this bias and
give each branch an equal chance of being explored earlier. Additionally, this will speed up searches on aver-
age since we reduce the chance of searching unlikely branches that contain cube states reached by performing

45

many of the same moves.

4.1.3.2 Branching factor reduction

Another way to speed up Korf’s algorithm is to attempt to reduce the branching factor even further. We
can do this by completely eliminating redundant move sequences. For example, if we’ve just searched a
state that has just performed an R move, we should not attempt to search branches R, R2 or R3 from the
current state. This is because performing another R move would be the same as performing an R2 move
and performing an R2 move would be the same as performing an R3 move which we would eventually search
anyway. Finally, the R3 move would just cancel out the previous R move.

We can extend this idea further to opposite sides. Imagine we perform the moves R*L*R3. Performing
moves R*R3*L would give exactly the same cube state, which can be further simplified to L. This is because
opposite faces affect two disjoint sets of edges and corners so they can be performed in any order. Searching
these sequences are clearly redundant.

To implement this, we iterate backwards over our solution stack. We look at the latest move and then
rule out the relevant moves. We then look at the second to last move and check to see if that move involves
the opposite face to the last move. If it does, we rule out relevant moves for the opposite face. We only need
to look back 2 moves since the search is recursive. We can prove that any length of redundant sequence will
be eliminated. Using a simple example: R*L*R3 would never be a branch that we search because R3 would
be ruled out once we see R*L has already been performed.
Similarly, any redundant length sequence can be caught. E.g. R*L*R*L*L*R would never be a branch
we explore because R*L*R*L*L would also never have been generated in the first place because R*L*R*L
would have never been generated because R*L*R would have never been generated because R would have
been ruled out when we see that R*L has already been performed. A similar argument can be made for
any length of redudant sequence. Notice how the redundant sequence is equivalent to R3*L3 which will
eventually be searched so we are aren’t missing any branches that would potentially lead to a solution.

4.1.3.3 Making use of memory

Since Korf’s algorithm uses very little memory (as much as the depth of the search tree), we can put this
memory to use elsewhere.

4.1.3.3.1 Cache Often performing the same sequence of moves over and over will give you the same
cube state you’ve started with. For example: (R2 ∗ U2)6. It is also possible that 2 different sequences of
moves lead to the same state. It is obvious that we cannot store every state we’ve ever seen; the search space
is far too large. This is why we have chosen to implement a fixed size cache that stores recently seen cube
states. When the cache is full, we remove half of the oldest entries from the cache. This is because we do
not want computation time to be dominated by removing and replacing cache entries each time we use the
cache. The cache stores two things: cube state and number of moves used to get to that cube state. We
add a cube state to the cache if it does not already exist there or if the cube state is reachable via a smaller
number of moves. When we encounter a cube state that is already in the cache and takes more moves to get
to that state, we choose not to expand this cube state any further because we know we’ve already explored
a smaller sequence of moves to get to that state. Although this will not completely eliminate duplicates,
it should have some impact on the duplicate state size reduction. We’ve found that a cache size of around
1,000,000 nodes works well with 6GB of RAM. We implement this using a Java HashMap to minimize lookup
times for each state.

4.1.3.3.2 Fringe Search The major drawback with the IDA* algorithms low memory consumption is
that it is memoryless, i.e if it finds no solution for a specific bound, it will need to repeat all of its previous
work in order to search to the next bound. This is because we pruned branches based on the the estimated
moves to goal using the previous bound but the same branches may pass the heuristic tests for the new bound
which means they need to be explored. The fringe search improves on this by storing 2 fringe lists[26]:

46

• Current - Stores cube states that we currently need to expand for the current bound.

• Future - Stores cube states that we need to expand on the next bound.

In a fringe search, we start the same as IDA*. The only difference is that when we hit a cube state whose
estimation to the goal exceeds the current bound, in addition to pruning the branch, we add that cube state
to the ‘Future’ list. Once we finish exploring the bound, if we still have not found a solution, we move to the
next bound. But instead of starting our search again, we move the ‘Future’ list that we collected last round
into our ‘Current’ list. We iteratively expand nodes in the ‘Current’ list which simultaneously populates the
‘Future’ list for the next bound. This reduces search time since we won’t have to repeat the search from the
top but instead we carry on where we left off in the previous bound. In essence, we are storing the ‘fringe’
of our search so we can pick up where we left off from the previous bound without having to repeat all of
our previous work.

In our implementation, we only keep track of solutions in our ‘Current’ and ‘Future’ lists. This is be-
cause as long as we have a sequence of moves and the inital scrambled cube state, we can recover any state
we were previously on by simply performing the sequence of moves we have in our potential solution. Fringe
Search has been proven to be faster than A* and IDA* in path finding game maps [26]. We wanted to
experiment with it on an application with a much larger branching factor because the size of our lists will
explode much faster. We perform a few tests in the Evaluation chapter to see how far we can take Fringe
Searching.

4.1.3.4 Parallelism

4.1.3.4.1 IDA* We can improve the speed of the IDA* search by parallelising the search. Assuming we
have n threads, we can split the tree into n subtrees and search each subtree in parallel. We find that using
one thread per core yields the best results. Figure 4.7 shows how we can split the tree.

Figure 4.7: How we split our search space

Synchronisation We synchronise all n searches so that all searches search with the same bound. Even
if one core finishes early, we must wait for the other cores to finish their searches first. This is because even if
we found a solution in some higher bound, we would need to wait for the other cores to finish their searches
for the lower bounds in order to prove that the solution found is optimal. However, if we do find a solution

47

at some bound and all cores are searching at that bound, we can terminate the search early!

To do this, we use an array containing n flags. Each thread will have its own flag. A main thread is
responsible for keeping track of whether or not a solution has been found. It will set off each thread to
search their own respective subtrees and then sleep. If a thread finds a solution, it will set its flag to FOUND
before waking up the main thread. The main thread will then wake up and see that a solution has been
found and terminate all other n-1 threads. On the other hand, if none of the n threads finds a solution, they
will all set their flags to MOVE ON and wake up the main thread. The main thread will wake up and see
that all threads have asked it to move on. The main thread will only move on if ALL of the n threads have
finished their search.

4.1.3.4.2 Fringe We also experimented with multithreaded fringe search. In our multithreaded fringe
search, we expanded a node in the fringe just like how we parallelised our IDA* algorithm. That is, we split
the search tree n times using the fringe node as our root. This means we have to synchronise access to our
‘later’ fringe list since there will be lots of concurrent writes to this list from the n threads.

4.1.4 HPPC Java Library

The problem with Java collections is that they only work for non-primitive types/classes. This means when
we need collections of primitive type int, we will need to use the Integer Wrapper instead. A primitive
int uses 4 bytes but an Integer uses 16 bytes. This is a disaster for memory concious applications! For-
tunately, the HPPC (High Performance Primitive Collections) Library provides custom Java collections for
primitive types. IBM’s experiments with HPPC compare a ‘Textbook’ Java A* algorithm implementation vs
a HPPC implementation. Staggeringly, it managed to reduce a 25GB memory consumption to just 7GB![10]

We make use of HPPC’s ByteArrayDeque collection to keep track of our solutions. This collection becomes
invaluable when we implement fringe search in section 4.1.3.3.2 which must keep track of many solutions in
a list. The Byte wrapper uses at least 8 bytes of memory so the classic Java alternative would have cost a
lot of memory.

4.2 Kociemba’s algorithm

Kociemba’s algorithm is the most popular algorithm for a couple of reasons: it is reasonably close to optimal
solutions and its speed of finding solution. We have used Kociemba’s Java and C libraries for Kociemba’s
algorithm.[14]. Here we describe the main differences in Kociemba’s implementation from our implementation
of Korf’s algorithm.

4.2.1 Coordinate Labelling

As mentioned in section 2.3.4, Kociemba’s algorithm merges together groups from Thistlethwaite’s algorithm
which causes the groups to be so large that we can’t just generate move tables to get from one group to
another. Instead, we must perform a search to move to the other group. Most implementations use IDA*
as the search method. This means we need to generate pattern databases. The pattern databases generated
are slightly differently to Korf’s algorithm since our goal is not to solve the cube in one step, but two. We
also need to modify our minimal perfect hash.

4.2.1.1 Phase 1

Remember that the first step moves us from G0 = 〈R,U, F, L,D,B〉 to G1 = 〈U,D,R2, L2, F2, B2〉. This
step makes all corners and edges ‘good’ and puts edges that belong on the middle slice between faces U
and D (UD-slice for short) within that middle slice. We can use our numbering system described in Korf’s
algorithm (but slightly differently) in order to number these state, just like how we did in Korf’s to save space.

We can represent any corner orientation using an integer between 0 and 2186 (see section 4.1.2.2.1). Edge

48

orientations can be numbered between 0 and 2047 because an edge orientation is either 1 or 0 so we can
describe any total edge orientation state using a combination of 11 1’s or 0’s. We only need 11 states because
even though we have 12 edges, the edge flip lemma described in section 2.2.1.2 halves the number of reachable
edge orientations to 211. Finally, the number of edges on the UD-slice is 4. That means that these edges
can appear anywhere within the 12 edge positions and gives us a total number of UD-slice numberings of

12C4 = 495 so we can number each of these UD-slice states with a number from 0 to 494. We can then
combine this triple to give us a unique encoding for any state in phase 1:

Phase1Encoding = (CornerOrientationNumber∗2048+EdgeOrientationNumber)∗495+UDsliceNumber
(4.4)

This means our Phase 1 pattern database will be of size 2048 ∗ 2187 ∗ 495 = 2, 217, 093, 120.

4.2.1.2 Phase 2

The phase 2 step moves us from G1 = 〈U,D,R2, L2, F2, B2〉 to G2 = {C}, i.e solve the cube. In this step
we want to permute all of our remaining 8 edges not in the UD-slice and corners and we want to permute
our UD-Slice edges in their correct positions. We know that all edges and corners are orientated to make
them ‘good’. Again, we can number our edge permutations using the same method as our implementation
in Korf’s algorithm but this time we only have 8 edges and 8 positions for those edges. Since we can only
use moves U,D,R2,L2,F2 and B2, the 4 positions in the UD-slice are not reachable but these 8 remaining
edges. This gives us 8! = 40320 states which can be numbered from 0 to 40319 using our factorial numbering
scheme. Permutating the 8 corners also has 8! = 40320 states since there are 8 corners and 8 positions that
those corners can reach using the moves in G1.

Moving the UD-Slice edges into their correct positions only has 4! = 24 states since there are 4 edges
on this UD-slice and the no edges can leave or enter the UD-slice. We can use our factorial numbering
scheme to number these states between 0 and 23. We can now label any state within phase 2 uniquely:

Phase2Encoding = ((8EdgePermNumber ∗ 40320) +CornerPermNumber) ∗ 24 +UDslicePermNumber
(4.5)

This makes the Phase 2 pattern database a size of 40320 ∗ 40320 ∗ 24 = 39, 016, 857, 600

4.2.1.3 Two-Phase

Just like Korf’s algorithm, now that we have a way to uniquely number each important state of the cube,
we can now generate our pattern databases using our work queue approach in section 4.1.2.2.5. Armed with
2 pattern databases for each phase, we can perform a search from G0→ G1 and then G1→ G2 using IDA*.

4.3 Combining Kociemba’s and Korf’s

Now that we’ve implemented both Korf’s and Kociemba’s algorithm, let’s see how we can combine them.
We know that Korf’s algorithm is guaranteed to give us an optimal solution but has an unpredictable time
for termination. Given a scrambled cube, we won’t know how long Korf’s algorithm will take to find a
solution. On the other hand, we know that Kociemba’s algorithm returns a non-optimal solution but within
a reasonable time. (Under 1 second (section 5.2.1)). This means we can use Kociemba’s solution as an
upperbound estimate so that we can perform a more informed Korf’s search for a potentially better solution
with the remaining time. Within this time, there are three cases which can occur:

1. A better solution is found - In this case, we replace the solution found by Kociemba’s algorithm
with the one found by Korf’s algorithm.

2. Nothing is found - In this case, we just use Kociemba’s algorithm’s solution.

3. A solution of the same length is found - In this case, we calculate a rough ‘time to solve’ estimate
for both solutions described in section 4.3.1, and pick the faster solution.

49

4.3.1 Time to Solve Estimation

We can compare two sequences of moves by estimating the amount of time they would take to solve. Although
two sequences may have the same length, the sequence that requires less cube rotations is preferred. Since
we’ve chosen to use a four armed robot, there are two faces: U and D, that we cannot directly turn without
cube rotations. We must rotate using either an X rotation or a Z rotation. If we perform an X rotation, any
F or B moves would now require a cube rotation. Likewise, if we perform a Z rotation, any R or L moves
would require a cube rotation. We track the orientation of the cube and use profiling estimates to estimate
how long each move will take to perform and then sum the estimates.

4.3.1.0.1 Profiling We profile by simply measuring how long each move takes to execute in different
orientations and then rounding to give a rough ratio. A quarter move that requires no rotations is of size 1.
Everything else is then measured relative to this. We are essentially using quarter move rotations as a unit
of measurement.

4.4 Searching for shortest number of robot moves

Although Korf’s algorithm finds an ‘optimal’ solution in the sense of the number of face turns required, it
does not find the fastest solution possible for our robot. We experimented with a variation of Korf’s algorithm
that would search for the fastest solution the robot could perform. This is a great idea in principle, but early
benchmarks revealed that this would increase search times by too much so we decided to not continue further
with this idea for this project. Although unsuccessful, we feel it is useful to show how we implemented the
search algorithm and what caused the idea to fail should we want to continue with this idea in the future.

4.4.1 Dynamic Costing

In the normal Korf’s implementation, we make the assumption that all moves carry the same weight, i.e.
all moves are equivalent in cost. In reality this isn’t true. On our 4 armed robot, U moves take much longer
to perform than R moves. This is because in order to perform a U move, we must rotate the entire cube
using a Z or an X rotation. By using the profiling technique in our ‘Time to Solve’ estimation above, we
were able to determine that moves requiring cube rotations take around 3 times longer than those that do
not. A more detailed breakdown of how we perform these rotations can be seen in section 4.6.2.

Imagine we perform an X rotation in order to perform a U move. All subsequent U moves can now be
executed quickly. However, how much is a B or F move now going to cost? They cost around the same as U
moves used to. This is because we now need to perform an X3 rotation in order to perform B or F moves.
This shows that our costs are not static as we assume in Korf’s algorithm, but they change depending on
the orientation of the cube. That means we will need to track an extra piece of information: cube orientation.

There are three possible orientations that we need to consider, the standard orientation we have been
working with so far, the orientation we obtain from performing an X rotation and the orientation we obtain
from performing a Z rotation. Not only this, there is now more than one branch for each move. All moves
on the U or D can be performed after a Z rotation or an X rotation which would lead to different costs for
subsequent moves. This increases our branching factor from 18 to 24. The same reasoning can be applied
to any other face for other orientations of the cube.

4.4.2 Reducing the branching factor

To combat this massive increase in an already huge branching factor, we made the assumption that we could
only perform X or X3 rotations. This reduces the number of options available for a U turn back down to a
single branch per move. Although this would no longer give the shortest number of moves the robot would
need to make, we were sure that this would still give us fairly short move solutions.

50

4.4.3 Search speed

We made a few early benchmarks for small scramble lengths of 10, 12 and 14 just to test how long searching
would take using this dynamic costing so that we could measure it’s viability for use in this project. The
results were unexpected. Searching for solutions for scrambles of length 10 took 40 times longer to find over
the normal Korf’s algorithm. In addition, these solutions were no different from Korf’s algorithm meaning
at depth 10, all of our test scrambles gave an optimal solution that was also the shortest number of robot
moves! At a depth of 12, the algorithm took a few hours to find a solution. Again, the solution was exactly
the same as the normal Korf’s algorithm.

4.4.3.1 Why were solutions the same?

An explanation as to why this may be happening is because we tested our algorithm at small scramble
depths. At scramble depths this shallow, there is almost always only going to be one solution of optimal
length. Any suboptimal solutions will need far more moves to solve. Why is this? When the cube is in
a solved state, each successive move that we perform will take it further and further away from the solved
state. That is, until we hit God’s number, 20[18]. We know that any moves we perform on a cube state that
is 20 moves away from being solved cannot possibly increase the number of moves needed to solve the cube.
In fact, if we make a move from a cube state that is 20 moves away from being solved, it is guaranteed that
we either decrease the number of moves required to solve the resulting state by 1, or a different set of 20
moves are required to solve it.

Here is a simple proof. Assume we have some cube state S that requires 20 moves to solve optimally.
We know that if we move any face, the number of moves to solve the resulting state must be at least 19.
Why can it not be below 19? If we arrive at a state that needs less than 19 moves to solve and we ‘undo’ the
move we just performed, our solution length would be at most 19, which contradicts the assumption about
us needing 20 moves to solve the cube optimally. This shows that there could be multiple close to optimal
solutions for long solution depths.

Let’s assume that our move, M , on S gives a resultant state that requires 20 different moves to solve
optimally. As well as the 20 moves, we have another solution of length 21: (S ∗M)−1. If the difference
between our optimal and suboptimal solution is just 1, we can see that it is easy for us to solve the cube
faster than the optimal one if we have 1 less cube rotation in our suboptimal solution.

At lower scramble depths, the story is very different. Any move we perform can either increase or de-
crease the number of moves we will require to solve the resulting state, so the probability of there being a
solution that is only 1 or 2 moves away from optimal and has less cube rotations than the optimal solution
is lower than at longer solution depths.

4.4.3.2 Why did it take so much longer?

As mentioned, moves that require cube rotations take around 3 times longer to perform. Our bounds for
Korf’s algorithm move in increments of 1 the majority of the time. Our bounds for this variation remain
moving in increments of 1 but our costs are rising much faster. A solution that used to only cost 10 could
now cost if 14 if we penalise cube rotations. 14 is much deeper in the search tree than 10 so it will take us
much longer to find this solution even though it will be the same sequence of moves.

4.4.3.3 Why is it not viable?

The increase in search depth and low probability of occurrence means that we are spending more CPU
time for something that isn’t likely to happen. If we use the algorithm to search for depths around 20, the
algorithm will be just as slow (taking a few hours). Having the normal Korf’s algorithm terminate within a
reasonable time is a big task, so to have this algorithm terminate within a reasonable time for any normal
scramble depth is a whole new problem in itself.

51

4.5 Vision System

The vision system has a wide scope of potential. We could have taken a simple approach to extracting the
colours from the cube whilst sacrificing robustness and reliability. However, we chose to put more time into
making the vision more robust and reliable since this is the start of the cube solve. If we take a lot of
shortcuts with the vision system, we reduce the reliability of the system as a whole since a cube solve cannot
start if we cannot reliably determine the state of the cube.

The vision system has three stages:

1. Cube recognition - Recognise where the cube is in the frame and identify where the stickers lie.

2. Colour extraction - Accurately determine the colour of the area that we have identified as being a
sticker.

3. Construct the cube state - Construct the cubestate and check if the cube state is a valid one
according to lemmas from section 2.2.1.

4.5.1 Cube Recognition

The first step to our vision system is attempting to detect the cube. But what makes a Rubik’s cube a
Rubik’s cube? The sequence of transformations to an image to detect the cube are as follows:

1. Convert image to grayscale

2. Adjust brightness and contrast

3. Gaussian blur

4. Laplacian operator

5. Dilation

6. Adaptive thresholding

7. Find contours

4.5.1.1 Contrast and Brightness Adjustment

We take this step to make edges more obvious for when we wish to find important edges of the image. We
up the brightness to account for the blue stickers which are quite dark and often mistaken for black. By
increasing brightness and contrast, we increase the difference between black and blue and reduce the chance
of misinterpretation.

Figure 4.8: Contrast and Brightness Adjustment

(a) Standard Grayscale image (b) Brightness and Contrast adjusted

52

4.5.1.2 Gaussian Blur

By using Gaussian Blur first we can remove noise. We’ve found Gaussian Blur with these parameters quite
effective at removing noise for a Rubik’s Cube:
Imgproc.GaussianBlur(mat2, mat2, new Size(7,7), 0);

(a) Brightness and Contrast adjusted (b) Blurred Image

We can see that Gaussian Blur removes a lot of noise caused by light reflections. Since the cube is plastic
and the stickers are glossy, this step is crucial to get clean edges for the next step.

4.5.1.3 Laplacian Operator

As described in 2.4.3.1, Laplacian Operator is used to detect edges of an object by looking for sudden changes
in pixel intensity. We’ve found that the Laplacian Operator with these parameters works well for finding
the edges of the Rubik’s Cube:
Imgproc.Laplacian(mat2, mat2, CvType.CV 8U,3,1,0,Imgproc.BORDER DEFAULT);

(a) Blurred Image (b) Laplacian Operator

We can see that Laplacian Operator gives us a vague outline of the cube and each of the stickers but also
gives us a few spurious outlines from noise that was not removed during the Gaussian Blur phase as well as
outlining other objects in the frame.

4.5.1.4 Dilation

Since the Laplacian Operator gives edges that are rather thin, we use a dilation transformation to make
these lines extremely obvious. That way, we can extract square regions of the cube with confidence:
Mat size20 = Imgproc.getStructuringElement(Imgproc.MORPH RECT, new Size(20, 20));
Imgproc.dilate(mat, mat, size20);

53

(a) Laplacian Operator (b) Dilation

We can see that dilation merges together some noise around the cube edges to eliminate them. We also
see that other objects edges that are not the cube also dilate! This is not ideal.

4.5.1.5 Adaptive Threshold

Adaptive Thresholding allows us to outline the regions where the stickers lie. Usually, Adaptive Thresholding
converts a grayscale image to a binary image, but if we use a small neighbourhood value, it can act as a very
accurate edge detection technique. We have found that using Adaptive Thresholding like this works very well:
adaptiveThreshold(m, m, 255, Imgproc.ADAPTIVE THRESH MEAN C, Imgproc.THRESH BINARY INV,
15, 4);

(a) Dilation (b) Adaptive Threshold

Notice how it outlines other objects in the frame too! We need a way to only recognise the cube in the
image.

4.5.1.6 Find Contours

Contours are boundaries on an image and need to be closed curves. Now that we have an image where we
can reliably extract closed curves, we use:
findContours(m, cont, hier, Imgproc.RETR LIST, Imgproc.CHAIN APPROX SIMPLE);
This gives us a list of closed curves in the image which eliminates most of the spurious edges. We still have
a problem. What about the closed curves that aren’t part of the cube? We only want contours that are
shaped like a square! We can detect squares by drawing a bounded rectangle around each of the contours
and check for a few properties:

• Height and Width of bounding box are approximately the same.

• Difference between inner area of contour and bounding rectangle area is below a threshold. We’ve
found that below 10% gives a good estimate.

54

We still have another problem. What if there are other squares in the image? We eliminate other squares
in the image by looking for only squares that are the same size as the Rubik’s cube stickers. But how do
we know how big the stickers are? We could assume some threshold but this would restrict the distances
that we would be allowed to have the camera at too much. Instead, we assume that the majority of squares
will probably come from the Rubik’s cube itself and look for the the median square’s area. If the number of
squares is dominated by the Rubik’s cube, the median area value should be one of the Rubiks’s cube sticker.
We only proceed to the colour extraction stage if we have all 9 squares detected in a grid.

Figure 4.13: Finding Stickers

(a) Identifying Stickers on the cube

4.5.1.7 Square Recovery

We can see that the sticker detection in section 4.5.1.6 works well but occasionally misses some stickers. This
often comes from light reflecting on the sides of the Rubik’s cube that makes the black plastic look white.
We work around this by trying to recover the remaining position of the stickers. We can predict where any
sticker of the cube lies by simply having any number of stickers that can give us the minimum and maximum
(x,y) coordinates for the cube. For example, 2 opposite diagonal corners.

Figure 4.14: Finding Stickers

(a) Recovering the other squares

4.5.1.7.1 Prediction We estimate the distance between any two stickers by using the height or width of
the bounding box. We’ve found that 20% of the bounding boxes width added to the bounding boxes original
width is a good estimate. From here, since the stickers are arranged in a grid, we can recover any other
sticker position by simply adding or taking away our distance between stickers’ measurements on the x or
y axis and since we have maximum and minimum (x,y) coordinates, we know exactly where each sticker
lies relative to another.

55

4.5.2 Recognising Colour

Now that we know the positions of each of the stickers on the face, we can begin to extract its colour. The
major difficulty with this stage is the thresholds needed to determine colour.

4.5.2.1 RGB vs HSV

We’ve seen two representations of colour in section 2.4.1. We’ve found that representing colour as HSV is a
more robust method for detecting colour. When using RGB, the thresholds change too drastically depending
on the brightness of the image and the colour of the light source.

4.5.2.2 Extracting Colour

We first construct an inner box that lies within our bounding box. This is to lower the chance of picking up
the black plastic (from the cube) around the sticker. We’ve found that around 75% of the original bounding
boxes’ size gives a region of the sticker that is large enough so that we can reliably determine its colour
but not so large that we would see any black plastic. To recognise colours in this region, we first create a
histogram of our hue channel for each sticker. Our histogram ranges from 0 to 180 and our buckets are of
size 1. This will give us 9 histograms with a count for the number of times a hue in a pixel lies within a
specific range. For any given sticker’s histogram, we search for the bucket that has the biggest value. This
will be the hue that appears most frequently in the sticker. We then find the mean saturation and value for
the other 2 channels. We found that finding the most frequent hue worked a lot better than the mean hue
because it is not as easily affected by small regions of glare or noise. When we used the mean for hue, the
mean hue colour would be a colour that didn’t exist in the sticker region if there happened to be noise or
glare in the image.

4.5.2.2.1 HSV Colour Wheel The HSV Colour wheel (Figure 2.16) gives us the degree thresholds for
colour when our colour source is white. We used these thresholds to determine the colour of each sticker
and assume we have white light. You may notice that the colour white itself is missing from the wheel.
Remember from section 2.4.1.1 that colour is represented as 3 components in the HSV model. The colour
wheel only gives thresholds for a hue with max saturation. White is just any colour with a high value and
low saturation.

Figure 4.15: HSV colour thresholds

1 private FaceColour scalarToColour(Scalar hsvSc){
2 int hMax = 179;
3 int sMax = 255;
4 int vMax = 255;
5
6 double[] hsv = hsvSc.val;
7
8 if (hsv[1] < 0.3 * sMax && hsv[2] > 0.3 * vMax){
9 return FaceColour.W;

10 }else {
11 double deg = hsv[0];
12 if (deg >= 0 && deg < 5) return FaceColour.R;
13 else if (deg >= 5 && deg < 20) return FaceColour.O;
14 else if (deg >= 20 && deg < 45) return FaceColour.Y;
15 else if (deg >= 45 && deg < 90) return FaceColour.G;
16 else if (deg >= 90 && deg < 120) return FaceColour.B;
17 else if (deg >= 120 && deg < 180) return FaceColour.R;
18 else return null;
19 }
20 }

We’ve found that anything below 30% of the maximum S value for OpenCV and anything above 30% of
the max V value identifies white stickers the majority of the time in a moderately lit room. The thresholds

56

for other colours will vary depending on the specific stickers on the cube.

4.5.2.3 Grey World Assumption

The HSV Colour wheel threshold is great when we have a natural white light source illuminating the cube.
In most cases, this will not be the case, especially indoors where a lot of light is yellow. As mentioned in
section 2.4.4.1, Grey World Assumption is a colour balancing algorithm that allow us to balance the colours
back to as if they were illuminated via a white light source. We found that we were able to make this
assumption because the majority of the time, each face of the cube will have a good distribution of colour.

Figure 4.16: Yellow vs white light

(a) Yellow light source (b) Whiter light source

As we can see in Figure 4.16a, a yellow light source can have a profound affect on the hue and shifts
all colours towards yellow. This is particularly prominent on the white sticker which now looks more like a
yellow sticker.

4.5.2.3.1 P-Norms We experimented with a few different P-Norms as described in section 2.4.4.1.3 and
found varying results between just a standard mean and a high P-Norm. In all cases we found that using
the max average channel value mentioned in section 2.4.4.1.3 would yield a more well balanced image.

(a) Normal (b) mean

(c) 2-norm (d) 6-norm

57

Using a normal mean, we can see that the Grey World Assumption algorithm tends to overcompensate
the yellow light and now there is a blue illumination in the image. However, using a high P-Norm of around
6, we can see the Grey World Assumption algorithm balances the colour well enough that it looks like white
light illumination!

58

4.6 Robot

This section describes the final component of the system: The Robot. The Robot has a 4 arms in a master-
slave configuration.

4.6.1 Hardware Design

4.6.1.1 The Arm

Each arm is powered by two motors giving 2 degrees of freedom. One motor controls the the arm’s clamping
mechanism and the other allows the whole arm to rotate. Our setup consists of 4 of these claws meaning we
need 8 motors in total.

Figure 4.18: Two different views of the claw

(a) Claw taken out of the robot (b) Claw attached to the robot

One gear is connected directly to the motor whilst the other lies beneath it. Rotating the main gear on
the motor in one direction will rotate the gear beneath it in the opposite direction which allows us to open
and close the claw. Although the arm configuration looks fairly simple, there are a few important aspects
to the arm that need to be considered:

• Clearance - Adjacent perpendicular cube rotations must be able to be rotated freely without hitting
this arm. Figure 4.19 shows this. We can see the outlined turning circle of the cube. The arm
(excluding the claw) must be able to clear this turning circle.

• Symmetric - The clamp must close symmetrically so that the cube lies perfectly in the centre of the
claw. This is so the centre of rotation remains consistently around the same spot. Small variantions
in the centre of rotation can lead to major shifts in the cubes position which would throw off all other
arms. We achieve this by using two gears of the exact same size. This means they will both move at
the same angular velocity.

• Rigid - The arm needs to be rigid enough to not warp under strain. We have reinforced the mounting
points of the arms with square frames to prevent the arm from sagging when holding the cube. We
also used 4 gears instead of just 2 to minimise gear slippage under high tension. Gear slippage can
throw off the symmetry described above.

59

Figure 4.19: Turn circle of the cube

In figure 4.20c we can see the impact of having a non-symmetric claw gripping mechanism. The figure
shows where the cube lies before and after a 180 degree rotation for a non-symmetric claw grip - a massive
variation.

Figure 4.20: Two different views of the claw

(a) Position of cube in normal ori-
entation

(b) Position of cube after 180 deg
turn of the claw (c) Superimposed

4.6.1.1.1 Performing a face rotation To perform a face rotation, an arm does the following:

1. Clamp down on the face to rotate using the clamping motor

2. Rotate the claw that is now clamping the cube

3. Unclamp the face

4. Rotate the claw in the opposite direction back to its original position

Why even unclamp to rotate back? If we do not rotate the cube back, the wire that connects to
the NXT motor will keep twisting until it becomes tangled. We always twist back in the opposite direction
to reset the wire back to a neutral position.

4.6.1.2 Robot Overview

Our robot uses 4 NXT Intelligent Bricks. Although 3 Bricks can control up to 9 motors and would easily
accommodate 8 motors, the motors would divide awkwardly amongst the Bricks meaning we would need to
write a lot of special cases for specific Bricks. We wanted to be able to run the same program on every Brick
without having to write a lot of special cases so having 2 motors on each of the 4 Bricks was a much better
option. Figure 4.21 shows a birdseye view of the robot.

60

Figure 4.21: Overview: Birdseye view

4.6.1.2.1 Configuration Choices Now that we have 4 Bricks and 8 motors, we need to decide which
motors should be connected to which Bricks. Although this may seem like a trivial task, the choice makes
a huge difference in how we implement the rest of the robot. We have 4 motors that control clamping (one
for each arm) and 4 motors that control face rotation (one for each arm).

By Arm Each arm uses 2 motors. A natural way to divide by the 8 motors is to give each arm an
independent NXT Brick. This gives us fine grained control over each arm and is easy to control using a
master-slave configuration. We could only need to send a single bluetooth command to the Brick in charge
of an arm to rotate a face since this single Brick can perform both clamping and rotation for that face.
However, this configuration does bring a major complications of synchronisation with it. Rotating the en-
tire cube needs two opposite arms to rotate in the same directions at the same speed. This would require
synchronisation between the two Bricks that control both arms. Remember that we are restricted to a
master-slave conguration. The delay between the master and slave communication is never consistent and
so synchronising between two slaves is complex.

We did experiment with this configuration and tried the Berkeley clock synchronisation algorithm[23]. We
would attempt to sync the clock of the slaves with the clock of the master (our Smartphone). When the
master sent commands to each of the slaves, it would also send a time for this command to be executed.
Determining the time to execute was the hardest problem. We needed to assume that bluetooth had some
maximum latency such that after this time, all messages will have been received. In reality, this assumption

61

just isn’t true so this configuration would fall over in cases where a slave would receive a message later than
our specified maximum latency. We could keep increasing this maximum latency time but this would slow
down the solve.

By Job A slightly less natural way of segmenting the motors is to seperate by job. By ‘job’ we mean
whether a Brick should be responsible for clamping motors or rotating faces. Each Brick can only control 2
clamps or 2 rotation motors. If we think about how we want our arms to operate, the only time where we
would need 2 arms to rotate or clamp at the same time is when we perform a whole cube rotation. In this
case, the two arms are opposite to each other. Therefore, it is logical that the 2 clamp or rotation motors
that we connect to each Brick are opposite to each other. If a slave is responsible for clamping or rotating
two opposite arms, we do not have to worry about synchronisation over bluetooth!

This does however, slightly complicate turning a face. We would need to send at least 4 messages (one
for each instruction specified in section 4.6.1.1.1) to 2 Bricks. The Brick that is responsible for clamping the
face we with to turn and the Brick that is responsible for the rotation of the arm we wish to rotate.

Although segementation by Job makes the face turning protocol more complex, it saves us from having
to run a synchronisation protocol all the time. Most synchronisation protocols attempt to delay performing
a job from the master until we are certain that all slaves have received their jobs so that we can start at the
same time. This would slow down solve times since we would always need to synchronise and check other
slaves before we can perform any moves. Therefore a small gain in complexity in this case is a good trade
off for the gain in speed and is actually more simple when compared to a complex synchronisation protocol.

Figure 4.22: Configuration by Arm vs Job

(a) By Arm (b) By Job

4.6.2 Movements

With this design, we can perform any R,L,F or B moves with ease, since the arms clamp down on these
faces by default. Let us label each claw ClawR, ClawL, ClawF and ClawB with respect to the default face
it clamps down on. Let us also label the Bricks as follows: RLClamp, RLRotate, FBClamp, FBRotate,
where RL or RB tells us that this Brick is responsible for those 2 faces and Clamp or Rotate tells us its job.
Assuming the robot is already holding the cube (all clamps are closed), to perform a face rotation we do the
following using R as an example:

1. Tell Brick RLRotate to rotate ClawR clockwise 90 degrees

2. Tell Brick RLClamp to release the clamp of ClawR

3. Tell Brick RLRotate to rotate ClawR anticlockwise 90 degrees

4. Tell Brick RLClamp to close the clamp of ClawR

62

This is pretty much in line with our description on performing a face rotation in section 4.6.1.1.1.

However, to perform a U or D move, we must perform an X or Z rotation first. To perform an X rota-
tion:

1. Tell Brick FBClamp to release ClawF and ClawB

2. Tell Brick RLRotate to rotate ClawR clockwise 90 degrees and ClawL anticlockwise 90 degrees

3. Tell Brick FBClamp to close ClawF and ClawB

4. Tell Brick RLClamp to release ClawR and ClawL

5. Tell Brick RLRotate to rotate ClawR anticlockwise 90 degrees and ClawL clockwise 90 degrees

6. Tell Brick RLClamp to close ClawR and ClawL

We can now perform a U or D move by moving ClawF or ClawB.

4.6.3 Software

Now that we know about how the robot is set up, let’s dive into the software. As mentioned in section
3.1.3.3 we use Lejos firmware for our implementation. This brings a few advantages over the previous
BrickPi implementation: Lejos offers a fuller collection of libraries than the standard BrickPi libraries. These
include: built in PID controller and PID-like controller interfaces, more online support and more example
code. We’ve found that the default Lejos PID parameters provided in firmware version 0.9.1beta-3 give
accurate enough motor control for this use case.

4.6.3.1 Robot Class

We decided to implement a Robot Class to be used by the Android application. The Robot Class is
responsible for connecting and sending appropriate messages to each of the NXT slaves. We represent a
Robot as being comprised of 4 independent arms. Even though we chose to segment by job, the idea is to
abstract this implementation detail and the bluetooth protocols away from the main implementation. This
acts as the Robot Controller Layer in the design shown in Figure 3.2. To move any face, we simply call the
public void move(Move move) method. Within this method, we simply control each of the arms. For
example if we want to perform an R move:

Figure 4.23: move method

1 public void move(Move move){
2 switch(move){
3 ...
4 case R:
5 arms[RIGHTLEFT].rotateFace90(true, Arm.RIGHT);
6 break;
7 ...
8 }
9 }

The first parameter true tells us to rotate clockwise, the second parameter tells us which arm to rotate.
In this case, since we are performing an R move, we pass Arm.RIGHT.

4.6.3.2 Communication protocol

Within the Arm we have our Bluetooth communication protocol. The Arm class is responsible for sending
bluetooth messages to each of the NXT Bricks. To create an Arm, we need 2 things: the Bluetooth address
of the Brick responsible for clamping and the Bluetooth address of the Brick responsible for rotation. We
use a series of protocols to communicate between the Smartphone and the NXT Bricks.

63

Connecting Protocol When the Arm is first constructed, we connect to the Bricks responsible for
clamping and rotation. We then send a message to each Brick telling it what its job is: clamping or rotating.

Move Protocol Our move protocol allows us to perform moves in sequence synchronously or allows
us to move multiple faces asynchronously. Moves are defined as follows:

Figure 4.24: Moves

1 public Arm{
2 public static final int CLAMPONE = 0;
3 public static final int CLAMPTWO = 1;
4 public static final int UNCLAMPONE = 2;
5 public static final int UNCLAMPTWO = 3;
6 public static final int CLAMPBOTH = 4;
7 public static final int UNCLAMPBOTH = 5;
8
9 public static final int CLOCKONE = 6;

10 public static final int CLOCKTWO = 7;
11 public static final int ANTIONE = 8;
12 public static final int ANTITWO = 9;
13 public static final int CLOCKBOTH = 10;
14 public static final int ANTIBOTH = 11;
15 public static final int CLOCK180ONE = 12;
16 public static final int CLOCK180TWO = 13;
17 public static final int ANTI180ONE = 14;
18 public static final int ANTI180TWO = 15;
19
20 public static final int DONE = -1;
21 public static final int END_SEQUENCE = -777;
22 ...
23 }

The suffix ONE tells the Brick to perform the move specified in the prefix using the first motor port.
Analogously, TWO tells the Brick to use the second motor port. Finally, BOTH means perform the prefix
action using both motor ports. We send one of these messages to the corresponding Brick. If the Brick’s job
is to clamp and we send it a rotation command, it will simply ignore it. Otherwise, the Brick will perform
the action specified. Once the Brick finishes the movement, it will send a DONE message back. We can
either choose to wait for this message or continue. This is how we achieve the synchronous or asynchronous
behaviour. Once we finish transmitting all the moves we need, we send an END SEQUENCE message to all of
the Bricks to tell them to reset their positions ready for the next solve.

Figure 4.25: An example of the whole protocol

64

4.6.3.3 Motor rotation parameters

Every motor is built slightly differently so one motor might not necessarily have the same behaviour as
another even if they are given the same parameters. Each motor needs to be calibrated individually. In this
section we detail our calibration process and approximate parameters for each command.

4.6.3.3.1 First Approximation We calculate the first approximation using the following formula:

Degrees To Move =
Nsecondary

Nmain
∗ desired angle (4.6)

where Nmain is the number of ‘notches’ in the main gear attached to the motor and Nsecondary is the number
of ‘notches’ in the second gear next to the main gear. Figure 4.26 shows the gears used for controlling arm
rotation. The number of notches for the main gear is 44 and the secondary gear is 60. We can calculate the
how many degrees we require our motor to move for a 90 degree rotation as follows: 60/44 ∗ 90 ≈ 123.

Figure 4.26: The rotational gear ratio

4.6.3.3.2 Adjustment Although we have calculated how many degrees we wish to turn, this is only an
approximation. In reality, we need to adjust this. To adjust this parameter, we simply perform the moves
on a Rubik’s cube and check for under/over rotation and adjust the parameters accordingly. We’ve found
that our parameters vary at most 3-4 degrees between motors.

Figure 4.27: Degree rotation table

Command Degree Variation
Clamp -95 ±2
Unclamp 95 ±0
Clockwise 90 Rotation -123 ±2
AntiClockwise 90 Rotation 123 ±2
180 Degree Rotation 247 ±1

65

Chapter 5

Evaluation

5.1 Vision

5.1.1 Vision accuracy

We’ve seen how our vision system is implemented, but how accurate is it? In this case, we measure accuracy
by the number of stickers the vision system correctly recognises. There are two parts to the vision system that
need to be measured here: the cube recognition process and the colour recognition process. It is important
that both of these obtain high scores in accuracy. The cube recognition process is the less important of the
two. After all, if the video camera API is feeding in 6 or 7 frames every second, we will get lots of chances
to try to recognise the cube from each frame. More serious errors occur when we wrongly identify a colour
since the system will not know it has wrongly identified a colour. This could then lead to impossible cube
states or wrong solutions.

5.1.1.1 Testing Lighting Environment

In this test, we take our vision system and attempt to read cube states in various lighting scenarios. For each
lighting scenario, we take 20 photographs of different cube states with varying backgrounds and at varying
distances and track 3 things:

• The number of correctly recognised colours: passes.

• The number of wrongly recognised colours: failures.

• the number of failures to find the cube in the photograph: errors.

Not being able to find the cube in the photograph is penalised the same way as getting every sticker of a
face wrong so number of errors moves in increments of 9. The other two items of data move in increments of
1 for each sticker they recognise correctly or incorrectly. As well as scenarios, we have compared our vision
system with that of Yakir Dahan and Iosef Felberbaum [6] which is well documented and has a version of
their application on the Android Play Store 1.

The results as are follows:

1At the time of writing, the latest version is 1.0

66

Figure 5.1: Test Results For Vision

We can see that when we have outdoor white light, the cube is easily visible and the contours of the cube
are easily recognisable. In fact, we have 0 errors and 0 failures when we have sufficient light to illuminate
the cube i.e. we recognise it correctly in all photos. Similarly, indoors, we have 0 errors and just a small
percentage of colour recognition failures (less than 1%).

In dim scenarios, we start to see a major drop off in reliability and robustness. We found that most of
the pictures taken by our test device (Nexus 4) in low light scenarios were grainy and out of focus. This
could have contributed to the dramatic decline in our pass count. Colours also become harder to distinguish
when there is less light. However, our pass rate of over 50% is significantly higher than the 25% measured
with the competition. This shows that our cube recognition process is more robust than the competition
under low light.

If we now move towards different coloured illuminations, we chose to use the most common indoor lighting
scenarios: yellow light and blue light. We can see that under direct yellow light (In this case we used a lamp
with a fluorescent bulb) our vision system still performs reliably with almost a 70% pass rate. Our error
count does increase when compared to outdoor or indoor white light, however. This may be caused by heavy
shadows being cast on the cube under direct light which makes it harder to find contours. We also see that
our error count is still quite low which means that our white balancing algorithm is working nicely here.

Under blue light, we see similar results to yellow light. Our lighting conditions are slightly different. Our
light was brighter than our dim test but not as bright as our indoor white light test. Our error percentage
rises slightly due to low light. With the success rate still above 60% and a low colour recognition failure
percentage, the system is still perfectly usable under dim/moderate blue light. Below we have included some
sample images of each lighting scenario:

67

Figure 5.2: Sample images of each light scenario

(a) Outdoor Whitelight (b) Indoor Whitelight (c) Dim light

(d) Indoor direct yellow light (e) Indoor blue light

5.1.2 Vision limitations

Although we have covered many areas of the vision system to try and make it more robust and reliable,
there will always be some areas which we can improve upon.

5.1.2.1 Glare and Darkness

Although we have accounted for many types of lighting, our implementation falls short when there is exces-
sive glare caused by direct light (such as lamps). The glare makes regions of the cube appear white when in
fact they are not. This can then affect the edge detection as well as the colour recognition process. Since
this was an unlikely scenario (most rooms have a ceiling light or windows that diffuse the light pretty well),
we decided to ignore this. The current workaround is to attempt to diffuse the light. This can be done
by directing the light source (e.g. if you are using a lamp) towards a wall and using the diffused light to
illuminate the cube.

Conversely, a dimly lit room can cause an equal amount of inaccuracy. In a dimly lit room, the stick-
ers are difficult to differentiate from the cube. The cube is also difficult to differentiate from the background.
In a dark room, we lose a lot of information on the edges and the sticker colours. With our test device
(Nexus 4), the camera lacked Optical Image Stabilisation and used a lens with a small aperture. Both limit
the amount of light entering the camera, giving the impression of a really dark image. There is not much we
can do in this situation other than attempt to introduce some light into the environment.

5.1.2.2 User Intervention

Although the main focus of this project was not user friendliness, requiring human intervention to physically
have to rotate the cube under the camera is not ideal. It is slow and prone to human error since the vision
system assumes the cube will always be moved in a specific direction and in a specific orientation. Divergence
from this will cause problems when trying to build the cube. We want to improve on this by having the
robot move the cube for us under the camera which would then eliminate all of these human related issues.

5.1.2.3 Gray World Assumption

The problem with the Gray World Assumption is that it assumes the average colour of the image is grey.
This is the case when we have an image with various colours. In nearly all cases, a Rubik’s cube will have

68

an even spread of colours on each face. But what about cases where it doesn’t? In the rare cases such as
this case:

Figure 5.3: A rare case

In this case, the average colour of the image is red. Gray World Assumption would mistakenly think
that the image is illuminated from a red light source! Our current work around for this is having a button
in the application that allows the user to enable or disable white-balancing. The user can then decide if the
image needs white balancing or not themselves. This obviously isn’t the best solution but for now the user
can continue to the use the application until we find a more robust colour balancing algorithm.

5.1.2.4 OpenCV

Although OpenCV gives a lot of functionality it also leaves a lot to be desired. In order for the application
to work, we must also download the OpenCV Manager application to supplement the use of the OpenCV
libraries. The problem with this is that the OpenCV Manager lacks compatibility with a long list of Android
devices making it harder for us to test across multiple devices. Additionally, there is a known bug with the
Nexus 4 camera and OpenCV version 2.4.6 where the default camera only gives a maximum frame rate of
around 10 frames per second on the lowest resolution 320x240 when other slower devices are able to get 30
frames per second. It also causes the device to randomly reboot.

5.1.2.5 Colour Schemes

Our vision system on works with the Western Colour Scheme (BOY)[9]. This means that green and blue are
opposite, yellow and white are opposite and orange and red are opposite. This is because we assume that
the U face is blue, D is green, F face is white, B face is yellow, R face is red and L face is orange.

5.1.2.6 Vision Summary

Our original goal was to make a robust and reliable system that would be able to read the state of the cube
quickly. From the tests we’ve seen above, in common lighting scenarios, that our system is both robust and
reliable with the worst case being 50% pass rate in a scenario with dim lighting. Although this may seem
low, in reality, our applications video frame rate is around 6-7 frames per second which means that we are
very likely to succeed in reading a face state within that second. Our chance of failure within this second
is ≈ (0.5)7 which is less than 1% chance! We are also able to read the cube state at varying distances from
the camera and with objects in the background. We’ve found that it takes less than a second to read the
cube state completely the vast majority of the time and the process is mostly bottlenecked by us needing to
physically rotate the cube for each face.

Given that this is just one part of the bigger project, we are overall very happy with the way the vision
system performs although there is obviously room for improvement.

69

5.2 Algorithm

In this section we want to benchmark our algorithm against existing ones. For these benchmarks we use
a dual-core Haswell Intel Core i5-4258U CPU 2.4GHz. We have configured our Java VM using 2 flags:
-Xms2048m, -Xmx6144m to give the VM enough Heap space so that our algorithm speed tests will not be
bottlenecked by swapping.2

5.2.1 Algorithm speed

In this test we aim to measure how fast our algorithm can compute a solution (regardless of how close the
solution is to optimal). We will prepare solves with an optimal solution length varying from 10 to 20 and take
the average time using various algorithms. We will also do the same for the standard Kociemba’s algorithm
and standard Korf’s algorithm. If the solve takes longer than 5 minutes, we deem the test as failed and do
not plot any further results.

Figure 5.4: Speed of algorithms in Milliseconds

The lines are labelled as follows:

• Korfs Stock represents the original Korf’s algorithm with no improvements. (Blue dotted line)

• Korfs Improved represents Korf’s algorithm with all of our improvements excluding parallelism and
fringe searching. (Red solid line)

• Korfs Multi represents Korf’s algorithm with all of our improvements including parallelism but
excluding fringe searching. (Green dashed line)

• Fringe Single represents Korf’s algorithm with all of our improvements excluding parallelism but
including fringe searching. (Purple solid line)

• Fringe Multi represents Korf’s algorithm with all of our improvements including parallelism and
fringe searching. (Blue dashed line)

• Korf’s Kociemba Combined represents our Korf’s and Kociemba combined algorithm. (Orange
solid line)

• Kociemba represents the original Kociemba’s algorithm given by Kociemba’s libraries. (Grey dotted
line)

2Thanks to Rokicki, Romas and Kociemba, Herbert and Davidson, Morley and Dethridge, John @ www.cube20.org for their
list of known 20 move scrambles

70

We can see that all algorithms cope fairly well until a depth of around 13. Perhaps the most surprising
results are Single/Multithreaded Fringe Searches We found that anything above a depth of 13 would make
our fringe lists use far too much memory (greater than 6GB) and the whole system would then be bottle-
necked by Java’s Garbage collector. Additionally, we found that in our multithreaded implementation of
fringe search, the overhead of synchronising locks to our fringe list exceeded any benefit we received from
having multiple parallel searches. Perhaps a better implementation would have been to use n mutually
exclusive fringe lists that each thread can manage on their own. This way, we would not need to synchronise
any access. Each thread would then be responsible for performing a fringe search for its selected portion of
the fringe.

Amazingly, we see that there is a big improvement of the original stock Korf’s algorithm vs Korf’s Im-
proved algorithm (with improvements mentioned in section 4.1.3. Our improvements allowed us to search
an entire extra depth in almost the same time. Unsurprisingly, the biggest speedup came from our Multi-
threaded IDA* algorithm. We managed to obtain this speedup using only 2 cores. We suspect we would see
even bigger speed ups with 4 or even 8 cores. The dashed red line shows the 15 second mark that solvers
are allowed to have for inspection before attempting a solve. We can see that our multithreaded IDA*
algorithm just about makes the mark for a depth of 14. Anything above depth 14 takes significantly longer
than 15 seconds. At around this mark, we can see that our Korf’s and Kociemba combined algorithm starts
to make a switch from Korf’s to Kociemba’s solutions since Korf’s is using all of its allotted 15 seconds.
Predictably, Kociemba’s algorithm remains consistently under 15 seconds. In terms of speed, Kociemba’s
algorithm clearly wins out for large depths. Although not quite visible in the graph, we did find that Korf’s
Improved and Korf’s Multithreaded were able to beat out Kociemba’s algorithm for depths below 12.

5.2.2 Algorithm solution length

In most cases, a shorter solution is preferred. A shorter solution will give the robot less ‘work’ to do in
most cases, which reduces the time of the solve. In this section we compare Korf’s, Kociemba’s and Korf’s
Kociemba’s combined for their length of solution. (Other algorithms are just variations of Korf’s and would
give the same length solution). We took scrambles with optimal solutions of varying length 10-20 and
found the length of solution given by each algorithm. We took the minimum, mean and maximum for each
algorithm.

Figure 5.5: Solution Lengths

(a) Kociemba’s vs Korf’s (b) Kociemba’s Korf’s combined vs Korfs

On the left we can see that Kociemba’s algorithm becomes more consistent the closer it is to solving a
20 move scramble. Solves that require 10 - 14 moves saw massive variation with a maximum difference of 10
moves away from the optimal solution. On average, Kociemba’s comes pretty close to optimal once we get
above 17 move solves - requiring 5 moves more than optimal at most. Obviously this is just a sample of solves.
In reality, it has been said that Kociemba’s algorithm can give a maximum of 30 moves (although this is rare).

71

On the right we can see our Kociemba’s Korf’s combined algorithm. As expected, up until around a 14
move scramble, we remain optimal; a big improvement over Kociemba’s algorithm. The ‘average’ line begins
to shift towards Kociemba’s algorithm’s average (red dotted line) at around 14. At this threshold, we had
some solves that were able to be solved under the given 15 seconds, others that were not. This brought down
the average slightly over just using Kociemba.

5.2.3 Algorithm Summary

Our goal was to have an algorithm that would be as close to optimal as we could get. We were able to
bring Korf’s algorithm’s search times down to stay competitive with Kociemba’s algorithm up to a depth of
around 14 on a dual core machine by using our improvements from section 4.1.3. This is an improvement
over stock Korf’s algorithm which could only stay competitive up to a depth of around 13 on our machine.
Our combined algorithm was able to improve on Kociemba’s algorithm at lower depths where Kociemba
struggled to not only give an optimal solution, but also struggled to give a solution of consistent length.
However, our limitation is that we are still not able to get an optimal solution for every random scramble.
Additionally, we learned that although a fringe search seems like a good idea in theory, for this particular
application, the overhead of managing large lists proved to be too much to make the fringe search usable.
Overall, we did not get the speed-ups we expected from all of our optimisations, but we did learn a lot of
valuable lessons, especially about fringe searching.

5.3 Robot

5.3.1 Robot Accuracy

In this test, we perform numerous face rotations and physically measure how far the face is away from a
perfect rotation. Any inaccurate face turning that will cause subsequent moves to fail will be deemed a
failure. Once we reach failure, we will stop testing any further. The more moves the robot can make, the
better it will score. Figure 5.6 shows what a perfect alignment of claws and faces looks like.

Figure 5.6: A perfect alignment

72

We also perform cube rotations and measure how far the clamps are off centre for each cube rotation.
Anything that will impede subsequent moves will be deemed a failure.

Figure 5.7: Number of face turns and cube rotations until failure

We can see that the PID controller really helps with achieving the desired accuracy. We were able to
perform 90+ face rotations before the drifts caused a failure. Since each solution length can only be 30 at
most and on average around 20, our chance of failing during a solve will be quite low! In fact, over 5 trials,
there were no instances where the face rotation number did not exceed 70 before failure.

Cube rotations on the other hand are seemingly less reliable. We found that on average we were able
to perform around 50 cube rotations before failure. Although this is much lower than face rotations, the
number of cube rotations in a solve on average is significantly less than face rotations. If we look at an
average case where we assume each move is equally likely to happen in a 20 move sequence then 1/3 of the
time we will need a cube rotation. This means on average we require around 6-7 cube rotations for a solve.
Over 5 trials, there were no instances where the number of cube rotations did not exceed 30 before a failure.
On average, the cube rotations should be reliable enough for every solve.

5.3.2 Robot Speed and TPS

In this test, we perform 7 random solves and time how long it takes to solve so that we can take the average
face TPS (turns per second). A 180 degree move still counts as just 1 turn. We start the time as soon as
the first move is made. Below are our results:

Figure 5.8: Solve times table

Length of Solution Time to solve (Seconds) TPS
20 70 0.29
22 85 0.26
21 74 0.28
20 65 0.31
20 69 0.29
20 75 0.27
22 81 0.28

We can see that on average, our solve times lie around 74 seconds. Our average turns per second is just
0.28.

73

5.3.3 Robot Limitations

5.3.3.1 Claw Slippage

Naturally, any robot with no external facing sensors will experience some sort of drift. Although our cube
rotations are quite reliable, there is the odd ocassion where we perform a cube rotation and the cube slips
between the claws. This is because during the rotation, only 2 claws will be holding the cube (as described
in section 4.6.2. Even a small amount of slippage can cause an adverse effect on the rest of the solve. The
robot will not know this has happened and continue to try to solve the cube. The cube will no longer be
centred and we will not be able to finish the solve.

5.3.3.2 Gear Slippage

Lego gears do not align perfectly with each other. It is natural that there can be some gear slippage where the
‘notches’ on the gears become disconnected because they are moving too fast. This is particularly prominent
in the claw grabbing mechanism where the gearing system had to be compact in order to rotate quicker.
Gear slippage throws off the whole solve. The gears are aligned in the claw so that they grab the cube
perfectly. Any deviation will cause the claw to loosen its grip which can lead to claw slippage as described
above.

5.3.3.3 Speed vs Accuracy

We can see that our solve times are not particularly fast even given a relatively short solution. The culprit is
our TPS; it is too low. Here a decision had to be made between accuracy and speed. The more we increased
the speed of the system, the less accuracy we would have. This is mostly prominent in cube rotations where
the inertia of turning the cube too fast would cause the cube to ‘jolt’ and cause claw slippage. This is why
we made the decision to tone down the speed in favour of reliability.

5.3.4 Robot Summary

Our goal was to create a robot that would be able to reliably solve the Rubik’s cube. Thanks to Lejos’s PID
controller, we were able to achieve acceptable accuracy to turn the cube enough times to solve it. Our robot
controller interface also allows us to control the robot wirelessly with ease. However, the design is still not
perfect and is susceptible to drift and claw slippage. Our TPS could also be improved.

5.3.5 System

5.3.5.1 System Limitations

The main limitation with our system is that it isn’t a closed system. We require human intervention during
the vision phase and we also require a PC to search for solutions. In a closed system, the vision would be
autonomous because the robot would be able to move the cube to view each side. We also need the user
to place the cube in the correct position for the claws to grab the cube. If this is off centre, the user must
manually adjust the position of the cube within the claws. Additionally, the system is not bullet-proof. Each
component has its own limitations which in the end brings down the robustness and reliability of the system
as a whole.

74

Chapter 6

Conclusions

We have built a system capable of solving the Rubik’s cube within 70 seconds. Our system uses a reliable
and robust vision system, a fast and close to optimal solution finding algorithm and an accurate 4 armed
Lego robot. Our vision system is able to cope well under various lighting environments and can perform
well even with background noise. Our algorithm can find optimal solutions in a reasonable time for solution
depths of up to 14 and also give solutions that are close to optimal for depths above 14. Our robot can solve
a Rubik’s cube quickly and reliably enough to rival intermediate level speedsolvers.

Although we weren’t hoping to break any world records, we saw this instead as an opportunity to explore
and compare many different aspects of each component of the system. We have compared and documented
various search algorithms, vision algorithms and robot builds for solving the Rubik’s cube which has never
before been done in this field. There have been Rubik’s cube solvers built in the past, but most of them use
a ‘canned’ stock Kociemba’s algorithm and are rarely documented in such detail.

6.1 Future work

In this section, we discuss the areas that we feel can be improved in each of the components in the system.
We offer insight into what we would have liked to implement had there been more time for this project.

6.1.1 Improving the Algorithm

6.1.1.1 Interleaving Fringe Search in Korf’s

Although our Fringe Search implementation didn’t work as expected, we suspect that this may have been
due to the overheads associated with managing the fringe lists. We can reduce the size of the fringe lists if
we work in parallel with IDA*. That is, if we start an IDA* search but a portion of the tree is then reserved
for fringe searching to take place on another thread. Only a small section of the tree is given to the fringe
searching thread so the fringe list should remain relatively small. Once we finish the fringe search on one
portion of the tree, we can ask the thread performing the IDA* search for more work. The IDA* thread can
then give the fringe search thread another portion of the tree that it may be halfway through searching to
finish off. This method of fringe search interleaving would hopefully speed up searching because the fringe
search would finish off these smaller portion searches a lot quicker than IDA* would.

6.1.1.2 Better Dynamic Heuristics

Korf’s algorithm currently uses a very natural way of segmenting the cube into substates: corners, 6 of
12 edges, and other 6 of 12 edges. We would like to explore other heuristics where we could mix and
match corners and edges. For example, 4 corners and 4 edges, or only look at corner orientation and edge
orientations. Ideally, we’d like to find substates with pattern databases that fit perfectly into the memory

75

of our system. This is the dynamic aspect: we choose which substate heuristics to use depending on the
system’s memory capacity. This would make use of the memory that IDA* saves.

6.1.1.3 Symmetry Reduction

In addition to better heuristics, we would like to experiment with using Kociemba’s idea of Symmetry
Reduction[14] in Korf’s algorithm. Symmetry Reduction uses equivalence classes to reduce the sizes of our
pattern databases. In a nutshell, 2 cubes are equivalent if we can rotate the cube and recolour the stickers
of one and obtain the state of the other. For example, imagine performing an R move from the solved state.
Imagine another cube that has a B move performed from its solved state. If we perform a Y rotation, and
recolour the second cube, it is equivalent to the first so we don’t have to store entries in the pattern database
for both of these states. Using Symmetry Reduction, we can reduce the size of our pattern databases which
also gives us more room for improving our heuristics.

6.1.1.4 Probablistic Search

Currently, we explore each branch with equal probability but this is never the case when a cube is being
scrambled. In fact, when a human scrambles the cube, they tend to prefer turning specific sides more
than others. We would like to implement some form of probablistic searching algorithm based on previous
solutions. This will allow us to explore most likely branches first and potentially speed up the search for
a solution. This would only work if a human scrambles the cube. If we were to use a computer generated
scramble, then the scrambling would be random so we wouldn’t benefit from this technique.

6.1.1.5 Multithreaded IDA*/Fringe in Kociemba’s

Kociemba’s libraries provided us with a working implementation of his algorithm. This saved us a lot of
time so that we could focus on other areas of the project. Given more time, we would have liked to have
tried our variations of Korf’s algorithm in the search portion of Kociemba’s algorithm. In theory, since the
search depths are lower, fringe search should be more effective here.

6.1.2 Improving vision

6.1.2.1 More Robust Colour Recognition

Our current implementation of colour recognition is quite reliable. However, it starts to become less usable
in dim lighting scenarios. We would like to implement automatic brightness and contrast features into the
vision application so that we can better cope with these situations.

6.1.2.2 Autonomous Scanning

The main bottleneck in our system is that we need the user to rotate the cube so that the camera can view
each side of the cube. We want to eliminate this bottleneck by having the robot rotate the cube instead.
The camera would then lie in a fixed position over the cube and view each side quickly. This would also
reduce the chance of human error and we would also be able to make assumptions about the background
since the background will always be fixed.

6.1.3 Improving the Robot

6.1.3.1 Gear Slippage Reduction

So far, the biggest cause of errors during a solve is gear slippage. We would like to reduce this by reinforcing
the gear train mechanism on the claw. This would reduce the gear slippage and give us a more reliable solve.

76

6.1.3.2 Rotation Speed

Currently, our rotation speed is quite slow. We made the decision to sacrifice some rotation speed in favour
of stability and accuracy of turning. The biggest problem caused by high turn speed is vibration and inertia.
Vibration can throw off the alignment of the claws and inertia can jolt the cube out of alignment. We would
like to improve our turn speed and in order to do so, we would need to build a bigger and more stable
structure that isn’t as susceptible to vibration. To solve our inertia problem, we can look into PID controller
adjustments so that we can dampen the deceleration of the motor more. We should also look into our claw
design and find ways to get more grip on the cube.

6.1.3.3 Concurrent Rotation

Again, in favour of stability, we decided that it is best to only have one face turn at a time and have the 3
remaining claws grip the cube. We found that 2 claws gripping the cube wouldn’t provide enough stability
to keep the cube stationary. We would like to improve the gripping mechanism so that we can turn opposite
faces concurrently and also begin to turn adjacent faces as soon as a face turn is complete (before the
reclamping).

77

Bibliography

[1] How to find the index of a k-permutation from n elements? http://stackoverflow.com/
questions/24215353/how-to-find-the-index-of-a-k-permutation-from-n-elements.
Accessed: June 1, 2015.

[2] Mindcuber. http://mindcuber.com. Accessed: June 1, 2015.

[3] JP Brown. Cubesolver. http://jpbrown.i8.com/cubesolver.html. Accessed: June 1, 2015.

[4] Janet Chen. Group theory and the rubik’s cube. page 11.

[5] Joe M. Converse. Basic notation. http://w.astro.berkeley.edu/˜converse/rubiks.php?
id1=basics&id2=notation. Accessed: June 1, 2015.

[6] Yakir Dahan and Iosef Felberbaum. Rubik’s cube solver. Efi Arazi School of Computer Science, pages
3–4, 2014.

[7] Andrew Davison and Stefan Leutenegger. Lecture 2: Robot motion. PID Controllers, 2015, Slide 20.

[8] Pasquale D’Silva. A little about color: Hsv vs. rgb. http://www.kirupa.com/design/little\
_about_color_hsv_rgb.htm. Accessed: June 1, 2015.

[9] Dnes Ferenc. The rubik’s cube colour schemes. http://ruwix.com/the-rubiks-cube/
japanese-western-color-schemes/. Accessed: June 1, 2015.

[10] Matthew Hatem, Burns Ethan, and Rumi Wheeler. Faster problem solving in java with heuristic search.
developerWorks, pages 12–16, 2013.

[11] Ryan Heise. Rubik’s cube theory: Laws of the cube. http://www.ryanheise.com/cube/cube_
laws.html. Accessed: June 1, 2015.

[12] Ryan Heise. Rubik’s cube theory: Parity. http://www.ryanheise.com/cube/parity.html.
Accessed: June 1, 2015.

[13] Herbert Kociemba. The facelet level. http://kociemba.org/cube.htm. Accessed: June 1, 2015.

[14] Herbert Kociemba. The two-phase-algorithm. http://kociemba.org/cube.htm. Accessed: June
1, 2015.

[15] Richard E. Korf. Finding optimal solutions to rubiks cube using pattern database. Computer Science
Department, University of California, pages 2–4, 1997.

[16] OpenCV. Laplace operator. http://docs.opencv.org/doc/tutorials/imgproc/imgtrans/
laplace_operator/laplace_operator.html. Accessed: June 1, 2015.

[17] pi19404. Automatic white balance algorithm. http://www.scribd.com/doc/117031630/
automatic-white-balance-algorithm-1\#scribd. Accessed: June 1, 2015.

[18] Romas Rokicki, Herbert Kociemba, Morley Davidson, and John Dethridge. God’s number is 20. http:
//www.cube20.org. Accessed: June 1, 2015.

78

[19] Jaap Scherphuis. Thistlethwaite’s 52-move algorithm. http://www.jaapsch.net/puzzles/
thistle.htm. Accessed: June 1, 2015.

[20] Martin Schner. Analyzing rubik’s cube with gap. http://www.gap-system.org/Doc/Examples/
rubik.html, 1993. Accessed: June 1, 2015.

[21] David Singmaster. Notes on Rubik’s Magic Cube. Enslow Pub Inc, 1981.

[22] Mikhail Vorontsov. Java performance tuning guide: Memory consumption
of popular java data types - part 2. http://java-performance.info/
memory-consumption-of-java-data-types-2/. Accessed: June 1, 2015.

[23] Wikipedia. Berkeley algorithm — wikipedia, the free encyclopedia, 2015. [Accessed: June 7, 2015].

[24] Wikipedia. Cubestormer 3 — wikipedia, the free encyclopedia, 2015. [Accessed: June 7, 2015].

[25] Wikipedia. Factorial numbering system — wikipedia, the free encyclopedia, 2015. [Accessed: June 7,
2015].

[26] Robert C. Holte Yngvi Bjornsson, Markus Enzenberger and Jonathan Schaeffe. Fringe search: Beating
a* at pathfinding on game maps. pages 2–3.

79

Appendix A

System User Guide

A.1 Prerequisites

A.1.1 Hardware requirements

Our application requires an Android Smartphone with a minimum of:

• Android 4.0.3 (API 15)

• Bluetooth

• Camera

• WiFi

The smartphone must also support OpenCV manager. So far, we have only tested our application using
OpenCV Manager version 2.18.

A.1.2 Setup

We need to set up a few things before we can use the system. Firstly, we must pair all NXT Bricks with
our Android Smartphone via Bluetooth and ensure WiFi and Bluetooth are turned on. Next, we need
to ensure our PC is ready to receive cube states so that it can find solutions. We can start a local server
instance from our PC by using the main function inside of our RubiksSolver project in package package
com.rubiks.lehoang.rubikssolver. We then turn on all NXT Bricks and run the progam Arm.nxj
on each Brick.

A.2 Using the system

A.2.1 Reading the state

Firstly, we need to read the cube’s state. We touch the ‘Read State’ button on the Smartphone to bring
up the camera. The faces need to be taken in a specific order and orientation as follows. We start with
a cube using the Official Western Colour Scheme[9]. The blue centre piece must be on the U face, white
must be on the F face and red must be on the R face. We take a picture of the U face first. Hold the
camera horizontally and turn on or off white-balance using the white-balance toggle as appropriate. When
the program recognises the cube, it will display squares over each sticker of what it thinks the colours are,
like so:

80

Figure A.1: U Face

If the colours are correct, rotate the cube to the F face using an X rotation and click next. Otherwise,
click next and try the same face again until the colours are correct. You can click next and try the same
face as many times as you need.

Figure A.2: F Face

Once the app has taken the correct colours from the F face, perform another X rotation to the D face.
Touch next and repeat the same steps again until the colours are correct.

Figure A.3: D Face

We then perform an X3 rotation followed by a Z rotation. This should get us to the R face. Touch next
and repeat.

81

Figure A.4: R Face

Perform another Z rotation to move to the B face. Touch next and repeat.

Figure A.5: B Face

Perform another Z rotation to move to the L face. Touch next and repeat again. Once we have the final
face, we can either touch ‘Done’ if the colours are correct or ‘Try again’ if the L face was not recognised
correctly.

Figure A.6: L Face

If we’ve performed this correctly, we should get a dialog box that says ‘We have a cube state!’. Otherwise,
we will get an error message.

A.2.2 Find a solution

Now that we have the cube state, we can find a solution. Ensure the Local Server instance of the solution
finder is running and press ‘Find Solution’. On your first attempt, this should fail:

82

Figure A.7: First Connection Failure

Dismiss this message and enter the Local IP address of where your Local Server instance is running.
If you’ve entered the correct IP, pressing ‘Find Solution’ again should be successful and give back a ‘Got
solution!’ message.

A.2.3 Solving the cube

Place the Rubik’s cube into the robot and ensure all NXT Bricks are turned on and running the Arm.nxj
program. Touch ‘Connect to robot’ within the Smartphone application and wait for the device to connect
to all of the Bricks. If you’ve already paired the Smartphone to all of the Bricks, this step should be quick.
Otherwise, Android will prompt you to pair each device before you can start. Once connected, the clamps
will automatically close and grab the Rubik’s cube. If it is not perfectly aligned with each face, make small
adjustments to align the claws. Once aligned, click ‘Solve’ and watch the robot solve the cube! Once it has
finished solving, the robot will release the cube.

83

