
Department of Computing
Imperial College London

MEng Individual Project

Haskell-Like S-Expression-Based Language
Designed for an IDE

Author:
Michal Srb

Supervisor:
Prof. Susan Eisenbach

June 2015

http://www.university.com
http://www.university.com
http://github.com/xixixao
http://wp.doc.ic.ac.uk/susan/

Abstract

The state of the programmers’ toolbox is abysmal. Although substantial effort is put into the
development of powerful integrated development environments (IDEs), their features often lack
capabilities desired by programmers and target primarily classical object oriented languages.
This report documents the results of designing a modern programming language with its IDE in
mind. We introduce a new statically typed functional language with strong metaprogramming
capabilities, targeting JavaScript, the most popular runtime of today; and its accompanying
browser-based IDE. We demonstrate the advantages resulting from designing both the language
and its IDE at the same time and evaluate the resulting environment by employing it to solve a
variety of nontrivial programming tasks. Our results demonstrate that programmers can greatly
benefit from the combined application of modern approaches to programming tools.

I would like to express my sincere gratitude to Susan, Sophia and Tristan
for their invaluable feedback on this project, my family, my parents

Michal and Jana and my grandmothers Hana and Jaroslava for
supporting me throughout my studies, and to all my friends, especially to
Harry whom I met at the interview day and seem to not be able to get

rid of ever since.

ii

Contents

Abstract i

Contents iii

1 Introduction 1
1.1 Objectives . 2
1.2 Challenges . 3
1.3 Contributions . 4

2 State of the Art 6
2.1 Languages . 6

2.1.1 Haskell . 7
2.1.2 Fay, GHCJS . 9
2.1.3 PureScript . 9
2.1.4 Elm . 10
2.1.5 Liskell . 10
2.1.6 ML, SML, OCaml . 10
2.1.7 Java, C#, Dart, TypeScript, Closure, Flow 11
2.1.8 CoffeeScript . 12
2.1.9 Clojure . 13
2.1.10 Racket . 13
2.1.11 Shen . 14

2.2 Type Systems . 14
2.2.1 Polymorphism . 15
2.2.2 Ad-hoc Polymorphism and Type Classes 15
2.2.3 Parametric Polymorphism . 18
2.2.4 Type Inference . 18
2.2.5 Haskell’s Type System . 19

2.2.5.1 Ambiguity . 20
2.2.5.2 Defaulting . 21
2.2.5.3 Multi-parameter Type Classes 22

2.3 Macro Systems . 24
2.3.1 Macro Hygiene . 25
2.3.2 Source Location Information . 26
2.3.3 Macros in Clojure . 27
2.3.4 Macros in Racket . 29

2.4 IDEs . 30

iii

Contents iv

2.4.1 Traditional Big IDEs . 30
2.4.2 DrRacket . 31
2.4.3 LightTable . 32
2.4.4 Bret Victor and the Future of Programming 33
2.4.5 Swift Playground . 34
2.4.6 Aurora . 34
2.4.7 Lamdu . 35

2.5 Ancient Wisdom . 35
2.5.1 Smalltalk . 36
2.5.2 APL . 36
2.5.3 McCarthy’s S-Expressions . 36

2.6 Summary . 37

3 Language Design 38
3.1 A Small Extensible Language . 38
3.2 Runtime . 39

3.2.1 No to Portability . 39
3.2.2 JavaScript . 40
3.2.3 Characteristics . 41

3.3 Syntax . 41
3.3.1 Syntax Example . 44
3.3.2 Design principles . 45
3.3.3 Color . 46
3.3.4 Declaration Style, Where Clauses . 47
3.3.5 Labels . 49
3.3.6 Describing values . 51
3.3.7 Defining names . 51

3.3.7.1 Pattern Matching . 52
3.3.8 Style Guidelines . 53
3.3.9 Built-in Macros . 53

3.3.9.1 Functions . 53
3.3.9.2 Types . 54
3.3.9.3 Algebraic Data Types . 54
3.3.9.4 Match Macro . 56
3.3.9.5 Type Classes . 57

3.4 User Macros . 58
3.5 Type System . 60

3.5.1 Multi-parameter Type Classes . 60
3.5.2 Flexible Instances and Contexts . 62
3.5.3 Implicit Functional Dependency . 63

3.6 Prelude and Mathematics . 64
3.7 Collections . 65

3.7.1 Collections Class Hierarchy . 67
3.7.2 Collections Data Types . 68

3.8 Modules and Namespacing . 69
3.8.1 Module Implementation . 70

3.9 JavaScript Interop . 70

Contents v

3.10 Imperative Computation . 72
3.11 Summary . 73

4 IDE Design 74
4.1 Supporting the Programmer . 74
4.2 Input . 75
4.3 Modification of Source Code . 76

4.3.1 Design Principles for Editing . 77
4.3.2 Representing Structure and Partial Programs 78
4.3.3 Mouse Selection . 79
4.3.4 Keyboard Selection . 80
4.3.5 Inserting Source Code . 81
4.3.6 Editing Commands . 81

4.4 Type-based Auto-Completion . 83
4.4.1 Auto-Completing Types and Patterns . 85

4.5 Codebase Navigation . 87
4.6 Interaction and Testing . 88
4.7 Debugging - Observing Code . 91
4.8 Error reporting . 92

4.8.1 Syntax Errors . 94
4.8.2 Type Errors . 96

4.8.2.1 Unification Errors . 97
4.8.2.2 Type Class Errors . 100

4.9 Summary . 102

5 Implementation 103
5.1 Not a LISP . 103
5.2 Macro Directed Compilation . 104
5.3 Deferring . 106
5.4 Type Inference . 107

5.4.1 Compiling Type Class Applications . 109
5.4.2 Context Reduction with Implicit Functional Dependencies 109

5.5 Definitions and Pattern Matching . 109
5.6 Compiler Performance . 110
5.7 Golem’s Architecture . 111
5.8 Summary . 112

6 Evaluation 113
6.1 Evaluating Shem as a General Purpose Language 113
6.2 Performance . 116
6.3 User Studies . 117
6.4 Implementation Evaluation . 118
6.5 Comparison with Current Alternatives . 119
6.6 Summary . 120

7 Conclusion 122
7.1 Extensions and Future Work . 123

7.1.1 Source Control . 123

Contents vi

7.1.2 Versioning . 123
7.1.3 Code Hosting . 123
7.1.4 Asynchronous and Imperative Computation 124
7.1.5 UI Programming . 124
7.1.6 IDE Integration . 125
7.1.7 Truly Lazy Compiler . 125
7.1.8 Plain Text Mode . 125

A Sample Programs 126
A.1 Basic . 126

A.1.1 Algebra . 126
A.1.2 Factorial . 126
A.1.3 Binary Search . 127
A.1.4 L-Systems . 127

A.2 Advanced . 129
A.2.1 A Guessing Game . 129
A.2.2 A Server . 130
A.2.3 Asynchronous Computations . 131

Bibliography 135

Chapter 1

Introduction

The art of programming has become an ever more important trade in today’s society. Yet despite
the proliferation of software, both in terms of the quantity of applications and their complexity,
the software tools used by professionals to create these programs have gone through a painfully
slow evolution over the course of the last four decades. Although programmers are the pioneers
of new technology and have been a part of the driving force behind the rapid changes in the
way we interact with computers, they are, taken as a community, extremely conservative in the
choices they make with regards to the way they give life to their creations.

Recently there have been two major streams of innovation regarding programming tools. Firstly,
functional programming has been on a steady rise. There is a substantial amount of research go-
ing into the design of new languages and their features[1–3], more powerful type systems[4, 5] and
ways of incorporating ideas from this paradigm to the object-oriented world of programming[6].
These are discussed in Sections 2.1 and 2.2.

Secondly, there has been a renaissance of investigation into new ways in which programmers
and users in general could interact with the digital medium. This movement has strong ties
with the research carried out in 1960’s and 1970’s by researchers such as Douglas Engelbart[7]
and Alan Kay[8] et al. Notably, Bret Victor[9] has produced a number of ideas and these, along
with more traditional approaches to development environments are discussed in Section 2.4.

1

Chapter 1. Introduction 2

We acknowledge the historical roots of this work and look at some foundational programming
language ideas in Section 2.5.

It has been argued by some[10] that a hierarchy among programming languages can be estab-
lished based on their expressive power and that LISP (in some variation), sits at the top of this
ladder, thanks to macros. Since macro systems, even among LISPs, come in various flavors, we
explore some of them in Section 2.3. These discussions and inquires provide a background for
our own design decisions.

1.1 Objectives

Our primary goal was to design and create the best possible programming environment reflect-
ing the current state of programming-tools research. We believed it important to bring these
technologies to a wider audience and hence influence other tool creators to also take advantage
of them. We also wanted to demonstrate that these techniques can be used for professional pro-
gramming, not just for educational purposes. Finally by making the results polished enough we
aimed to gather an audience of followers who would help break the conservative mindset of the
general programming community. To accomplish this goal, we strove to achieve the following
objectives:

1. Design a new programming language tailored to the programmer’s experience.
Most languages are driven by a certain key goal, as discussed in Section 2.1. Very few,
though, focus in their design mainly on supporting the programmer in his struggle to a
successful program completion, and even those which do might have completely missed
the point.1 We formalize our requirements for such a language in Chapter 3. Moreover,
almost every popular language of today has been designed agnostic about the tools which
programmers might invent to use it, and we boldly took the opposite approach here.

2. Design a simple yet powerful IDE. As the popularity of those available shows, IDEs
are incredibly helpful to programmers. Yet traditional IDEs can consist of on the order
of tens of millions of lines of code[11] and, although designed with customizability and
extensibility in mind, can be very difficult to mold to perform the desired tasks or provide
a better user interface to existing features. Although writing a plug-in for one of these
IDEs could easily be turned into a standalone individual project, we decided to design a
simpler, custom-made IDE for our language, using great open-source technology to allow
us to accomplish this in a reasonable timeframe. The results are described in Chapter 4.

1Ruby touts focus on productivity yet as a dynamicly typed language lacks one of the essential tools which
lift some of the burden of program construction and maintanance.

Chapter 1. Introduction 3

3. Implement both the language and the IDE. We could not achieve our goal without
providing concrete implementation for our design. It would also have been unrealistic
to assume we could design a language and an IDE without solving various implementa-
tion issues. As such the processes of design and implementation were intertwined. Al-
though great performance was not our primary goal, we could not neglect the issue, for
language design must always balance between the ease of use and compile and runtime
performance[12]. Similarly, producing an unusably slow IDE would not allow us to achieve
our goal. The technical details of our implementation are summarized in Chapter 5.

1.2 Challenges

These objectives were highly ambitious. The main challenge was the sheer amount of design and
implementation decisions we had to make in order to create a usable, fully-featured environment.
These were some of the main challenges we faced along the way:

1. Finding a suitable type system. Despite the long history of research into type sys-
tems, no single silver bullet has been found yet. Specifically, today’s type systems in
pure functional languages vary between simple, easy to understand but not so power-
ful to very complex and powerful systems such as dependent types[3]. We had to find
a compromise which would not hinder the adoption of our language and at the same
time be sufficiently powerful to support the programmer in ways which many mainstream
programming languages cannot. Great emphasis was put into making the output of the
system understandable, a challenge in itself.

2. Macros. One of the unique features of our language is its meta-programming capability.
To that end we wanted to combine the macro-directed compilation of LISP-like languages
with the convenience of modern Haskell-like languages which support an arbitrary order
of definitions, mutually recursive definitions and full-blown type inference. The challenge
extends into the design of a suitable programming interface for implementing macros in a
pure statically-typed language.

3. Providing an exhaustive statically typed collections library. As discussed in
Section 3.7, a full-featured collections library is one of the key requirements for a successful
adoption of a programming language. Yet the major statically typed functional languages
do not come with such a standard library and we had to consider the available libraries
and adapt them to the specifics of our language.

4. Approachable structural editing. Attempts at popularizing structural editing have
failed in the past[13]. We needed to provide the power of structural editing while making

Chapter 1. Introduction 4

the IDE feel as familiar and easy to use as possible. Our approach is described in Section
4.2.

1.3 Contributions

We have designed and implemented a new programming environment, a synergy between a
modern, functional programming language and its novel, interactive IDE. We believe that it
demonstrates that a significantly different approach to programming can be realized today. The
following are what we consider the key contributions of our work:

1. Macros. We implemented a declarative, statically typed language with S-Expression
based syntax using a macro-directed implementation which evolved from the compilation
strategy of LISPs. This allowed us to provide the facility for user macros, shown in Section
3.4, available to extend the syntax of the language. We have already found many examples
of useful macros, both for simplifying syntax and dealing with side-effects.

2. Implicit functional dependencies. While functional dependencies are a popular ex-
tension of Haskell, they have a negative impact on the complexity of its type system, and
have not been included in the base language. We came up with a simplified approach
to functional dependencies which is both easier to explain to mortal programmers and,
together with the rules our system imposes, does not have a negative impact on type
inference completeness or decidability. This mechanism is described in Section 3.5.

3. Highly polymorphic collections API. Informing the design of our type system, we im-
plemented an exhaustive collections library polymorphic in the types of collections, which
simplifies their use and removes code duplication by increasing the level of abstraction.
This API is described in Section 3.7.

4. Interactive IDE. In Sections 4.6 and 4.7 we describe the main interface of our IDE and
the way in which programmers can freely experiment with programs, including animations
and interactive interfaces, and observe their execution. This model works thanks to our
language being functional and pure-by-default.

5. Surfacing type errors through origins of types. Although the core of the idea did not
originate with us, we took great care in implementing a type system which always reports
the origin of errors, even when these are coming from explicit type declarations. Our
implementation, detailed in Section 4.8.2 can provide a platform for testing this approach
towards type error messaging and potentially informing improvements to current Hindley-
Milner style type system implementations.

Chapter 1. Introduction 5

6. Colorful and powerful syntax. There have been many implicit influences between
the language and the IDE design but the single biggest one is the approach to effective
syntax. We have shown in Section 3.3.3 that S-Expression based syntax can be made more
readable and less verbose through the use of color and that it can be exploited to provide
a more powerful editing experience based on the actual AST of the program, described in
Section 4.3.

The project’s evaluation is laid out in Section 6.

Chapter 2

State of the Art

In this chapter we discuss the various languages and development environments used today, in
relation to our own work. It would be impossible to detail all the languages and tools which
had influenced our decision making but for those not mentioned here we make direct references
in the rest of the report. It is our aim to focus on those aspects of each technology which has
direct relation to our objectives and the challenges we have to tackle, not to provide exhaustive
descriptions or a complete enumeration of all available tools.

To structure this chapter, we separate the available technology into these aspects:

1. Languages - syntax and semantics.

2. Type Systems.

3. Macro Systems.

4. Editors and IDEs.

We also look into the foundational work on programming languages and tools at the end of this
chapter in Section 2.5.

2.1 Languages

The languages discussed in this section relate to our work in one or more of the following three
main aspects. The motivations for adopting these characteristics in our language are discussed
in Section 3.

6

Chapter 2. State of the Art 7

1. Being functional, strongly and statically typed. A language is considered func-
tional if it encourages the use of top-level and higher-order functions and immutability
rather than dealing with a mutable state[14]. Furthermore, a language is strongly typed
if the entities within its programs are assigned a single type that does not change during
the execution of the program; it is statically typed when the types of runtime entities
corresponding to certain elements of the programs’ source can be determined at compile
time. Haskell[15] and SML[16] are the most popular examples.

2. Having an s-expression based syntax. We use s-expressions, short for symbolic ex-
pressions, to name the syntax which is based on the use of parentheses (or other delimiters)
and a set of atoms to form the expressions of a language, defined inductively as either:

• atom

• (expression…)

where the list of expressions inside the parentheses is whitespace-separated. We call the
languages which employ this syntax for most of its constructs s-expression-based. This
syntax originated with LISP and is used by its various dialects.

3. Targeting the JavaScript runtime. Our motivation for compiling down to JavaScript
(JS) is detailed in Section 3.2.2. We are mainly interested in languages which are designed
specifically for the runtime, and are not just mechanically translated (given Emscripten[17],
any language which can be compiled to C, C++ or directly to the LLVM bitcode can be
run in JavaScript). Such languages are sometimes referred to as transpiled to JS. The
most popular one, which pioneered this approach, is CoffeeScript[18].

We are interested in both the prime examples of each of these approaches and those languages
which combine them. We shall begin with statically typed languages and their variations which
compile to JS and then look at mainly dynamic languages and their possible typed variations.
A more detailed discussion of type and macro systems is provided in Sections 2.2 and 2.3
respectively.

2.1.1 Haskell

Haskell is a mature, pure, strongly and statically typed functional language originally specified
in 1990 with the goal of consolidating the various lazy functional languages of the time and
providing a platform for further research[15]. It has significantly evolved since, the two most
visible advancements being the use of monads and the do notation for handling input and output
(IO) and the addition of functional dependencies to allow for multi-parameter type classes.

Chapter 2. State of the Art 8

Type classes themselves are regarded as the most distinctive characteristic of the language[15,
Section 3.3], and are discussed along with functional dependencies in section 2.2.5.

The use of laziness by default, or call-by-need instead of the more traditional call-by-value
mechanism, lied at the origin of the Haskell project and is sometimes considered its biggest
deficiency. In [19], lazy evaluation is argued for as a means for combining programs, where
one program computes a value only if requested for the computation of the successive program.
The example given in the paper constructs a sequence of values lazily to find a solution to the
problem. It turns out that the need for such composition is real, and is nowadays supported
in many traditional imperative languages using the notion of streams or lazy collections. But
laziness also comes with a serious drawback, and that is the inability for the programmer to judge
the space complexity of their algorithms. It seems to us that the disadvantages of omni-present
call-by-need outweigh its advantages.

Haskell is also quite characteristic in its syntax. The language tries to look as much like math-
ematics as possible, and some find the programs written in it “pretty”. Not unlike some later
popular imperative languages (Python, Ruby), it uses indentation to denote blocks of defi-
nitions, with a fairly complex layouting rule, but in practice this isn’t problematic as is the
case with CoffeeScript (Section 2.1.8). It also sports custom infix operators with customizable
precedence, which can allow for some elegant or unreadable code (depending on the familiarity
with given operators). We argue against this approach to the syntax of programming languages
in Section 3.3. We find Haskell’s biggest contribution in promoting the declaration1 style of
programming, where pattern matching and where clauses are used to denote results first and
then detail how these results are obtained from more granular expressions, as opposed to the
expression style of using conditionals and let-bindings, as can be seen in Figure 2.1

filter p [] = []
filter p (x : xs)

| p x = x : rem
| otherwise = rem
where
rem = filter p xs

(defn filter [p list]
(if (empty? list)
()
(let [x (first list)
rem (filter p (rest list))]
(if (p x)
(cons x rem)
rem))))

Figure 2.1: The function filter implemented in declaration style in Haskell and expression
style in Clojure.

Although we called Haskell a mature language, we find one particular area in which its built-
in facilities lack compared to other popular languages: collections. Some basic collections are
included in the standard library, such as Map and Set, and there are type class declarations
for supporting more generic use of collections, but for example hash maps are omitted and it

1Not to be confused with the declarative vs imperative style, which is more concerned with semantics and is
much older than Haskell.

Chapter 2. State of the Art 9

seems that programmers generally rely on a combination of external libraries which may require
additional work to function together. This space is also fairly badly documented, compared to
other language ecosystems.

2.1.2 Fay, GHCJS

There have recently emerged several Haskell-like languages which are primarily focused on
running in-browser, or allowing the use of a single language on both the client and the server
(if the same code is then also run on both, such applications are usually called isomorphic[20]).
These languages (or technologies) vary in how much they depart from Haskell, or what subset of
Haskell features they support. Elm, PureScript, Fay and GHCJS represent different points on
this scale. While Elm and PureScript depart from Haskell semantics (as discussed in the next
sections), Fay[21] is a proper subset of Haskell, with its own compiler and data types matching
those of JavaScript, and GHCJS[22] is a Haskell to Javascript compiler which uses the GHC API
and supports many advanced runtime features found in natively-running Haskell. All of these
projects have compilers written in Haskell, although there is an effort to implement PureScript
in itself. This means that currently none of these compile in-browser. We discuss how these
languages deal with foreign-function interface (FFI), that is calling JavaScript code, in Section
3.9.

2.1.3 PureScript

PureScript[2] is a strict (not lazy), Haskell-like language which strives to compile to readable
JavaScript without having to provide a large runtime library.

As a runtime library we identify the code which needs to be included alongside the programmer’s
transpiled code. In practice, the size of such library can vary greatly, and sometimes the library
can be split and only included optionally, based on whether a certain feature of a language is
used. Usually such code is included directly in the resulting JavaScript, as opposed to being
imported as a separate module or package. So, for example, PureScript’s Prelude would not
be considered a part of its runtime library.

Apart from the lack of default laziness, PureScript differs from Haskell by having a single
type for numeric values, Number, and the use of a fine-grained monad system, instead of a
single IO monad for dealing with the imperative environment with which the programs interact.
PureScript also supports extensible records, while they are not part of standard Haskell, as well
as higher-kinded polymorphism. Interestingly, PureScript’s compiler does not infer polymorphic
types of definitions involving type class constraints, such as the following one:

square x = x * x

Chapter 2. State of the Art 10

Because the multiplication function * requires its operands to have a type which is an instance
of the Num2 class, but there is no indication of which instance will be used, the programmer
must specify the function’s type explicitly, as square :: forall a. (Num a) => a -> a.
Notice that free type variables need to be explicitly quantified in PureScript.

2.1.4 Elm

The most popular or perhaps most widely known, judging by the number of stars on its source
repository on Github[23], and the oldest of the mentioned Haskell derivatives is Elm[1]. Elm
is a functional reactive language, aimed specifically at writing interactive applications. The
main idea of reactive programming is the use of signals, essentially streams which are observed
as values. Mapping a function over a signal yields a corresponding new signal, and successive
values can be combined using reduction. Because functional reactive programming does not
play well with laziness[1], there are no provisions for laziness in Elm. The support for reactive
programming leads to a bigger runtime library in Elm. In terms of its type system, Elm differs
mainly by not supporting type classes, which is a highly debated issue within its community,
since Haskell relies heavily on type classes. Elm circumvents the issue by special allowances
within its compiler which do not scale well beyond built-in types. Elm also misses where
clauses, which means that all names defined within a function must be bound before they are
used in a let statement, in a stark difference to Haskell code written in a declaration style.

2.1.5 Liskell

Although now abandoned, Liskell[24] is an interesting project to bring LISP syntax to Haskell.
Its proposal describes in detail the implementation of a macro system on top of GHC’s API and
introduces one possible LISP-like syntax to use for creating Haskell programs. We will come
back to this proposal in Section 2.3.

2.1.6 ML, SML, OCaml

ML[25] and its most popular variants used today, SML[16] and OCaml[26], are impure, strict,
strongly and statically typed functional languages. Because ML is both strict and impure,
imperative algorithms can be expressed without the need for special syntax or monads as is
required in Haskell. The lack of type classes means that similar functions need to be quantified
with corresponding package names, such as List.map, and at least in OCaml, which as an
efficient natively compiled language distinguishes floating point numbers from integers, even

2In PureScript, Num is the name of the class which provides arithmetic operations and Number is the name of
the only numerical type.

Chapter 2. State of the Art 11

such fundamental operations as addition have specific names for different types of arguments: +
for integer addition and +. for floats. The lack of type classes is counter-balanced by ML’s more
powerful module system. In ML, signatures can be parametrized with type variables, which,
among other things, allows the definition of proper abstract data types.

Js_of_ocaml[27] is a compiler from OCaml’s bytecode to JavaScript, and as such allows OCaml
to run in the browser. The generated JavaScript is unreadable though and as with other
languages compiled mechanically, performance suffers. For example, strings in OCaml cannot
be directly mapped to JavaScript strings.[28]

2.1.7 Java, C#, Dart, TypeScript, Closure, Flow

Java[29] and C#[30] are the most industrially popular higher-level3 languages for building large
applications. Although they mainly exercise a different paradigm from the languages we con-
sider, they still present important lessons for us. Firstly, they show the importance of type
signatures as a way of documenting code, which can often be sparsely documented otherwise.
Programmers using these languages are forced to provide type signatures not only for methods
of classes, but also for all local definitions, a potentially tedious task. Some of this tediousness
can be alleviated with the use of IDEs, discussed in Section 2.4. Another strength of these lan-
guages is their clear syntax, borrowed from C and C++. Although verbose, the small number of
syntactic forms leads to an easier understanding of unfamiliar code, as opposed to, say, Haskell
code extensively using custom operators.

Each language also has a counterpart in the world of languages transpiled to JavaScript. Dart is
a language developed by Google, which given its large browser market share can hope to replace
JavaScript with a new virtual machine (VM) for their custom language. There is little signal
so far that this could happen in the near future, given the size of the JavaScript ecosystem, and
Dart is currently mainly used compiled to JavaScript. Dart includes optional typing in the vein
of Java, as well as classical object oriented features such as classes.

Similarly, TypeScript is developed by Microsoft. Unlike Dart, it is a proper superset of JavaScript,
it adds optional type annotations and object oriented features, and it conforms to the currently
proposed ECMAScript 6[31] (ES6) next standard of JavaScript.

Finally, Google Closure[32] and Facebook’s Flow[33] are precompilers which preprocess docu-
mented or annotated JavaScript code to perform type checking and potentially optimization,
such as dead code removal. We mention all of these technologies here to stress the point that
many are looking for ways to type check their browser-targeting code, whether it is for pro-
grammer’s convenience while writing code or for increased documentation and maintainability.

3Languages which do not allow direct access to memory locations via pointers.

Chapter 2. State of the Art 12

There is also the desire to make client implementation more familiar to programmers using
statically typed languages on the server.

2.1.8 CoffeeScript

CoffeeScript[18] is by far the most popular language transpiled to JavaScript. It is a func-
tional, impure, strict, dynamic language, which encourages functional programming through a
lightweight function syntax, similar to Haskell’s lambda expressions, while also providing clas-
sical object-oriented features such as classes. Its goal is to protect the programmer from “bad
parts of JavaScript”[34] while providing a less verbose syntax, as can be seen in Figure 2.2.

square = (x) -> x * x
function square(x) {

return x * x;
}

Figure 2.2: Definition of the square function in CoffeeScript and JavaScript

Particularly attractive is the fact that CoffeeScript has only a single syntax for defining functions.
Although its syntax is very elegant, it can cause problems. Consider Figure 2.3.

class A
constructor: ->
handler = (event) =>

false
@initialize handler

@field = "Should be assigned to object"

Figure 2.3: Bug caused by wrong indentation.

The snippet shows a definition of a class A. The instances of this class should have a property
field, set to the given string. Unfortunately, there is a bug not intended by the programmer,
the spurious single space in front of the call to @initialize, which causes the property to
be set on the class object itself. This is caused by CoffeeScript’s lenient indentation rules.
Although substantial work4 has gone into improving the language’s compiler, many such errors
still creep up. As much as CoffeeScript strives to avoid the problems of JavaScript, it adds its
own. Another such example is the lack of variable shadowing. Consider Figure 2.4.

map = (f, list) -> list.map f
...
allKeys = (maps) -> union (keys map for map in maps)

Figure 2.4: Accidental shadowing.
4See for example my commit https://github.com/jashkenas/coffeescript/pull/3320

Chapter 2. State of the Art 13

map is initially defined as a higher order function, and as long as we don’t call allKeys, it stays
that way. But once we use allKeys, map is reassigned to subsequent values inside the maps
list. In large files, this can lead to surprising errors even for experienced users of the language,
especially if the rogue value is of the same type as the intended value. We should note here
that some popular languages, such as Python, lacking lexical scope altogether, have even more
surprising semantics.

These examples hopefully show that, along with the lack of static typing, CoffeeScript is certainly
not guaranteed to enjoy its position indefinitely. Many languages descendant from CoffeeScript
appeared, most notably LiveScript, which aims to support even more functional style, with
optional currying and pattern matching.

2.1.9 Clojure

Clojure[35] is a modern LISP dialect, with a primary implementation targeting the Java VM
(JVM). It has been designed as a practical language with emphasis on concurrent programming.
It is arguably the most popular LISP dialect at present, at least in terms of the growth of its
community. Its strengths include good FFI to Java and an exhaustive built-in collections library.
The library is supported with special syntax for each basic type of a collection. All collections
are immutable and sequences are implemented lazily, which together encourages functional style
of programming, even though Clojure has full support for imperative programming as well.
Polymorphism is supported via protocols, which are similar to Java’s interfaces or Haskell’s
type classes, but dispatch based only on the type of the first argument to a method.

Clojure also compiles to JavaScript, being envisioned as portable language, and this version
of the language is called ClojureScript. It supports a large subset of Clojure with the most
obvious deficiency that it lacks runtime compilation capabilities, as Clojure is used for writing
and compiling macros.

2.1.10 Racket

Racket[36] is a modern Scheme, and hence LISP, dialect, which originated within the academia
and was originally focused on providing a learning environment. In comparison with Clojure,
it uses more traditional Scheme-like syntax and has a limited built-in collections library. On
the other hand, Racket has the most complex macro system of those used today, as is discussed
in Section 2.3. It uses its own runtime5 and the distribution of its compiler includes a custom
development environment called DrRacket, which we discuss in Section 2.4. Both Clojure’s and
Racket’s ecosystem also include libraries which add ad-hoc type checking.

5This might be one of the reasons for its low adoption compared to Clojure in the industry.

Chapter 2. State of the Art 14

2.1.11 Shen

Last modern LISP-like language we consider is Shen[37]. It aims to be easily portable by
compiling to a simple LISP dialect. It has a rather powerful optional type system based on
a calculus with derivation rules and also includes a working Prolog. In terms of semantics it
is actually closer to the statically-typed family of functional languages. Functions have fixed
arity and partial application is supported. Shen also sports pattern matching as the only way to
define functions, with some features which are not supported by Haskell, for example comparing
arguments via the use of the same name twice in a pattern. Shen does support variadic calls to
macros which expand to fixed arity calls. Although technically most interesting, the language
does not seem to enjoy wide popularity and its development seems to be hindered by fundraising
efforts.

2.2 Type Systems

Now we discuss in more detail the various static type systems found in languages presented in
the previous section. We are mainly interested in these aspects of the systems:

1. Error messages. We believe that a type system should be a tool which supports the
programmer in creating and maintaining programs. As such, the clarity of error messages
given by the system are most important to us. We investigate how the complexity and
design of the type system impact how easy it is to see where the error occurred and
whether the system can suggest a possible fix.

2. Expressive power. We can easily find programs which are very difficult to assign static
types, even considering only strongly typed languages. Hence type systems can vary in
power, in different areas, such as dealing with higher kinds (types of types), supporting
subtyping, supporting computation on the type level and others. We would like to compare
and evaluate the different features of the various type systems.

3. Ease of type annotation. Another important aspect is the interaction between the
programmer and the type system when constructing code. Does the programmer have to
specify types by hand and when? How complex are the used type representations? Can
types be inferred, are there any exceptions or effects of other features?

4. Reliability and performance. Lastly, we would like the type system to be reliable
and not have a negative impact on the compilation time. We want to know whether type
checking or inference can be done in a modular fashion and whether the implementation
supports incremental typing. Again, are there any specific features of the type system
that could prevent modularization?

Chapter 2. State of the Art 15

2.2.1 Polymorphism

Today, there are two major classes of type systems used by most of the mentioned languages.
The first is a system with Hindley-Milner style type inference. Haskell, ML and their dialects use
this system with various extensions. The defining technical aspect of a type system is the way
in which it handles polymorphism. These systems support parametric polymorphism. Consider
the type of a function map in Figure 2.5, which applies the function supplied as its first argument
to each element of a given list, returning a list of the results of those applications.

map :: (a -> b) -> [a] -> [b]

Figure 2.5: The type of map.

Then map is polymorphic, because it accepts arguments of various types, as long as we can
substitute concrete types for the type variables in its type, in our example a, b, to obtain the
concrete types of those arguments. In most cases (see Section 2.2.4), these type systems can infer
any programmer-supplied code, alleviating the need for type annotations altogether, although it
is often mentioned that specifying types can still be useful and is regarded as good programming
style.

The second class of type systems is used in statically typed languages with classical inheritance.
These languages usually have the notion of a class, a template which is used to instantiate
objects, which also represents the type of those objects. Polymorphism is achieved by specifying
a type which is higher in the type hierarchy of the program than the concrete types of values.
For example the method addAll in Figure 2.6 accepts as an argument any object which is an
instance of a class which inherits from the Collection class.

boolean addAll(Collection c)

Figure 2.6: The type of Collection::addAll.

We call this polymorphism via inheritance and it is the main kind of polymorphism found in
all statically typed object-oriented languages, including Java, C# and their dialects mentioned
before. Although attempts have been made in that direction, so far it seems that Hindley-Milner
style type inference system cannot deal well with classical inheritance.[38]

Both systems have several extensions which essentially add different kinds of polymorphism.
We detail these in the following sections.

2.2.2 Ad-hoc Polymorphism and Type Classes

Apart from parametric polymorphism which is equally supported in ML and Haskell, there is
often the need for ad-hoc polymorphism. Consider the case where we would like to obtain a

Chapter 2. State of the Art 16

textual representation of a given value. In Java, we could require our arguments to be instances
of a subclass of a class which declares a method such as String toString(). In Haskell, we
could achieve this using two arguments, one which would be our value, of some type a and the
second which would be a function of type a -> String, that is a function which takes our value
as an argument and returns its textual representation. This style of programming is usually
referred to as dictionary passing style, where dictionary stands for a collection of functions which
can operate on the rest of the arguments.

It turns out that this approach, although feasible, is cumbersome. Consider that we need to pass
these functions around everywhere we want to turn our value into its textual representation,
possibly through functions which do not care about that representation. In a way, we create un-
desirable coupling in our program, while also being more verbose than if we used polymorphism
via inheritance. Haskell solves this problem with type classes[39]. A type class is essentially a
specification of such a dictionary, which value is provided for a required type by making it an
instance of that type class.6 Haskell’s compiler then uses the information from its type system
to pass these dictionaries, possibly several at a time, to our functions automatically. In Figure
2.7, we use the type class method show, so the resulting function wrap takes an argument of
any type that is an instance of the Show class which declares the method. Haskell takes care of
supplying the correct show implementation.

wrap value =
"(" ++ (show value) ++ ")"

Figure 2.7: Function wrap in Haskell, which returns the textual representation of given argu-
ment wrapped in parentheses.

Note that both Java and Clojure support their own versions of ad-hoc polymorphism. In Java,
we can think of ad-hoc polymorphism as polymorphism “in the other direction”. Whereas
polymorphism via inheritance dispatches methods based on the type of the object containing
that method, method overloading decides which function to call based on the static type of its
arguments. In Java this approach is needed for polymorphism dealing with values of so-called
primitive types, which are not objects and hence cannot contain methods.

Clojure includes yet another way of ad-hoc polymorphism, positioned between type classes and
method overloading. Protocols declare a set of functions which must be implemented for a
type to adhere to the given protocol, similarly to type classes in Haskell. These functions then
dispatch dynamically, that is based on the actual types at runtime, based on the type of the
first argument only, which makes them less general than Haskell’s methods and limited in a way
compared to Java’s overloaded methods.

6Notice that although the terms regarding Haskell’s type classes coincide with the terminology of object-
oriented languages, the two operate on different levels: in Haskell they operate on types, in Java they describe
relationships between objects.

Chapter 2. State of the Art 17

It has been shown[40] that ML’s modules can be used for simulating ad-hoc polymorphism
similarly to Haskell’s type classes. Yet in the comparison, it seems that ML’s module system does
not allow for the same convenience Haskell’s compiler provides to the programmer. Consider
the example in Figure 2.8, taken from[40].

elem x l = any (eq x) l

fun elem d (x:’a) l =
let
structure D as Eq where type t = ’a = d
in

any (D.eq x) l end

Figure 2.8: Use of polymorphic function eq in Haskell and its translation to ML.

In Haskell, eq is a method of the type class Eq, which can be used to compare two values7. The
important point is that we have to specifically “unify” the type of the argument with the type
used inside the Eq structure, one of ML’s module mechanisms used here correspondingly to a
Haskell type class. We therefore conclude that although ML’s type system provides powerful
abstraction tools, it does not give us the same power as Haskell’s type classes.

It should be mentioned that some consider this a good property of the ML family of languages.
As mentioned in Section 2.1.6, in OCaml there are two separate sets of mathematical operators
for dealing with floating point and integral number. Some argue[41] that this makes the language
more readable. After all, any of the methods for ad-hoc polymorphism introduce a trade-off
between readability and expressive power of the language. Without ad-hoc polymorphism and
the possibility of name aliasing, we can quickly identify a definition corresponding to a given
name. Java, Haskell and ML do not allow name aliasing of methods or functions. But with the
addition of ad-hoc polymorphism, it is more difficult to identify which code corresponds to a
given name. In Haskell, any of the show implementations defined in various type class instances
could be executed at runtime. Similarly in Clojure, any of the protocol implementations could
be used, depending on the type of the first argument. In Java, this is not the case, since method
overloading is resolved statically, which creates its own problems[42], but its polymorphism via
inheritance behaves in the same way.

Although we make our code more ambiguous, and this has severe impact on the complexity
of error messages (discussed further below), the popularity of type classes in Haskell and the
popularity of polymorphism via inheritance8 shows that this is a feature worth adopting.

Some even considered extending Haskell to provide for even stronger notion of name overloading,
akin to the way object-oriented languages resolve methods.[43] Currently, if two type classes

7In the example, in both Haskell and ML, it is partially applied.
8Note that we do not distinguish here between extending classes and implementing interfaces in Java, that

distinction really exists because of the problem of multiple inheritance but it fundamentally offers the same kind
of polymorphism.

Chapter 2. State of the Art 18

define methods with the same name, they must be qualified with the corresponding name of the
modules (and hence such classes cannot be defined in the same module).

2.2.3 Parametric Polymorphism

We already discussed parametric polymorphism in Hindley-Milner style typing systems. This
kind of polymorphism is very powerful in its generality and generics play a similar role in
object-oriented languages. We will not cover them in detail, it suffices to say that the inclusion
of generics in languages like Java and C# and the loud advocacy for adding them to languages
which lack them, notably Go[44], hints at the importance of parametric polymorphism in gen-
eral. The concept is not directly equivalent between the two classes of type systems though
and subtyping means that generics have to deal with the notion of variance[45], which we won’t
discuss further.

Although it might seem that type inference, which we describe next, is the main culprit of
increased type error complexity, it is in fact parametric polymorphism that causes it. In Java
or C#, a type error which does not involve generics has a very small scope. Consider the
case where a supplied argument to a method has the wrong argument. The expected type of
the argument is given by the type of the method, which is always explicitly annotated. The
argument can either be a reference to an explicitly typed variable or the result of a method call,
which is again explicitly typed. We could also say that there is only a single step between the
clashing types.

It is parametric polymorphism that causes types to propagate through the source code, po-
tentially adding steps to type errors. This is why both generics and Hindley-Milner style type
systems are often credited with confusing errors. The confusion comes from the fact that types
are carried through unification across several method or function applications and compilers
usually do not do a great job of surfacing this connection. Because parametric polymorphism
is so much more pervasive in languages like ML or Haskell than in Java-like languages, we must
acknowledge that we pay a price for the flexibility of their type systems.

2.2.4 Type Inference

An immediately noticeable difference between the two kinds of type systems is that those em-
ploying Hindley-Milner type inference do not require the programmer to provide type anno-
tations for declarations. This greatly simplifies code creation and modification. It gives the
programmer the freedom to decide when a function’s type should be explicitly declared and
therefore protected against later erroneous changes. Languages which do not support type
inference put the burden of updating types after changes to a function on the programmer,

Chapter 2. State of the Art 19

and this cannot be fully alleviated by tools because output types depend on annotated input
types. Therefore changes to type declarations can only be performed on inputs and outputs
separately. The second reason the tools cannot automatically change type declarations is that,
in object-oriented setting, the types cannot be easily inferred from method calls.

Type inference does have a slight impact on the complexity of type errors, in cases of groups of
mutually dependent declarations. In absence of mutually dependent definitions, type inference
is straightforward. Types originate from constants and uses of already typed functions, and
every function can be typed in isolation. In cases of recursive and mutually recursive definitions
type inference becomes more involved and the inferred types may become less obvious to the
programmer.

Number of extensions to the Hindley-Milner system, including Haskell’s type classes, make type
inference more difficult and may require the programmer to supply annotations. The first such
extension is polymorphic recursion. Consider the following definition in Haskell:

data List a = Cons a (List [a])
| Nil

example = Cons 1 (Cons [2, 3, 4] (Cons [[4, 5], [6]] Nil))

length :: List a -> Int
length Nil = 0
length (Cons x xs) = 1 + length xs

The function length counts the number of conses in the list. Since x is unconstrained, it
must have the most general type a, and therefore xs has the type (List [a]). This implies
that length in the call length xs has the type List [a] -> Int. But this would imply
that x has type [a], since in a group of mutually recursive definitions all occurrences of a
function, including its declaration, must have the same type[46] to preserve the soundness of
type inference. Allowing for polymorphic recursion therefore breaks the completeness of type
inference - not all valid programs can be fully inferred. This is perhaps why StandardML does
not support polymorphic recursion, while OCaml only recently added support for it[47].

We discuss the impact of type classes on type inference in the following section.

2.2.5 Haskell’s Type System

Now that we presented the notion of polymorphism in its various forms in the languages dis-
cussed, we return back to Haskell’s type system and judge its features and extensions according

Chapter 2. State of the Art 20

to the criteria presented above. Haskell has possibly the most expressive type system of the ma-
jor languages mentioned. We have already introduced type classes as its differentiating feature
and here we detail their impact and extensions.

2.2.5.1 Ambiguity

Ambiguity arises in Haskell when a function’s polymorphic return type is not constrained via
its preceding arguments, such function could have type signature such as a -> b or simply a.
There is no way to write such a function in ML, but it is possible thanks to type classes in
Haskell. Consider the function read, which converts a textual representation of a value to the
actual Haskell value:

read :: Read a => String -> a

Such a function is convenient, because we can simply implement it as a method of the class
Read for our custom value and such value can now be used anywhere we require reading from a
serialized form, such as inputting values through command line arguments. Using such function
can be non-trivial though. Consider testing read in a REPL:

Hugs> read "3.2"
ERROR - Unresolved overloading
*** Type : Read a => a
*** Expression : read "3.2"

Hugs simply states that the overloading, that is the use of the overloaded function read, was
not resolved, that we haven’t given enough information for the compiler to decide which read
to use. Figure 2.9 includes the result from the Glasgow Haskell Compiler (GHC) for the same
call.

GHC’s error message is much more verbose, but essentially boils down to the same main cause,
providing more information about the error’s location and some hints for a possible fix. We
would prefer Hugs’s message in this trivial case, since the programmer gains little from GHC’s
verbose output. Crucially, the error message does not provide a recipe for fixing the problem,
where one possible solution could look like:

read "3.2" :: Double

One might argue that having such ambiguously typed functions is a bad idea in the first place,
and we could avoid this particular case by specifically naming our functions, such as:

readDouble "3.2"

Chapter 2. State of the Art 21

> read "3.2"
<interactive>:2:1:

No instance for (Read a0) arising from a use of 'read'
The type variable 'a0' is ambiguous
Possible fix: add a type signature that fixes these type variable(s)
Note: there are several potential instances:

instance Read () -- Defined in 'GHC.Read'
instance (Read a, Read b) => Read (a, b) -- Defined in 'GHC.Read'
instance (Read a, Read b, Read c) => Read (a, b, c)
-- Defined in 'GHC.Read'

...plus 25 others
In the expression: read "3.2"
In an equation for 'it': it = read "3.2"

Figure 2.9: The error message for a function call with an ambiguous type.

Although this works well in this example, such an approach would limit polymorphism. We
might naturally define a function which given a list of strings returns a list of values:

readMany :: Read a => [String] -> [a]
readMany = map read

Without the ambiguous read, we would have to redefine such a function for each type or resort
to dictionary passing. Ambiguity is therefore another part of the trade-off made by including
type classes in Haskell. The issue does not appear often but when it does the language should
provide a clear, concise error message. We find that both GHC and Hugs are still lacking in
this respect.

2.2.5.2 Defaulting

Perhaps the most common occurrence of ambiguity in Haskell is due to the definition of numeric
literals. Surprisingly, numeric literals are themselves functions with ambiguous type:

1.5 :: Fractional a => a
3 :: Num a => a

To avoid running constantly into the type ambiguity error, Haskell implementations employ
defaulting. Essentially, Haskell specifies an ordering in which instances of the Num class should
be selected when an ambiguity arises. Without this rule, even such mundane definitions as:

x = 13 + 29

would be ambiguous. Although practical, this solution does not scale well beyond the built-
in instance of the Num class. Surprisingly, although referred to as conservative, this simple
mechanism can lead to strange looking errors:

Chapter 2. State of the Art 22

> let x = "0.5"
> show ((read x) + 2)
"*** Exception: Prelude.read: no parse

The runtime error occurs because the literal 2 defaults to an integer, and hence the read function
tries to translate an integer, although we gave it a representation of a floating point number.
Without defaulting, the compiler would report an error due to the ambiguity of the used types
and the programmer would have a chance to supply a correct type signature.

Another solution to the ambiguity of numeric literals in the presence of a numerical type class
hierarchy is to not make the literals ambiguous (like in OCaml) by default, but this would force
the programmer to use specific converting functions to create polymorphic functions, such as a
simple adder:

addOne :: Num a => a -> a
addOne x = x + (fromInteger 1)

Yet another solution would be to have a single numerical type. This was not possible in Haskell
due to the desire for both performance and expressiveness.

2.2.5.3 Multi-parameter Type Classes

Type classes turned out to be extremely useful, but very early on the Haskell community
investigated the possibility of having type classes with more than one parameter. Consider a
scenario in which we would like to operate uniformly on all kinds of sequences: lists, strings,
vectors (extensible arrays) and so on. Both Clojure and Java provide such an interface to its
collection libraries. In Haskell, we could model such an interface with a multi-parameter type
class:

class Seq c a where
cons :: a -> c -> c
first :: c -> a
len :: c -> Int

where the type variable a stands for the type of the element of the sequence and the variable
c stands for the (concrete) type of the sequence itself. Such a declaration allows us to use
sequences which are possibly defined only on some concrete types, such as ByteString9:

instance Seq ByteString Char where
cons = ... -- :: Char -> ByteString -> Char
first = ... -- :: Char -> ByteString
len = ... -- :: Char -> Int

9We could use a class of type constructors, but there is no way in Haskell to define ByteString as a type
constructor taking Char as its only possible argument.

Chapter 2. State of the Art 23

Multi-parameter type classes increase the chance of ambiguity, specifically because the type
system considers any possible combination of their arguments as valid. Several solutions to this
problem have been proposed, with functional dependencies being the most popular. In essence,
functional dependencies let the programmer specify relations between the parameters, which
limit the number of possible combinations of parameters instances can use, therefore decreasing
the ambiguity in the system. Returning back to our example of the Seq class, we can declare
that the type argument c functionally implies the argument a:

class Seq c a | c ~> a where
cons :: a -> c -> c

This means that if there is an instance declared with some type for c, such as Seq ByteString Char,
we cannot declare another instance with the same type (instance Seq ByteString Byte would
be rejected by the compiler). In turn, type inference can infer the type of first argument to
cons if the type of its second argument is known.

Unfortunately, without restrictions on type classes and functional dependencies type inference
becomes incomplete10. It has been proven[48] that satisfying the following default properties
used in Haskell leads to sound and complete type inference:

• Basic Conditions. The basic conditions apply in Haskell regardless of whether functional
dependencies are used or not.

1. Type class constraints (such as Seq c a) on instance and class declarations contain
only distinct type variables. This disallows constraints such as Seq String a or
Seq a a.

2. At least one of the types in an instance declaration must not be a type variable. This
disallows all-capturing instances such as Seq a b.

3. Instances must not overlap.

• Functional Dependencies Conditions. These originate from the original proposal for func-
tional dependencies[49].

1. Instances are consistent with function dependencies. This disallows clashing instances
such as Seq String Char and Seq String Int.

2. In instance declarations, all free variables in the types on the right hand side of
a functional dependency must be present in the types on the left hand side of a
functional dependency. This means that knowing the left hand side types we can infer
the right hand side types. This disallows ambiguous instances such as Seq [a] b.

10Or undecidable. We do not distinguish the two properties further, as they align.

Chapter 2. State of the Art 24

3. Regardless of functional dependencies, the type class constraints on class and instance
declarations must not be ambiguous. That is, all free variables in the constraints must
occur in the class and instance types.

These conditions, although they might seem complex, are quite intuitive in practice. Unfortu-
nately, they are also quite limiting. We return to them in Section 3.5. It turned out that lifting
some of these restrictions actually makes the Haskell type system Turing complete.[50] There
are other extensions which offer similar expressive power, namely polymorphic kinds and type
families, but they always lead to undecidability of type inference.

To conclude, we return back to the criteria for type systems which we outlined at the beginning
of this section. Although we have not discussed specifically in detail the type systems of other
statically typed languages besides Haskell, we have hinted at their differences. We are going to
shortly summarize the three main families considered:

• The type systems of Java and C#, and those inspired by them, have a good support
for inheritance-based polymorphism. In the eye of a functional programmer this kind of
polymorphism is quite limited, as it constructs a rigid graph between concrete types (the
is-a relationship). Their support for ad-hoc polymorphism and parametric polymorphism
is on the other hand quite cumbersome. As such we do not consider them to provide the
adequate expressive power we would like to see in a type system. Their error reporting is
good and effective, as long as the programmer keeps astray of generics. Type annotations
are always required and can be a major hurdle when creating and manipulating code.
These type systems, partially thanks to the popularity of the respective languages, are
extremely reliable and type checking is very fast.

• StandardML and OCaml

2.3 Macro Systems

Often programmers wish to express abstractions which are not representable in the rigid syntax
of the programming language they are using, or which require more syntax than the programmer
would deem necessary. Consider for example the case where we want to collect the result of one
of several expensive computations, in a statement oriented language. Using syntax for basic
control flow, we express the program as in Figure 2.10.

Such pattern might be very common, yet in many languages, including Java, this is the most
concise way of expressing what we want. Such code is repetitive and easily lends itself to a later
change breaking the abstraction. It might be the case that we would prefer code akin to Figure

Chapter 2. State of the Art 25

if (c == 'x') {
result = computationForX(a, b);

} else if (a + b == y) {
result = anotherComputation();

} else if (check()) {
result = kComputation(a);

}

Figure 2.10: Example where rigid syntax leads to repetitive code.

2.11 or similar11. The code would execute like a conventional LISP cond macro does, returning
the value on the RHS of => of the first LHS which evaluates to true.

result = cond {
(c == 'x') => computationForX(a, b);
(a + b == y) => anotherComputation();
(check()) => kComputation(a);

}

Figure 2.11: Using a macro called cond to provide a better syntax.

In other cases we would like to replace the original syntax with a better syntax. A similar
example to the one presented above would be the switch in Java, which unfortunately adopted
C’s fall-through semantics, causing many programmers a headache with hard to find bugs in
their programs. Both cases could be solved with the use of macros. Macros are, most gener-
ally, functions ran at compile time which produce syntax. They provide the facility for meta-
programming, programming at the level of the program itself. We won’t concern ourselves with
primitive template-like macros systems, such as the one in C, which only allow simple one-step
transformations and are usually unsafe, the issue of safety described shortly.

In the systems we are interested in, macros are transformations which take as input syntax, in
some structured form, that is not plain text, and produce new syntax in the same form. It is
the job of the compiler to take the source code provided by the user, usually as text, transform
it into the proper form, pass it to the macro and, once all macros have been applied, compiling
the final syntax to the target representation, assembly for example. This kind of macro system
originated with LISP[51] and we will therefore look at how its modern dialects mentioned before
implement macros.

2.3.1 Macro Hygiene

A key observation very early on in the development of macros was the possibility of accidental
variable capture. Consider a trivial macro, which expands to an addition of a constant value to
given argument. We might define such a macro as in Figure 2.12

11The syntax used here might slightly resemble Rust macros, but is indeed entirely fabricated.

Chapter 2. State of the Art 26

(define-macro add-seventeen-to [x]
`(let [y 17]

(+ ~x y)))

Figure 2.12: A macro returning a let binding with an addition.

The syntax we use is similar to Clojure’s.12 The macro definition takes one argument, x,
which stands for some piece of syntax, hopefully evaluating to a number. So before the macro
expansion, the code might look like:

(add-seventeen-to 1)

And after expanding it, we would like to have:
(let [y 17]

(+ 1 y))

which would subsequently evaluate to 18. The back-quote (or back-tick) ̀ in the macro definition
signifies that the form following it should not be evaluated in the current context, but instead
should be treated as new syntax. Because we want to use the syntax named x, not produce a
new atom x, we precede it with a ~.

The problem of variable capture appears when we use a name generated within a macro in the
surrounding code. Consider what would happen if we first named a value passed to our macro
y:

(let [y 1]
(add-seventeen-to y))

This would expand to:
(let [y 1]

(let [y 17]
(+ y y)))

and inadvertently evaluate to 34. There are several techniques to avoid this problem, with vast
consequences to the way each macro system works. The macro systems which avoid variable
capture by default are called hygienic. Notably, Clojure and Racket deal with this problem
differently.

2.3.2 Source Location Information

A second differentiating aspect of macro systems is the way in which they deal with syntax
source location. This is important for correctly reporting errors. As with hygiene, Racket has
the most sophisticated approach in this respect.

12Clojure uses defmacro to define a new macro. Also note that this example would be invalid in Clojure.

Chapter 2. State of the Art 27

We will now describe Clojure’s macro system, inspired partly by Common LISP (CML), before
delving into the more complex Racket system, which greatly expands upon Scheme’s approach.

2.3.3 Macros in Clojure

All LISPs share the homoiconicity property - the source code of their programs is easily ex-
pressible using their data structures. For example, the text (a b c) represents a list with three
values. If we use this text as syntax, its semantics depend on the context in which it is used.
Often, such an expression would be treated as an application of an operator, either a function or
a macro, a to two arguments b and c. Instead if we prefix the list with a quote (an apostrophe),
Clojure will treat it as list. At the REPL:

> '(1 2 3)
#=> (1 2 3)

If we used such a list as a result of a macro (we have already seen an example of a Clojure-like
macro in Figure 2.12), Clojure would try to apply 1 as a function to the rest of the elements
in the list. This is the core of homoiconicity, the fact that all of LISP’s syntax consists of lists
which are easy to produce and manipulate within LISP itself.

Indeed, quote applies recursively:
> '(1 (22 23) 3)
#=> (1 (22 23) 3)

We could use ordinary list operations to construct lists with values which come as arguments
to macros, but many LISPs include the convenient back-quote, ̀, syntax. Back-quote works
similarly to quote, but allows the inclusion of tilde prefixed expressions, which are then “eval-
uated” in the surrounding context. To clarify, consider a macro which should output a list of
two elements, arguments to our macro:

> (pair (+ 1 2) (* 3 4))
#=> (3 12)

The possibly non-obvious solution is presented in the Figure 2.13 (further below). To understand
this macro, we can follow the steps to create it. First we would like it to produce a syntax for
a list, so we can start with an empty one, ignoring our input for now:

(defmacro pair [x y]
`'())

First comes the back-quote, since we want to output new syntax matching the following form,
and then comes the normal quote and empty parentheses, which is Clojure’s syntax for an empty

Chapter 2. State of the Art 28

list13. Next we would like to include the syntax represented by x and y in our lists, so we could
write:

(defmacro pair [x y]
`'(~x ~y))

But remember that the quote works recursively, so we would not have our arguments evaluated,
because they would still be inside the single quoted list. The solution we chose is to use a back-
quote instead, and then add another tilde in front of our arguments. That way, the arguments
are first evaluated in the context of the macro and then in the context of the outputted list14.

(defmacro pair [x y]
``(~~x ~~y))

Figure 2.13: A macro expanding to a list of its arguments.

Understanding the basics, we can turn to the question of variable capture. There are actually
two cases to consider:

1. Binding a name which might shadow (hide) a name at call-site.

2. Using a name which could be redefined at call-site.

In a way, these two cases are duals of each other. Clojure solves the first by using a special
macro called gensym, which can be used to generate a unique name, which is a working, although
possibly partial solution to the problem.15 The second is solved by resolving names used inside
a back-quoted expression to properly namespaced symbols. For example, using the core Clojure
function list at the REPL:

> `(list 1 2 3)
(clojure.core/list 1 2 3)

we can see that the back-quote expanded list to its fully namespaced identifier.

Clojure does not seem to have any mechanism to manually handle the source location of syntax
forms transformed via its macros. That said, Clojure does track the location of expressions, and
if an argument to a macro fails to execute after the macro transformation, its original location is
reported. Any errors which happen anywhere outside the expanded subexpressions, within the
output of the macro, are simply reported as being located at the beginning of the macro call.
That said, Clojure as a language is not famous for good error reporting[52] and in that light it
seems logical that the design of its macro system was not driven by the ability to provide good
error messages.

13Indeed, in Clojure we don’t need to quote an empty list and in turn we wouldn’t have to back-quote the
result either, but we omit this detail here.

14There is of course a much simple solution, namely to use the list function instead of using a quote, but this
wouldn’t demonstrate the nested evaluation scheme.

15There are few details available on this topic, but in general Clojure maintains the uniqueness during a single
runtime of the compiler and this suffices together with the solution to the second case.

Chapter 2. State of the Art 29

2.3.4 Macros in Racket

Racket tackles macros from a completely different angle than we have been discussing so far
and substantially extends the ideas found in Scheme. First, let’s note that Scheme’s16 syntax
takes a different approach to function and macro definition than Clojure. Let us compare:

(defn id [x] x)
(defmacro id [x] x)

(define (id x) x)
(define-syntax (id stx)

(datum->syntax
stx

(cadr (syntax->datum stx))))

Figure 2.14: The identity function and macro, in Clojure and Racket.

For functions, Scheme’s syntax resembles pattern matching, whereas Clojure’s can be thought as
providing a list of arguments. Unfortunately, the same syntax is adopted for macros in Scheme,
although it no longer corresponds, since the argument passed into the macro is the complete
form, including the macro identifier.

Let us explain how the Racket example expresses the same macro as the one written in Clojure.
Racket distinguishes between syntax objects and ordinary values, called datums. This is, perhaps
rightfully, criticized by proponents of CML-style macro system, but note that Scheme has a more
powerful mechanism for defining macros than the one showed here, which we will discuss in due
course. It does indeed partially break the homoiconicity of the language. We can easily convert
one type of value to another and once we are dealing with datums, we can use the usual LISP
list functions to process them. In the example, we obtain the list representing the complete form
of our macro call, use cadr to obtain its second element, which is the first argument passed to
the macro (called x in Clojure) and then convert it back to syntax, using the original form as a
“context” for the newly created syntax expression.

From this trivial example we can see that Racket handles syntax metadata, including source
location, explicitly.

Before we return to the problem of variable capture, we present the syntactic sugar which makes
writing macros in Racket more convenient. In the simplest cases, we can write:

(define-syntax-rule (tuple-with-3 x y)
(let ([z 3])

(list x y z)))

We notice that there are several transformations that have been applied automatically. The
result is implicitly converted to syntax (quoted), and arguments passed to our macros used
inside of the result are implicitly unquoted, so that their values are used instead of the literal

16Scheme has many different versions so we use Racket’s syntax in the example, which is equivalent.

Chapter 2. State of the Art 30

names. Therefore x and y are replaced with whichever value we pass to the macro, whereas z
is left as is and at runtime replaced with 3.

Racket deals with the problem of variable capture by distinguishing between the context in
which names are bound. Racket does not have the rigid Java namespace used in Clojure so
there is no notion of a canonical name. Instead, each layer of compilation or evaluation is
treated separately. For example, to use a custom helper within our macro, operating on syntax,
we have to define it in a special begin-for-syntax block or require it as for-syntax. This is
achieved by attaching lexical scope information to each identifier[53]. This solves both of the
cases of variable capture presented above but adds complexity when constructing macros.

2.4 IDEs

2.4.1 Traditional Big IDEs

IDEs became really mainstream among programmers thanks to the three big Java IDEs (Jet-
Brains IntelliJ IDEA[54], Eclipse[55] and NetBeans[56]) and Microsoft’s own Visual Studio[57]
for C#. These are now industry standard tools. Indeed, rarely we see programmers using
writing in these languages without using one of these environments. They provide many indis-
pensable features: jumping to the definition of a method, smart method call completion and
refactoring tools. They also provide numerous not-so-often used features and integrate other
parts of the developer’s tool chain, such as a debugger or source version control. This sheer
amount of functionality makes them some of the most complicated pieces of software in ex-
istence. The IDEs are also touted to be “highly extensible”, but this extensibility is severely
hindered by their complexity and the need for their original inventors to provide suitable APIs
which to certain limit determine the extent to which they can be modified. In terms of user
interface they are symbols of the era from which they originated - actions might require nav-
igating several stacked menus, followed by filling out information in a popup after which the
action is finally performed. Some features might be more interactive, approaching modern text
editors, such as renaming a local variable name. In general, the development process supported
by these IDEs is iterative rather than interactive. Both refactoring and running code require
several steps where the programmer might have to wait on the next step to be performed.

Debuggers are part of all the major IDEs but they are usually fairly isolated from the code,
only the last executed line is highlighted while a separate panel is used to display the program
state and “watches”, expressions which are marked to report their values17 (see Figure 2.15.
The debugger is also isolated from the console view used to print out values, so the programmer

17IntelliJ has been the fastest at incorporating features from modern text editors mentioned later in this section,
including in-line view of watched values.

Chapter 2. State of the Art 31

Figure 2.15: A view of the Eclipse IDE, most popular traditional IDE.

usually has to decide between the two approaches to debugging: stepping through code or
printing intermediate values. Today’s browsers have actually gotten better at providing useful
representation for printed values than IDEs, which only show text using the same language
primitives that were designed for the use on a command line.

2.4.2 DrRacket

DrRacket[36] is the editor bundled with the distribution of the Racket language. Its UI feels
slightly archaic and certainly is not as feature proof or ergonomic as other IDEs or editors, but it
does incorporate several interesting features. Firstly, its REPL (the bottom half of Figure 2.16)
allows to display arbitrary values, not just text, which is useful for working with 2D and 3D
graphics[58] but also for working with more complicated data structures. Another interesting
feature is the highlighting of origin of a reference on hover, which shows an arrow from the
location of the definition (either a module import or a global or local definition) to the hovered
identifier. Hovering over a module then shows arrows to all the references of its values. We think
this feature is valuable, although most likely not surfaced in the best way, especially if both
the definition and its reference do not fit on one screen. Another useful LISP specific feature is
the built-in macro stepper, which allows the programmer to easily step through the process of
expanding a macro. DrRacket provides the best REPL-style programming experience we have
seen so far.

Chapter 2. State of the Art 32

Figure 2.16: The user interface of DrRacket, showing the origin-of highlighting.

2.4.3 LightTable

LightTable[59] is a recent competitor in the space of modern text editors, which became popular
with the advent of Sublime Text[60] and have been joined by Atom[61]. LightTable is trying to
be more than a text editor though. One of the original guiding principles and its main focus is
on “shining some light on related bits of code”.[62] But it turns out that this is quite difficult
and so the released version of LightTable provides more traditional debugging tools - watches,
which are conveniently placed next to the line which contains the watched expression as opposed
to having a separate table as in traditional IDEs’ debuggers. This a rather cosmetic change.
Precisely because it is difficult to surface data in other way, our IDE relies on a more traditional
approach pioneered by old LISPs - experimenting with expressions and their results. This is
why our IDE is more similar to a command line interface than, as LightTable does, showing a
single browser page whose content can be edited and autoreloaded on the fly. This approach is
reinforced by using a safer, statically typed language, which cements the connections between
various parts of code and obviates some of the need for observing intermediate values. But the
watching capability is still of course a desirable feature to have in an IDE.

Another interesting guiding principle is “Files are not the best representation of code, just
a convenient serialization”. Although we principally agree with the sentiment, we must also
acknowledge the difficulty of coming up with different code organization that can be easily
navigated. This is again why the current version of LightTable focuses on displaying traditional

Chapter 2. State of the Art 33

file buffers. In the original LightTable prototype the way to look up a function without knowing
its name was to search through the names in a known package. Although this is one useful
approach to searching for code, it does not fully replace the combination of visual identification
by structure and detail - simply identifying a function based on its content, not just a name,
type or documentation; and visual identification by placement, that is remembering where in a
static file the function resided (towards the bottom or towards the top). Humans are notoriously
bad at keeping multiple objects in their short term memory and so, as projects become larger
and more complex, relying on purely on remembering names does not work well in practice.

Apart from these differences LightTable has shared similar philosophy to our IDE, not by the
least since their joint influence has been the work done in the several past years by Bret Victor.

2.4.4 Bret Victor and the Future of Programming

In his highly entertaining and educational talk titled The Future of Programming[63] Bret
Victor[64] argues that the biggest tragedy for the field of computer science would be if the main
programming paradigm of the early 1970s (sequential coding in imperative procedures stored
in text files) became the dogma for future generations to the point where programmers stop
thinking about new and better ways to program. Whether this is the situation we are in now
depends on our point of view. From the industry standards perspective, indeed this model
still reigns with a few advancements: procedures are grouped into classes, state is grouped
in instances and locking is performed by the runtime. It turns out that we are still severely
constrained by the hardware in our computers and that general purpose programming based
on ideas as novel as those from 1960s and 70s presented in the talk is still not in sight. On the
other hand, there are certainly many people still interested in coming up with better ways to
program, some more radical than others. It is our intent to be part of this movement, on the
side of less ambitious but more applicable projects.

One of the key topics Bret Victor has been focusing on is making programming better by
allowing the programmer to better inspect how the program works and what results the pro-
gram produces. The relevant articles and videos are: Inventing on Principle[9], The Ladder of
Abstraction[65] and Learnable Programming[66]. They all argue for a live editing environment
where the changes to code immediately propagate to the results, which are always present and
observable. It is of importance to stress that the vast majority of programming today is still
done in a way where programmers make a change to source code, then hit a “play button” and
then observe the newly generated results, often relying on their memory to compare with the
previous results. But the latter two papers also focus on the fact that live programming in itself
is not enough. Bret Victor stresses the features he shows are mere examples, which is important
because most of them, although they look very appealing, would not work even for slightly more

Chapter 2. State of the Art 34

complicated examples. But in general we completely follow the goals set out in the Learnable
Programming paper:

1. to support and encourage powerful ways of thinking

2. to enable programmers to see and understand the execution of their programs

The principles outlined are to make the code more readable, to be able to follow the flow of
computation, to be able to inspect state, to make creating more reactive and to be able to
abstract easily. All these are reflected in the design of our IDE detailed in Section 4.

2.4.5 Swift Playground

Apple has been inspired by the work of Bret Victor when producing their new language called
Swift[67]. Swift includes a playground, a plugin to Apple’s XCode IDE. The environment
includes some of the tools presented in the Learnable Programming paper, such as an automatic
graphing of values in an iteration loop and a time debugger. It essentially extends the watches
present in LightTable to show any kind of output, such as an image view. It is a great step
towards interactive programming, but fails short for two main reasons. It does not support any
interaction with the viewed results. So it is completely passive, apart from the few built-in tools.
Secondly, and this is where its name comes from, it does not support custom app or framework
code. This means that only code pasted into the playground can be used, limiting it to small
experiments which must then be copied and pasted into the main program.

2.4.6 Aurora

After “finishing” LightTable, its author has shifted focus to a more general programming model
which could be applied not only to programmers. Aurora[68] was a demo of such an approach.
The key difference from LighTable is that it focuses on data as opposed to abstract code -
indeed, there is no abstract code, as all values are concrete and functions are defined using
example values. This was a very interesting experiment which also showed the power of live,
interactive editing, but as with many prototypes it remains to be shown whether such approach
could scale beyond simple examples.

The second interesting aspect of the prototype was the way the user interacted with it. The
interaction relied heavily on mouse clicks, drags and contextual menus, which are generally
preferable for less technical audience. The important point is that, unlike LightTable, which
in regards to editing remained a very traditional text editor with standard key bindings found
in Vim, Emacs or Sublime Text, Aurora was a truly structural editor. We will show later

Chapter 2. State of the Art 35

how having a structure-oriented editor can lead to some of the tools described in Learnable
Programming.

2.4.7 Lamdu

Another example of the potential of combining a structural editor with a statically typed lan-
guage designed for structural editing is Lamdu[69]. Lamdu uses a very specific representation
for code using a custom rendering engine where expressions are represented by boxes of various
sizes. Arguments to functions in the Lamdu language are always named and there are no tuples,
only named records, which don’t require type declarations, same as in Elm or PureScript. The
resulting representation strives for readability but it remains a question how well it works on
large definitions where the font size must decrease to accommodate them.

(screenshot of factors)

But the more interesting aspect of Lamdu is the way code is inserted. Lamdu uses type-based
auto-completion, and pressing space both inserts the completion and creates an appropriate
hole for the next expression. This enables extremely simplified code creation. For example, to
define the factorial function, the key presses required are:

fac x=if x=0 1 x*f x-1 // keypresses
fac x = if (x == 0) 1 (x * fac (x - 1)) // resulting definition

Of course it is not the number of key presses that’s important, but the fact that the IDE helps
the programmer create a meaningful program by providing type-correct suggestions and taking
away some of the burden of structuring the code. This focus comes from a belief, which we
share, that by simplifying the editing experience the programmer can better focus on the actual
problem they are trying to solve. We drew inspiration from this aspect of Lamdu, but otherwise
don’t share the approach of creating a custom representation and custom native language which
we believe limits the applicability and hinders the adoption of such technology. Yet Lamdu is a
very ambitious project which approaches similar goals to ours from a different perspective.

2.5 Ancient Wisdom

It seems that many of the ideas for a better programming environment have been around for
decades without pertaining the mainstream. They can be largely associated with the academia
(or similar environments like Xerox PARC) and they have had a rather subtle impact on the
industry. Here we find again the struggle between designing useful tools and their performance

Chapter 2. State of the Art 36

a key factor. Many of the great ideas of 1960s and 70s were simply too advanced or did not
fit well the mainstream hardware of the time. Nevertheless, they have inspired and will be
inspiring generations of language and tool designers. The lessons presented here are just some
of the ones that had the biggest influence on our design.

2.5.1 Smalltalk

Smalltalk[70] and its modern evolution Pharo[71] are fully interactive object-oriented program-
ming environments. Smalltalk allowed the programmer to shape the environment in which they
worked and to experiment by editing running programmers. It pioneered message passing as the
fundamental unit of computation in a way which nowadays survives in the actor model and lan-
guages like Erlang[72]. But it ultimately fails because it is an isolated, interpreted environment.
This means that it is both less performant and difficult to deploy.

2.5.2 APL

APL is a beautifully designed language which tried to provide a better tool of thought[73],
focusing on its notation (syntax). The principles behind APL were correct but it tried to model
the wrong tool - mathematical notation, instead of coming up with an appropriate tool for the
age of computers. The obvious deficiency of the language is that its primitives were named with
obscure single characters. Together with the use of higher order operators (akin to higher order
functions) and the fact that each name represented two different operations based on its position
within an expression (unary and infix binary application), it made programs written in APL
incredibly succinct and elegant. This was probably the only advantage: the names were difficult
to remember, although they sometimes provided graphical reference to their semantics, hard to
input and it made extending the language awkward, because user-defined functions did not look
or behaved like the built-in operators. We recognize this urge to simulate mathematics without
acknowledging the hardware and software capabilities of computers in Haskell’s syntax as well.
On the other hand APL is a good role model for a mathematical library: using this library
should lead to necessarily as succinct code but it should allow the same form of abstraction and
expressiveness.

2.5.3 McCarthy’s S-Expressions

Given the syntax of our language we cannot introduce it without referencing the source of its
main structure[74]. In it McCarthy realized that:

1. The typical mathematical notation with single letters won’t do. 2. Atoms and pairs were all
that’s required to represent a program.

Chapter 2. State of the Art 37

It’s the realization that using lists constructed out of pairs can lead to self-evaluation and
simple bootstrapping of the compiler. From a syntactic perspective, S-Expressions are simply
the minimal representation of a hierarchical data[75] and in turn allow the programmer to write
programs generating programs in a natural way.

2.6 Summary

In this chapter we presented the summary of the related work. The scope of our project is
large and so is the spectrum of references we drew inspiration from. Although new languages
are appearing constantly, we believe that there is currently no language which matches our
design. We have described the issues related to type systems and focused on a couple of aspects
of Haskell’s type system, since we will need this background for understanding our system in
later chapters. Similarly we have described the macro mechanism present in modern-day LISPs.
Lastly we have looked at other programming environments, mainly those which try to improve
on the traditional “make a change, compile, wait, run the program, wait, make a change...”
style of programming and we can conclude that, although improvements are being made, none
of the environments provide the sort of experience we describe in Chapter 4.

Chapter 3

Language Design

The design of a programming language is a largely opinionated process, as witnessed by the vast
magnitude of varying features among existing languages. This chapter provides the motivation
behind design decisions taken with Shem1. We pay special attention to decisions enabled by
targeting our custom IDE, Golem2, described in Chapter 4, which further discusses some of
them from the perspective of designing the development environment.

3.1 A Small Extensible Language

In his OOPSLA keynote[76] Guy Steele argues that a language cannot be designed as large,
because then a different small language will overtake it, but it also cannot be designed as always
small, because programmers would not be able to express themselves without the burden of
defining a large vocabulary themselves. Programming languages should therefore be designed
to be extensible by their community. Guy Steele meant this on both the language level -
programmers should be able to define custom operators and functions - and the community
level, in that Java started as a small language but grew with its community.

We must therefore design a small, highly extensible language. This is one of the many reasons
we chose S-Expressions for our syntax and decided to support LISP-style macros. It is also why
the language is largely inspired by Haskell, which is both at its core and in its standard library
a small language, compared to for example Clojure[77]. But we would not call Haskell highly
extensible. Its syntax is fixed and difficult to extend via templating and some even resort to
copying code[78] instead of using its broken package management system. Yet the problem of
packages and their versioning is shared by almost all natively compiled languages. On the other

1Shem is the formula which activates the Golem in the famous Prague legend.
2According to the legend, Golem is a powerful creature created to help and serve the people of the old Jewish

quarter.

38

Chapter 3. Language Design 39

hand, JavaScript, which Shem compiles to, is easily extensible, both thanks to the available tools
as well as its scripting nature, and Shem builds upon these. The following sections reinforce
these choices.

3.2 Runtime

We have decided to target JavaScript, formally ES5[79], as our primary and only runtime.
In this section we first explain why we target only a single runtime and then why we chose
JavaScript to fulfill this role.

3.2.1 No to Portability

Especially for LISP-like languages it is common that their designers aim for wide portability -
the ability of the compiled code to run using various lower lever languages (originally operating
systems). Portability is very attractive because it would ideally enable the programmer to learn
one language and use it in situations when a certain platform wouldn’t support a given language
(trying to use C# on a platform without support for .NET) or when some functionality has been
implemented only in given lower level language, a particular networking library for example.
This approach has several caveats:

• It complicates the design of the language. The design cannot rely on particular runtime
features to be available.

• It complicates the compiler implementation. A decision has to be made in regards to the
size of the target platform abstraction: the simpler the target implementation required
the more complex the language implementation becomes.

• It is difficult to achieve in full. Clojure is a good example of a language which was
purposely designed with hosting in mind, yet writing Clojure code which can be compiled
for all of its target platforms is non-trivial. This potentially scatters the community, as
authors of libraries can opt for a particular target.

• Providing truly equivalent implementations can have impact on performance, for example
when native number formats from one target have to be simulated in another one which
doesn’t support them.

Language design is always fundamentally about the struggle between providing the best pos-
sible abstractions and performance. We feel that the desire for portability loses sight of the
performance constraint and therefore we designed Shem for a single specific runtime. It helps
that the runtime we chose is, in terms of platforms, widely portable itself.

Chapter 3. Language Design 40

3.2.2 JavaScript

JavaScript is the most ubiquitous runtime of today. It became dominant thanks to the wide
popularity of the World Wide Web which evolved from serving static pages to serving dynamic
pages and has become increasingly a general application platform. Thanks to the support for
direct interfacing with GPUs there are now few types of user-facing applications which could
not be implemented in the browser (also referred to as client-side). Indeed there is now a whole
operating system which provides only applications based on this technology[80].

This popularity is not superficial, the web comes with a completely different deployment philos-
ophy compared to traditional native platforms. Web applications are available almost instantly
and do not require the user to manually install or update them. There are other benefits and
some limitations, but this unique aspect will in our opinion drive further development of the
platform.

Indeed this increasing popularity was also the primary reason a server-side oriented implemen-
tation of the runtime, Node.js, has emerged and become widely popular. Among the arguments
for adopting Node.js is that it enables the creation of server-client applications in one language,
sharing of common code between the server and the client and, most recently, the pre-execution
of client-specific code on the server (for example to prerender so called single-page websites
before serving them to the client).

These two use cases of the runtime make JavaScript a perfect platform for general purpose
programming. Although the jury is still out on whether Node.js significantly improves or worsens
the way server implementations are programmed, it is a fact that no other runtime runs natively
in the browser and that Node.js enables the creation of desktop and command-line-interface
(CLI) applications for modern hardware3. Although JavaScript itself is now evolving, partially
thanks to the pressure put on it by transpiled languages, it will stay backwards compatible
for the foreseeable future as there are large numbers of old browsers installations still in use
worldwide.

Secondly, JavaScript as a language is easily extensible. Libraries can be loaded dynamically,
although we do not consider this to be of as much importance as the designers of Java did. More
importantly, libraries can be written as single functions or named collections of a functions.
Unlike in Java, modules do not have canonical package names and their source code does not
have to be placed in a rigid directory structure. There is also no need for PATH executable
lookup - it is preferred that dependencies are packaged together and versioned adequately.

3Notably, embedded devices and significantly underpowered devices are potentially not a good target platform
for Node.js applications as the JavaScript virtual machine used (V8) takes significant time and memory resources
to boot up

Chapter 3. Language Design 41

Server side JavaScript is also credited with one of the best package management systems among
programming languages - NPM. The situation in the browser is more complicated, as browsers
do not yet support natively loading modules in the same way that Node.js does. There are
several ways in which modules can be loaded and we discuss them briefly in Section 3.8. Of
course, even more intelligent systems could be created for a statically typed language and Elm
is pioneering this approach with its own package management system[81]. The importance
of such systems cannot be understated - one of Haskell’s biggest problems is its nightmarish
dependency resolution and the fact that getting code with dependencies to compile is often
a huge ordeal. Clojure, on the other hand, goes as far as versioning its builtin library (the
equivalent of Haskell’s Prelude) so that a specific version can be easily imported. This is
desirable to enable the evolution of the language itself, something Haskell is wrestling with at
the moment[82].

Furthermore, by targeting JavaScript, we immediately gain the ability to run our code in the
browser, without the performance hit of going through intermediate representations, and this
allows us to implement our IDE for the web, making it instantly available to any programmer
to try without any associated server costs.

3.2.3 Characteristics

Since we target solely JavaScript we designed the language to take advantage of JavaScript’s
features and to allow implementation as lightweight as possible on top of JavaScript. Indeed
we want to avoid the notion of having our own “runtime” on top of what JavaScript provides.
This allows us to focus on more advanced features supporting the programmer, such as our
powerful type system and the interaction between the editor and the compiler, while leveraging
the implementation of runtime features supported by JavaScript. This is a quality that Shem
shares with PureScript over languages like Elm or ClojureScript, which have a significant runtime
implementation of their own.

The main JavaScript runtime features we take advantage of are lexical scoping, closures and ob-
jects, which are used to implement algebraic data, type class dictionaries and modules. Together
with the disadvantages of laziness discussed in Section 2.1.1, this lack of a separate runtime is a
reason for our language being strict. There would be no way to implement laziness and adhere
to this rule.

3.3 Syntax

Syntax is the user interface (UI) of a programming language. At least a programming language
which is meant to be represented in text. Graphical programming languages and graph based

Chapter 3. Language Design 42

DSLs can employ a more complex representation. We will defer the discussion of why Shem
has a textual representation to Section 4.2. Given that Shem is represented in text, what is
its syntax? Backus–Naur Form[83] (BNF) rules are often used to describe all the strings which
form a syntactically valid program of a given language. Valid in the sense that such statements
will not be rejected by the compiler before being checked for semantical errors. Shem is based
on LISP’s S-Expressions. The full set of rules for complete Shem programs is given in Figure
3.1.

Shem programs are represented by Shem expressions. There are 8 rules and whitespace is
handled explicitly. For comparison, the official Java specification[86] lists 216 rules4. Although
the precise count dependents on the granularity of the rules it should be clear from our definition
that the “syntax” of Shem is fundamentally simpler than that of a traditional language outside
the LISP family, including Haskell.

There are several motivating reasons for using this simple S-Expression style syntax. Firstly, it is
simple. It is the simplest representation for trees, and ASTs are intrinsically trees. This removes
layers of parsing and rewriting between what the programmer sees and what the compiler
operates on. It allows a modern IDE such as ours to display and let the user manipulate code
through its structure, as opposed to approximating it from the text. It allows the programmer
to easier extend the compiler because the resulting AST is much simpler[24]. It also allows for
additional better tooling, such as a version control system which understands the structure of
the changing code, unlike today’s text line based systems.

But this syntax does not give much information about what valid Shem programs look like. We
abandon this definition of syntax and consider a more general formula: syntax is composed of
the rules which direct how semantically valid programs, which can be compiled and run, are
formed. This is a more useful definition when talking about LISPs or other macro-directed
languages, such as Shem.

Shem being macro-directed means that the semantics of a particular syntactical unit are defined
by its context - the macro which is used to compile it. A good example is the application of the
comment macro5, invoked as a call to the operator #:

(# This is a comment. It's contents are syntactically valid.)

In this example the comment is called with the arguments This, is, a etc. We can think of macros
as procedures that operate on the program syntax and the current context, possibly amending
the context and producing compiled JavaScript. The comment macro labels its arguments as
comments and does not produce any JavaScript.

4Which do not describe how whitespace is handled
5Indeed, there is no special “syntax” for comments in Shem

Chapter 3. Language Design 43

expression
::=
atom
| form

form
::=
"(" terms ")"
"{" terms "}"
"[" terms "]"

terms
::=
atom
| atom (" " | "\n") terms

atom
::=
| character
| string
| regular-expression
| identifier

character
::=
"\" (<JavaScript string literal characters, "'", """,

latin and unicode escape sequences>
| "newline"
| "tab"
| "formfeed"
| "backspace"
| "return")

string
::=
<JavaScript double quoted string literal

without escaping newlines>
regular-expression

::=
<JavaScript regular expression literal

where first character is not whitespace>
identifier

::=
<any of a-zA-Z+-*/=@#$%^&*~�,<>| >+

Figure 3.1: The EBNF[84] rules for valid Shem expressions, referencing JavaScript strings[85].

Chapter 3. Language Design 44

The compiler is therefore a collection of macros6 and the definition of the compiling context.
The context carries information about current lexical scopes, types and available macros. This
makes the language extremely extensible, as the bulk of what is traditionally checked by the
compiler before further processing is delegated to macros. Indeed some might argue that this
provides too much freedom, but we believe that the process of defining the canonical form of the
language should happen at the community level and the language should be flexible enough to
accommodate this design process. After all, bloated languages such as C++ prove that having
a large specified syntax does not necessarily lead to homogeneous code.

The issue of the compilation context and how it is used by macros is discussed further in Section
5. The next sections describe the effective syntax of the language, defined by its built-in macros,
without discussing their implementation.

3.3.1 Syntax Example

Before we go into the details of the built-in syntax, we present an example of a complete Shem
program. It is not essential to understand its semantics, we only want to give the reader a
chance to get the feel for how the language looks in real scenarios:

Tree (data [a]
Leaf
Node [left: (Tree a) value: a right: (Tree a)])

tree-mappable (instance (Mappable Tree)
map (fn [f x]

(match x
Leaf Leaf
(Node left value right) (Node (map f left) (f value) (map f right)))))

inc-tree (fn [tree]
(: (Fn (Tree Num) (Tree Num)))
(map what: (+ 1) over: tree))

The example first declares new algebraic data type called Tree, then declares its instance of the
Mappable class and finally uses it to define a function which increments the values of a tree of
numbers by one.

Shem as a language does not dictate the syntax of a top level view or a file, it leaves this to the
tools using it7. So another valid Shem program can look like this:

6Clojure has a similar concept but calls it “special forms”.
7Indeed, the way Shem programs are presented in this report is by having the compiler compile them and a

trivial script, which converts the annotated AST to valid LaTeX markup. Some examples are standalone while
most use the prelude and form a single module, which allows us to use definitions from previous examples.

Chapter 3. Language Design 45

(inc-tree (Node (Node Leaf 1 Leaf) 2 (Node Leaf 3 Leaf)))

This program calls the function defined previously on a sample tree. It is a full, valid program,
albeit it needs an environment which provides the used functions, macros and types.

We will now give a succinct overview of the built-in syntax.

3.3.2 Design principles

When designing the syntax accepted by macros in Shem our main design principle is unambi-
guity. Contrast this with the syntax of natural languages or mathematical notation - they are
both expressive but highly ambiguous. We want to achieve high expressiveness while avoiding
ambiguity. Consider the examples of mathematical notation:

sin x+ 1

⟨1; 2)

3 ∗ 5 / 2 / 2 ∗ 3

Ambiguity comes from two main sources: the desire for brevity and the lack of standards.
Often the meaning of mathematical notation depends on the context in which it is presented.
In Section 4.2 we argue that it is the way mathematics were written - by hand, which shaped
its syntax. This is why we feel it is a dire mistake to base a syntax of a programming language,
which is not written by hand, on mathematical notation. It is simply the wrong tool for the
job. It is also important to realize that mathematical notation served two slightly orthogonal
purposes. First and foremost, the notation was used to perform calculations. Therefore it
was absolutely essential that the notation was as brief as possible. Secondly, mathematical
notation provided a tool for thought and conveying ideas to others. It is clear that today code
is read more than it is written and hence serves similar purpose. Yet the devil lies in the detail
- mathematical papers and proofs have a drastically different format to a large code base -
they are relatively short and can expect the reader to study them in full, to remember every
definition from introductory chapters, without being reminded of their meaning later. Reading
code, on the other hand, is more similar to a search: the programmer needs to find out specific
information in the vast amount of code available to him. Descriptive names are preferred to
brief shortcuts, homogeneity is valued over brevity. Keeping code short is still important for
readability, especially in the sense that superfluous syntax obscures the important parts, but is
not the most important aspect for which syntax design should optimize.

Chapter 3. Language Design 46

3.3.3 Color

The use of S-Expressions as the underlying structure of code does not guarantee simple syntax
and readable code. Clearly, if the only rule is that syntax of the language is made out of S-
Expressions (a b c...) or [a b c...], especially when the latter is just an alias of the former,
we can end up with arbitrarily complex syntactic rules referring to the position of terms within
the list. Let us compare let bindings and function definition in Racket and Clojure:

(let ((x 3) (y 4))
(+ x y))

(define (add x y) (+ x y))

(let [x 3 y 4]
(+ x y))

(defn add [x y] (+ x y))

We think that Clojure’s syntax is slightly better. In the let binding, Racket is unnecessarily
verbose, as it is trivial to see which value belongs to which name in Clojure’s simplified syntax.
When defining a function, Clojure’s syntax has a bit more structure and is explicit in that the
value being defined is a function, which might not be obvious in Racket. But the key observation
should be that reading all of these examples without syntax highlighting is difficult! Indeed,
without any sort of highlighting one might argue that the Racket version of let bindings can be
more readable than Clojure’s for large let bindings.

Colors are essential for understanding Shem’s syntax. Traditional languages do not rely on
color because their syntax originated in times where coloring on either screen or print was not
available. The situations where coloring is not possible have become extremely rare8 and there
is no reason to limit the possibilities in the language design enabled by using colors because
of them. Humans have evolved to quickly recognize different colors and it seems too foolish
to not take the advantage of this natural ability. Color is less ambiguous than layout rules
such as significant indentation and does not form the typical visual clutter of punctuation. We
must observe certain limitations though: as with other syntactical features, colors should not
be overloaded to signify too many different meanings. We also cannot employ too many colors,
since we would loose the ability to easily distinguish between them.

The following is a list of colors used in Golem for the various syntactical features. Every feature
will be introduced in more detail later in this section.

8There is of course the issue of colorblindness, which can be solved by using other text styles rather than color.

Chapter 3. Language Design 47

green new name
red use of a macro
blue use of a typed operator or type constructor
yellow constants, literals, type names
white9 reference
orange special reference
purple labels

In addition to these we use shades of gray to lower the visual importance of some tokens, namely
we highlight parentheses around calls in low contrast to the background. Coloring parentheses
is crucial for the legibility of S-Expression-based code, because we do not want them to obstruct
the code they surround.

3.3.4 Declaration Style, Where Clauses

We strongly believe that declaration style programs (Figure 2.1), as opposed to expression
style10, relying on let bindings, are easier to read and comprehend, simpler to construct and
simpler to maintain. A noticeable difference between the two styles is the reverse order of
defining dependencies. We can consider three styles of organizing code within a module:

1. All dependencies are defined before being used. This makes understanding source code
easy, as long as the programmer reads, remembers and understands every line of code
preceding the area of interest. We believe that for complicated modules and procedures
this is inadequate, as the definition of all dependencies obscures the information the reader
is looking for.

2. Literate style as envisioned by Donald Knuth. Essentially the idea is to use a text re-
placement system to present source code in a form similar to a book. This style also
presents comments as the main content. Although it influenced some languages to in-
clude an inverted mode where comments are not delimited but code is (literate Haskell or
literate CoffeeScript), the full idea was never adopted. The main problem with focusing
on comments is that they are not necessary for the successful completion of a program,
therefore maintaining an excessive documentation becomes a burden.

3. Dependencies are defined after being used. This corresponds to the declaration style and
helps focus on top-down programming. We can think of the source code as a directed
graph (with occasional loops) of dependencies with a root in the API definition or main
procedure of a program. The process of reading the code can then be thought of as trying

10Not to confuse with expression languages. Shem is an expression language in the sense that there are no
statements which cannot be treated as values, although some macros, like class and instances, require to be
defined at the top level.

Chapter 3. Language Design 48

to comprehend this graph and we believe the best way to achive this is to walk the graph
from the root, exploring those branches which interest the reader. Hence naturally the
code corresponding to nodes closer to the root should come before its dependencies.

Whichever style is used, the more important aspect of the declaration style is that it takes the
responsibility of ordering bindings according to the required order of execution within pure code
away from the programmer and, on the other hand, gives them freedom to order the definitions
based on importance and readability. In the case that definitions are cyclically dependent, the
programmer might have to put in additional effort to provide this ordering. For example, in
Clojure, the programmer has to use the declare macro to be able to use names of values before
they are defined, which might be the case with mutually dependent functions.

Lazy languages, such as Haskell, have the additional benefit that bindings which would result
in an error can be included among a declaration list as long as the values they define are
not required by the current execution path. This issue extends to the notion of referential
transparency - we should be able to give any subexpression a name and put its definition into
the adjacent definition list. Strict languages, such as PureScript, do not have this property.
Consider the example in Figure 3.2.

factorial n = case n of
0 -> 1
_ -> n * (factorial (n - 1))

factorial n = case n of
0 -> 1
_ -> n * recursiveCall
where

recursiveCall = factorial (n - 1)

Figure 3.2: Naming a subexpression causes an infinite loop in strict languages.

Following PureScript’s strict semantics, pushing the subexpression into the definition list causes
an infinite loop, as the where clause gets executed first. The solution taken in Shem is lifting
the definition of subexpressions to the appropriate conditional branch. Therefore the second
form of the example runs fine in Shem. This is a great improvement to functional declarative
programming in a strict language and a feature we believe is quite unique.

As practical example of the syntactic clarity gained by referential transparency and definition
lists, consider the following example, which is an implementation of the modulo operation for
very large numbers, in Haskell:

modPow x y n
| y == 0 = 1
| even y = (half * half) �mod� n
| otherwise = (mod x n * minusOne) �mod� n
where

Chapter 3. Language Design 49

half = modPow x (y �div� 2) n
minusOne = modPow x (y - 1) n

Another need for let bindings arises when pattern matching introduces new names to the scope
and we would like to use these inside named subterms. A similar mechanism to the one in-
troduced above can be used to allow the use of these names in the function’s definition list11.
Without this feature, the only way to avoid a let binding is to use a helper function.

inc-some x = case x of
Just value -> incremented
where

incremented = 1 + value

inc-some x = case x of
Just value -> inc value
where

inc value = 1 + value

Haskell supports this kind of referencing not only from the main expression of a function but
also for any pattern matching, again thanks to laziness.

3.3.5 Labels

Many LISPs have the facility of keywords. These can be used by macros in various ways, for
example to give names to values in a dictionary, or to provide optional named arguments to
functions. Shem does not have keywords, but it does use labels. Labels are identifiers ending
in a ‘:‘ and how they are used depends on the controlling macro. For calls, labels are used to
name arguments, which can be then passed in arbitrary order:

(map over: {1 2 3} what: (fn [x] (+ x 1)))

Labels are optional, unlike in Objective-C[87], because there are many situations where they
would only be an unnecessary burden:

1. Arguments have the same type but the function is commutative:

(+ x: 1 y: 1)
11Not currently implemented

Chapter 3. Language Design 50

2. Arguments have disparate types, especially when local names are the same as the param-
eter names:

what (^ 2)
over {1 2 3}
squared (map what: what over: over)

The main advantage of having labels is in reinforcing code safety when the type system cannot
guarantee it, that is when arguments are of the same type and it is easy to involuntarily swap
them, causing semantic errors. In Haskell this situation is usually avoided by using newtypes,
essentially cheap wrapper objects which give the arguments different types. This is a good
solution but it might add significant boilerplate if the value needs to be converted often between
the wrapper and the original type.

Another advantage is that currying becomes even more powerful. Programmers sometimes use
the flip function in Haskell to avoid the need to use a lambda or declare a new function by
currying a different argument of a function. Consider12:

map (flip at "ABCDE") ['A', 'C', 'E']

(map (at in: “ABCDE”) {\A \C \E})

In Shem, we can name the argument instead of flipping the order of the arguments, which,
unlike flip, scales well beyond two argument functions:

(zip (put in: {a: 1 b: 2 c: 3}) {“a” “c”} {4 5})

In this example, put takes three arguments, key, value and a dictionary and returns an updated
dictionary. Using labels is much simpler and shorter than using flip or a new lambda:

zipWith (\at what ->
put at what (fromList [("a", 1), ("b", 2), ("c", 3)])) ["a", "c"] [4, 5]

Labeled arguments can be specified in any order. The remaining arguments are applied in the
order they are supplied as the remaining parameters to the function. If there are fewer arguments
than parameters, the function is applied partially. This translation is done at compile time and
has no additional impact on performance.

This example demonstrates another reason Shem includes labels: they are useful for creating
dictionaries with keys as strings, which is arguably an extremely useful data structure to have
(Clojure also has built-in syntax for them).

12at is similar to Haskell’s lookup.

Chapter 3. Language Design 51

3.3.6 Describing values

The following table lists the default values represented by atoms and forms, shown by example:

1
1.5
-3
Infinity
-Infinity

Numerical values, - is used for negation

\A
\newline

Characters

“Hello world”
“Multiline

string”

Strings

/\w+/ Regular expressions

x References
True
Green

Constants

global.Math.PI Name-spaced references

(+ 1 2) Calls

{3 4 5} Arrays

{a: 1 b: 2} Maps with string keys

[1 2] Tuples

Notably, Shem inherits from Haskell the distinction between data constructors using capitalized
names and other references using lower-case names. This namespacing nicely corresponds to
the practice of capitalizing constants in JavaScript and other C-like languages.

Also note that strings use proper quotation marks for presentation, although they are typed as
the usual straight quotes.

3.3.7 Defining names

In Haskell, there are multiple ways new names are defined. There are function declarations
and value assignments (semantically different), using the equal sign, and also other syntax for
declaring types and classes. In LISPs, such as Clojure, names are usually added to scope via
specific macros, such as define, defn, defmacro, depending on the kind of value being assigned.
As we already discussed, an important difference is that Haskell allows definitions in arbitrary
order, while in Clojure the macros execute imperatively on the context.

Chapter 3. Language Design 52

In Shem the order of definitions does not matter and all naming is done via pairing of the name
with its definition. Consider:

x 3
y z
z 42

In the example, the value 3 is given the name x, 42 is given the name z and the value represented
by z, which we know is 42, is given the name y. It is important to see this example in color, as
the coloring makes it obvious which part of the pair is the name and which is the value.

The same syntax is used with all other built-ins:

f (fn [x] x)

D (data A B C)

C (class [a]
m (fn [x] (: (Fn a a))))

d-c (instance (C D)
m f)

Macros can of course define other ways of defining names within them, so for example the fn
macro defines names for its parameters. The same pattern of pairs of names and values, which
is what we refer to as a definition list, is repeated within the class, instance and fn macros,
detailed next.

3.3.7.1 Pattern Matching

Like in Haskell, Shem supports pattern matching on collections and algebraic data, introduced
below. Patterns can be used in definition lists and in the match macro (Section 3.3.9.4).

[x y] pair
pair [1 2]

x is assigned the first value in the tuple pair and correspondingly y is assigned the second value.

There is syntax for matching built-in arrays, although we would like it to match any sequences
in the future:

Chapter 3. Language Design 53

{start ..middle last-but last} list
list {1 2 3}

middle will be an empty array. Similarly literal maps can be matched as well as other built-in
collections using their constructor macros, described in Section 3.7.

3.3.8 Style Guidelines

Even though we tried to minimize the number of unnessary choices programmers have to make,
there are cases which are better left to them. This is where the official language style guide
comes into play, to guide programmers in cases which cannot be enforced by the compiler. Some
examples of rules are:

• Pure functions returning a Bool should have a name ending in ?.

• Procedures with side effects should have a name ending in !.

• Built-in macros should be neither aliased nor shadowed, especially if the shadowing defi-
nition is a macro.

3.3.9 Built-in Macros

3.3.9.1 Functions

Functions in Shem are defined using the fn macro:

increment-by-slate (fn [x]
(: (Fn Num Num))
(# Increments x by a small slate.)
(+ slate x)
slate (* 2 half-slate)
half-slate 0.5)

The macro takes a tuple of parameter names, which become the named arguments to the
function, an optional explicit type, an optional documentation comment and the result of the
function followed by a possibly empty definition list. The names defined within the definition
list are local to the function, as in Haskell’s where clause. Polymorphic recursion and mutual
recursion, which is demonstrated in Figure 3.3, are supported.

There are no function patterns in Shem. That means that every function needs to specify the
names of its paramaters. This is intentional - we find that Haskell’s function patterns lead to

Chapter 3. Language Design 54

fibonacci (fn [month] (adults month))

adults (fn [month]
(match month

1 0
n (+ (adults previous-month) (babies previous-month)))

previous-month (- 1 month))

babies (fn [month]
(match month

1 1
n (adults (- 1 month))))

Figure 3.3: Computing an element of the Fibonacci series using mutual recursion derived
from its original definition[88].

badly documented code. We also made sure that in Shem’s syntax documentation comments
can be read by the enclosing macros and written into the environment so that our IDE can
display them during auto-completion. Documentation in Shem is therefore first-class, not ad-
hoc, and we hope this will lead to more understable code bases than are usually those written
in Haskell.

3.3.9.2 Types

Explicit type declaration can be used to specify the type of a definition which is then checked
against the inferred type. For functions, the syntax uses the : operator, followed by the type of
the function, followed by any constraints:

wrap (fn [x]
(: (Fn a String String String) (Show a)))

The Fn type expands to fixed-arity function type constructor application, for the example above
(Fn a (Fn String (Fn String String))). This type reflects the curried nature of all functions
in Shem. Tuple types have the same syntax as tuples, while lists and arrays have no special
syntax, unlike in Haskell. Type class constraints are expressions where the operator is a type
class name.

3.3.9.3 Algebraic Data Types

Algebraic data is used to define new constants, similarly to enums in object-oriented languages,
and composite values. The data macro is used to declare a new algebraic data type:

Color (data Red Blue Green)

Chapter 3. Language Design 55

In this example, Color is the new type of algebraic data representing colors. This data has three
possible values, Red, Blue and Green. This is the simplest variation of algebraic data, where we
specify each possible constant value. We can also create data which has values composed at
runtime, by specifying the names and types13 of each encapsulated value:

Person (data Person [name: String age: Num])

Here, Person is a type of algebraic data for which we can create values by using the Person
constructor function, which the macro generates. Like any other function, we can use labels or
bare arguments in the correct order. The record macro is a shortcut for such algebraic data
types where the name of the type matches its only constructor.

Person (record name: String age: Num)
tom (Person “Tom” 24)
alex (Person age: 22 name: “Alex”)

There is an obvious difference between Haskell and Shem in the way algebraic data types are
declared: in Haskell, the arguments to data constructors are unnamed. Haskell offers the record
syntax to deal with constructors with many arguments. The syntax allows the programmer to
tag the arguments of a constructor with names, which are then used as function names, where
the functions take the composite value and return the corresponding embedded value. The
main issue with Haskell’s approach is that the record field names can be used only once within
a module. Shem does not have this problem because the generated getters are prefixed with the
constructor name.

harry's-age (Person-age harry)

harry (Person “Harry” 21)

Haskell also provides syntax for matching and updating records. In Shem, matching using labels
follows the use of labels for calls, and is therefore a natural extension of matching without labels.
In Haskell, the two syntaxes are quite different:

Person {name = harrysName} = harry
Person _ harrysAge = harry

(Person name: harrys-name) harry
(Person _ harrys-age) harry

Updating values14 within records can be done with a generated macro, which accepts any number
of labeled arguments to the corresponding constructor and a value to base the new value on.
The following assigns (Person “Harry” 75) to older-harry.

13Type class constraints are not allowed in types of algebraic data constructors.[89]
14Not implemented yet.

Chapter 3. Language Design 56

older-harry (Person.with age: 75 harry)

The advantage of having a macro as opposed to Haskell’s special syntax is that it can be also
used as a function, simply by not passing in the algebraic data, in a similar manner to how calls
are curried.

all-older (map (Person.with age: 75) {tom alex harry})

As in Haskell, the two variations of algebraic data, also referred to as sum and product types[90],
can be combined. Shem of course supports recursive algebraic data types:

Lines (data
End
Line [line: String rest: Lines])

two-lines (Line “Hi,” (Line “John.” End))

To define polymorphic algebraic data, the first argument to the data macro must be a tuple of
type variables, which can be used withing the declaration of the data type. As in Haskell, this list
needs to be explicitly declared so that there is a known ordering of the argument types when we
refer to the polymorphic algebraic data type. In the following example, small-character-tree
has the type (Tree Char):

Tree (data [a]
Leaf
Node [left: (Tree a) value: a right: (Tree a)])

small-character-tree (Node Leaf \M Leaf)

Such values, when we do not know the constructor that has been used to construct them, are
deconstructed using the match macro.

3.3.9.4 Match Macro

In Shem, pattern matching with several cases is always done with match macro, similar to
Haskell’s case. Although this is a more verbose approach to pattern matching than Haskell’s
function patterns, it does not require repetition of function names and improves code readability
by requiring the programmer to always specify names for function parameters. Apart from
algebraic data we can also match on numbers, booleans and collections. Indeed, the match
macro leaves the matching to the pattern, and therefore new macros can be used as patterns.

Chapter 3. Language Design 57

tree-value (fn [tree]
(match tree

Leaf None
(Node left: l value: v right: r) (Some v)))

The function above converts a Tree to an optional value, depending on whether the tree is just
a leaf or has at least one node.

factorial (fn [n]
(match n

0 1
1 1
_ (* n (factorial (- 1 n)))))

Underscore _, which is otherwise invalid identifier character, can be used to match any value
without assigning it a name. We present the syntax for matching on collections in Section 3.7.

3.3.9.5 Type Classes

Type classes are declared with the class macro:

Show (class [a]
show (fn [x]

(: (Fn a String))
(# A textual representation of x .)))

The macro takes a tuple of type variables, optional list of super class constraints and a definition
list with methods, which are explicit typed function declaration without their bodies.

An example of super class constraints is the Ord class extending the Eq class:

Eq (class [a]
= (fn [x y] (: (Fn a a Bool))

(# Whether x is equivalent to y .)))

Ord (class [a]
{(Eq a)}
<= (fn [than what] (: (Fn a a Bool))

(# Whether what is less or equal to than .)))

Instances are correspondingly defined using the instance macro. The macro takes the instance
type, which is type class constraint describing the instance, optional list of additional constraints

Chapter 3. Language Design 58

and a definition list of methods. The main difference from Haskell’s instance definitions is that
each definition in Shem is given a name15:

show-triplet (instance (Show [a b c])
{(Show a) (Show b) (Show c)}
show (fn [triplet]

(format “[%s %s %s]” (show first) (show second) (show third))
[first second third] triplet))

In the example, the name of the instance definition is show-triplet. This will allow for explicit
importing or hiding of instances, which solves Haskell’s problem of undesired instance clashes16.

3.4 User Macros

The simplified construction of macros is one of the primary reasons Shem’s syntax is S-Expression
based. We believe that macros are essential for the high expressive power of our language[10].
We already discussed systems which are built on top of a language, such as Template Haskell,
and conclude that these systems are not an adequate substitute for a macro-based language, for
several reasons[24]:

1. The ASTs of languages such as Haskell or Java are very complex. Template Haskell uses
48 data constructors to represent Haskell’s syntax.

2. The languages also do not posses the homoiconicity property: the translation from syntax
that the programmer sees to the data structures representing it is not straightforward.

3. The macro systems require special syntax which allows them to distinguish macro ap-
plication from ordinary code or, more importantly, code to be processed from actual
compile-time data.

In Shem, macros fulfill two purposes. They are used to generate JavaScript and to generate
new syntax. The two corresponding macros are macro and syntax:

15PureScript’s instances do as well.
16We wanted to use modules instead of explicit signatures[91].

Chapter 3. Language Design 59

plus (macro [x y]
(: (Fn Num Num Num))
(Js.binary “+” x y))

+ (syntax [..args]
(curried-plus args)
curried-plus (fn [args]

(match args
{x} (` plus ,x)
{x y} (` plus ,x ,y)
{x ..xs} (` plus ,x (, curried-plus xs)))))

summed (+ 1 2 3 4)

The plus macro expands at the call site to a JavaScript addition. Any macro which is explic-
itly typed can be curried like a function. The + macro expands depending on the number of
arguments given, to corresponding, possibly curried or nested, application of the plus macro.
The resulting JavaScript code is simple:

var plus = function (x, y){
return (x + y);

};
var summed = (1 + (2 + (3 + 4)));

First the plus macro is declared as a function. This allows us to pass it as a function to higher
order functions. After that the summed value is defined exactly as expected, after expanding the
call to + and then expanding the resulting call to plus.

The syntax quote (`) and unquote (,) macros are used to produce (or match) syntax. Shem
does not currently support reader macros[92], so these macros are used as ordinary operators.
However, they both provide a shortcut - by passing more arguments to them, they automatically
create a call containing the arguments. Therefore (` a b c) and (` (a b c)) are equivalent.
Additionally, ` automatically applies , to identifiers starting with a comma. These identifiers,
if they are lists, can be also splatted.

It turns out that macros are much more useful when dealing with imperative and side-effecting
code. A great example of macros from Shem’s prelude is the do macro, providing Haskell-like
do notation[93] sugaring atop monadic bindings17:

17The actual macro in the Shem’s prelude allows for pattern matching in the assignment.

Chapter 3. Language Design 60

do (syntax [..actions]
(match actions

{x} x
{x ..xs} (match x

(` set ,to ,what) (` chain ,what (fn [,to] (do ,..xs)))
_ (` follow ,x (do ,..xs)))))

Here chain and follow correspond to Haskell’s >>= and >> operators.

Our approach to variable capture is a combination between Racket’s and Clojure’s approaches.
Macros operate on Expressions, which is a built in data type. There are built-ins which can
check whether an expression is a form and convert it to a list of its terms. The ` macro tags
references which are in current scope with their source scope index and mangles names of those
which are not. The author of the macro can force new identifiers to keep their name by prefixing
them with !. The mangled names contain underscores which are invalid for normal identifiers
and the current module name to avoid clashes with other macro generated identifiers.

3.5 Type System

We chose the Haskell type system to base Shem’s type system on because we believe that it is
the most powerful type system with sound type inference and we want the type system to be
a tool which helps the programmer, not a nuisance which requires them to repeat obvious type
annotations. We believe that the increased complexity of type errors can be alleviated through
better error messaging and the continuous feedback loop of our IDE.

Shem’s type system is an extension of the Haskell98 type system[93–95]. We extend this sys-
tem with multi-parameter type classes and implicit functional dependencies, which provide the
required flexibility for expressing our collections API. We will first describe the motivation for
these extensions and how they work in practice. We will then argue that these extensions
preserve the soundness and completeness of type inference.

3.5.1 Multi-parameter Type Classes

The collections API requires type classes which abstract type constructors. We would like
to have methods that can work both on lists and sets, for example, as the add method of
Collection class does in Java. Haskell98 already provides a mechanism for dealing with type
constructors in type classes: constructor classes. Constructor classes have as an argument the
type constructor itself. Consider:

Chapter 3. Language Design 61

class Collection c where
elem :: e -> c e -> Bool
insert :: e -> c e -> c e

Here c stands for a collection type constructor and e for the type of its elements. One possible
instance of such class could be:

instance Collection List where
-- elem :: e -> List e -> Bool
elem = ...
-- insert :: e -> List e -> List e
insert = ...

There are two reasons constructor classes will not provide enough flexibility. Firstly, because
e doesn’t appear as a class parameter we cannot impose any additional constraints on it in
the instances (instances cannot change the signatures of methods). This means we cannot
implement Sets and similar (which constrain the types of their elements). Multi-parameter
type classes remedy this:

class Collection c e where
elem :: e -> c e -> Bool
insert :: e -> c e -> c e

The only difference is that now e became an argument of the class. Instances can now declare
constraints, for example:

instance Ord a => Collection TreeSet a where ...

The second reason is that constructor classes only accept type constructors with one argument.
This means we can use neither concrete types such as BitSet or String, nor type constructors
with multiple arguments, such as HashMap k v. But multi-parameter type classes alone don’t
solve this problem. We additionally need functional dependencies. In the above example, the
c e in the method type signatures signals that c stands for a type constructor, and therefore a
is constrained (via the method types) to be its argument. Functional dependencies allow us to
express similar relationship and more. Our running example becomes:

class Collection ce e | ce ~> e where
elem :: e -> ce -> Bool
insert :: e -> ce -> ce

Chapter 3. Language Design 62

ce now stands for a complete type of some collection with some elements. This allows us to
declare instances for type constants and type constructors with more arguments.

instance Collection String Char where ...
instance Collection (Map k a) a where ...

Note that without functional dependencies the types resulting from use of the methods in our
example would be imprecise:

addToString x = insert x "Hello"

would have the type (Collection String a) => a -> String, although passing in anything
but a Char would result in an instance not found error. With functional dependencies the
type is simply Char -> String. Even worse, methods such as empty :: ce would have a
completely ambiguous type (Collection ce e) => ce; the e in the constraint does not occur
inside of the type.

3.5.2 Flexible Instances and Contexts

Multi-parameter classes with functional dependencies, as implemented by the Haskell extensions
MultiParamTypeClasses and FunctionalDependencies, still do not provide the expressive
power which we require for our collections API. In Haskell, there is a restriction imposed on the
signatures of instances which requires all types of the instance to be of the form T a1...an, where
ai are distinct type variables;[96] note that there can be zero type variables, in which case T is
a type constant (such as Char). This restriction prevents us from having instances such as:

instance Collection (List a) a where...

because the second type a does not use a type constructor.18. In Haskell this instance signature
is allowed with the use of the FlexibleInstances compiler extension. This extension allows
for the use of arbitrary types, therefore the following would be allowed:

class C a where
m :: a -> Bool

instance C (Maybe Char) where ..
18Without multi-parameter classes it makes no sense for an instance type to be just a type variable, since it

would capture all possible instance types of that class, unless overlapping instances are allowed[97].

Chapter 3. Language Design 63

But lifting this restriction has an impact on class constraints as well; for example, we could
write a valid function f x = m (Just x) with a most general type:

(C (Maybe a)) => a -> Bool

Notice the class constraint, which can be neither reduced to a normalized form C v1...vn nor
rejected (especially since there is an instance which partially satisfies it, the C (Maybe Char)
instance). In Haskell we can enable another compiler extension19, FlexibleContexts, which
lifts the restrictions on the normalization of class constraints during type generalization. This
has an impact on the runtime performance - because we don’t reduce contexts, we might have
to pass in compounded dictionaries to functions with constraints. The lack of enforced context
reduction (context reduction is now only forced by explicit types in the program), can in turn
lead to failures in identifying type errors.[98] Most importantly, we lose the property that
programs which require certain instances are rejected if those instances are not present at the
time of compiling those programs.

This alone is enough for us to reject this path to the desired flexibility in our type system. To
find a way in which we could use functional dependencies but still have a fairly simple type
inference mechanism, we considered imposing a different set of restrictions on the format of
classes, instances and class constraints.

3.5.3 Implicit Functional Dependency

The solution we chose has two main components:

1. All multi-parameter type classes have a single, implicit, functional dependency. For classes
TC a1...an the implied functional dependency is a1 → a2...an.

2. We retain the original Haskell98 restriction on the first argument in the instance type.
That is, for instance type TC t1...tn, t1 must have the form T a1...an, where ai are distinct.
Additionally, any free variables in t2...tn must be present in t1.

There are several advantages to our solution:

1. We get some benefits of functional dependencies without the programmer having to un-
derstand the concept of functional dependencies. Although in this report we talk about
functional dependencies, the resulting rules are simple enough to be explained in their
own terms.

19Haskell requires this extension to be enabled only since version 7.10, before that it was willing to infer
constraints not in a normal form.

Chapter 3. Language Design 64

2. We retain original context reduction which reduces all constraints to a normal form. This
means that we do not pass unnecessary dictionaries to functions and that the boundary
between valid and invalid programs is clear.

3. The increase in likelihood of type ambiguity introduced by multi-parameter type classes
is avoided. Even with functional dependencies available, the programmer is still free to
make highly ambiguous type classes such as Coerce a b where both argument types need
to be known for successful type inference. Our system prohibits them.

To show that this system preserves sound and complete type inference, we return to the condi-
tions defined in Section 2.2.5.3. Although we do not satisfy the condition imposed by Haskell
on instance types, we satisfy both the Basic Conditions and the Functional Dependencies Con-
ditions, and therefore preserve sound and complete type inference[48].

3.6 Prelude and Mathematics

Although not part of the core language, a language prelude, or built-in standard library, has a
large impact on how programs written in the language actually look. Apart from collections,
described in the next section, we discuss here our choices for functions included in Shem’s
Prelude, specifically how we deal with logical and mathematical operations.

When compared to Haskell, Shem’s prelude differs in several ways:

• Basic algebraic operators: +, -, *, /, mod, div are not part of a type class hierarchy,
along with numerical literals.

• Operators which are infix in Haskell and other languages take the right hand operand
first. This means that (- 1 5) gives 4, not −4.

• Negation operator is ~ and negative numerical literals are -1, -5 etc, but - cannot be
prefixed to other literals or forms.

The main guiding principle in designing the prelude has been consistency and avoiding type
ambiguity. Additionally, we had to take into consideration the performance impact of type
classes. In designing the basic algebra to use a single type, Num, we have traded type safety and
some part of expressiveness for programmer convenience, type unambiguity and performance.
Additionally, this greatly simplifies the implementation of our type system, since we avoid the
need for defaulting[15], which is far from trivial to implement[46], and avoids the problems
described in Section 2.2.5.2. We end up with an algebraic system which will be familiar to

Chapter 3. Language Design 65

ECMAScript20 programmers. The main practical potential for errors comes from the lack of
integers, which are used often, for example for indexing, and programmers will have to make
sure the numbers they pass in are actually integers. From our experience programming in
ECMAScript languages, this error rarely occurs.

On the other hand, ambiguity and surprising results of defaulting in Haskell’s approach to
algebra arise more often than one would like. Yet there is good argument for having a full-
blown category theory based hierarchy for algebraic operations, and by not creating one for the
built-in library we leave the freedom to design one to the users of our language. Additionally, for
dealing with common numbers and vectors, a simplified hierarchy can be devised, substituting
plus, minus, times, over for corresponding operators and possibly using a from-num function
to convert numerical literals to the desired class of values.

The reason for swapping the order of operands of infix operators is that in this way we achieve
greater consistency with other functions in the prelude, which all obey the rule that the object
(usually a collection) of a functions comes as the last parameter, simplifying currying. This
means that curried calls like (- 1) and (/ 2) have the intuitive semantics, “subtract one” and
“divide by 2”. This change might be confusing to programmers used to LISP, but we believe that
knowing the rules of our language, (- 1 5) is easier to understand than LISP’s (- 1 2 3 4)21.
The same rules apply to comparison operators, therefore (> 2) check whether the next argument
is “bigger than 2” and (> 2 3) is true.

Comparison and equality are implemented using type classes, as in Haskell, since apart from a
small performance hit they have no negatives but allow for the implementation of collections
based on these constraints for arbitrary element types. Logical operators don’t use symbols,
therefore and and and-map are equivalent to Haskell’s && and and functions respectively. The
rest of the prelude comprises standard basic functions, such as even?, const, curry etc. and our
collections library.

3.7 Collections

Designing a good collections library is no easy task, but we believe such a library is fundamental
for a language to become a useful programming tool. Without well designed collections pro-
grammers are constantly forced to re-implement known data structures and algorithms, with
a great possibility for functional and performance errors. We believe that a good collections
API is one of the good parts of Java and one of the main reasons the language has become so
popular.

20JavaScript, ActionScript etc.
21Equals −8.

Chapter 3. Language Design 66

It was essential for us that our API was polymorphic in the types of collections, for two reasons:

1. Sharing method names across collection types leads to a simpler API, which is easier to
learn and use, and leads to simpler code which is easier to maintain, because collections
implementing the same type classes can be interchanged.

2. Functions can be written in terms of abstract type classes instead of concrete types,
allowing greater code reuse.

There are two possible ways of using a non-polymorphic collections library in a functional
language: either we have to prefix clashing names with module names or make sure that names
in the library do not clash. The latter way is extremely cumbersome and not employed in
practice, as the names would soon mimic the module prefixing. How would we call the map
function on arrays, linked lists, hash sets, tree sets etc.? Therefore the former method is used.
Consider this hypothetical22 example in Elm23:

Set.foldl Array.append Array.empty
(Set.map (\x -> Array.fromList [x ^ 2, 1]) (Set.fromList [-2, 1, 2, 3]))

The program takes a list of numbers, squares each and produces an array of the squares followed
by a one. Elm would show the result as Array.fromList [4,1,1,1,9,1]. We believe the same
code is much more readable using highly polymorphic functions, in Shem:

(concat-map (fn [x] {(^ 2 x) 1}) (Set -2 1 2 3))

Producing the equivalent result {4 1 1 1 9 1}. There are two steps to the translation from
Elm to Shem. Firstly, functions such as append (join in Shem), fold, empty and map are
methods of corresponding type classes and can be used on any data structure implementing
them, and, secondly, this polymorphism allows us to provide a generic concat-map function,
which concatenates any foldable collection of any joinable collections (details follow).

Some argue against making such general API because they expose inefficient operations on the
underlying data structures. We do not believe that constraining the API of a data structure
to only the operations which it implements efficiently leads to a good design. First of all,
many operations which are inefficient for large number of elements work fine for small numbers
and programmers often have to deal with collections of single-digit sizes. Secondly, there are
situations where a non-efficient operation performed once is more efficient than the conversion

22The example would be a valid Elm program if Elm supported sets of arrays, which it does not.
23The same example in Haskell would use the module Vector and its function (++) instead of append.

Chapter 3. Language Design 67

to a more suitable data structure; for example, searching linearly through a list is faster than
converting the list to a set (generally loglinear[99]) and then performing a constant lookup.
We therefore leave the complexity analysis and choice of appropriate data structure to the
programmer, while providing them with the most flexible API possible.

3.7.1 Collections Class Hierarchy

We will now discuss the collections class hierarchy currently implemented in Shem’s prelude.
It is clear to us that this hierarchy is not perfect and that further improvements and additions
will have to be made, especially taking full account of performance. Nevertheless the resulting
API is already a big improvement, in our opinion, over the state of collections in PureScript,
Elm or Haskell.

Bag collection item
size empty fold join filter &

at key? put delete fold-keys elem? remove

map

zip
first rest take drop
&& but-last last

Seq collection item

Appendable collection item

Mappable wrapper

Zippable wrapper

Map collection key item Set collection item

Figure 3.4: The type classes forming Shem’s collections API. Arrows point from super class
constraints towards class types.

The class hierarchy is shown in Figure 3.4. The two top type classes are Bag and Appendable.
The reason they are separate is that we wanted sequences to be maps, but we cannot add
values to maps without their keys. This is actually the central issue of our design - whether
to include maps in the hierarchy along with sequences or to keep them separate, as in Java’s
collections(Figure 3.5). We gain a lot by using this design - all the methods which work over
generic maps work over all sequences (Lists, Arrays, Strings) with keys being numbers. Map
therefore extends Bag and Seq in turn extends both Map and Appendable. Set is similar to Seq in
that it extends both Bag and Appendable. By having a simple interface for the Set class we can
allow all collections to implement it, provided they have a means of comparing their elements
(usually via an Eq constraint).

There are also separate type classes for mapping and zipping, Mappable and Zippable (zip in
Shem is equivalent to Haskell’s zipWith). They are not multi-parameter, because their methods
are fundamentally different to those of the classes above: they change the type of the element.
Such method types cannot be expressed with multi-parameter type classes, because they only

Chapter 3. Language Design 68

Figure 3.5: Core collection interfaces from the Java Development Kit[100].

have access to the concrete type, say ce, which represent both the collection type and the type
of its elements. Additionally, since Mappable corresponds to Haskell’s Functor we extend it
further with other classes independent of the collections (more on them in Section 3.9).

3.7.2 Collections Data Types

Shem’s built-in collections use the Immutable.js library[101], which provides a basic set of im-
mutable, persistent[35] data structures. All method implementations are strict at the moment,
although laziness could be used to improve performance in the same way it is used in Clojure,
which inspired the use of persistent data structures. The collections which are available using
the prelude are:

• Array24, which provides efficient lookup and addition/removal on both ends. Ex: {1 2 3}.

• List25, which is a singly-linked list with usual properties. Ex: (List 1 2 3).

• Set, persistent HashSet with efficient addition/removal. Ex: (Set 1 2 3).

• Map, persistent HashMap with efficient addition/removal on keys. Ex: (Map \A 1 \B 2)
or {one: 1 two: 2}.

• String, JavaScript’s strings, which are natively immutable.

Each can be created with a corresponding macro, and arrays and maps with string keys have
the aforementioned special syntax. These forms can be used for pattern matching as well. For
example, we will spell out all the instances of the Array data type:

• (Seq (Array item) item)

• (Set (Array item) item) given (Eq item)

• (Map (Array item) Num item)
24List in Immutable.js v3.
25Stack in Immutable.js v3.

Chapter 3. Language Design 69

• (Appendable (Array item) item)

• (Bag (Array item) item)

• (Mappable Array)

• (Zippable Array)

The same instances are declared for Lists and with item being Char for String. The type
constructor Set implements the Set type class and its super classes. Map implements the type
class Map with generic key, item arguments and also implements Set and Appendable, in the
following ways:

• (Set (Map key item) item) given (Eq item)

• (Appendable (Map key item) [key item])

We would normally insert items into a Map using the put method (f.e. (put “a” 1 (Map)))
but it can be useful for higher order functions to use the more polymorphic method & (f.e.
(& [“a” 1] (Map))). There are situations in which it is useful to treat maps as collections of
pairs instead of collections of their values, in which case can we can wrap the map in a “view”,
similarly to the approach taken in Haskell’s Data.Foldable package[102].

This concludes the description of the built-in collections in Shem. We present more examples
for comparison between Shem and other languages in Chapter 6.

3.8 Modules and Namespacing

Shem has a simple module system inspired mainly by Node.js. Modules can be required26 and
functions, macros, types, and instances can be imported under original names or renamed27.
Shem does not support importing all definitions automatically, which is Haskell’s default be-
havior, because this can cause unexpected name clashes when the list of definitions within a
module changes. On the other hand, once a module is required, its functions and macros can
be accessed via a namespaced reference (prefixed with the module name). There is currently
no syntax for exporting, but we considered explicit hiding of names, either via a name affix or
wrapping macro.

The reason functional languages usually allow the import of all definitions of a module, as
opposed to statically typed OO languages, is that in the former there are many more functions

26Prelude is currently required automatically and so are all its definitions.
27Renaming has not been implemented.

Chapter 3. Language Design 70

than classes in the latter, which must be accessible directly - there are no objects holding
references to them. Therefore requiring the explicit import of every function can be a big
burden on the programmer - that is, if they must type the imports themselves. Shem, on the
other hand, relies on its IDE, which handles these imports automatically for the programmer,
similarly to traditional IDEs in OOP languages.

For example, we could require a module HTML and import the function animate from its
namespace, while accessing a different function via the module name directly:

[animate] (req HTML)

args HTML.cli-arguments!

This makes code more understandable[103], because the origin of every name is explicit, provided
we know the contents of the whole module. Here again it is better to rely on appropriate tools,
like our IDE, which easily surfaces the origin of every name.

3.8.1 Module Implementation

The module system in Shem fulfills two purposes: it allows for separate compilation of the
modules and also for importing code across projects. For the second purpose it must compile
modules to isolated JavaScript objects that can be safely combined together. In Node.js the
runtime takes cares of isolating and loading modules, provided the correct require and exports
declarations are used. In the browser there are several different ways of joining modules: static
ones like Browserify[104], which concatenate all of the JavaScript sources into one file or dynamic
ones like RequireJS[105], which load modules dynamically as required28. In any case, since Shem
does not dictate the format of files, it also does not dictate the format of modules, and the
compiled JavaScript can be generated in several forms, including a universal module wrapper
which supports both Node.js and the browser tools.

3.9 JavaScript Interop

We discussed in Section 3.2.2 the reasons for designing a lightweight implementation on top
of JavaScript. Similarly to Clojure, we also want to provide a simple interoperability between
Shem and JavaScript code (sometimes called JavaScript FFI), so that Shem programmers can
easily take advantage of the existing ecosystem of JavaScript projects. We provide a way to
import JavaScript modules, call methods on objects and access JavaScript’s built-ins:

28This is a gross oversimplification of both systems, but it is often how they are identified by the community.

Chapter 3. Language Design 71

• The current global object (whether it is the browser’s window or Node’s global) can be
referenced with the (global) macro call.

• JavaScripts built-ins are accessed through namespaced references starting with global:
global.parseInt, global.Math.PI.

• Method calls use operators prefixed with ., first argument is the JavaScript object contain-
ing the method and subsequent arguments are passed to the method: (.method x y z)
calls method on x passing it arguments y and z.

• Fields are accessed using operator with .- prefix, f.e. (.-field x).29

Any of these methods produce values of the built-in Js type. These values can be passed around,
have methods called on them and fields accessed, but they cannot be used as arguments to typed
functions. It is therefore good practice to explicitly type them as soon as possible:

DomElement (data)

integer-value (fn [element]
(: (Fn DomElement Num))
(parse-int (:: String (.-value element))))

The function integer-value returns the DOM value of a DOM element such as input con-
verted from a string representation to an integer. The fact that we access the field value on
the parameter element suggest it is itself a Js value, which was tagged with a dummy type
DomElement, (again, using the :: macro).

It is even better to use a function which checks that the Js value passed to it corresponds to the
required type, although the macro :: does not perform this check to not impair performance
and because there is no way to infer this check for user defined types. It would be possible to
implement a macro which checks built-in types and algebraic data types, though.

Compare our approach with the following systems from other Haskell-like languages compiling
to JavaScript:

• PureScript requires30 that JavaScript code be provided in a separate file named as the
one which tries to call it, with matching names. For example:

-- Test.purs
foreign import intAdd :: Int -> Int -> Int

29We cannot have a single accessor pattern like Clojure, because unlike in Java every method of a JavaScript
object can also be treated as a field with a functional value.

30From version 7[106]

Chapter 3. Language Design 72

// Test.js
// module Test
exports.intAdd = function (x) {
return function (y) {

/* jshint bitwise: false */
return x + y;

};
};

• Elm does not allow simply calling a JavaScript function, because the whole computation
is controlled by its runtime. Values can be sent from and to the runtime and functions
written in Elm can be called from JavaScript.

• Fay has actually the simplest FFI to JavaScript of the three languages, which can be used
at both the definition or expression level:

unixTime :: Fay Int
unixTime = ffi "new Date().getTime()"

add3 :: Int -> Int -> Int -> Int
add3 x y z = x + (ffi "%1 + %2" :: Int -> Int -> Int)

The obvious disadvantage of this approach compared to ours is that any string can be
passed to ffi.

None of these languages allow Js values to be passed around. We believe that Shem’s FFI is a
simpler and more flexible mechanism than any of these.

3.10 Imperative Computation

Shem, being a strict language, has an easier way to supporting imperative computation than
lazy languages like Haskell. Mainly for simplicity and because it is a well understood approach,
we included Haskell style monad-based IO in Shem’s prelude. Although not strictly required
for the implementation, we added thunk-like zero-arity functions to Shem. A simplified IO can
then be implemented using an algebraic data type wrapping a zero-arity function, which gets
evaluated once the action is run, as shown in Figure 3.6. We have already shown the do macro
implementing the usual syntactic sugar in Section 3.4. The type classes hierarchy implementing
monads in Shem consists of these classes:

Chapter 3. Language Design 73

• Mappable with method map, corresponding to Functor in Haskell.

• Liftable with methods lift and apply, corresponding to Applicative with pure and <*>.

• Chainable with method chain, corresponding to Monad with and >>= from Haskell’s
prelude.

The latter classes extending the former. There are several improvements over Haskell’s im-
plementation: Shem does not inherit the historical error of Monad subsuming the Applicative
interface31[82], it provides more intuitive names that do not originate from category theory and
does not use hard-to-remember and read infix operators[103]. The implementation of the chain
method is then straightforward:

Io (data [a] Io [content: (Fn a)])

run-io (fn [action] ((Io-content action)))

chain (fn [action through]
(: (Fn (Io a) (Fn a (Io b)) (Io b)))
(Io (fn [] (run-io (through (run-io action))))))

Figure 3.6: The implementation of IO in Shem’s Prelude using zero-arity functions.

The run-io function first unwraps the Io data type and then evaluates the enclosed zero-arity
function. The chain function, which would be the implementation of the chain method for
the instance of Chainable of Io, returns a new action which when evaluated first evaluates the
passed-in action, then passes its result to the supplied through function and evaluates its result,
which must be an action itself. This enforces the order of evaluation of the functions stored
inside actions.

The added benefit of having the monadic mechanism in place is that we can implement different
kinds of IO, for example one to deal with asynchronous computations[107].

3.11 Summary

In this chapter we introduced Shem, a new statically typed strict functional language. Its main
design goals are expressiveness and unambiguity. It is a language tailored for the use within
its custom designed IDE. It compiles to JavaScript, itself a high level, portable and extensible
platform. Its type system and basic library are inspired by standard Haskell, but they are a
significant improvement in terms of both simplicity in the way they deal with numbers and
expressive power thanks to highly polymorphic collections, making Shem a much more usable
language from the get-go.

31In Haskell, Monad extends Functor directly and does not extend Applicative.

Chapter 4

IDE Design

Many of the design decisions taken with Shem have been influenced by us relying on its IDE,
Golem, to provide the corresponding features. Yet there is a more general influence of the IDE.
Without a good IDE aspects of the language such as an S-Expression-based syntax and static
typing would have too many drawbacks for us to base an ideal programming tool on them.
Although we could have hoped that a suitable IDE was developed later for such a language its
design could not draw lessons from the concurrent design of the IDE and we would not be able
to fully demonstrate and evaluate the strengths of these aspects.

We drew a lot of inspiration from the work of Bret Victor (Section 2.4.4) and perhaps the single
most important principle for the design of our IDE is providing an interactive experience. What
we mean by interactive will become clearer as we discuss the various aspects of our IDE, but
for now it will suffice to say that we do not consider a REPL-style interface interactive. Neither
live reloading - recompiling and reloading programs on save - does itself provide the kind of
programming experience we are aiming at.

4.1 Supporting the Programmer

IDEs are some of the largest pieces of software and it is not feasible for us to implement every
little feature of every available IDE. Indeed, we aimed for a simple IDE that would showcase our
fundamentally different approach to programming. Yet the IDE should provide enough features
that it can be used for real work and the rest of the features, such as version control, performance
profiling and package management, should be available via existing external tools. The crucial
aspects of the environment for us are therefore how source code is changed and navigated, the
testing and interaction with running programs, good error reporting and debugging facilities.
These are all areas where we innovated beyond the industry standard, or at least beyond tools
available for functional programming.

74

Chapter 4. IDE Design 75

What is more, we aimed at making this experience instantly available. We implemented both
the compiler and the IDE in CoffeeScript without any reliance on server side technology. This
is important both to support interactive programming and because it allows us to distribute
our IDE in the form of a static web page. This in-browser version is fully capable of compiling
and running Shem programs which do not require the desktop environment. Today’s client-side
web applications show us that the limits of programming for the browser are stretching further
every day. APIs which are not available in the browser can be easily simulated. We do not
expect programmers to work on real projects in the browser, but having this environment readily
available is of great value for building a community, as we do not require the programmers to go
through any installation process to try it out. A desktop version of the IDE is available which
supports editing real files and running code against Node.js APIs.

It is important to mention that an ideal IDE should be highly user-extensible but we primarily
focused on designing a great out-of-the-box experience. Certainly more work would have to be
done in Golem’s implementation to provide the kind of customization we would like to have,
but design-wise this area is fairly well researched[59].

4.2 Input

We begin discussing the design of our IDE from the absolute basics: how should user code
be represented? Some[68, 108–110] have argued that we should employ a richer representa-
tion for code. There are applications where this approach has been successfully used, such as
graphical post-processing. Flowhub[111] is an early example of taking that approach to general
programming. We believe that these graphical approaches are not appropriate for professional
programming for two reasons. The most important one being the input hardware that is cur-
rently used by programmers. Keyboard is the fastest input mechanism we have to this day.
Faster than a mouse, faster (and certainly more precise) than a touchscreen. Easily faster
than speech. Until we have a good mind reading equipment, keyboards will stay the fastest
input devices and with them, text will stay the natural medium of communication, including
communication between the programmer and the computer.

There is a possibility of using text for input but choosing different visual representation for
output. There are certainly ways in which richer representation could be made easily editable
by keyboard1. Yet this approach abandons the plethora of tools based on text which already
exist, which means that they would have to be all reimplemented: storage, copying, versioning.
Microsoft Word[112] is the prime example of this approach and everything that can go wrong
with it. Smalltalk is in a way also an example of this, as it creates an isolated ecosystem within
its editing environment. Most importantly for us, there is an opaque layer between the actual

1Aurora, although heavily relying on mouse input, would be a good base to start.

Chapter 4. IDE Design 76

source and its representation and we believe this is not a feasible solution for programmers who
often have to dig deep into concrete implementations.

One of the biggest problems with all rich graphical representations is that they are necessarily
richer and hence more verbose then their code equivalent. Therefore they usually work well on
small examples but do not allow the programmer to quickly skim large amounts of code, which
is often crucial.

A simpler approach would be to treat textual source code as markup and allow a view on top of
it. This would arguably be even worse, as programmers would have to deal with two different
representations of their programs. Shem strives to present code in line with the WISIWIG
user experience (UX) philosophy: “What you see is what you get”. There should be no barrier
between the input and the output, as this would almost certainly slow the programmer down.
Additionally, this allows Golem to be built on top of familiar text-editing concepts. After
all, there are already two representation layers of the programmer’s code, Shem code and the
compiled JavaScript, and we should not add another one.

4.3 Modification of Source Code

It is often argued that the majority of the time programmers are not modifying code: they
are trying to understand existing code, thinking of a solution, sketching solutions on paper, or
being forced to sit through “boring” meetings. It is certainly the case that there is much more
to programming than writing code, but we feel that this argument does not justify negligence
of how programmers interact with the code. Even if 10 or 20 percent of the time was spent
writing and modifying the code (and it is certainly more for certain periods of the development
cycle) it would be worthwhile to minimize it. More importantly, writing code is tedious and
programmers have to waste either time or mental capacity on figuring out how to perform it.
We want our IDE to provide the best possible editing experience. This is tightly connected with
the input ergonomics. We must be able to perform all editing actions easily from the keyboard
while leveraging the pointing device2 for targeted actions. Any interface which does not support
and take advantage of both keyboard and mouse is in our opinion not ergonomically optimal.

Golem’s editing model, although based on text, is fundamentally more powerful because it
allows the programmer to manipulate the code at the level of its AST. This ties in with our
decision to use S-Expression based syntax for our language. The difference is subtle, yet hugely
empowering. Imagine we want to swap the order of elements in a list or arguments passed to a
function, in a language with C-like syntax:

2Mouse/trackpad.

Chapter 4. IDE Design 77

x = [a, b];
f(a, b);

There are several ways to achieve this. We can select the inside of the parentheses and simply
retype the arguments. This is not a good solution if the arguments are longer names or even
more complex expressions. We can cut the first argument, delete the comma and the space,
move cursor after the second argument, type a comma and a space, paste the first argument.
A lot of error-prone editing for such a simple change. In a modern text editor, such as Sublime
Text, which supports multiple cursors, we can select the first argument, then select the second
argument using a new cursor and invoke the built-in transpose command, which swaps the two
selections. This is a much better solution then the previous ones but still has some drawbacks:
the second selection cannot be done with keyboard and might be difficult if the argument is a
complex expression.

We can argue that this operation is not very common, although this might be the result of
how cumbersome it is to perform it. But let us imagine further that we want to perform this
operation many times, on different arguments, while we observe the results of the change. In
such a case we might come up with an IDE function which performs this operation. But such a
function will be, at best, specific to comma separated lists. It will not work on a list of expression
separated by semicolon. In the end to implement a general function to perform this operation
we must consider every syntactical structure of our language but even then the function will not
be as general as we would like it to be because the syntax of the language is not homogeneous.

In Golem, we simply shift the expression using a combination of a modifier key and an arrow key.
There are no delimiters that have to be adjusted because Shem’s syntax is made of S-Expression
only. This operation is general: it works with a larger selection, it works on multiple selections
(cursors) simultaneously, it works across forms3. This example shows the advantage of moving
the editing from the text level to the AST level. More powerful editing commands can then be
defined when we take into consideration the semantical value of the AST nodes.

4.3.1 Design Principles for Editing

There have been many attempts at bringing true structural editing[13] to the programming
toolbox but they have all mostly failed, as witnessed by the fact that they are virtually non-
existent today[113]. The reasons this mode of editing has not become popular is because it
constraints the programmer too much and disrupts the natural flow[114] of working with source
code. Although editing modes which try to simulate structural editing, like Vim’s Paredit[115],
exist, they only try to provide a few structure-like editing commands. This shows us that

3See the AST reference in Section 3.3.

Chapter 4. IDE Design 78

the most important consideration we have to make when designing a more structured editing
experience is to mirror as close as possible the text editing programmers are used to. This
reinforces our decision to have a purely textual representation of our code.

Although structural editing on the AST level has never become too popular, there is a precedent
for providing a more powerful editing experience which differs significantly from standard text
editing: Vim[116]. Vim along with Emacs[117] form the “holy” duo of traditional text editors
despite the fact that Vim’s approach is quite unorthodox. Instead of working directly with the
text of a buffer4 in Vim the user issues commands which are executed on the buffer. Usually
this system is described as having several “modes”, one for commands and one for inserting
text, although this is slightly imprecise. It would be better to say that for some commands
Vim allows the user to see the result or part of it directly as they are typing the command.
We believe this is not a great approach to source code editing because it is not interactive, it is
more alike to processing (and certainly Vim can be used as a very powerful text processing tool).
But it does show that programmers are willing to put up with different text editing approaches
and modal interaction patterns. Golem’s editing and selection model is in a way modal but we
believe we avoid the sharp divide between modes experienced in Vim.

4.3.2 Representing Structure and Partial Programs

Although S-Expressions seem to have straightforward textual representation we spent consider-
able amount of time designing the details of how the AST nodes are manipulated and how new
nodes can be inserted. Traditionally LISPs ignore the amount and kind of whitespace which
separates expressions. This is not the case with Shem and the reason is that we needed to
be able to tell partial from complete programs. Complete programs use only a single space or
newline to separate terms within a form. Newlines may be followed by indentation, but the
programmer does not have control over how big the indentation is or which characters are used
for it. This frees the programmer from dealing with space-vs-tab and size-of-indentation wars.
This way we strike balance between expressibility and automation, giving the programmer the
freedom to decide when a line should break, which we believe cannot be decided mechanically.

Restricting whitespace this way allows us to represent partial programs simply as programs
containing extraneous whitespace. We use the concept of “holes” present in other programming
environments to discuss places within the AST where new nodes can be inserted. Holes are
present both in complete and partial programs. From a textual perspective holes are cursor
positions surrounded by delimiters or whitespace. Figure 4.1 shows three different holes, where
the first one is in a complete program while the other two are part of partial programs.

4File.

Chapter 4. IDE Design 79

Figure 4.1: A hole between delimiters, a space and a delimiter, and two spaces.

This might seem like an implementation detail but it actually is an extremely important decision.
Usually[68, 69, 118, 119] some sort of added placeholder is used to represent holes, as shown in
Figure 4.2.

Figure 4.2: A use of a placeholder for inserting a new argument[119]. After navigating away
the placeholder disappears.

The problem with this solution is that such holes are not normally visible and easily selectable,
they only work while the programmer is inserting new code. Such approach would break the
strictly textual representation we require and would add friction to changing partial programs.
Our approach on the other hand corresponds to traditional editing, the programmer simply
places a cursor at the position where they want to insert text, we just limit which positions are
valid. Holes represented this way are so natural that we highlight them only slightly5:

We will now describe how selection, inserting and editing commands work in Golem.

4.3.3 Mouse Selection

As can be expected from an editor which is designed to manipulate the AST directly selection
in Golem is by expression by default. Clicking on an atom, including its beginning, will select
the whole atom. The same applies to forms, a big complicated expression can be selected
simply by clicking on one of its two delimiters6. Having some expression selected, the user can
select a range by holding Shift and clicking on another expression - all expressions between
the two will be selected, possibly expanding the selection to parent forms so that all selected
expressions are on the same level in the AST. Holding Command7 and clicking on an expression
triggers the multi-selection mode (multiple cursors). All basic and most advanced commands
work on multi-selections, mostly by executing the same operation on each selection, although
sometimes reconciliation is needed and some editing commands use the multiple selections in a
specific way. Figure 4.3 shows how these selections look in Golem.

5There are three small dots between the parentheses corresponding to each hole position.
6As per Section 3.3 these are parentheses, brackets and braces.
7We will use the OS X shortcuts in the report, different sets of bindings are used on other operating systems.

Chapter 4. IDE Design 80

Figure 4.3: Selecting atom, form, multiple expressions and multi-selection.

Clicking on a hole places the cursor on that position. Because clicking is by default used for
selection, we use long press for placing cursor anywhere within an atom:

4.3.4 Keyboard Selection

The obvious approach to selection is traversal through the AST. The naive approach of walking
up and down the levels and left and right within the levels of the tree does not work well in
practice, because the “movement” does not map directly to the 2D textual representation of the
tree. This why in Golem, the default movement using arrow keys happens on the list of atoms
and holes. Left and right arrows are used to travel between previous and next atoms/holes, the
leaves of the AST. The up and down arrows travel between atoms/holes on previous and next
lines and similarly to a cursor in a modern text editor maintain horizontal position between
lines. Command with arrows perform the naive tree traversal. Since there are two possible ways
to travel down the tree - to the first or the last term within a form, we chose the first child to
be the default and additionally pressing Shift moves the selection to the last child. This is
a common pattern in our controls, where adding Shift key to the combination performs the
sibling version of an action.

Shift with left/right arrow expand the selection to sibling and parent expressions, that is when
there are no more sibling terms the parent expression is selected. This is another important
design decision - actions should naturally extend so that the user does not feel constrained by
the AST structure.

Command-Down combination when an atom is selected places the cursor at its end ready for
adding more characters. Since Golem preserves the validity of the text representation of the
AST, if the atom is itself delimited, that is if it is a string or a regular expression literal, Golem
places the cursor automatically within the delimiters:

Chapter 4. IDE Design 81

4.3.5 Inserting Source Code

In line with our design principles, inserting works simply by typing or pasting text. Selections
are overwritten, they always form a valid place to insert into the AST since they are in general
a range of sibling expressions. Selecting a hole brings up auto-completion, which we discuss
separately in Section 4.4. Inserting text within a delimited atom ensures that delimiters are
properly escaped and that keys bound to actions just print their characters. Pressing Space
creates a new sibling hole to insert the next expression, whether the user is currently editing an
atom or selecting an expression, while Shift-Space creates a hole before the current selection.
Enter and Shift-Enter work correspondingly.

Pressing (, [or { opens a new correspondingly delimited form while typing any closing delimiter
selects the parent expression. Atom delimiters work similarly. These bindings mean that typing
a Shem program character by character requires actually exactly the same keys as it would in a
normal text editor! Golem therefore preserves the natural flow of inserting text while providing
more advanced commands for manipulating existing code.

4.3.6 Editing Commands

Golem provides many useful commands for transforming code. We will list the most interesting
ones. The more advanced ones take advantage of the information provided by the compiler
which annotates the AST.

• Command-(Wrap in a call wraps the selection in parenthesized form, with a hole at its
start for the new operator.

• Ctrl-Space Flatten flattens the selection into a single line, removing any new lines.

• Ctrl-P Replace parent replaces the parent of the current selection with the selection.

• Alt-Left/Right Move is the command described at the beginning of Section 4.3, shifting
the selection between the leaves of the tree.

• Alt-Up/Down Move line similarly to text editors but preserves the AST. Useful for shifting
definitions in definition lists.

The following commands are Shem-specific. Although some of them are present as refactoring
tools in traditional IDEs by leveraging multi-selections Golem allows the programmer to perform
them more fluidly.

• Command-) Select definition as extension of) selects the whole enclosing definition within
a definition list.

Chapter 4. IDE Design 82

• Ctrl-F Wrap in a lambda replaces selection with a new function with it as its body.

• Ctrl-M Wrap in a match replaces selection with a call to the match macro such that the
selection is being matched on.

• Ctrl-Shift-M Wrap as the result of a match replaces selection with a call to the match
macro such that the selection is the result of the first branch.

• Ctrl-A Add a parameter removes selection and adds another cursor to the parameter list
of the current function.

• Ctrl-U Push to upper scope moves the enclosing definition pair to the parent definition
list, if there is one.

• Ctrl-D Define removes selection and adds a new cursor followed by the selection to the
current definition list, effectively allowing the programmer to name the selected expression.

• Ctrl-I Inline either replaces a selected reference with its definition or removes the selected
definition name and replaces all its references with its definition.

Many of these commands are important for the kind of interactive experience we want to provide,
as well as allowing the programmer to easily abstract code, which was one of the principles
outlined in Section 2.4.4. We think the following three commands are a particularly compelling
example of the power of structural editing. Imagine we have constructed the following expression
which computes whether 17 is not a prime number:

The result is correct (how the programmer knows is described in section 4.6) so we would like
to transform this expression into a function which takes an arbitrary number. We start of by
selecting the operator which is being called with the hard-coded value:

Then we use Ctrl-L (abstract with a lambda) command which turns the enclosing call into a
lambda application:

Chapter 4. IDE Design 83

The lambda is selected and we can use Ctrl-O to push it to the outer expression, replacing the
parent call with the lambda application and wrapping the lambda’s body with the call.

Using this command twice more gives us almost the function we wanted:

We can now give the function a name using the define command and replace the 17 in its body
with the name of the parameter. Or we can hit Ctrl-I which also inlines lambda applications
and get back the original expression:

The power of all these commands is difficult to demonstrate in a written report but after getting
used to them we already found ourselves missing them in other editors.

4.4 Type-based Auto-Completion

Traditional IDEs sometimes include a “smart auto-completion” mode, where the user can man-
ually bring up a list of options where the top few are based on typing. Golem’s auto-completion
is automatically based on types and is much more advanced than these modes. First of all, the
compiler accepts partial programs with holes, typing them as far as possible and providing this
typing information via the AST to Golem. When the user creates or navigates to a hole, the
auto-completion list automatically opens with suggestions sorted by definition proximity and
how closely their types match.

Chapter 4. IDE Design 84

Figure 4.4: The auto-completion suggests is-prime? first because it is defined in the same
module.

In the example of Figure 4.4 there are three functions which match the inferred type and the one
defined in the same module is suggested as the first. Hitting the Tab key inserts this name. The
programmer is of course free to start typing a name of a function which might not match the
currently inferred type and the completion list will present them with all the matching existing
definitions:

But Golem’s auto-completion is even “smarter”. It suggests calls and curried calls which also
precisely match the type of the hole:

In this example we have a list of numbers, so the the hole must be have the Num type. The
programmer typed s and is presented with a list of calls which have the correct result type. Tab
inserts the call and places the cursor into the new hole for the missing argument of the inserted
call. We already saw en example of a completion which is a curried call in Figure 4.4, where
the function divisible? has type (Fn Num Num Bool).

Chapter 4. IDE Design 85

In the previous examples the type of the hole was not polymorphic - it only contained concrete
types. But Golem’s autocompletion works well on polymorphic types as well. In the following
example the type of the filtered collection and its elements is unknown, Golem therefore suggests
functions which would work if the elements were Bools, such as id, which is itself polymorphic,
as well as functions accepting first argument of some type and producing Bool, such as even?:

The definitions considered come from all the loaded modules in the project. Inserting a name
which has not been imported yet adds it to the imports.

4.4.1 Auto-Completing Types and Patterns

Golem’s auto-completion works on patterns and types as well. Consider these algebraic data
definitions:

Un-Op (data Neg Sin Cos Log)
Bin-Op (data Add Mul Div)
Exp (data

Val [value: Num]
Id [name: String]
Un-App [op: Un-Op exp: Exp]
Bin-App [op: Bin-Op left: Exp right: Exp])

We would now like to write an eval function which evaluates Expressions using pattern matching.
Since we have given the function an explicit type, Golem knows that exp argument has the type
Exp and suggests the corresponding patterns, which are calls to constructors or constants:

Chapter 4. IDE Design 86

After hitting Tab we immediately get a completion list for the next hole, which is now the
operator of the binary application:

Golem also auto-completes types. An inferred type of a function can be inserted via auto-
completion:

As with normal values, calls to type constructors are suggested when a concrete type is required.
Completion on types is also useful when the function definition has not been filled in yet, the
same rules about sorting completions based on proximity of definition apply to types.

Chapter 4. IDE Design 87

Auto-completion is one of the areas where the fact that we designed and developed our language
and IDE together immensely helped to achieve the level of experience we wanted. We can have
an arbitrary number of typed holes and let the programmer figure out how to fill them out.
GHC has recently added typed holes as well, although the programmer needs to specify they
want to get a warning by inserting _ but in theory a similar interface could be constructed on
top of this feature.

4.5 Codebase Navigation

As we have mentioned programmers spend a large amount of time trying to understand code
created by either someone else or themselves in the past8. During all parts of the development
cycle it is important that the programmer can easily surface information about any part of the
code. We have already shown part of this surfacing in the last section. During auto-completion
Golem displays properly the documentation for suggested functions. The same information can
be shown simply by hovering over any reference.

We can jump between references of a name using the Tab (Shift-Tab) key and perform multi-
selection using Ctrl-S (Ctrl-Shift-S). Golem has the advantage over modern text editors
that it understands from the AST which atoms correspond to which definitions, so that we
can multi-select references to a concrete definition without selecting occurrences of the same
name coming from a different scope. Ctrl-R, for rename, selects all references and the name
in the pattern of a definition. This again shows how simple syntax and powerful text editing
features can be used instead of needing many specialized commands. Golem does not support
the display of multiple panels/buffers, but definitions from other modules can be printed to the
output area, detailed in the next section.

Another useful tool for understanding code from other modules is the inlining command, which
also expands macros (supplementing the role of Racket’s macro stepper). Consider the following
threading macro and its application:

-> (syntax [..args]
(match args

{x} x
{x f ..fs} (` -> (,f ,x) ,..fs)))

summed-evens (-> {1 2 3 5 4}
(map (+ 1))
(filter even?)
sum)
8Often there is no difference between the two.

Chapter 4. IDE Design 88

We can now inline the macro -> as if it was a function, but instead of inserting a function Golem
expands the macro:

summed+evens (-> ((map (+ 1)) {1 2 3 5 4})
(filter even?)
sum)

Inlining further we can see how the recursive definition of the macro works.

4.6 Interaction and Testing

In the previous sections we discussed how Golem makes editing and navigating code more fluid.
In this section we describe the core of Golem’s experience - working with running programs.
The Figure 4.5 shows Golem’s UI.

Figure 4.5: The main interface of our IDE, with execution line, module editor and output
area.

The interface is intentionally clean and consists of three areas. The majority of the left side is
occupied by the module editor, where the programmer edits Shem source code of the currently
open module. The right side is the output area, which displays executed programs, such as the
program drawing a circle in the figure above, logged expressions, as well as output of the editor
commands. The top left is occupied by the execution line. This input box is used for executing
editor commands, such as switching modules or printing compiled JavaScript, and adding new
programs to the output area.

Chapter 4. IDE Design 89

Editor commands on the execution line are prefixed with :9 and can support auto-completion.
For example the load command, with the l shortcut, suggests modules based on the order in
which they were last accessed:

All other input is interpreted as a Shem program. When the programmer finishes inserting the
code they hit Enter to evaluate the program and add it to the output area. The execution
line preserves history similarly to traditional command line interfaces. After insertion the pro-
gram stays editable within its output box and any change automatically causes the program to
reevaluate. There can be many programs in the output area at the same time. Changing the
code in the current module reevaluates all programs in the output area which belong to this
module. The programs are attached to the module which was active when they were inserted,
so it is possible to edit one module and observe changes to programs which are defined in the
scope of a different module requiring this edited module. Golem takes care of tracking depen-
dencies between modules and recompiling them as necessary, similarly to online type checking
performed by Flow[33] and Hack[120].

This approach combines live-reloading with smart REPLs in a highly interactive way. The
programmer can select, either using the keyboard or by clicking on them, any of the output
boxes in the output area and move or remove them. This creates a sort of working area which
the user has control over, but unlike in Smalltalk there are no windows or popups which need to
be dragged and closed, just a stack of boxes. Because the programs run directly in the current
browser window they can persist state between changes although this is left to the programs.

It is not an accident that Shem is pure-by-default. Pure programming fits nicely into the
model where the programmer experiments directly with expressions, since programs are easily
decomposable. It is both useful to see multiple results of the same function on different inputs
and the results of different functions to construct more complex functions, as demonstrated in
Figure 4.6, which extends the last example. The programmer combines the circle shape with
the shape of the polygon by creating a circle at each corner of the polygon.

Graphical examples demonstrate well the capabilities of the output area and the power of auto-
evaluation, but there is nothing inherently tying Golem to graphics, these capabilities come

9The Space key can be used to type this initial colon.

Chapter 4. IDE Design 90

Figure 4.6: Using visual output to create more complex programs out of simpler components.

simply from its design and can be utilized in constructing any kind of a program. The graphics
API used in the example is implemented purely in Shem and works by producing SVG which
Golem renders, as any other HTML string output. This means that programs can also create
user interfaces within the output area, as shown in Figure 4.7.

Figure 4.7: An interface built within Golem.

This is an example of a simple guessing game, running inside Shem. The player inserts a number,
clicks on the button, the UI changes to a “thinking” state for half a second and then displays
the result. The game is built purely in Shem and uses the standard browser APIs and callback
style asynchronous computation.

Some commands are specifically adapted to work between an output box and the module editor.
For example the Ctrl-D define command allows the programmer to define a selected expression
from within an output box at the top level of the module. The same command used on an unde-
fined reference defines it and if it was used as an operator it defines a function. Ctrl-Shift-D,

Chapter 4. IDE Design 91

typed define, will also insert an explicit type for the function. Analogously Ctrl-T can be used
to insert a type of the selected expression at the current selection with the module editor. These
commands are useful for type directed programming.

4.7 Debugging - Observing Code

Observing code at work was one of the essential requirements imposed by Bret Victor on in-
teractive programming tools. LighTable took this idea and improved on the traditional watch
mechanism by showing results of subexpressions on the same line these expressions end, instead
of in a separate panel, as discussed in Section 2.4. Golem takes a different approach which
allows for multiple states of a value to be displayed at the same time. Golem uses its output
area to display logged expressions, which the programmer tagged using the log macro10.

Consider the following definition of binary search in Figure 4.8. The code contains a non-obvious
bug. We correctly find a number present in the list but for some numbers and lists the program
loops and causes a stack overflow instead of returning None. This is a good example of a situation
where decomposing the expression to smaller parts does not work well, because the function
search-in is recursive. We suspect that the error might have something to do with the bounds
we search, so we want to log the value of min, max and half every time the search-in function
is called.

search (fn [n list]
(search-in n 0 (size list) list)
search-in (fn [n min max list]

(if (>= max min)
None
(match (compare n middle)

LT (search-in n min half list)
GT (search-in n half max list)
EQ (Some n)))

middle (!! (at half list))
half (log min max (+ min (div 2 (- min max))))))

Figure 4.8: Binary search algorithm containing an error.

The log macro accepts an optional string literal as a label for the logging output box, then any
number of arguments to print where the last one is the value which is returned. When we are
done we can get rid of the log simply by replacing it with its last argument11. Golem’s output
is shown in Figure 4.9. The left box shows the result, which is the stack overflow error with
printed stack trace coming from JavaScript. The second box is the logged output in the form
of a table. The first row shows the printed expressions (the last expression is the definition of

10Our original design was to only highlight the logged expression to avoid having to change the source code,
but we have not had the time to implement this. The advantage of the current trace[121]-like solution is that it
is easily preserved across sessions.

11Via the common Ctrl-P command.

Chapter 4. IDE Design 92

half), the next rows are values as they are being logged. Golem notices that values repeat and
checks for a stack overflow before printing more rows.

Figure 4.9: Debugging an infinite loop in the binary search algorithm using logging.

We can see that once we get to the values min is 3 and max is 4 the bounds stop changing! We
would expect that after the row 2 4 3, where the last number in the list is checked, the next
one should be 4 4 4 and the program should exit. Indeed, we forgot to start the search in the
right half of the list from the next number after the number we just checked, the fix is easy, we
add 1 to half in the GT branch. This way of printing values is especially powerful when we use
multiple logs within the same program, which would be all mangled together if we were just
printing to a stream such as standard output (stdout).

For debugging long running code, such as animations, it does not make sense to keep printing
values. Golem therefore checks whether the stack of the current log is the same as the previous
one, and if it is not, which is the case for any asynchronously issued code or code on a attached
as listener to an event, the log is essentially restarted. An example of using this feature is shown
in Figure 4.10.

Apart from this built-in debugging Golem also supports debugging using the browser tools.
The debug macro inserts the JavaScript debugger directive into the compiled code and the
programmer can then debug the compiled JavaScript. This is also useful when the program is
run directly in a browser page and not inside Golem’s environment. Similarly profiling is left
to the existing JavaScript browser12 tools.

4.8 Error reporting

There are three kinds of errors, or situations which make the program partial.
12In Node.js the Chrome developer tools can be used for profiling.

Chapter 4. IDE Design 93

Figure 4.10: The logged numbers in the output boxes in the top right update as the animation
progresses.

1. The programmer can leave holes in code to be filled in later.

2. The code can be “malformed”, which means that invalid arguments have been passed to
built-in or user macro.

3. The program can contain type errors.

Shem always tries to compile the given source code as much as possible, it will only stop locally if
one of the above errors occurs, and will still compile the rest of the program to JavaScript. This
is important because otherwise almost any change within the IDE would cause the program to be
momentarily invalid and we want programs which do not rely on this change to remain runnable.
Golem treats these classes of errors differently. If a program in an output box contains any kind
of error, it is not evaluated. Programs in output boxes are short and compile immediately, so
we wanted to avoid running programs which would most likely lead to runtime errors. Contents
of a module on the other hand can be both malformed or contain holes and the programmer
can still run programs against them.

In either case, type errors are always displayed and programs containing type errors are never
run. Unlike holes and malformed expressions, which are displayed inline, type errors are shown
with their full description to guide the programmer and therefore Golem can show only one such
error at a time. There is another reason Golem shows only a single type error. Type errors often
cause further type errors, and we do not want to bury the programmer in error messages as is
the case in GHC. Therefore it would make no sense to run programs containing type errors and
the programmer is forced to fix type errors as soon as they occur. This works well in practice,
because the feedback loop from the compiler is almost instantaneous and type errors are much

Chapter 4. IDE Design 94

easier to fix when we know which change (the last one) to the code caused them. The compiler
always annotates the AST with type information, so Golem can display types of expressions
even if there is a type error, which is not possible with the current interface to GHC.

4.8.1 Syntax Errors

One of the reasons we opted for S-Expression based syntax is that it avoids a large number of
syntax errors.

Consider the following PureScript program:

class Sized a where
size :: a -> Number

instance sizedNumber :: Sized Number where
size n = n

instance sizedArray :: (Sized a) => Sized [a]
size [] = 0 -- line 10
size (x : xs) = size x + size xs

main = do
print $ size 100
print $ size [1, 2, 3, 4, 5]

Which generates the following error:

"" (line 10, column 11):
unexpected Equals
expecting no indentation or end of input

This error points to the = sign on line 10. It provides practically no information as to the true
cause of the problem. This is because Haskell’s syntax is very complex and making a small
error can lead to a program which produces an AST which is completely different to what the
programmer would expect from reading the program text. In this example, we forgot the where
keyword after the sizedArray instance declaration head. A worse problem is that a “wrong
syntax” from the programmer’s perspective can produce a type error instead of a syntax error.
Consider the following example:

fibonacci = 0 : 1 : zipWith (+) fibonacci (tail fibonacci)

main = print $ take 20 fibonacci

Now imagine we accidentally leave out or delete the second : operator. This is the “compre-
hensive” error message produced by GHC:

Chapter 4. IDE Design 95

test.hs:1:13:
No instance for (Num a2) arising from the literal '0'
The type variable 'a2' is ambiguous
Possible cause: the monomorphism restriction applied to the following:
fibonacci :: [a2] (bound at test.hs:1:1)

Probable fix: give these definition(s) an explicit type signature
or use -XNoMonomorphismRestriction

Note: there are several potential instances:
instance Num Double -- Defined in 'GHC.Float'
instance Num Float -- Defined in 'GHC.Float'
instance Integral a => Num (GHC.Real.Ratio a)

-- Defined in 'GHC.Real'
...plus three others

In the first argument of '(:)', namely '0'
In the expression: 0 : 1 zipWith (+) fibonacci (tail fibonacci)
In an equation for 'fibonacci':

fibonacci = 0 : 1 zipWith (+) fibonacci (tail fibonacci)

test.hs:1:17:
No instance for (Num

(((a0 -> b0 -> c0) -> [a0] -> [b0] -> [c0])
-> (a1 -> a1 -> a1) -> [a2] -> [a2] -> [a2]))

arising from the literal '1'
Possible fix:
add an instance declaration for
(Num

(((a0 -> b0 -> c0) -> [a0] -> [b0] -> [c0])
-> (a1 -> a1 -> a1) -> [a2] -> [a2] -> [a2]))

In the expression: 1
In the second argument of '(:)', namely
'1 zipWith (+) fibonacci (tail fibonacci)'

In the expression: 0 : 1 zipWith (+) fibonacci (tail fibonacci)

test.hs:1:27:
No instance for (Num a1) arising from a use of '+'
The type variable 'a1' is ambiguous
Possible fix: add a type signature that fixes these type variable(s)
Note: there are several potential instances:
instance Num Double -- Defined in 'GHC.Float'
instance Num Float -- Defined in 'GHC.Float'
instance Integral a => Num (GHC.Real.Ratio a)

-- Defined in 'GHC.Real'
...plus three others

In the second argument of '1', namely '(+)'
In the second argument of '(:)', namely
'1 zipWith (+) fibonacci (tail fibonacci)'

In the expression: 0 : 1 zipWith (+) fibonacci (tail fibonacci)

test.hs:3:8:
No instance for (Show a2) arising from a use of 'print'
The type variable 'a2' is ambiguous
Possible cause: the monomorphism restriction applied to the following:
fibonacci :: [a2] (bound at test.hs:1:1)

Probable fix: give these definition(s) an explicit type signature
or use -XNoMonomorphismRestriction

Note: there are several potential instances:
instance Show Double -- Defined in 'GHC.Float'
instance Show Float -- Defined in 'GHC.Float'
instance (Integral a, Show a) => Show (GHC.Real.Ratio a)

-- Defined in 'GHC.Real'
...plus 23 others

In the expression: print
In the expression: print $ take 20 fibonacci
In an equation for 'main': main = print $ take 20 fibonacci

This would never occur in Golem, because the AST is apparent. If we deleted an operator,
there would be a hole, and if we deleted the hole the argument would be called as a function,
producing an error which would directly point to it. There are situations when the supplied
arguments don’t match the operator, possibly a macro. Golem highlights such cases and an
informative message is provided when the user hovers the malformed expression:

These messages are defined in the built-in macros.

Chapter 4. IDE Design 96

4.8.2 Type Errors

There has been substantial research carried out concerning the issues of finding, constructing
and displaying type errors in Hindley-Milner style type systems, [122] presents a good summary.
Helium[123] implements a constraint-based type checker to improve on existing error messages
but the current implementation contains bugs and lacks code generation[124, 125], which makes
us doubtful of its approach, both from theoretical and practical position. We have therefore
used typical Hindley-Milner type unification and focused on the content of error messages and
their display within Golem.

There are several different type errors which can occur during type checking:

1. Failure to unify two concrete types. This is the most common type error. Applications of
different type constructors can never be unified, such as a String with a Num or a (Fn a a)
with (Array a).

2. The “occurs check” fails. This happens when we try to unify a type variable with a type
which contains that type variable, effectively trying to construct an infinite type, such as
when we try to unify Fn a b with b.

3. Kinds of unified types do not match. Type variables always carry their kind information,
so that unified types are always valid. For example, we cannot unify variable a from the
type (Fn a b) with the type constructor Array.

4. Inferred type is ambiguous. This means that the inferred type contains a type class
constraint which includes some unconstrained type variable (variable not implied by a
the implicit functional dependency or in an argument to a type constructor) which is
not contained in the constrained type, such as (Fn Num Num) with a type class constraint
(Eq a).

5. Inferred type is ambiguous due to the “dreaded monorphism restriction”13. This error
occurs when the inferred type of a definition which is not a function includes type class
constraints. This restriction might be lifted in the future, but for now Shem enforces
definitions to be either new functions or not constrained.

6. The declared type is too general. This means that the type which was explicitly declared
for an expression matches the inferred type, but is more polymorphic. This can be the case
when a function has declared type (Fn a b) but the compiler inferred the type (Fn a Num).

7. The declared type is missing a constraint. The compiler inferred a constraint which has
not been declared in the given explicit type.

13Its definition can be found in Section 4.5.5 of [126].

Chapter 4. IDE Design 97

8. No instance found. There is no instance matching an inferred or declared constraint.

The general approach we take to display these errors is as follows. We try to provide a single-
line concise and clear error message, which talks about the actual problem, rather than its
circumstances. We then highlight the origins of types included in the message in the source
code. The origin of a type is either its explicit declaration or the reference which introduced
it. We adapted this approach from MIT’s pH compiler[127]. We will now give several examples
of the errors introduced above and compare them to GHC errors and discuss the pros and
cons of each approach. We make comparisons with GHC as it is the de facto standard in
functional programming tools and we can therefore demonstrate the added value of our approach
to functional programming.

4.8.2.1 Unification Errors

We will start with the simplest type error, the failure to unify two types, and show how our
error reporting provides a better insight than GHC14 or Hugs.15 Consider the following Haskell
code

x = (uncurry (id mystic)) (flip (,) True 4)
mystic :: Int -> Int -> Int
mystic = (+)

We have obscured the call to +, which we typed for integers to avoid an instance error. GHC
reports:

@1:37-1:41 Couldn't match expected type Int
with actual type Bool

In the second argument of ‘flip’, namely ‘True’
In the second argument of ‘uncurry’, namely ‘(flip (,) True 4)’
In the expression: (uncurry (id mystic)) (flip (,) True 4)

At this point, the programmer might have the following questions:

1. How come the actual type is Bool? Type of what? GHC guides the programmer well to
the literal value True which indeed has the type.

14Version 7.8.3.
15We leave the comparison with Elm and PureScript to Chapter 6, but in general they provide even less

information than Haskell’s compilers.

Chapter 4. IDE Design 98

2. What are the other lines of the error message trying to tell us? How come the error is in
the second argument to uncurry when uncurry only has one argument?

3. Why is the expected type Int? How do I fix the problem? Should I change True to
something else?

An experienced Haskell programmer will know that for 2. the lines suggest where the conflict
lies. (flip (,) True 4) type checks fine but suddenly when calling uncurry the expected
type is different. The reason for this is left for the programmer to figure out. Haskell mentions
second argument to uncurry because it has unwrapped its partial application. We can now
compare this experience to how this situation plays out in Golem. Consider Figure 4.11.

Figure 4.11: Unification error displayed in Golem.

Shem’s error message is simpler and more importantly, does not assume that one of the offending
types is expected. This is because although Haskell’s “expected” type corresponds to how the
type checker performs unification this description might very well be the exact opposite of what
the programmer perceives. Perhaps in our example, it is mystic which has the wrong type,
not the True argument. Golem therefore helps the programmer answer 1. by simply showing
where Bool originates. The types within the error message are sorted according to the position
of the origins, so we know that the second type corresponds to the second highlight within the
IDE. Golem also answers 3. by highlighting not only the origin of the “actual” type but also
the origin of the “expected” type. In this case, it is the mystic function. This is much better
than GHC’s message which only pointed out the whole call to uncurry. But Golem can give
the programmer more information. If it is not obvious how Num originates from mystic, the
programmer can hover the highlighted expression to display its type, as shown in Figure 4.12.

Figure 4.12: Displaying the type of an origin of a conflicting type with the conflicting type
highlighted in red.

The programmer can also see the type of any other expression and we found this leads to a
quite pleasant debugging experience.

Surprisingly, Hugs16 shows the other side of the type error than GHC:
16Hugs is no longer in development and we tested on its last available version, from September 2006.

Chapter 4. IDE Design 99

ERROR :1 - Type error in application
*** Expression : uncurry (id mystic) (flip (,) True 4)
*** Term : id mystic
*** Type : Int -> Int -> Int
*** Does not match : a -> Bool -> Int

This fails to provide all the necessary information similarly to GHC and even more so because
it is not shown why the expression (in this particular example trivial) id mystic gets the type
Int -> Int -> Int. It is also left to the programmer to figure out why the two types do
not match, which can be difficult with more involved types. It might also be confusing that
the derivation of the “expected” type a -> Bool -> Int is based on both sides of the type
error and is prematurely stopped when the error is encountered. A more logical type from the
programmer’s perspective would be Int -> Bool -> a, implied by the the second argument17

to uncurry. Yet, this error message might be more welcomed by the programmer if it is indeed
the operator which has an unexpected type and not the argument pointed out by GHC.

The issue of “expected” vs “actual” is even better demonstrated by the following example of
type checking a list:

x = [y, False, True]
y = 'C'

@1:9-1:14 Couldn't match expected type Char
with actual type Bool

In the expression: False
In the expression: [y, False, True]

@1:16-1:20 Couldn't match expected type Char
with actual type Bool

In the expression: True
In the expression: [y, False, True]

For the programmer, it is perhaps y which does not have the expected type Bool. This example
also reinforces our decision to only show one type error at a time.

GHC has a special message when kinds do not match in an instance declaration, while Shem
does not mention kinds but talks about type constructors instead:

instance Functor [a]

@1:18-1:21 The first argument of Functor should have kind ‘* -> *’,
but [a] has kind *

In the instance declaration for ‘Functor [a]’
17Hugs unwraps the partial call as well, which means that the contents of the error message do not correspond

to the source code.

Chapter 4. IDE Design 100

4.8.2.2 Type Class Errors

These are errors which occur when type class constraints are involved in types and therefore do
not occur in variants of ML, unlike unification errors. The most common one is the instance
lookup failure, where the inferred type requires an instance which does not exist. In Haskell
this error occurs quite frequently due to the numerical literals having an ambiguous type (in
the sense that their return type is constrained). Consider the trivial example:

list = [y, 1 + 2]
y = False

@1:14-1:15 No instance for (Num Bool) arising from a use of +

In the expression: 1 + 2
In the expression: [y, 1 + 2]
In an equation for ‘list’: list = [y, 1 + 2]

Similarly to unification errors, GHC tells only half the story. It shows where the constraint
for the instance originates, but not why the instance type, Bool, is required. Golem highlights
both, in Figure 4.13.

Figure 4.13: Highlighting both the origin of a class constraint and its argument during a
failed instance lookup.

When context reduction is forced on values defined via pattern binding (not function binding, see
the definition of monorphism restriction[126]) the origin of the constraint can be in a completely
different expression making it very difficult to identify the origin of the required instance type:

list = [x, y, z, 1 + 2]
x = 3
y = False
w = 42
z = w

@4:5-4:7 No instance for (Num Bool) arising from the literal 42

In the expression: 42
In an equation for ‘w’: w = 42

Chapter 4. IDE Design 101

This error message seems misleading because GHC reports the origin of the constraint which is
the last in the file and does not report the origin of the instance type. This means that if the
programmer swapped the definition of x and z the reported origin would be the literal 3 in its
definition. Shem improves the situation by reporting the first encountered origin, which is more
likely to be within the expression which causes the error and by always showing the origin of
the instance type.

The second common error is the presence of an ambiguous type. Programs must not contain
ambiguous types because their runtime semantics would be ambiguous (see Section refCompil-
ingTypeClasses). Consider the following example:

import Control.Applicative
k x = fst (x, empty)

empty has the type Alternative a => a. Because the result of the function does not depend on
empty, the compiler cannot infer which instance of Alternative it should use. GHC correctly
points out the origin of the ambiguous type:

@2:15-2:20
No instance for (Alternative f0) arising from a use of empty

The type variable f0 is ambiguous
Note: there are several potential instances:
instance Control.Arrow.ArrowPlus a =>

Alternative (Control.Arrow.ArrowMonad a)
-- Defined in Control.Applicative

instance Alternative Maybe -- Defined in Control.Applicative

instance Alternative Text.ParserCombinators.ReadP.ReadP
-- Defined in Control.Applicative

...plus five others

In the expression: empty
In the first argument of ‘fst’, namely ‘(x, empty)’
In the expression: fst (x, empty)

The message is verbose because GHC is trying to explain that there are multiple matching
instances, although in this case, without enabling the FlexibleContexts extension discussed in
Section 3.5.2, it does not matter. The type would be ambiguous even if there was only one
instance available. It might not be clear to the programmer why the type is ambiguous, when
in the following case the compiler does not complain:

import Control.Applicative
k x = (x, empty)

Chapter 4. IDE Design 102

Shem does better by pointing out which type is ambiguous as a result of the rogue type class
constraint:

4.9 Summary

In this chapter we introduced Golem, a modern browser-based IDE for Shem. Its main design
goal is to enable highly interactive programming. It can be used directly and immediately in
the browser without requiring a server. It provides powerful, type-aware editing capabilities for
Shem’s S-Expression based code. It allows the programmer to experiment with and combine
multiple programs which are always kept synchronized with the source code. It helps the
programmer resolve errors through iterative logging and insightful type error display.

Chapter 5

Implementation

Although we have conceived this project as a platform for researching the idea of designing a
programming language and its IDE hand in hand we have created for ourselves a significant
technical challenge, as the scope of features to implement was large and many of them have never
been implemented. This chapter therefore gives a brief overview of the implementation of both
our compiler and the IDE. Both are implemented in CoffeeScript[18] in slightly over 10000 lines
of code1, evenly split between the two. While the compiler has no external dependencies, the
IDE uses several open source JavaScript libraries, most importantly the Ace[129] embeddable
code editor. We will first discuss the challenges with implementing a macro-directed statically
typed language and then explain the architecture of our IDE and how it relies on the compiler.

5.1 Not a LISP

We have talked about Shem as a macro-directed language, but this does not mean that Shem
is a LISP. The core idea of LISP is imperative. Macros, called special forms in Clojure, can
change the current environment, whether it is namespaced or simply lexically scoped. When a
function is defined in a LISP, it is completely compiled and attached to the environment, from
which it can be invoked. This implies several restrictions:

1. No automatic circular dependencies or definitions in arbitrary order. If we want to define
a function after it is used we must declare it first, which prepares the environment and
other functions can then reference it.

2. The compilation performs a single pass. The macros are run and perform their actions,
without being translated to some intermediate translation.

1Not counting comments and blanks. Lines of codes are a terrible metric for any purpose, but to get a sense
of scale, note that CoffeeScript is one of the most expressive and terse languages[128].

103

Chapter 5. Implementation 104

It is certainly possible to implement a statically typed ML-derivative which uses this compilation
strategy, provided that mutually dependent groups of definitions are explicitly typed2. Yet this
cannot be done for a Haskell-like language because its defining feature, type classes, require
two compilation passes. This is because context reduction is performed only at the level of
definitions or programs and only after context reduction (also called generalization) the compiler
can translate the uses of constrained (overloaded) functions and methods. We discuss how this
is done in Shem in Section 5.4.1.

We did not want to abandon type inference for groups of mutually dependent definitions or
force the programmer to keep their definitions in topologically sorted order, especially since this
would not make any sense for where clauses (definition lists within functions). Yet we wanted
to retain the ability to define macros which can be used in the same way as functions are used
and use functions within their definition.

5.2 Macro Directed Compilation

The grand technical challenge of this project was the reimplementation of the Haskell 98 type
system, with multi-parameter type classes and implicit functional dependencies, and the type
class compilation, for a language which does not have a known syntax. Consider the normal
steps taken in compiling a Haskell program by GHC[130]:

1. The parser converts text to a Haskell AST which completely matches all available Haskell
syntax.

2. Renaming tags identifiers with unique numbers.

3. Type checking is performed on this original syntax to produce good error messages. The
type checker itself consists of several phases, which deal with translating classes and in-
stances, performing type inference, context reduction and method translation.

4. The original AST is desugared into a small Core language.

5. Repeated simplification and several passes towards producing native code.

In particular, the type checker performs a dependency analysis to construct bindings groups.
Each binding group is then checked separately, as described in [46]. But Shem cannot perform
any static analysis over the source code because at the time of the analysis it does not know which
calls are function calls and which are macro calls that must be executed. The compiler therefore
cannot assert a priori that a token represents an identifier referencing a certain definition. Hence

2Which would be a major nuisance for the programmers of such a language though.

Chapter 5. Implementation 105

Shem’s compiler combines the single pass approach of LISPs with the multi-pass approach of
traditional compilers using a monadic context and a system of deferring.

The compilation of a bare top level expression, such as the one used in a Golem’s output box,
proceeds as follows:

1. The source code is tokenized and “astized” into a bare AST. The AST is made of JavaScript
arrays for forms and objects for tokens. Because JavaScript arrays are also objects, forms
can be tagged with the same information as tokens are.

2. The “top level expression” macro is called with a new compilation context and the parsed
AST. “Macro” is perhaps not the best name, since there is no syntax to invoke this function
but it follows the general signature of all the built-in macros in Shem’s compiler, accepting
context and an AST node. This is why we call Shem a macro-directed language, because
it is not made of separate passes but essentially a one big recursive decent parser operating
on the AST, where every step of the decent is a call to a macro. The top level macro
sets up the context for a bare definition, later forcing context reduction and invokes the
generic expression compiling macro.

3. The “expression compile” macro is used whenever an expression should be compiled based
on its own syntax. This macro in turn invokes the macros for compiling a hole, an atom,
a tuple, an array, a map with string keys or a call to an operator.

4. The “call compile” macro in turn dispatches based on the operator and calls macros for
compiling function calls or calls to macros. If the operator is not an atom, it will first be
compiled using the above expression compiling macro.

Once a macro which is bound to a name, such as instance or fn is called it has full control
over how its node in the AST will be processed but it cannot access any node from the parent
tree (there are no parent links on the AST used in the compiler). The way macros interact
across nodes is through the compilation context. We call the context monadic because only
its updated values are observed by the macros. It was our hope that by not using references
we could easily translate the compiler to a pure language supporting monads, such as Shem.
Perhaps more importantly code written this way is simpler because there is no hidden local
state, only a single updating object. The macros also enrich the AST, but because of the way
the tree is passed around these labelings could also be modeled using a monad. We had to break
this principle in one area of the compiler though, and that is the type substitution, which uses
references for performance reasons, detailed in Section 5.6.

The compilation context holds information about the current scopes, the current definition
pattern and counters for variables and type variables. The scopes then contain information

Chapter 5. Implementation 106

about declared functions, macros, types, classes etc. The context is also used for marking a
definition as deferred.

Each macro produces an intermediate representation (IR). This is a mix of JavaScript AST
nodes and a couple of special IR nodes which are used for compiling type classes. Once a set
of definitions is translated to IR and type checked we initiate the second pass which translates
the IR nodes to JavaScript AST, finally a third pass translates the purely JavaScript AST to
plain text JavaScript. In the case of a bare top level expression the set of definitions consists of
the one expression.

5.3 Deferring

Deferring is a mechanism through which we achieve the arbitrary order of definitions and mu-
tually dependent definitions. In essence it allows a macro to mark the current node as deferred.
This is done mainly by the macro responsible for compiling references - if the reference does
not correspond to any binding in scope the context is marked as deferred. The macros which
are up in the chain of the recursive decent can then check whether the current definition is
deferred and act accordingly. Since a deferred node does not know its type the calling macros
must make sure they do not attempt to perform type inference. The deferred definitions in a
definition list are then collected and once the list was fully traversed are tried again. It would
be obviously extremely inefficient if we relied solely on this mechanism and it would not work
for mutually recursive functions. This is why definitions of functions are predeclared when first
compiled and calls to them are not deferred further, even if we do not know their type. The
references of these functions, which cannot be typed, are given a fresh type variable as a type
and are marked in the context for type resolution. After all the deferred definitions have been
tried we perform Tarjan’s strongly connected components algorithm on the remaining untyped
definitions and type them using the strategy described in [46], where the components are either
implicitly typed binding groups or explicitly typed bindings.

This strategy also has the advantage that the produced list of JavaScript assignments is already
in the correct order, where the order matters due to JavaScript being strict. This description
paints only a faint picture of the actual implementation, where definition lists can be embedded
within definitions, deferring can be pushed to the parent definition and type resolution must
for the same reason work across scopes. An example of these mechanisms is given in the next
section.

Chapter 5. Implementation 107

5.4 Type Inference

Our gratitude goes to Mark Jones for his paper [46] which has been an indispensable resource
in implementing Shem’s type system. Unlike authors of most papers on type inference, Jones
describes the process in which binding groups are type checked, which as he points out is one
of the most complicated parts of the system, but is usually completely ignored by type systems
theory. A simplification which we found useful was to make the return type of any type inference
method, which in our case is simply the type marked in the AST, to be a constrained3 type,
whereas in [46] some methods return a type and a list of constraints, some return only a type
etc. These are the types which get shown during type errors to the user.

To give an example of how our macro-directed compilation deals with type inference and binding
groups, consider the following definitions:

f (fn [x]
(g x)
g (fn [y]

(h y)))

h (fn [x]
(h x))

In terms of type checking and type inference4, g depends on h, h is recursive and f depends on
g. In Haskell, the type inference proceeds as follows:

1. The definitions are split into two binding groups: {h} and {f}, where the latter depends
on the former.

2. The {h} implicit binding group is type checked: h is assigned a new type variable and its
definition is type checked, unifying both the type inferred for the reference of h in its body
and the type of the whole definition with this type variable. h now has a known type.5

3. Now the {f} group is type checked. Most importantly, h has an assigned type, so inferring
the type of g is straightforward, and so is inferring the type for f .

In Shem, we do not have the information about dependencies. We attempt to compile in the
first pass. The process is as follow:

3We use different terminology from the paper, where constrained types are called qualified, finalized types are
quantified and , constraints are predicates. The paper as a whole is a great example of the mathematical style of
writing code, where single letter names make the code extremely difficult to understand.

4The fact that a call to any of the functions would loop is irrelevant for us now.
5a -> b, although this is irrelevant.

Chapter 5. Implementation 108

1. f gets compiled. g gets compiled in the process, the reference to h is encountered and
the definition of g is deferred. Because there is no definition for h in the definition list
containing g, the deferral is pushed to the parent definition, which is f . Now f is deferred
for h.

2. h gets compiled. Its declaration happens first, so the call to itself is not deferred, but
because the type of h is unknown, the typing of h is deferred, noting the dependency on
h.

3. f now gets recompiled. g gets compiled, h is correctly declared but we do not know its
type, so the typing of g is deferred. When we try to resolve the deferred typings within f

we find out that g depends on a definition which is not in the current scope. We therefore
defer the typing of f . Importantly, unlike with deferring definitions, where we could forget
about g, when we defer typing we must properly trace all untyped definitions. Therefore
g’s type will depend on h and f ’s type will depend on g.

4. We now resolve the deferred typings in the top scope, obtaining the groups {h}, {g}, {f}.
Here we follow Haskell’s algorithm. Crucially, we remembered which scope g belonged to,
so we can assign its type in the correct scope. Shem’s context keeps track of all scopes,
even those which were exited already. This is important both for the IDE, so that we
always know the type of every definition, and also for the type checking, because the
scopes carry the information of deferred type class constraints.

Unlike deferred definitions and typings, deferred constraints also appear in Haskell. They are
simply the constraints which relate to type variables coming from a parent scope. These con-
straints will form dictionaries, which must be added to the correct, parent definition. Consider
the following trivial example and its translation to JavaScript:

ff (fn [x]
(gg x)
gg (fn [y]

(= y x)))

var f = function f(_Eq_1, x) {
var g = function g(y) {

return _Eq_1['='](y, x);
};
return g(x);

};

The constraint (Eq a) is inferred from the use of the = operator. When inferring the type for
g we must recognize that this constraint should not be “retained” and defer it to the parent
definition, as described in [46]. Our deferred type checking resolution procedure ensures that
these constraints are propagated even in the cases, such as the one in the previous example,
where g was typed among the definitions of its parent scope.

Chapter 5. Implementation 109

5.4.1 Compiling Type Class Applications

As we have mentioned type classes pose additional constraint on the implementation, because
unlike normal functions, which can be compiled once their signature has been found, references
to methods and overloaded functions, functions with class constraints in their type, cannot
be translated until context reduction. We follow the implementation of type classes described
by Jones[131] but we use our IR instead of the placeholders used in the paper. Type class
dictionaries are objects constructed using the class JavaScript pattern, possibly on the fly if they
themselves are constrained. We have not implemented any optimization such as preconstructing
composed type class dictionaries.

5.4.2 Context Reduction with Implicit Functional Dependencies

In [46] entailment is given by a constraint being equal to one of the normalized constraints
(or normalized constraints attached to classes). This will in turn reduce constraint sets such as
(Eq a), (Eq a) to (Eq a). But with implicit functional dependencies the normalized constraints
are not truly normalized (our definition is that the first parameter is a type variable), which
leads to constraint sets such as (Bag b i), (Bag b j). Therefore entailment involves instead of
a mere equality check a unification step on the additional parameters of the constraint (those
which are implied by the implicit functional dependency, in the example i and j), of which
result must be applied to the rest of the type checking context. If the two constraints cannot be
unified a type error occurred. Because functional dependencies can introduce new substitutions,
we re-normalize all normalized constraints, which might have become reduced.

5.5 Definitions and Pattern Matching

In Shem values are mostly defined as pairs of a pattern and a value. This is achieved using
the compilation context. The built-in macro responsible for compiling a definition list extracts
pairs from its arguments and then for each definition pair attaches information of the pattern
to the context. It is actually the value in the pair (its right hand side) which is responsible for
compiling the whole pair. This allows macros such as class to use the current pattern, which
must be a name, to name the newly declared class, which is stored in the context. Most of
the built-in macros, which compile real runtime values, call a helper function which compiles
the pattern, marking in the context that the current compilation environment is a pattern.
This is the only special environment which is currently defined. It is essentially just a value on
the context, which is the compiled right hand side of the definition. Macros such as the one
responsible for compiling atoms will then use this value when compiling a pattern. Consider
the following example:

Chapter 5. Implementation 110

[i j] (tuplize 3)

tuplize takes a single value and returns a pair containing that value twice. The call compiling
macro will, once it compiled the call to tuplize, call the assignment helper, which in turn
initiates the compilation of the [i j] pattern. The macro responsible for compiling tuples will
be called, will check that it is being called inside of a pattern, and will in turn call the general
expression compiling macro with an updated assigned value. For each i, j, this value will be
an intermediate representation of the access of indices 0 and 1, respectively, on the current
assignment value, which is the compiled call to tuplize.6 Yet a different macro, such as req can
simply use the pattern, its structure and syntax contents, without actually compiling a tuple
pattern matching.

5.6 Compiler Performance

After profiling our compiler on large programs we have observed that the majority of time is
spent in type checking system. As we have followed the naive implementation in [46], which
completely ignores time complexity of the algorithms and data structures it uses, the original
immutable implementation of unification spent a large portion of time combining substitutions.
We have first tried to regain performance by optimizing the used data structures, using integer
type variables and dense arrays tagged with initial index instead of strings and JavaScript objects
as hashtables. We improved the performance of the whole compiler by 30 to 60% depending
on the JavaScript VM used using these optimizations, but the naive substitution algorithm was
still too slow to provide acceptable performance for medium sized programs (the compilation
took 7 seconds for 1000 line program).

We therefore had to abandon the naive unification and instead use a more efficient substitu-
tion mechanism described in [132]. This paper was useful because it compared the algorithm we
adapted from Jones with the substitution by sharing. We have observed corresponding improve-
ment, about 7 to 8 times faster compilation, to the one reported in the paper. We would like to
point out though, that there is an error in the algorithm as presented in the paper. The unifi-
cation algorithm, as presented in the paper, binds unbound type variables to the second unified
type, regardless of whether the type is a type variable or not. This can cause the construction
of an infinite substitution chain. Imagine the following unification steps:

1. We unify type variable a with some type T.

2. We unify type variable b with variable a. Following the algorithm presented in the paper,
this makes the reference in b point to a which points to T.

6Because tuples are represented by JavaScript arrays at runtime.

Chapter 5. Implementation 111

3. Now we attempt to unify a with b. The two are not the same type variable and so a is
bound to b. This does not fail the occurs check because the occurs check only considers
free variable within T. Because we are dealing with references, binding a to b creates a
loop, since b is bound to a.

The corrected algorithm adds a case to check whether the second type is a bound type variable
and in this case unifies the first type with the type bound to that variable.

Moving from combining substitutions to using references superficially simplifies the code, in
that we do not have to update the context by extending the current global substitution with
the one produced by the last unification, but makes the code rely on side-effects which are
much harder to debug and control. This aspect manifested itself especially in the context
reduction of constraints with implicit functional dependencies, where we had to make sure that
the substitution is performed only when the whole constraint matched, as is usual in imperative
code, by defensively cloning the constraints. It would be great if we could use a more pure
approach, but [132] did not convince us that this was possible, given their pure approach had
sufficient performance only when the occurs check was ignored.

5.7 Golem’s Architecture

Golem is implemented using React[133] for its UI and Ace[129] for the editor components.

We have reasoned about why we wanted to have a purely browser-based environment in Section
4.1, through its availability and to achieve high interactivity. But it cannot be understated that
we would not be able to implement our IDE in the given time frame had we chosen some other
technology, a natively compiled language with a UI framework or perhaps tried to extend existing
open source IDE platforms such as Eclipse or IntelliJ. It is not unusual that making a plugin,
which does not drastically modify the behavior of the platform and only adds a feature on top of
it, constitutes a whole individual project. This is understandable because firstly, programming
in a language such as Java, being a verbose and less expressive language, takes longer than
using a highly expressive language such as CoffeeScript[128], and secondly, these platforms have
a huge API beyond which a modification to their behavior is virtually impossible. On the other
hand with Ace we could make any changes we needed, usually in a fairly compatible way given
it is designed to be highly extensible, and in the worst case we could make a change or a fix
which got pulled back into the Ace project. In the course of the project we have successfully
submitted 4 Pull Requests and filed several bugs which were fixed. This would not be possible
with the much bigger platforms due to the high traffic in their bug trackers, number of open
issues and their release cycle.

Chapter 5. Implementation 112

Given that the compiler runs directly in the browser, we must ensure that the compilation does
not interfere with editing. We therefore run the compiler and the module manager within a
Web Worker[134], which ensures that the compilation happens on a separate thread. We use the
worker wrapper provided by Ace which gets updated with the changes to the currently edited
document and automatically compiles it using Shem’s compiler. The module manager takes
care of compiling any required modules and recompiling modules which had their dependencies
updated. The compiler produces an annotated AST, which contains information about labels,
types and scopes, used for debugging and type-based auto-completion. It also produces any
type errors. The information from the AST is copied onto the AST which is kept in sync by
the editor mode. Ace provides modes the capability to override how the editor behaves when
the mode is active. The Shem mode overrides almost all of the text editing functions of Ace to
work on both the AST and the text within the editor. These “editing commands” are described
declaratively in terms of changes to the AST and a single mutate method performs the actual
mutation on the AST as well as the text within the editor. Ace asks the mode for tokens on each
line, which are converted from the labeled tokens of the AST, to perform syntax highlighting.
Syntax highlighting is therefore performed by a couple of the main macros within the compiler,
such as the atom compiling macro which labels strings as constants, references as references etc.

The module manager produces complete JavaScript which is then used within output boxes to
run the programs. All output boxes use the same worker which belongs to the main module
editor.

In the browser version Local Storage[135] is used to preserve modules and the state of the
compiler. This means that reloading the browser window does not cause loss of any data, as
the modules are automatically saved. In the desktop version Electron[136] is used to wrap
the browser-based implementation and bundle it with a version of Chromium and Node.js that
allows us to use real files, both for saving modules and from the programs.

5.8 Summary

In this chapter we sketched the implementation of our compiler and the IDE. The compiler
performs recursive descent over the language AST, passing around a context object, enriches
the AST and produces an intermediate representation which is then translated to JavaScript. It
uses deferring to recompile definitions with missing dependencies and to infer types of nested,
mutually dependent definitions. The IDE is built on Ace and React and runs the compiler on
a separate thread to avoid impairing the performance of the user interface.

Chapter 6

Evaluation

The goal of this project was to design and implement the best possible programming environ-
ment. The ideal evaluation would therefore entail surveying a large number of programmers,
with the same level of experience with our environment and some other environment, and quan-
titatively comparing the results. Unfortunately there do not exist such programmers yet. We
must therefore use a more qualitative approach. We will first try to argue about various aspects
of our environment judged by general criteria and later take a more critical view and make a
direct comparison to applicable alternatives.

6.1 Evaluating Shem as a General Purpose Language

There are many criteria for evaluating programming languages.[137] In this section we try to
provide a qualitative survey of the language, as it is used within its IDE, starting with criteria
imposed by the users of the language:

• Rapid development. Together with its IDE Shem has a great potential for rapid devel-
opment because we are no longer programming in the dark - results of our programs are
always available and we can easily observe running code. Static typing prevents runtime
errors which saves us time otherwise spent debugging. On the other hand, Shem being
pure-by-default, imperative algorithms are not as easy to express, at least for now.

• Easy maintenance. Static typing provides a great aid to maintaining a functioning code
base. Along with tests it ensures that changes made to the code in one place do not break
other code. There are no built-in facilities for testing at the moment, although testing can
be performed using any of the available frameworks for JavaScript.

113

Chapter 6. Evaluation 114

• Reliability and safety. Shem code itself is very safe. The prelude avoids partial func-
tions, so for example the equivalent of head, first, returns an optional (Maybe) value.
Interfacing with JavaScript obviously opens up the program to runtime errors and such
code must be thoroughly tested.

• Portability. Shem is portable as much as JavaScript is, but it does not itself target
different language runtimes. We are quite comfortable with this decision, especially since
C++ can be used to write Node.js extensions for truly performance intensive applications.

• Performance. We put significant amount of effort into making the compiler fast to
provide an interactive experience. Current performance of the compilation is shown in
Figure 6.11. We do not perform any caching currently within the compiler so there could be
opportunities for further improving its running time. In terms of the language itself, high
performance was not our top priority in designing it and we definitely favored simplicity
over efficiency2. See Section 6.2 below for more detail.

• Learnability. As we will discuss further the learning curve for our environment is quite
steep. We never intended our environment to serve as a learning environment, as we believe
that some of its underlying principles, such as structured editing and static typing, are
more suited for experienced programmers. Yet this is definitely an area where Shem lacks
at the moment and more work needs to be done to soothe the path of new users of the
language.

• Reusability. High polymorphism leads to higher reusability and together with the ex-
tensibility of our language we believe Shem will lead to less repetitive code.

Apart from these “user requirements” a good language should also achieve the following qualities:

• Readability. We have strove for readability of our language. Indeed it was one of the
main reasons for abandoning Haskell’s syntax which we find too ambiguous. But readabil-
ity also depends largely on conventions adopted by the users of the language. Together, we
believe that expressions such as (fn [action folded] (apply (map & action) folded))
are more readable than cons_f x ys = (:) <$> f x <*> ys3. It is also our IDE
which makes code more readable by making it more tangible: the programmer can select
any expression to highlight it among other expressions. This is one of the criteria which
is hard to compare without a long term experience, but we believe that simplicity and
unambiguity lead to readability.

1We report the means from 20 test runs of each module. The relative standard deviation was high, often over
30%. There might be many reasons, such as JIT optimization withing the VM and memory cache hits/misses.
The reported numbers were collected on a 2.5GHZ Intel Core i5 CPU in Firefox.

2Compare with Scala[138].
3This is part of the definition of Traversable instance for Lists in GHC’s Prelude.

Chapter 6. Evaluation 115

Figure 6.1: How long programs of certain sizes take to compile. The 1000 line program is
the current Prelude. Such monolithic modules are not usual, for example our full solutions to
the first year Haskell exercise have all from 50 to 100 lines of code. The green labeled points
represent the additional time required to clone the result of the compilation from the worker to

the main thread.

• Writeability. Shem is already a concise language, although in some places we preferred
simplicity and consistency over brevity, for example by excluding function patterns or
pattern matching within function parameter lists. Yet we believe that the high extensi-
bility of our language will allow it to evolve towards what programmers find most useful.
Consider the current fn macro, which makes writing simple lambdas one character longer
than in Haskell. We believe that not having two separate syntaxes for functions is a good
property to have, but if we later find out that writing lambdas this way is too onerous, a
shorter syntax is just a macro away4:

| (syntax [..args]
(match args

{..xs res} (` fn [,..xs] ,res)))

test (zip (| x y (x y)) {+ - * /} (range 1 5))

To provide a measurement, we compare the number of key strokes required to input the
factorial function using Lamdu, Shem, Haskell and other languages in Figure 6.2. We
use this particular example because it is the only one available where we can compare
with Lamdu (recall Section 2.4.7). Shem dominates this comparison even more with
more complex examples, but we do not necessarily consider this a valuable metric, as
programmers rarely type programs from start to finish. The graph does manifest the
difference in verbosity between Shem, Haskell and CoffeeScript on one side and JavaScript
and Java on the other side, and it is not far fetched to believe that less verbose languages
are easier to write.

4Lambdas are not reusable, so we prefer to define and name functions which can be reused. The lambda in
the example has an equivalent in Shem’s prelude called apply-1.

Chapter 6. Evaluation 116

• Simplicity. There are perhaps simpler languages, but we hopefully struck a nice balance
with our approach to typing, FFI and macros. We expect the language to get more
complex as it grows, even though we would like to preserve this initial simplicity.

• Consistency. Consistency and unambiguity go hand in hand. “No surprises” are often
mentioned to embody this philosophy. It is difficult to achieve, as every new challenge
in the design of the language presents an opportunity to trade consistency for a quick
solution to the problem. We have paid attention to consistency but there are certainly
area for improvement, such as the editing controls and the prelude.

• Abstraction, Expressiveness. We believe that our language, with its user macros
and highly polymorphic collections, is highly expressive. We do lose some expressiveness
compared to lazy languages, but we gain in evaluation and performance predictability and
the simplicity of its compilation. Imperative concepts can also be more difficult to express.
This prompts us to consider easier ways of embedding imperative computations directly
within the language, potentially sacrificing purity.

Figure 6.2: Comparing the number of key strokes required to write the factorial function,
from example given in the Lamdu tutorial[139]. The * labeled rows correspond to programs
written using snippets or commands, while the rest are typed character by character (except

for Lamdu). The keystrokes and programs are given in Appendix A.1.2.

6.2 Performance

Comparing languages, unlike frameworks or libraries, performance-wise is rather difficult. It is
complicated to construct a suite of programs which would truthfully represent each language
and usually the libraries and algorithms used dominate any performance differences[140]. There
are differences between classes of programming languages, lower-level languages such as C are
generally faster than higher-level languages such as Java or Python. In this sense Shem’s
performance is limited to that of JavaScript. In general Shem runs as fast as PureScript or

Chapter 6. Evaluation 117

Elm, with differences depending on the used functions and collections. Although we have made
sure that no decision in the design of the language would severely impact the performance,
achieving the best possible performance was not our goal. Macros obviously allow for some
optimizations, although their impact would have to be studied further, as JavaScript VMs often
inline function calls anyway.

6.3 User Studies

Although we cannot perform a comparative survey of programming environments we carried out
several user studies during the later stages of the project development. Because we cannot teach
a new programming language and the controls of a new IDE in the time of a short user session
we used a script which prescribed what the programmer should do. We specifically focused on:

• Difficulty of getting used to structural editing.

• Whether the language constructs present made sense to the programmer.

• Readability of the resulting code, especially code which the programmer did not write
themselves.

We have engaged users with very mixed backgrounds, from different years of the Computing
degree at Imperial College London, of different programming aptitudes. In general, beginners5

were more willing to follow the instructions and therefore encountered less surprises with struc-
tural editing. Very experienced programmers6 tried to go ahead and use familiar shortcuts from
text editors, which did not map to corresponding actions in our editor.

The following feedback was often repeated across sessions:

• Majority of the programmers found the language readable.

• Type completion is “really nice”. Especially beginners relied on auto-completion whenever
it was available.

• Movement across atoms and holes works well. It is intuitive and easy to learn.

• Some often used commands, such as define, replace parent and wrap in a call are useful
and easy to internalize.

• Testing on OS X, having both Command- and Ctrl- based shortcuts is confusing.
5Students from 1st year which have finished courses on Haskell, Java and C and had no prior experience with

programming before starting the degree.
6Students of later years, with industrial experience.

Chapter 6. Evaluation 118

• Where clauses without the where keyword are not as obvious as in Haskell.

• Types should be always visible, possibly using a bottom tray displaying the type of the
current selection.

General reaction to the environment depended mainly on the personal preference of each pro-
grammer. Those without LISP experience found the language odd, but often liked the IDE and
would want to use it for they favorite language. Programmers who knew both Haskell and LISP
appreciated the language, but some would much prefer to use a normal text editor to program
the language. Those who did not remember Haskell too well found it difficult to understand
the basic concepts behind the language.

The lesson we took from these user studies is that there is still a room for improvement in how
familiar the editing experience is. One observation we made was that users often tried to use
the Right arrow key to move the cursor behind a delimiter, instead of typing a closing delimiter.
This kind of action pattern is often very ingrained and if we do not change the current model
then at least we should provide a customization option to enable this behavior. We have also
made several changes based on the gathered user feedback, such as using the Enter key for
filling in auto-completion or using - for negative number literals7. These have some negative
impact on consistency but the benefits of making the environment more familiar and less strange
outweigh them. User studies are time consuming but we wish we conducted more tests, focusing
on different parts of the system, such as its type error messaging.

One particular problem we noticed ourselves when using the IDE to prepare the some of the
examples for this report is that converting examples from other languages is not currently simple.
We cannot just insert them, we have to either copy them viewing the source side by side or first
convert them to Shem in a text editor. There is a simple solution to this problem discussed in
Section 7.1.8.

6.4 Implementation Evaluation

The scope of the project had its negative impact on its implementation. The main problem is
the relatively low test coverage. There are currently 83 language tests (in 1300 lines of Shem),
which are run by compiling Shem programs, executing them and comparing their results. We
could probably write another 50 tests just to test known behavior and added functionality, plus
a lot more for testing error behavior, for partial and malformed programs and programs with
type errors. The IDE lacks tests completely, as it is more difficult to test user interfaces, but

7The original design used the symbol, in line with the negation operator.

Chapter 6. Evaluation 119

it could certainly be done. Increasing test coverage should be a priority for further developing
the project.

For the IDE specifically, we need to spent more time testing the controls to make sure they work
well across platforms and user settings. We have mentioned that the IDE does not currently
provide facility for customization, although this would be fairly simple to implement, it is
certainly something missing from the current state of the project.

6.5 Comparison with Current Alternatives

Here is a summary of how Shem and Golem compare as a programming environment to Pure-
Script, Elm and Haskell today:

Advantages

• No set up. The full environment is available in the browser and the desktop version is a
single executable. PureScript and Elm offer pre-built executables which provide a REPL;
text editors must be set up separately and there is no true IDE support. Haskell requires
multiple steps to install the compiler, the platform and text editor support. There are
more IDE-like features available for some text editors.

• Proper collections library. Shem has a collections library polymorphic in collection types
and has built-in lists, arrays, maps and sets. PureScript has separate packages which
implement some collections in PureScript itself and its built-in lists are JavaScript arrays.
Elm has built-in sets, maps lists and arrays, but they each have a separate interface and
since Elm does not have type classes, collections of collections have almost no support
apart from lists of lists.

• Interactive programming. There are no tools currently available for any of the three lan-
guages which enable the kind of interactive programming experience that Golem provides.

• Simple JavaScript interop. Calling JavaScript from Shem is really easy, Shem’s functions
can be passed directly to JavaScript code expecting functions. This is not possible in
PureScript because functions are statically curried and nearly impossible in Elm. This
makes taking advantage of the large NPM ecosystem in Shem much simpler.

• Less errors and better error messages. In section 4.8 we compared our syntax and type
error messaging to Haskell’s popular compilers and mentioned that Elm and PureScript
provide the programmer with even less information.

Disadvantages

Chapter 6. Evaluation 120

• Lack of pure libraries. A disadvantage of a new language is the obvious lack of libraries.
Although good interop alleviates this problem somewhat, because Shem is statically typed
JavaScript, dynamically typed libraries must be additionally typed for truly easy use
and where applicable converted to pure style. It would be useful to simplify this task
by borrowing some libraries from PureScript, but there is no easy way to share types
between the two type systems, since types are extracted during compilation and the two
type systems miss features of each other. PureScript has quite a few libraries and a very
large category theory based type class hierarchy but being a new language itself a lot
of these are poorly documented and still evolving. Elm has a large built-in library for
implementing user interfaces, which is Elm’s main targeted use case, implemented partly
in JavaScript for efficiency. There is also a number of external libraries by members of
the community. In numbers, Bower[141] used by PureScript for package distribution, has
210 PureScript packages listed8 while Elm’s own package management system lists 187
packages. For comparison Hackage[142] lists 8268 packages. Both PureScript and Elm
are still evolving their core concepts, while Haskell, given its experimental nature, is still
in flux in terms of libraries and language extensions.

• Reliability of the type system. We have not proven our type system error-free and judging
from the past months of implementation we suspect that new bugs might appear. On the
other hand our type system sophistication is only rivaled by Haskell, as Elm completely
ignores type classes and PureScript does not infer constrained types, making programming
in Elm cumbersome and in PureScript not as effortless as programming in Shem.

• Learning curve. In order to push the boundary of current programming environments we
had made some unorthodox and novel choices. Although we find our structural editor
quite powerful and easy to use, it certainly takes time to master the new editing model,
although given its simplicity and similarity to text editing this is probably less severe than
in the case of Emacs or Vim. To programmers who have never encountered either Haskell
or LISP our language will feel unfamiliar either from semantics or syntax perspective.
Haskell, Elm and PureScript certainly have a steep learning curve as well for programmers
without functional background and we have made this curve even steeper.

• Lack of learning resources. We have not had the time to create a proper tutorial or
reference, which are a necessity for building a community around the language.

6.6 Summary

In this chapter we tried to evaluate Shem and Golem, qualitatively, with the help of user studies,
and comparatively, with respect to other strict Haskell-like languages targeting JavaScript and

8At the time of writing.

Chapter 6. Evaluation 121

Haskell itself. Overall, programming in Shem and Golem is currently hindered by the lack
of existing library support. We expect the experience to improve significantly as we build up
this ecosystem. We would obviously not recommend to use our system for production-level
applications and systems today but it is already a great tool for exploratory programming and,
in our opinion, a good starting point for a better future of programming.

Chapter 7

Conclusion

Our main goal was to design and implement a programming environment tailored to the pro-
grammer’s experience. To achieve this we designed a new language from the ground up, taking
the best aspects of different powerful, high level languages, which would fit into our vision of a
truly interactive IDE. The language targets the most popular runtime of today and the IDE is
purely browser based, available instantly for anyone to try out.

We have met the success conditions of the original project proposal. Shem is a general purpose
programming language and with its simple JavaScript FFI can be used today to write interactive
applications, servers, crawlers, 2D, 3D and GUI applications. Golem supports all of Shem’s
features. Because it is aware of the AST, it can perform more complex operations than modern
text editors and, thanks to the full support of multi-selections, can easily perform complex
operations not available in traditional IDEs.

And yet we seem to be far away from achieving the objectives we set out for ourselves at this
beginning of this report. The project’s level of polish is not yet high enough for us to advertise
it to the world’s programming community. There are still rough edges concerning the editing
experience and more user testing needs to be done to identify the decisions where we went too
far in designing an ideal but unfamiliar experience. The compiler needs to be properly tested
to ensure that more type-system related bugs are not lurking among the thousands of lines of
its (dynamically typed) code.

Yet from the user studies we have conducted we are optimistic about finding a niche group of
supporters who will appreciate the simplicity and elegance of our language and the interactivity
and power of our IDE. After all

The language must start small, and the language must grow as the set of users
grows.[76]

122

Chapter 7. Conclusion 123

7.1 Extensions and Future Work

Given the large scope of this project it is not surprising that there is a big number of possible
extensions and future work. In this section we discuss the most interesting ones.

7.1.1 Source Control

Traditional IDEs integrate traditional source control systems such as Git[143] or Mercurial[144].
These tools work on any text file on a line by line basis. This is usually inappropriate for
code[110]. Given our IDE operates directly on the AST, it would be possible to implement
smarter source control. More importantly, the IDE has an actual idea of the meaning of the
changes and could automatically generate commits and merge commits. Ideally, we would like
a system where the undo/redo stack is indistinguishable from the source control. The IDE can
generate changes such as “renamed x to y” and merge them based on time, the amount/complex-
ity of the change and its scope, to create larger commits such as “changed the implementation
of f to use g”, “removed method m” etc. It should still be possible for the programmer to tag a
range of changes with a custom message.

The same information can be used to provide a much better blame system, since the authorship
of code would be known on the AST level and would not get mangled by programmers making
slight changes or renames. Such a system does not have to implement the whole vertical of
a source control manager (SCM), it could serialize these changes into a format understood by
Git/Mercurial and use the existing infrastructure of these tools.

7.1.2 Versioning

It would be great to be able to require specific versions of certain functions or modules. This
is currently done using external tools like NPM, Golem does not keep track of semantic ver-
sioning. There are some good ideas in this space, such as hashing functions to provide unique
identifiers[145] and versioning based on types used in Elm’s package manager[81].

7.1.3 Code Hosting

Given that our IDE runs directly in the browser, we could integrate with a hosting code service,
such as GitHub. GitHub now supports CORS[146] requests so this could be done without
accessing a server. NPM does not support CORS at the moment, so it is not possible to load
libraries in the browser version of the IDE. This would enable anyone to edit any Shem project

Chapter 7. Conclusion 124

in the IDE with no setup costs and make changes via pull requests. Github provides online
editing facilities but these are obviously very limited compared to what Golem provides.

7.1.4 Asynchronous and Imperative Computation

Given we based our language largely on Haskell, imperative and asynchronous computations
are not as straightforward as pure computations. We currently use monads to deal with these
(see Appendix A.2.3), which do have the advantages of type safety but can be a bit unwieldy
when we have to wrap every call with potential side effects in an action. We could have chosen
to implicitly wrap calls to JavaScript in an action, but this would not allow us to distinguish
between blocking and asynchronous calls and there is no way to determine which kind of control
flow is used statically from the code.

To make the current monadic approach efficient we would have to implement the inlining of
monad chaining, as is done in PureScript, which translates monadic IO chains into normal
imperative assignments and calls in JavaScript. This works well for chains within a single
function but does not optimize the case of running many actions across functions - on the other
hand, that’s where the abstraction of an action is a useful concept.

In our original proposal we have touted the possibility of designing a simpler approach to
contained imperative computations than using monads. Although some of this can be achieved
today with macros, we have not yet provided the facility of running loops, for example, which
is important for getting the best performance out of the JavaScript VM.

The asynchronous problem is currently hotly debated in the JavaScript community, with differ-
ent people preferring differing solutions: generators, streams, functional reactive programming
(used in Elm) and communicating sequential processes (popularized by Go). It would be inter-
esting to see which approach fits Shem best and whether our implicit functional dependencies
could be used in the solution.

7.1.5 UI Programming

In Appendix A.2.1 we showed a very crude approach to building a UI, using HTML strings. A
better library is obviously needed. React[133] is currently among the most popular frameworks
for building web UI.1 The exciting prospect is that Shem’s semantics match React’s model
of pure rendering and because Shem uses immutable data structures, React can optimize its
checking for changes in its update loop. Thirdly, because Shem has macros the syntax for
constructing DOM trees can be made much nicer than the equivalent Haskell or JavaScript

1After all, Golem is built using React.

Chapter 7. Conclusion 125

code.2 It would be very interesting to see if these aspects actually align, as supporting a
popular framework has helped some languages3 to gain in popularity.

7.1.6 IDE Integration

Although we chose to build our IDE on top of Ace we could have taken a different approach
and integrated our editing and experimentation experience with an existing browser-based IDE,
such as LightTable[59] or Atom[61]. The reason we did not chose this path is because we were
not sure whether we could deliver the editing experience we wanted in these more controlled
environments (neither uses Ace, LightTable uses CodeMirror[147], an alternative to Ace, and
Atom has its own implementation of the text editor). The advantage of integration would be
that the other features of the IDE, handling files and integrating external tools, would be already
taken care of. We might run into similar issues as the ones we mentioned in Section 5.7, as the
bigger the main project the more difficult it is to integrate beyond the aspects envisioned by its
creators.

7.1.7 Truly Lazy Compiler

Currently, the smallest unit of compilation is a module. It would be interesting to explore the
idea of making the compiler truly lazy, in the sense that instead of keeping track of dependencies
between modules it would keep track of dependencies between definitions and only recompile
parts of modules as necessary. This could lead to further performance improvements. Such an
approach is not impossible to imagine, as at the end of the compilation we have all the necessary
information. The question then would be what impact can a change have on this state.

7.1.8 Plain Text Mode

Based on the issues we discussed in Section 6.3, it is sometimes useful to edit the source code
using strictly text, such as when converting from a different language to Shem. This would be
very simple to implement using our current architecture. We could simply switch to a plain
text mode for the duration of the conversion. The IDE would have to check that the source is
valid or reformat it before switching back to the Shem mode.

2Indeed, JavaScript would be so bad at expressing HTML that the team behind React came up with an XML
syntax, which gets compiled to JavaScript.

3Yes, Ruby.

Appendix A

Sample Programs

A.1 Basic

These are simple pure programs. Haskell is presented for comparison.

A.1.1 Algebra

The following is not an efficient solution. A find-first function or a lazy collection should be
used. This is a solution to the third Euler Project problem[148]:

euler3 (fn []
(largest-prime-factor 600851475143))

largest-prime-factor (fn [x]
(larger-prime-factor 1 x)
larger-prime-factor (fn [than x]

(match (first (filter (divisible? what: x) (range 2 (+ 1 (sqrt x)))))
None x
(Some factor) (larger-prime-factor factor (/ factor x)))))

A.1.2 Factorial

Factorial without pattern matching:

fac (fn [x]
(if (= 0 x)

1
(* x (fac (- 1 x)))))

fac x =
if x == 0 then 1
else x * fac (x - 1)

126

Appendix A. Sample Programs 127

The key strokes counted in Figure 6.2. Special characters are used to represent non-alphabetical
keys and key combinations:

fac x=if x=0 1 x*f x-1 # Lambdu | 22
fac ƒx®(if =†0 x) 1 *†x f† -†1 x # Shem using Ctrl-F and autocompletion | 32
fac x = if†x == 0†1†x * fac (x - 1) # Haskell with if snippet | 35
fac (fn [x] (if (= 0 x) 1 (* x (fac (- 1 x # Shem 42
fac = (x) ->®if x is 0®1®†else x * fac x - 1 # CoffeeScript | 44
fac x = if x == 0 then 1 else x * fac (x - 1) # Haskell | 45
fun†fac†x†ife†x == 1†return 1†return x * fac(x - 1)

Javacript with good fun and ife snippets | 51
function fac(x) {if (x === 0) {return 1} else {return x * fac(x - 1)}}

Javascript | 70
class Fac {int fac(int x){if (x === 0) {return 1;}

else {return x * fac(x - 1);}}} # Java | 82

A.1.3 Binary Search

search2 (fn [n list]
(search-in 0 (size list))
search-in (fn [min max]

(if (>= max min)
None
(match (compare n middle)

LT (search-in min half)
GT (search-in (+ 1 half) max)
EQ (Some half)))

middle (!! (at half list))
half (+ min (div 2 (- min max)))))

import Data.Array
search n list

= uncurry searchIn (bounds list)
where

searchIn min max
| max <= min = Nothing
| otherwise =

case compare n middle of
LT -> searchIn min half
GT -> searchIn (half + 1) max
EQ -> Just middle

where
half = (min + max) `div` 2
middle = list ! half

A.1.4 L-Systems

Adapted from first year exercises. Notice that maps are used instead of looking up in lists in
Haskell. Comments and types had to be stripped for presentation:

Appendix A. Sample Programs 128

Rules (type (Map Char String))
System (record

angle: Num
base: String
rules: Rules)

tree (fn [angle] (System
angle
“M”
(Map

\M “N[-M][+M][NM]”
\N “NM”
\[“[”
\] “]”
\+ “+”
\- “-”)))

l-system (fn [system n]
(trace

(expand-one mapper
(expand

(System-rules system)
(System-base system)
n))

(System-angle system)
[1 0.8 0.6]))

lookup-char (fn [char in]
(!! (at char in)))

expand-one (fn [rules base]
(concat (map-into

(lookup-char in: rules) {} base)))

expand (fn [rules base n]
(reapply (expand-one rules) base n))

move (fn [command state rotation]
(match command

\F [[(+ x (cos a)) (+ y (sin a))] angle]
\L [pos (+ rotation angle)]
\R [pos (- rotation angle)])

[x y] pos
a (degrees angle)
[pos angle] state)

trace (fn [commands rotation color]
lines
[end empty lines] (fold step initial commands)
step (fn [command current]

(match command
\[[state (& state stack) lines]
\] [(!! (first stack)) (rest stack) lines]
dir (do-move dir))

[state stack lines] current
do-move (fn [command]

[next stack (& [from to color] lines)]
[to _] next
[from _] state
next (move command state rotation)))

initial [[[0 0] 270] (List) (List)])

mapper (Map
\M “F”
\N “F”
\+ “R”
\- “L”
\[“[”
\] “]”)

tree angle = (angle, "M",
[('M', "N[-M][+M][NM]"),

('N', "NN"),
('[', "["),
(']', "]"),
('+', "+"),
('-', "-")])

lSystem s count
= expandOne mapper (expand (rules s) (base s) count)

angle system = let (x, _, _) = system in x

base system = let (_, x, _) = system in x

rules system = let (_, _, x) = system in x

lookupChar ch rs = head [s | (i, s) <- rs, i == ch]

expandOne rs cmd = concat (map (`lookupChar` rs) cmd)

expand rs cmd n = iterate (expandOne rs) cmd !! n

move r ((x, y), ang) rot
| r == 'F' = ((x + cosD ang, y + sinD ang), ang)
| otherwise = ((x, y), turn ang rot)
where

turn = if r == 'L' then (+) else (-)

cosD = cos . dTR
sinD = sin . dTR

dTR x = pi * x / 180

trace pattern rot color = gen pattern [initPos]
where

gen [] stack = []
gen (ch : chs) stack@(start : rest)

| ch == 'F' = line : advance (to : rest)
| ch == '[' = advance (start : stack)
| ch == ']' = advance rest
| otherwise = advance (to : rest)

where
advance = gen chs
line = (fst start, fst to, color, 1)
to = move ch start rot

gen (ch : chs) stack@(start : rest)
| ch == 'F' = line : advance
| otherwise = advance
where

line = (getVert start, getVert to, color, 1)
to = move ch start rot
advance = gen chs next
next

| ch == '[' = (start : stack)
| ch == ']' = rest
| otherwise = (to : rest)

initPos = ((0, 0), 90)

getVert = fst

mapper = [('M', "F"),
('N', "F"),
('X', ""),
('Y', ""),
('A', ""),
('[', "["),
(']', "]"),
('+', "L"),
('-', "R")]

Appendix A. Sample Programs 129

A.2 Advanced

A.2.1 A Guessing Game

Source for the UI shown in Figure 4.7. Uses plain strings for producing HTML and callback-style
event programming. First the crude DOM library, using barebones DOM API1. Also shows that
we can peform impure operations without monads:

time-out! (fn [duration callback]
(: (Fn Num (Io Void) (Io Void)))
(io (.setTimeout (global) (fn [] (run-io callback)) duration)))

on-id (fn [id event-name callback]
(: (Fn String String (Fn Js (Io a)) (Io Void)))
(io (.addEventListener global.document event-name (fn [event]

(if (== target-id id)
(exec-io (callback event))
Void)

target-id (:: String (.-id (.-target event)))))))

element-by-id (fn [name]
(: (Fn String (? DomElement)))
(from-nullable (.getElementById global.document name)))

set-html! (fn [html element]
(: (Fn String DomElement (Io Void)))
(io (set! (.-innerHTML element) html)))

Now we can put these together. Clearly, this demonstrates that we can use the native JavaScript
APIs, but also that we should use a better abstraction layer:

1Which is horrible.

Appendix A. Sample Programs 130

guess-a-number (fn [min max]
(do

(set r (random-int min max))
(on-id “button” “click” (fn [event]

(do
(set-result! “...”)
(time-out! 500 (set-result! (answer r guess))))

set-result! (fn [result]
(set-html! result (!! (element-by-id “result”))))

guess (integer-value (!! (element-by-id “guess”)))))
(lift (ui min max))))

answer (fn [goal guess]
(match (compare guess goal)

LT “That's too little.”
GT “That's too much.”
EQ “That's correct!”))

ui (fn [min max]
(concat

{“<div style='
padding: 20px;
background: white;
color: #444;
font: 16px Helvetica; '>”
(format “<div style='padding: 10px'>

Can you guess a number between %n and %n?
</div>” min (- 1 max))

“<input
id='guess'
style='margin: 10px 10px 20px'></input>”

“<button id='button'>Guess</button>
”
“”
“</div>”}))

A.2.2 A Server

Using the Express.js[149] library, replies with “Hello world!” to requests on port 8080:

Appendix A. Sample Programs 131

server (do
(set app (io (express)))
(io (.get app “/” (fn [req res]

(.send res “Hello world!”))))
(io (.listen app 8080 (fn []

(log “Success”))))
(lift “starting...”))

express (:: (Fn Js) (require “express”))

A.2.3 Asynchronous Computations

Defining an Async monad:

Appendix A. Sample Programs 132

Async (data [a] Async [content: (Fn (Fn a Void) Void)])

start-async (fn [async]
(# Fires of an async action. Similar to run-io.)
((Async-content async) (fn [x] Void)))

chain-async (fn [wrapped through]
(# Similar to chain-io, but using callbacks to chain asynchronous

computations.)
(Async (fn [x]

((Async-content wrapped) (fn [y]
((Async-content (through y)) x))))))

async-mappable (instance (Mappable Async)
map (fn [what over]

(chain-async over
(fn [x] (Async (fn [cb] (cb (what x))))))))

async-liftable (instance (Liftable Async)
lift (fn [x] (Async (fn [cb] (cb x))))
apply (fn [what to]

(chain-async what (fn [unwrapped-what]
(chain-async to (fn [unwrapped-to]

(Async (fn [cb] (cb (unwrapped-what unwrapped-to))))))))))

async-chainable (instance (Chainable Async)
chain chain-async)

sync (fn [io]
(# Takes an io action and turns it into an Async action.

This would be an instance of MonadIO in Haskell.)
(Async (fn [cb]

(cb (run-io io)))))

async (syntax [..expressions]
(` (io (start-async (do ,..expressions)))))

Now we can define some asynchronous actions2 and use them with the do macro:
2“require” requires a Node module.

Appendix A. Sample Programs 133

greet... (do
(say... “Hello,”)
(wait... second)
(say... “world!”))

second 1000

wait... (fn [ms]
(# Block for ms .)
(Async (fn [cb]

(:: Void (.setTimeout (global) cb ms)))))

say... (fn [what]
(# Pronounce what using the OS X say command.)
(Async (fn [cb]

(:: Void (.exec child-process (format “say %s” what) cb)))))

child-process (require “child_process”)

A universal Traversable instance for all appendable bags (see Haskell’s mapM) allows us to
chain collections of Async actions (or any other Liftable instances). Compare with equivivalent
JavaScript, without using libraries for dealing with asynchronocity:

greetings... (fold-do (repeat 10 greet...))

fold-do (fn [actions]
(: (Fn (b (a c)) (a (b c)))

(Bag (b (a c)) (a c))
(Bag (b c) c)
(Appendable (b c) c)
(Liftable a))

(fold-right add (lift empty) actions)
add (fn [action folded]

(apply (map & action) folded)))

var child_process = require('child_process');

var greetings = function(cb) {
var count = 10;
var callNext = function(){

if (count > 0) {
count--;
greet(callNext);

}
});

}

Appendix A. Sample Programs 134

var greet = function(cb) {
say("Hello", function() {

wait(1000, function() {
say(", world!", cb);

})
});

}

var say = function(what, cb) {
child_process.exec("say" + what, function(error, result) {

cb();
});

}

var wait = function(ms, cb) {
setTimeout(function(){

cb();
}, ms);

}

Bibliography

[1] Evan Czaplicki and Stephen Chong. Asynchronous functional reactive programming for
GUIs. In ACM SIGPLAN Notices, volume 48, pages 411–422. ACM, 2013.

[2] Phil Freeman. Purescript by example, 2014. URL https://leanpub.com/purescript.

[3] Edwin Brady. Programming in Idris: a tutorial. Technical report, Technical report,
University of St Andrews, 2013.

[4] Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and Mark Shields. Practical
type inference for arbitrary-rank types. Journal of functional programming, 17(01):1–82,
2007.

[5] Tom Schrijvers, Simon Peyton Jones, Manuel Chakravarty, and Martin Sulzmann. Type
checking with open type functions. ACM Sigplan Notices, 43(9):51–62, 2008.

[6] Oracle. What’s New in JDK 8, 2015. URL http://www.oracle.com/technetwork/java/
javase/8-whats-new-2157071.html. [Accessed Jan 29th, 2015].

[7] Douglas C Engelbart. The mother of all demos. 1968. URL https://www.youtube.com/
watch?v=yJDv-zdhzMY.

[8] Alan C Kay. The early history of smalltalk. In History of programming languages—II,
pages 511–598. ACM, 1996.

[9] Bret Victor. Inventing on principle, 2012. URL http://worrydream.com/#!
/InventingOnPrinciple.

[10] Paul Graham. Beating the averages, 2004. URL http://www.paulgraham.com/avg.html.

[11] DZone. Eclipse indigo release train now available: 46 million lines of
code across 62 projects, 2011. URL http://eclipse.dzone.com/articles/
eclipse-indigo-released. [Accessed Jan 29th, 2015].

[12] Michael Lee Scott. Programming language pragmatics. Morgan Kaufmann, 2000.

[13] Andreas Gomolka and Bernhard Humm. Structure editors: Old hat or future vision? In
Evaluation of Novel Approaches to Software Engineering, pages 82–97. Springer, 2013.

[14] Ben Lippmeier. Type inference and optimisation for an impure world. Australian National
University, 2009.

[15] Paul Hudak, John Hughes, Simon Peyton Jones, and Philip Wadler. A history of Haskell:
being lazy with class. In Proceedings of the third ACM SIGPLAN conference on History
of programming languages, pages 12–1. ACM, 2007.

135

https://leanpub.com/purescript
http://www.oracle.com/technetwork/java/javase/8-whats-new-2157071.html
http://www.oracle.com/technetwork/java/javase/8-whats-new-2157071.html
https://www.youtube.com/watch?v=yJDv-zdhzMY
https://www.youtube.com/watch?v=yJDv-zdhzMY
http://worrydream.com/#!/InventingOnPrinciple
http://worrydream.com/#!/InventingOnPrinciple
http://www.paulgraham.com/avg.html
http://eclipse.dzone.com/articles/eclipse-indigo-released
http://eclipse.dzone.com/articles/eclipse-indigo-released

Bibliography 136

[16] Andrew W Appel and David B MacQueen. Standard ML of new jersey. In Programming
Language Implementation and Logic Programming, pages 1–13. Springer, 1991.

[17] Alon Zakai. Emscripten: an LLVM-to-Javascript compiler. In Proceedings of the ACM
international conference companion on Object oriented programming systems languages
and applications companion, pages 301–312. ACM, 2011. URL http://emscripten.org/.

[18] Jeremy Ashkenas et al. Coffeescript, 2012. URL http://coffeescript.org/.

[19] John Hughes. Why functional programming matters. The computer journal, 32(2):98–107,
1989.

[20] Airbnb. Isomorphic Javascript: The future of web apps, 2013. URL http://nerds.
airbnb.com/isomorphic-javascript-future-web-apps/. [Accessed Jan 29th, 2015].

[21] faylang/fay · github. https://github.com/faylang/fay. (Visited on 12/06/2015).

[22] ghcjs/ghcjs · github. https://github.com/ghcjs/ghcjs, . (Visited on 12/06/2015).

[23] elm-lang/elm-compiler · github. https://github.com/elm-lang/elm-compiler, . (Vis-
ited on 12/06/2015).

[24] Clemens Fruhwirth. Haskell semantics with lisp syntax. 2007. URL http://clemens.
endorphin.org/ILC07-Liskell-draft.pdf.

[25] Ml (programming language) - wikipedia, the free encyclopedia. https://en.wikipedia.
org/wiki/ML_%28programming_language%29. (Visited on 12/06/2015).

[26] Ocaml – ocaml. http://ocaml.org/. (Visited on 12/06/2015).

[27] Ocsigen. Js_of_ocaml. http://ocsigen.org/js_of_ocaml/. (Visited on 12/06/2015).

[28] Performances of js_of_ocaml compiled programs. URL http://ocsigen.org/js_of_
ocaml/2.5/manual/performances. [Accessed Jan 29th, 2015].

[29] Oracle. java.com: Java + you. https://www.java.com/en/, . (Visited on 12/06/2015).

[30] C sharp (programming language) - wikipedia, the free encyclopedia. https:
//en.wikipedia.org/wiki/C_Sharp_%28programming_language%29. (Visited on
12/06/2015).

[31] harmony:specification_drafts [es wiki]. http://wiki.ecmascript.org/doku.php?id=
harmony:specification_drafts. (Visited on 12/06/2015).

[32] Closure compiler | google developers. https://developers.google.com/closure/
compiler/. (Visited on 12/06/2015).

[33] Facebook. Flow | flow | a static type checker for javascript. http://flowtype.org/, .
(Visited on 12/06/2015).

[34] Douglas Crockford. JavaScript: The Good Parts: The Good Parts. ” O’Reilly Media,
Inc.”, 2008.

[35] Rich Hickey. The clojure programming language. In Proceedings of the 2008 symposium
on Dynamic languages, page 1. ACM, 2008.

[36] The racket language. http://www.racket-lang.org/. (Visited on 12/06/2015).

http://emscripten.org/
http://coffeescript.org/
http://nerds.airbnb.com/isomorphic-javascript-future-web-apps/
http://nerds.airbnb.com/isomorphic-javascript-future-web-apps/
https://github.com/faylang/fay
https://github.com/ghcjs/ghcjs
https://github.com/elm-lang/elm-compiler
http://clemens.endorphin.org/ILC07-Liskell-draft.pdf
http://clemens.endorphin.org/ILC07-Liskell-draft.pdf
https://en.wikipedia.org/wiki/ML_%28programming_language%29
https://en.wikipedia.org/wiki/ML_%28programming_language%29
http://ocaml.org/
http://ocsigen.org/js_of_ocaml/
http://ocsigen.org/js_of_ocaml/2.5/manual/performances
http://ocsigen.org/js_of_ocaml/2.5/manual/performances
https://www.java.com/en/
https://en.wikipedia.org/wiki/C_Sharp_%28programming_language%29
https://en.wikipedia.org/wiki/C_Sharp_%28programming_language%29
http://wiki.ecmascript.org/doku.php?id=harmony:specification_drafts
http://wiki.ecmascript.org/doku.php?id=harmony:specification_drafts
https://developers.google.com/closure/compiler/
https://developers.google.com/closure/compiler/
http://flowtype.org/
http://www.racket-lang.org/

Bibliography 137

[37] Mark Tarver. Shen. URL http://www.shenlanguage.org/.

[38] Martin Odersky. (comment) universal type inference is a bad thing. URL http:
//www.codecommit.com/blog/scala/universal-type-inference-is-a-bad-thing#
comment-3438.

[39] John Peterson and Mark Jones. Implementing type classes. In ACM SIGPLAN Notices,
volume 28, pages 227–236. ACM, 1993.

[40] Stefan Wehr and Manuel MT Chakravarty. ML modules and haskell type classes: A con-
structive comparison. In Programming Languages and Systems, pages 188–204. Springer,
2008.

[41] Yaron Minsky. Effective ML. URL http://vimeo.com/14313378.

[42] Differences with Java, multi-methods. URL http://groovy-lang.org/differences.
html#_multi_methods. [Accessed Jan 29th, 2015].

[43] Simon Peyton Jones. Type directed name resolution, 2010. URL https://ghc.haskell.
org/trac/haskell-prime/wiki/TypeDirectedNameResolution.

[44] Bouke van der Bijl. Idiomatic generics in go. URL http://bouk.co/blog/
idiomatic-generics-in-go/. [Accessed Jan 29th, 2015].

[45] Burak Emir, Andrew Kennedy, Claudio Russo, and Dachuan Yu. Variance and generalized
constraints for cˆ{\ sharp} generics. In ECOOP 2006–Object-Oriented Programming,
pages 279–303. Springer, 2006.

[46] Mark P Jones. Typing haskell in haskell. In Haskell workshop, volume 7, 1999.

[47] nlinger. Ensuring that a function is polymorphic in ocaml
3.12 :: Jane street tech blogs. https://blogs.janestreet.com/
ensuring-that-a-function-is-polymorphic-in-ocaml-3-12/. (Visited on
06/12/2015).

[48] Martin Sulzmann, Gregory J Duck, Simon Peyton-Jones, and Peter J Stuckey. Under-
standing functional dependencies via constraint handling rules. Journal of Functional
Programming, 17(01):83–129, 2007.

[49] Mark P Jones. Type classes with functional dependencies. In Programming Languages
and Systems, pages 230–244. Springer, 2000.

[50] Robert Dockins. [haskell] the ghc typechecker is turing-complete. https:
//mail.haskell.org/pipermail/haskell/2006-August/018355.html. (Visited on
12/06/2015).

[51] Macro (computer science), syntactic macros, . URL http://en.wikipedia.org/wiki/
Macro_%28computer_science%29#Syntactic_macros. [Accessed Jan 29th, 2015].

[52] Brian Goslinga, Eugene Butler, and Elena Machkasova. Improving error messages in the
clojure programming language.

[53] Matthew Flatt, Ryan Culpepper, David Darais, and Robert Bruce Findler. Macros that
work together. Journal of Functional Programming, 22(02):181–216, 2012.

http://www.shenlanguage.org/
http://www.codecommit.com/blog/scala/universal-type-inference-is-a-bad-thing#comment-3438
http://www.codecommit.com/blog/scala/universal-type-inference-is-a-bad-thing#comment-3438
http://www.codecommit.com/blog/scala/universal-type-inference-is-a-bad-thing#comment-3438
http://vimeo.com/14313378
http://groovy-lang.org/differences.html#_multi_methods
http://groovy-lang.org/differences.html#_multi_methods
https://ghc.haskell.org/trac/haskell-prime/wiki/TypeDirectedNameResolution
https://ghc.haskell.org/trac/haskell-prime/wiki/TypeDirectedNameResolution
http://bouk.co/blog/idiomatic-generics-in-go/
http://bouk.co/blog/idiomatic-generics-in-go/
https://blogs.janestreet.com/ensuring-that-a-function-is-polymorphic-in-ocaml-3-12/
https://blogs.janestreet.com/ensuring-that-a-function-is-polymorphic-in-ocaml-3-12/
https://mail.haskell.org/pipermail/haskell/2006-August/018355.html
https://mail.haskell.org/pipermail/haskell/2006-August/018355.html
http://en.wikipedia.org/wiki/Macro_%28computer_science%29#Syntactic_macros
http://en.wikipedia.org/wiki/Macro_%28computer_science%29#Syntactic_macros

Bibliography 138

[54] JetBrains. Intellij idea — the most intelligent java ide. https://www.
jetbrains.com/idea/specials/idea/idea-tools.jsp?utm_expid=85132606-37.
5-enLWJnTxyshuS9opeVLA.2&utm_referrer=https%3A%2F%2Fwww.google.com%2F.
(Visited on 12/06/2015).

[55] Eclipse - the eclipse foundation open source community website. https://eclipse.org/.
(Visited on 12/06/2015).

[56] Oracle. Netbeans. https://netbeans.org/, . (Visited on 12/06/2015).

[57] Microsoft. Visual studio - microsoft developer tools. https://www.visualstudio.com/.
(Visited on 12/06/2015).

[58] Neil Toronto. (fourth racketcon): Neil toronto — purely functional 3d in typed racket -
youtube. https://www.youtube.com/watch?v=t3xdv4UP9-U. (Visited on 12/06/2015).

[59] Light table. http://lighttable.com/. (Visited on 12/06/2015).

[60] Sublime text: The text editor you’ll fall in love with. http://www.sublimetext.com/.
(Visited on 12/06/2015).

[61] Inc. Github. Atom. https://atom.io/, . (Visited on 08/06/2015).

[62] Chris Granger. Light table - a new ide concept. http://www.chris-granger.com/2012/
04/12/light-table---a-new-ide-concept/, . (Visited on 12/06/2015).

[63] Bret Victor. The future of programming on vimeo. https://vimeo.com/71278954, .
(Visited on 12/06/2015).

[64] Bret Victor. Bret victor, beast of burden. http://worrydream.com/, . (Visited on
12/06/2015).

[65] Bret Victor. Up and down the ladder of abstraction. http://worrydream.com/
LadderOfAbstraction/, . (Visited on 12/06/2015).

[66] bret Victor. Learnable programming. http://worrydream.com/
LearnableProgramming/, . (Visited on 12/06/2015).

[67] Inc. Apple. Swift - overview - apple developer. https://developer.apple.com/swift/.
(Visited on 12/06/2015).

[68] Chris Granger. Aurora (strangeloop 2013 demo) - youtube. https://www.youtube.com/
watch?v=L6iUm_Cqx2s, . (Visited on 06/12/2015).

[69] Eyal Lotem. Lamdu. http://peaker.github.io/lamdu/, . (Visited on 06/12/2015).

[70] Smalltalk - wikipedia, the free encyclopedia. https://en.wikipedia.org/wiki/
Smalltalk. (Visited on 12/06/2015).

[71] Pharo - welcome to pharo! http://pharo.org/. (Visited on 12/06/2015).

[72] Erlang programming language. http://www.erlang.org/. (Visited on 12/06/2015).

[73] Kenneth E Iverson. Notation as a tool of thought. ACM SIGAPL APL Quote Quad, 35
(1-2):2–31, 2007.

[74] John McCarthy. Recursive functions of symbolic expressions and their computation by
machine, part i. Communications of the ACM, 3(4):184–195, 1960.

https://www.jetbrains.com/idea/specials/idea/idea-tools.jsp?utm_expid=85132606-37.5-enLWJnTxyshuS9opeVLA.2&utm_referrer=https%3A%2F%2Fwww.google.com%2F
https://www.jetbrains.com/idea/specials/idea/idea-tools.jsp?utm_expid=85132606-37.5-enLWJnTxyshuS9opeVLA.2&utm_referrer=https%3A%2F%2Fwww.google.com%2F
https://www.jetbrains.com/idea/specials/idea/idea-tools.jsp?utm_expid=85132606-37.5-enLWJnTxyshuS9opeVLA.2&utm_referrer=https%3A%2F%2Fwww.google.com%2F
https://eclipse.org/
https://netbeans.org/
https://www.visualstudio.com/
https://www.youtube.com/watch?v=t3xdv4UP9-U
http://lighttable.com/
http://www.sublimetext.com/
https://atom.io/
http://www.chris-granger.com/2012/04/12/light-table---a-new-ide-concept/
http://www.chris-granger.com/2012/04/12/light-table---a-new-ide-concept/
https://vimeo.com/71278954
http://worrydream.com/
http://worrydream.com/LadderOfAbstraction/
http://worrydream.com/LadderOfAbstraction/
http://worrydream.com/LearnableProgramming/
http://worrydream.com/LearnableProgramming/
https://developer.apple.com/swift/
https://www.youtube.com/watch?v=L6iUm_Cqx2s
https://www.youtube.com/watch?v=L6iUm_Cqx2s
http://peaker.github.io/lamdu/
https://en.wikipedia.org/wiki/Smalltalk
https://en.wikipedia.org/wiki/Smalltalk
http://pharo.org/
http://www.erlang.org/

Bibliography 139

[75] Ron. Rondam ramblings: Why lisp? http://blog.rongarret.info/2015/05/
why-lisp.html. (Visited on 12/06/2015).

[76] Guy Steele. Growing a language, by guy steele - youtube. https://www.youtube.com/
watch?v=_ahvzDzKdB0. (Visited on 06/12/2015).

[77] eduardoejp. **simplicity** my ideal of simplicity is more like haskell’s than clojure’s.
c... | hacker news. https://news.ycombinator.com/item?id=9489927. (Visited on
06/12/2015).

[78] Joel Burget. The third age of computing is dependently typed. http://joelburget.
com/third-age-dependently-typed/, . (Visited on 06/12/2015).

[79] Ecmascript language specification - ecma-262 edition 5.1. http://ecma-international.
org/ecma-262/5.1/. (Visited on 12/06/2015).

[80] Google. chromeos - google search. https://www.google.com/search?q=chromeos&oq=
chromeos&aqs=chrome..69i57j0l5.157j0j4&sourceid=chrome&es_sm=91&ie=UTF-8.
(Visited on 12/06/2015).

[81] Elm package manager. http://elm-lang.org/blog/announce/PackageManager.elm, .
(Visited on 08/06/2015).

[82] #9586 (implement traversable/foldable-burning-bridges proposal) – ghc. https://ghc.
haskell.org/trac/ghc/ticket/9586. (Visited on 12/06/2015).

[83] Backus–naur form - wikipedia, the free encyclopedia. https://en.wikipedia.org/wiki/
Backus%E2%80%93Naur_Form. (Visited on 06/12/2015).

[84] Extended backus–naur form - wikipedia, the free encyclopedia. https://en.wikipedia.
org/wiki/Extended_Backus%E2%80%93Naur_Form. (Visited on 06/12/2015).

[85] Mozzila. Grammar and types - javascript | mdn. https://developer.mozilla.org/
en-US/docs/Web/JavaScript/Guide/Grammar_and_types#String_literals, . (Visited
on 12/06/2015).

[86] Oracle. Chapter 19. syntax. http://docs.oracle.com/javase/specs/jls/se8/html/
jls-19.html, . (Visited on 06/12/2015).

[87] Objective-c - wikipedia, the free encyclopedia. https://en.wikipedia.org/wiki/
Objective-C. (Visited on 12/06/2015).

[88] Manuel Rubio-Sánchez and B Pajak. Fibonacci numbers using mutual recursion. Koli
Calling, pages 174–177, 2005.

[89] C. A. McCann. haskell - typeclass constraints on data declarations
- stack overflow. http://stackoverflow.com/questions/12770278/
typeclass-constraints-on-data-declarations. (Visited on 06/12/2015).

[90] Algebraic data type - wikipedia, the free encyclopedia. https://en.wikipedia.org/
wiki/Algebraic_data_type, . (Visited on 06/12/2015).

[91] Wolfram Kahl and Jan Scheffczyk. Named instances for haskell type classes. In Proceed-
ings of the 2001 Haskell Workshop, number UU-CS-2001-23 in Tech. Rep, pages 71–99.
Citeseer, 2001.

http://blog.rongarret.info/2015/05/why-lisp.html
http://blog.rongarret.info/2015/05/why-lisp.html
https://www.youtube.com/watch?v=_ahvzDzKdB0
https://www.youtube.com/watch?v=_ahvzDzKdB0
https://news.ycombinator.com/item?id=9489927
http://joelburget.com/third-age-dependently-typed/
http://joelburget.com/third-age-dependently-typed/
http://ecma-international.org/ecma-262/5.1/
http://ecma-international.org/ecma-262/5.1/
https://www.google.com/search?q=chromeos&oq=chromeos&aqs=chrome..69i57j0l5.157j0j4&sourceid=chrome&es_sm=91&ie=UTF-8
https://www.google.com/search?q=chromeos&oq=chromeos&aqs=chrome..69i57j0l5.157j0j4&sourceid=chrome&es_sm=91&ie=UTF-8
http://elm-lang.org/blog/announce/PackageManager.elm
https://ghc.haskell.org/trac/ghc/ticket/9586
https://ghc.haskell.org/trac/ghc/ticket/9586
https://en.wikipedia.org/wiki/Backus%E2%80%93Naur_Form
https://en.wikipedia.org/wiki/Backus%E2%80%93Naur_Form
https://en.wikipedia.org/wiki/Extended_Backus%E2%80%93Naur_Form
https://en.wikipedia.org/wiki/Extended_Backus%E2%80%93Naur_Form
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Grammar_and_types#String_literals
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Grammar_and_types#String_literals
http://docs.oracle.com/javase/specs/jls/se8/html/jls-19.html
http://docs.oracle.com/javase/specs/jls/se8/html/jls-19.html
https://en.wikipedia.org/wiki/Objective-C
https://en.wikipedia.org/wiki/Objective-C
http://stackoverflow.com/questions/12770278/typeclass-constraints-on-data-declarations
http://stackoverflow.com/questions/12770278/typeclass-constraints-on-data-declarations
https://en.wikipedia.org/wiki/Algebraic_data_type
https://en.wikipedia.org/wiki/Algebraic_data_type

Bibliography 140

[92] Rich Hickey. Clojure - reader. http://clojure.org/reader. (Visited on 12/06/2015).

[93] S Peyton Jones, John Hughes, Lennart Augustsson, Dave Barton, Brian Boutel, Warren
Burton, Joseph Fasel, Kevin Hammond, Ralf Hinze, Paul Hudak, et al. Haskell 98: A
non-strict, purely functional language, 1999.

[94] Luis Damas and Robin Milner. Principal type-schemes for functional programs. In Pro-
ceedings of the 9th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 207–212. ACM, 1982.

[95] Mark P Jones. A system of constructor classes: overloading and implicit higher-order
polymorphism. Journal of functional programming, 5(01):1–35, 1995.

[96] Flexibleinstances – haskell prime. https://ghc.haskell.org/trac/haskell-prime/
wiki/FlexibleInstances, . (Visited on 12/06/2015).

[97] Simon Peyton Jones, Mark Jones, and Erik Meijer. Type classes: an exploration of the
design space. In Haskell workshop, pages 1–16, 1997.

[98] Flexiblecontexts – haskell prime. https://ghc.haskell.org/trac/haskell-prime/
wiki/FlexibleContexts, . (Visited on 12/06/2015).

[99] Big o notation - wikipedia, the free encyclopedia. https://en.wikipedia.org/wiki/
Big_O_notation. (Visited on 12/06/2015).

[100] Oracle. Lesson: Interfaces (the java™ tutorials > collections). https://docs.
oracle.com/javase/tutorial/collections/interfaces/index.html, . (Visited on
12/06/2015).

[101] Facebook. Immutable.js. https://facebook.github.io/immutable-js/, . (Visited on
12/06/2015).

[102] Data.foldable. https://hackage.haskell.org/package/base-4.7.0.2/docs/
Data-Foldable.html, . (Visited on 12/06/2015).

[103] Evan Czaplicki. Elm designguidelines. http://package.elm-lang.org/help/
design-guidelines. (Visited on 12/06/2015).

[104] James Halliday. Browserify. http://browserify.org/. (Visited on 12/06/2015).

[105] James Burke. Requirejs. http://requirejs.org/. (Visited on 12/06/2015).

[106] Phil Freeman. Release v0.7.0-rc.1 · purescript/purescript · github. https://github.
com/purescript/purescript/releases/tag/v0.7.0-rc.1. (Visited on 12/06/2015).

[107] Andrey Popp. Fighting node callback hell with purescript. https://andreypopp.
com/posts/2014-07-21-fighting-node-callbacks-with-purescript.html. (Visited
on 12/06/2015).

[108] Jamie Brandon. Incidental complexity. http://incidentalcomplexity.com/2015/02/
24/january--february/. (Visited on 12/06/2015).

[109] Josh Marinacci. Typographic programming wrapup. http://joshondesign.com/2014/
10/06/typoplwrapup. (Visited on 12/06/2015).

[110] Joel Burget. Programmer tooling beyond plain text. http://joelburget.com/
plaintext/, . (Visited on 06/12/2015).

http://clojure.org/reader
https://ghc.haskell.org/trac/haskell-prime/wiki/FlexibleInstances
https://ghc.haskell.org/trac/haskell-prime/wiki/FlexibleInstances
https://ghc.haskell.org/trac/haskell-prime/wiki/FlexibleContexts
https://ghc.haskell.org/trac/haskell-prime/wiki/FlexibleContexts
https://en.wikipedia.org/wiki/Big_O_notation
https://en.wikipedia.org/wiki/Big_O_notation
https://docs.oracle.com/javase/tutorial/collections/interfaces/index.html
https://docs.oracle.com/javase/tutorial/collections/interfaces/index.html
https://facebook.github.io/immutable-js/
https://hackage.haskell.org/package/base-4.7.0.2/docs/Data-Foldable.html
https://hackage.haskell.org/package/base-4.7.0.2/docs/Data-Foldable.html
http://package.elm-lang.org/help/design-guidelines
http://package.elm-lang.org/help/design-guidelines
http://browserify.org/
http://requirejs.org/
https://github.com/purescript/purescript/releases/tag/v0.7.0-rc.1
https://github.com/purescript/purescript/releases/tag/v0.7.0-rc.1
https://andreypopp.com/posts/2014-07-21-fighting-node-callbacks-with-purescript.html
https://andreypopp.com/posts/2014-07-21-fighting-node-callbacks-with-purescript.html
http://incidentalcomplexity.com/2015/02/24/january--february/
http://incidentalcomplexity.com/2015/02/24/january--february/
http://joshondesign.com/2014/10/06/typoplwrapup
http://joshondesign.com/2014/10/06/typoplwrapup
http://joelburget.com/plaintext/
http://joelburget.com/plaintext/

Bibliography 141

[111] The Grid. Flowhub v0.8.4. http://app.flowhub.io/. (Visited on 12/06/2015).

[112] Microsoft word - wikipedia, the free encyclopedia. https://en.wikipedia.org/wiki/
Microsoft_Word. (Visited on 12/06/2015).

[113] Source code editor - wikipedia, the free encyclopedia. https://en.wikipedia.org/wiki/
Source_code_editor, . (Visited on 12/06/2015).

[114] seanmcdirmid. The main problem with structured editing is that it requires programmers
to writ... | hacker news. https://news.ycombinator.com/item?id=6964727. (Visited
on 12/06/2015).

[115] Emacswiki: Par edit. http://emacswiki.org/emacs/ParEdit. (Visited on 12/06/2015).

[116] welcome home : vim online. http://www.vim.org/. (Visited on 12/06/2015).

[117] Gnu emacs - gnu project - free software foundation (fsf). http://www.gnu.org/software/
emacs/. (Visited on 12/06/2015).

[118] Tim Teitelbaum and Thomas Reps. The cornell program synthesizer: a syntax-directed
programming environment. Communications of the ACM, 24(9):563–573, 1981.

[119] Unknown. sediment.io. http://sediment.io/. (Visited on 12/06/2015).

[120] Hack. http://hacklang.org/. (Visited on 12/06/2015).

[121] Haskell/debugging - wikibooks, open books for an open world. http://en.wikibooks.
org/wiki/Haskell/Debugging, . (Visited on 12/06/2015).

[122] Bastiaan J Heeren. Top quality type error messages. Utrecht University, 2005.

[123] Bastiaan Heeren, Daan Leijen, and Arjan van IJzendoorn. Helium, for learning haskell. In
Proceedings of the 2003 ACM SIGPLAN workshop on Haskell, pages 62–71. ACM, 2003.

[124] Jurriaan Hage. Knownbugs < helium < uucs. http://foswiki.cs.uu.nl/foswiki/
Helium/KnownBugs, . (Visited on 12/06/2015).

[125] Jurriaan Hage. Hiw 2014: The past, present and future of the programmer-friendly helium
compiler - youtube. https://www.youtube.com/watch?v=YioWTDi_Jyc, . (Visited on
12/06/2015).

[126] 4 declarations and bindings. https://www.haskell.org/onlinereport/haskell2010/
haskellch4.html#x10-930004.5.5, . (Visited on 12/06/2015).

[127] Lennart Augustsson. Hiw 2014: Lennart augustsson: Better type-error messages -
youtube. https://www.youtube.com/watch?v=rdVqQUOvxSU. (Visited on 12/06/2015).

[128] Berkholz. Programming languages ranked by expressiveness – donnie
berkholz’s story of data. http://redmonk.com/dberkholz/2013/03/25/
programming-languages-ranked-by-expressiveness/, 2013. (Visited on 06/07/2015).

[129] Mozzila Cloud9 IDE Inc. Ace - the high performance code editor for the web. http:
//ace.c9.io/#nav=about. (Visited on 07/06/2015).

[130] Commentary/compiler/hscmain – ghc. https://ghc.haskell.org/trac/ghc/wiki/
Commentary/Compiler/HscMain, . (Visited on 12/06/2015).

http://app.flowhub.io/
https://en.wikipedia.org/wiki/Microsoft_Word
https://en.wikipedia.org/wiki/Microsoft_Word
https://en.wikipedia.org/wiki/Source_code_editor
https://en.wikipedia.org/wiki/Source_code_editor
https://news.ycombinator.com/item?id=6964727
http://emacswiki.org/emacs/ParEdit
http://www.vim.org/
http://www.gnu.org/software/emacs/
http://www.gnu.org/software/emacs/
http://sediment.io/
http://hacklang.org/
http://en.wikibooks.org/wiki/Haskell/Debugging
http://en.wikibooks.org/wiki/Haskell/Debugging
http://foswiki.cs.uu.nl/foswiki/Helium/KnownBugs
http://foswiki.cs.uu.nl/foswiki/Helium/KnownBugs
https://www.youtube.com/watch?v=YioWTDi_Jyc
https://www.haskell.org/onlinereport/haskell2010/haskellch4.html#x10-930004.5.5
https://www.haskell.org/onlinereport/haskell2010/haskellch4.html#x10-930004.5.5
https://www.youtube.com/watch?v=rdVqQUOvxSU
http://redmonk.com/dberkholz/2013/03/25/programming-languages-ranked-by-expressiveness/
http://redmonk.com/dberkholz/2013/03/25/programming-languages-ranked-by-expressiveness/
http://ace.c9.io/#nav=about
http://ace.c9.io/#nav=about
https://ghc.haskell.org/trac/ghc/wiki/Commentary/Compiler/HscMain
https://ghc.haskell.org/trac/ghc/wiki/Commentary/Compiler/HscMain

Bibliography 142

[131] John Peterson and Mark Jones. Implementing type classes. In ACM SIGPLAN Notices,
volume 28, pages 227–236. ACM, 1993.

[132] Atze Dijkstra, Arie Middelkoop, and S Doaitse Swierstra. Efficient functional unification
and substitution, 2008.

[133] Inc. Facebook. A javascript library for building user interfaces | react. https://facebook.
github.io/react/, . (Visited on 08/06/2015).

[134] Mozzila. Web workers api - web api interfaces | mdn. https://developer.mozilla.org/
en-US/docs/Web/API/Web_Workers_API, . (Visited on 12/06/2015).

[135] Window.localstorage - web api interfaces | mdn. https://developer.mozilla.org/
en-US/docs/Web/API/Window/localStorage. (Visited on 12/06/2015).

[136] Inc. Github. Electron. http://electron.atom.io/, . (Visited on 08/06/2015).

[137] University of Washington. Cse 341 – evaluating programming lan-
guages. http://courses.cs.washington.edu/courses/cse341/02sp/concepts/
evaluating-languages.html. (Visited on 12/06/2015).

[138] EPFL. The scala programming language. http://www.scala-lang.org/. (Visited on
10/06/2015).

[139] Eyal Lotem. lamdu/tutorial at master · peaker/lamdu · github. https://github.com/
Peaker/lamdu/blob/master/TUTORIAL, . (Visited on 12/06/2015).

[140] Comparison of programming languages - wikipedia, the free encyclopedia. https://en.
wikipedia.org/wiki/Comparison_of_programming_languages#Benchmarks, . (Visited
on 12/06/2015).

[141] Bower. http://bower.io/. (Visited on 12/06/2015).

[142] Introduction | hackage. https://hackage.haskell.org/. (Visited on 12/06/2015).

[143] Git. https://git-scm.com/. (Visited on 12/06/2015).

[144] Selenic. Mercurial scm. https://mercurial.selenic.com/. (Visited on 12/06/2015).

[145] Chiusano. Unison: May 7th 2015 update and roadmap. http://unisonweb.org/
2015-05-07/update.html. (Visited on 08/06/2015).

[146] Cross-origin resource sharing - wikipedia, the free encyclopedia. https://en.wikipedia.
org/wiki/Cross-origin_resource_sharing. (Visited on 12/06/2015).

[147] Codemirror. http://codemirror.net/. (Visited on 08/06/2015).

[148] Problem 3 - project euler. https://projecteuler.net/problem=3. (Visited on
12/06/2015).

[149] StrongLoop. Express - node.js web application framework. http://expressjs.com/.
(Visited on 12/06/2015).

https://facebook.github.io/react/
https://facebook.github.io/react/
https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API
https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage
http://electron.atom.io/
http://courses.cs.washington.edu/courses/cse341/02sp/concepts/evaluating-languages.html
http://courses.cs.washington.edu/courses/cse341/02sp/concepts/evaluating-languages.html
http://www.scala-lang.org/
https://github.com/Peaker/lamdu/blob/master/TUTORIAL
https://github.com/Peaker/lamdu/blob/master/TUTORIAL
https://en.wikipedia.org/wiki/Comparison_of_programming_languages#Benchmarks
https://en.wikipedia.org/wiki/Comparison_of_programming_languages#Benchmarks
http://bower.io/
https://hackage.haskell.org/
https://git-scm.com/
https://mercurial.selenic.com/
http://unisonweb.org/2015-05-07/update.html
http://unisonweb.org/2015-05-07/update.html
https://en.wikipedia.org/wiki/Cross-origin_resource_sharing
https://en.wikipedia.org/wiki/Cross-origin_resource_sharing
http://codemirror.net/
https://projecteuler.net/problem=3
http://expressjs.com/

	Abstract
	Contents
	1 Introduction
	1.1 Objectives
	1.2 Challenges
	1.3 Contributions

	2 State of the Art
	2.1 Languages
	2.1.1 Haskell
	2.1.2 Fay, GHCJS
	2.1.3 PureScript
	2.1.4 Elm
	2.1.5 Liskell
	2.1.6 ML, SML, OCaml
	2.1.7 Java, C#, Dart, TypeScript, Closure, Flow
	2.1.8 CoffeeScript
	2.1.9 Clojure
	2.1.10 Racket
	2.1.11 Shen

	2.2 Type Systems
	2.2.1 Polymorphism
	2.2.2 Ad-hoc Polymorphism and Type Classes
	2.2.3 Parametric Polymorphism
	2.2.4 Type Inference
	2.2.5 Haskell's Type System
	2.2.5.1 Ambiguity
	2.2.5.2 Defaulting
	2.2.5.3 Multi-parameter Type Classes

	2.3 Macro Systems
	2.3.1 Macro Hygiene
	2.3.2 Source Location Information
	2.3.3 Macros in Clojure
	2.3.4 Macros in Racket

	2.4 IDEs
	2.4.1 Traditional Big IDEs
	2.4.2 DrRacket
	2.4.3 LightTable
	2.4.4 Bret Victor and the Future of Programming
	2.4.5 Swift Playground
	2.4.6 Aurora
	2.4.7 Lamdu

	2.5 Ancient Wisdom
	2.5.1 Smalltalk
	2.5.2 APL
	2.5.3 McCarthy's S-Expressions

	2.6 Summary

	3 Language Design
	3.1 A Small Extensible Language
	3.2 Runtime
	3.2.1 No to Portability
	3.2.2 JavaScript
	3.2.3 Characteristics

	3.3 Syntax
	3.3.1 Syntax Example
	3.3.2 Design principles
	3.3.3 Color
	3.3.4 Declaration Style, Where Clauses
	3.3.5 Labels
	3.3.6 Describing values
	3.3.7 Defining names
	3.3.7.1 Pattern Matching

	3.3.8 Style Guidelines
	3.3.9 Built-in Macros
	3.3.9.1 Functions
	3.3.9.2 Types
	3.3.9.3 Algebraic Data Types
	3.3.9.4 Match Macro
	3.3.9.5 Type Classes

	3.4 User Macros
	3.5 Type System
	3.5.1 Multi-parameter Type Classes
	3.5.2 Flexible Instances and Contexts
	3.5.3 Implicit Functional Dependency

	3.6 Prelude and Mathematics
	3.7 Collections
	3.7.1 Collections Class Hierarchy
	3.7.2 Collections Data Types

	3.8 Modules and Namespacing
	3.8.1 Module Implementation

	3.9 JavaScript Interop
	3.10 Imperative Computation
	3.11 Summary

	4 IDE Design
	4.1 Supporting the Programmer
	4.2 Input
	4.3 Modification of Source Code
	4.3.1 Design Principles for Editing
	4.3.2 Representing Structure and Partial Programs
	4.3.3 Mouse Selection
	4.3.4 Keyboard Selection
	4.3.5 Inserting Source Code
	4.3.6 Editing Commands

	4.4 Type-based Auto-Completion
	4.4.1 Auto-Completing Types and Patterns

	4.5 Codebase Navigation
	4.6 Interaction and Testing
	4.7 Debugging - Observing Code
	4.8 Error reporting
	4.8.1 Syntax Errors
	4.8.2 Type Errors
	4.8.2.1 Unification Errors
	4.8.2.2 Type Class Errors

	4.9 Summary

	5 Implementation
	5.1 Not a LISP
	5.2 Macro Directed Compilation
	5.3 Deferring
	5.4 Type Inference
	5.4.1 Compiling Type Class Applications
	5.4.2 Context Reduction with Implicit Functional Dependencies

	5.5 Definitions and Pattern Matching
	5.6 Compiler Performance
	5.7 Golem's Architecture
	5.8 Summary

	6 Evaluation
	6.1 Evaluating Shem as a General Purpose Language
	6.2 Performance
	6.3 User Studies
	6.4 Implementation Evaluation
	6.5 Comparison with Current Alternatives
	6.6 Summary

	7 Conclusion
	7.1 Extensions and Future Work
	7.1.1 Source Control
	7.1.2 Versioning
	7.1.3 Code Hosting
	7.1.4 Asynchronous and Imperative Computation
	7.1.5 UI Programming
	7.1.6 IDE Integration
	7.1.7 Truly Lazy Compiler
	7.1.8 Plain Text Mode

	A Sample Programs
	A.1 Basic
	A.1.1 Algebra
	A.1.2 Factorial
	A.1.3 Binary Search
	A.1.4 L-Systems

	A.2 Advanced
	A.2.1 A Guessing Game
	A.2.2 A Server
	A.2.3 Asynchronous Computations

	Bibliography

