
Distributed Virtual Time Execution of
Programs

Author:
Oliver Myerscough

Supervisor:
Dr. Antony J Field

June 16, 2015

Abstract

Virtual time execution is a performance engineering technique which produces a speculative
performance profile of a program under hypothetical optimisations without actually modi-
fying the program’s code. We present extensions to the existing Virtual Time Framework
which explore a loosely synchronised approach to distributed virtual time executions. We
show empirically that this approach can provide performance predictions within the accu-
racy of the underlying framework (approx. 8%), but is sensitive to errors introduced in other
parts of the framework. The Virtual Time Framework uses a form of parallel discrete-event
simulation where a each simulated core has a corresponding virtual timeline. By virtue of
its loose coupling of virtual timelines between simulation nodes, our synchronisation scheme
typically introduces an additional runtime overhead of less than 5% for simulations of small
systems (fewer than 100 nodes) and tractable overheads of 50 - 75% for larger systems. Our
implementation is reliable and is capable of simulating complex real world applications. We
briefly use it to evaluate an application running in the Jetty Java servlet container.

Contents

1 Introduction 3
1.1 The Idea . 4
1.2 Objectives . 4
1.3 Contributions . 4

2 Background 5
2.1 Simulation . 5
2.2 Discrete-Event Simulation . 5
2.3 Parallel Discrete Event Simulation . 5

2.3.1 The PDES Synchronisation Problem 6
2.3.2 Synchronisation Algorithms . 6

2.4 Execution Driven Simulation . 7
2.5 Network Emulation . 7
2.6 The Virtual Time Framework . 7

2.6.1 Project Structure . 8
2.6.2 JINE . 8
2.6.3 VEX . 9
2.6.4 Virtual Time Execution on a Single Core 10
2.6.5 Multicore Virtual Time Execution . 12

3 Distributed Virtual Time Execution of Programs 16
3.1 Approaches to Synchronisation . 16

3.1.1 Conservative Algorithms . 16
3.1.2 Optimistic Algorithms . 16

3.2 Synchronisation Scheme . 17
3.2.1 Known Issues . 18
3.2.2 Necessity of Synchronisation . 19

3.3 Implementation . 19
3.3.1 Macroscopic Synchronisation . 19
3.3.2 Additional Instrumentation . 20

4 Experimental Results and Analysis 25
4.1 Analysis of Connection Errors . 25

4.1.1 Effect of reducing the scheduler timeslice 26
4.1.2 Effect of Time Scaling . 28

4.2 A simple queuing example, with time scaling 32
4.2.1 Experimental Setup . 32

1

4.2.2 Experimental Results . 33
4.3 A Multithreaded Server . 35

4.3.1 Lightly Loaded Server . 36
4.3.2 Increased Server Load . 36
4.3.3 Accuracy of VTF on Multicore platforms 38

4.4 A real application . 39
4.5 Simulation Overhead and Scalability . 40

4.5.1 Number of Simulation Nodes . 40
4.5.2 Effect of Reducing the Scheduler Timeslice 41

4.6 Effect of Virtual Time on Network Throughput 45

5 Conclusions 47
5.1 Achievements . 47
5.2 Limitations . 47
5.3 Future Work . 48

5.3.1 Virtual Time Aware End-to-End Tracing 48
5.3.2 Evaluation using Real World Systems 48
5.3.3 Code Cleanup and Testing in VTF . 48
5.3.4 Investigate Prediction Errors in Multicore Simulations 48
5.3.5 Network Simulation in Virtual Time 48

2

Chapter 1

Introduction

Optimisations in complex applications may exploit non-trivial features of the program’s
execution profile, such as I/O contention and caching, which are difficult for even a well in-
formed person to reason about. Changes to a program may cause it to run under a different
schedule and, for example exhibit different locking or I/O patterns. These could lead to a
significant changes in performance.

The Virtual Time Framework (VTF) is a performance analysis tool [6] which aims to
inform developers about the potential effects of optimisations before they are implemented
by running an execution-driven simulation of the modified program. VTF simulates faster
code by allowing an accelerated function to run for more CPU time that others in order to
progress the same amount of “virtual” time. A function accelerated by a factor of two is
run for 200ms of real time to progress through 100ms of virtual time.

This poses a synchronisation problem in virtual time simulations of systems with more
than one processing element. If the accelerated function above is run in a simulation of a
dual core processor then the core running the accelerated code will advance through virtual
time at half the rate of the other (as it takes it 200ms of real time to progress 100ms in
virtual time). A synchronisation scheme is needed to keep simulation cores from diverging
in virtual time. This simulation is a form of discrete-event simulation where cores (corre-
sponding to virtual timelines) have threads scheduled on them (corresponding to events).
The synchronisation problem in VTF is very similar to the parallel discrete-event simulation
synchronisation problem for multiple virtual timelines.

During the course of his PhD, Nick Baltas developed two synchronisation schemes for
VTF which allowed virtual time simulations on multicore platforms. The aim of this project
is to develop a synchronisation scheme which would allow VTF to profile a distributed sys-
tem in virtual time. With this in place, developers of distributed systems can explore
hardware of software performance optimisations without having to modify existing code. In
the context of a multi-tier web application, the Virtual Time Framework could be used to
investigate the effect of deploying faster back end services on front end page loads in order
to select which ones to optimise.

3

1.1 The Idea

The key challenge in this project has been to balance synchronisation of distributed simula-
tion progress with simulation overhead. Our proposed solution is to run the simulations of
each individual process in a form of lock step, so that the maximum possible (virtual) time
difference between any two simulated processes is bounded. We accept the small errors this
loose synchronisation scheme introduces and show that they can be made small enough to
get results accurate to within the prediction error of VTF whilst maintaining a simulation
overhead similar to that of the single process simulations.

1.2 Objectives

This project is an investigation into how the Virtual Time Framework (VTF) can be ex-
tended to support simulations of distributed systems. In it, we have aimed to investigate and
understand in detail a particular approach to solving the synchronisation problem without
having to resort to the expensive mechanisms usually used in parallel discrete-event simu-
lation such as rollbacks.

1.3 Contributions

By adapting one of the multicore synchronisation schemes introduced in [6] we extend VTF
to run loosely synchronised simulations of distributed systems without the need for expensive
rollbacks or a “global” virtual timeline. The synchronisation scheme introduces a bounded
maximum error, a parameter which is tuneable by the user.

We empirically assess the accuracy, simulation overhead and limitations of our synchroni-
sation scheme. By experimenting with a number of “toy” examples, we find that it facilitates
predictions which are accurate to within the VTF prediction error of 8%, but can exaggerate
smaller errors introduced by other components of VTF. We find the additional simulation
overhead introduced by our extensions to be negligible for small distributed systems of fewer
than 100 nodes. The overhead remains reasonable (50 - 75%) for medium size systems (100
- 200 nodes).

We briefly use VTF to evaluate an application running in the Jetty servlet container,
showing that our extensions are compatible a non-trivial program. In this case we achieve
a low simulation overhead of 22%, within the range typically introduced by VTF on single
node platforms, but limited prediction accuracy.

4

Chapter 2

Background

2.1 Simulation

Simulation means many different things to different people. In this project we mix forms of
parallel discrete-event simulation and execution driven simulation.

2.2 Discrete-Event Simulation

Discrete-event simulation models a system as a sequence of events ordered in time. Events
are mapped onto a timeline and occur instantaneously, one at a time and in increasing order
of time. Events may alter system state when they occur and may schedule other events to
occur after themselves.

DES systems use virtual time in the sense that the real time between two events occur-
ring in the system bears no relationship with the simulations time at which those two events
occur. The DES system will maintain a virtual time clock which tracks the virtual time of
the most recently serviced event.

Discrete-event simulation algorithms can take either a time stepped or event driven form
[1]. A time stepped algorithm iteratively advances simulation time by a constant time step
and updates state variables to account for the step forward in time. Event driven algorithms
maintain an ordered queue of events representing the timeline. On each iteration the algo-
rithm takes the next event from the head of the queue, leaps time forward to the events
occurrence time and executes the event. Using an event driven algorithm is advantageous
for simulations which exhibit large quiet periods where no events are scheduled as these will
simply be leapt over. In contrast, a time stepped algorithm would progress through quiet
periods at the same rate in real time as it did through busy ones.

2.3 Parallel Discrete Event Simulation

A parallel discrete-event simulation (PDES) is composed of multiple logical processes (LPs),
each with its own timeline onto which events are mapped and its own virtual time clock.

5

When an event occurs it may schedule subsequent events to occur on other LPs. Fujimoto
[1] presents the analogy of a system of airports. Each airport is an LP. Planes taking off and
landing are events. When a take off event occurs on one airport process, it schedules a land-
ing event at the destination airport’s process. The concept of multiple processes exchanging
messages using virtual time as a synchronisation technique was formalised by Jefferson [2].

2.3.1 The PDES Synchronisation Problem

When executing a parallel discrete-event simulation, it is desirable to exploit concurrency
between LPs. However, events at each LP must still occur in timeline order. A PDES
system could serialise the events of each LPs timeline onto a single master timeline and
execute them sequentially, but this would waste an obvious opportunity for parallelism. If
each process serviced events in parallel with no synchronisation, at any given point in real
time the virtual times of two LPs could be vastly different. This could lead to a situation
where an event on LP A attempts to schedule another event on LP B at time which LP B
already passed. This situation is known as a causality error.

What the PDES system does next will effect simulation accuracy. Continuing to run
past a causality error would mean executing events out of order and may lead to incorrect
simulation results as it may include a series of events which could not possibly happen. In
order to be correct the simulator should use a checkpointing and rollback system to revert
the changes made by processing events since the time at which the new event should arrive
and re-run the simulation with the new event included. Rolling back an LP involves revert-
ing its state variables to a checkpointed state and sending “anti-messages” to cancel the
events it scheduled on other LPs timelines since the last checkpoint. If an LP receives an
anti-message for an event it has already processed it must rollback to a checkpointed state
from before that event was processed. In this way, one rollback can trigger another.

2.3.2 Synchronisation Algorithms

Because rollbacks are so expensive a PDES system must employ some synchronisation tech-
nique to reduce their frequency or avoid them entirely. Synchronisation algorithms for doing
this can be broadly split into two categories.

Conservative algorithms avoid causality errors entirely, so never rollback. They will
only allow a scheduled event to be run if there is no chance of a causality error occurring in
the future as a result of taking that step. Most conservative synchronisation algorithms are
based on the concept of “lookahead”. The lookahead of a simulation is the smallest possible
amount of time an event can schedule another event forward in time on another process’s
timeline. In the airports example, this would be the minimum flight time. The lookahead is
used to define a safe interval in which events can be processed without any risk of causality
errors. Let Ts be the minimum time of all processes in the simulation and L the lookahead.
Therefore events in the interval [Ts, Ts + L] are safe to process, as no new event can be
scheduled in that interval.

Optimistic algorithms try to avoid introducing causality errors but may not do so

6

perfectly so must still detect and correct causality errors as they occur. An optimistic
algorithm would typically employ some throttling heuristic to limit the progress of faster
processors while still allowing parallelism.

2.4 Execution Driven Simulation

An execution driven simulation makes predictions by integrating a simulator into a program
to model some behaviour. For example, Callgrind [3] runs an execution driven simulation
of the CPU cache in order to predict hit rates. The program is run with instrumentation
around all memory accesses. This instrumentation calls into a cache simulator, which is
used to produce a hit rate prediction.

2.5 Network Emulation

Time dilation is presented in [4] as a technique for providing the illusion of a faster external
world to a host OS running as a virtual machine. This is applied to network stack experi-
mentation. Time dilation is implemented by modifying a hypervisor to scale the frequency
of the timer interrupt passed to the host. For example, a virtual machine with a time di-
lation factor of 10 would have its timer interrupt frequency scaled down by 10 times, so a
1Gbps network interface will appear to process 10Gb of data per second.

A knock on effect of this clock scaling is that the host would experience 10 times as many
CPU cycles per subjective second. Further work extends [5] the time dilation framework
to allow independent scaling of CPU and disk resources. In this way, time dilation can be
used to emulate arbitrary hardware at a cost of real time.

2.6 The Virtual Time Framework

The Virtual Time Framework (VTF) can be described as a scheduling profiler, in that it
is a profiler which controls the schedule of its profiling target. This allows it to produce a
speculative profile of a program were some parts of it to have different performance charac-
teristics. The virtual time execution it performs is a form of execution driven simulation.
The functional characteristics of the simulation are derived from executing the real code of
the program under test, but performance characteristics (i.e. runtimes of individual meth-
ods) may be scaled by a linear factor or replaced with arbitrary performance models.

The majority of VTF was implemented by Nick Baltas over the course of his PhD [6] at
Imperial College. This chapter gives an overview of the project and summarises the parts
of his work which are most relevant to the distributed synchronisation scheme we have de-
veloped.

7

Program under test JINE VEX

JVMTI Callbacks

Instrumentation

JNI Calls

Signals

Figure 1: Information flow in VTF.

2.6.1 Project Structure

The core logic of VTF is implemented in C++ as a library, VEX, shown at the right in
Figure 1. Code within this library is responsible for maintaining a model of the threads in
the current simulation, controlling the simulation and producing a virtual time profile to
be reported on completion. VEX exposes an API which a runtime specific instrumentation
layer can use to pass in simulation state changes.

There are currently two instrumentation engines available: Java Instrumentation En-
gine (JINE) [7] and C/C++ Instrumentation Engine (CINE) [8]. During the course of this
project we have focused solely on extending JINE to work with new network I/O callbacks
in VEX.

2.6.2 JINE

As shown in Figure 1, JINE acts as an adapter between the VEX library and a program run-
ning on the JVM. JINE performs both static and dynamic instrumentation of Java classes
by inserting additional bytecode instructions using the ASM [9] JVM bytecode engineering
library. JINE also uses the Java Virtual Machine Tool Interface to trigger additional calls
into VEX. These events call into VEX via the Java Native Interface (JNI). JINE is imple-
mented in Java and C++.

Dynamic instrumentation is performed at runtime, at the classload stage, and is used to
insert instruments which belong in all classes. Method entry and exit instruments, which
allow VEX to measure method runtimes, are an example of such instrumentation. This is
implemented using the Javaagent API, which allows a ClassTransformer to be registered
to transform every loaded class.

However, system classes are loaded before the JINE Javaagent is initialised so cannot

8

be transformed in this way. Since these classes handle operations such as I/O which must
be dealt with specially in virtual time execution they require instrumentation. JINE per-
forms static instrumentation of specific system classes ahead of program execution. The
instrumented classes are preloaded on simulation JVM startup so take priority over the
uninstrumented versions.

2.6.3 VEX

The lowest layer of the VTF project is VEX, which implements a virtual time simulation
engine in a general way, shown on the right in Figure 1. VEX is implemented in C++. The
codebase consists of over 24, 000 lines of code split over 91 files.

Key Implementation Elements

The ThreadManager classes hold much of the logic for controlling threads in virtual time
and deciding which thread to schedule then. VEX will create one ThreadManager for each
core in the simulation; each ThreadManager represents the ”active“ part of the simulated
core. The ThreadManager is responsible for selecting an application thread to run, allowing
it to run (scheduling it) and suspending it when the threads virtual timeslice has elapsed.
Different synchronisation policies are implemented as ThreadManager subclasses.

The other half of a simulation core is its state, kept in a VirtualTimeline instance,
which keeps a virtual timeline for each core in the simulation. Different implementations
are used for single and multicore platforms (which will have different numbers of virtual
timelines).

For each thread in the simulated application, VEX keeps a ThreadState object which
holds information concerning the condition of the thread. Examples include whether it is
running, suspended or waiting on a lock, the threads current virtual time and a selection of
timers used by the profiler to measure time spent running application code.

Handling Events from JINE

VEX receives notification from the instrumented program in an event based fashion. These
are used to update simulation state tracked by VEX. The instrumentation is placed at
key points in the program, such as on method entry and exit. On method exit, the in-
strumentation will call into JINE, which will make a call into VEX via the JNI. There
are two classes in VEX which might receive calls from JINE: ThreadEventsBehaviour and
MethodEventsBehaviour. In the case of a method exit, since the event concerns a particular
thread, a call is made to the ThreadEventsBehaviour class.

To handle this event, the ThreadEventsBehaviour finds the ThreadManager responsible
for the thread which originated the event and passes control to it. The ThreadManager needs
up take a measurement of the method duration in virtual time and pass it to the profiler
module. This is done by inspecting the timers stored in the running thread’s ThreadState

instance. The elapsed time is also committed to the VirtualTimeline, which tracks the

9

virtual times of each core in the simulation.

2.6.4 Virtual Time Execution on a Single Core

In this section, we describe how VTF will run a simulation of a program running on a single
core to make performance predictions.

The VTF Scheduler

VTF enforces a correct schedule in virtual time on its profiling target. This is a schedule
that the program could be run under if the runtime of the code did conform to any time
scalings or performance models that the simulation has specified.

Each thread in a virtual time execution will have a corresponding time scaling factor
(TSF) which defines the rate at which virtual time passes with respect to the real execu-
tion time of that thread. A thread’s TSF is dynamically calculated according to method
time scaling specifications provided by the user. It will change as the thread enters and
exits methods according to the time scalings that the user has applied to them. A TSF of
more than 1 simulates code which is faster than reality, and less than 1 simulates slower code.

A single core simulation schedule threads execution events on a single timeline repre-
senting the CPU. The virtual time of the simulation vts is the virtual time at which the last
thread was suspended. Runnable threads are kept in a priority queue ordered by virtual
time. The next thread to schedule is simply the thread at the head of the queue. Supposed
this thread has virtual time vti. This thread will be run starting at max(vts, vti) for one
timeslice in virtual time, which is timeslice ∗ TSF milliseconds of real time. After this real
time has elapsed the thread will be suspended and one timeslice added to its virtual time.

The VTF scheduler uses a fair, priority free round-robin algorithm similar to the Bor-
rowed Virtual Time algorithm [10]. We note that this algorithm is different to the Com-
pletely Fair Scheduler used by the Linux kernel since version 2.6.23 [11]. The effect this has
on prediction accuracy is an open question, but appears to be small.

Implementation

The VTF scheduler lives entirely in userspace. It forces the OS scheduler’s hand by ensuring
that the only thread which is ever runnable is the one VTF has selected to run next. This
is achieved by installing a signal handler in the application under test which allows VTF
to block selected application threads. When the scheduler wishes to suspend a application
thread, it will send a SIGHUP to that thread using the Linux tkill system call. The signal
handler will block on a condition variable specific to this application thread, suspending
it. This allows VTF to control which threads the OS will be able to schedule which lets it
enforce a schedule in virtual time. In order to resume a blocked application thread the VTF
scheduler will signal on that thread’s condition variable, unblocking the thread so that it
can once again be scheduled by the OS.

10

Any locks held by an application thread when it is suspended by VTF will remain under
its possession until it is resumed and runs far enough to release them. From the application’s
point of view this is the correct behaviour, but it has the potential to cause deadlocks in
the scheme described above. Consider a shared resource of both the VTF scheduler and an
application thread (i.e. standard out). If the application thread is suspended by the sched-
uler while it holds a lock on the shared resource the scheduler system will deadlock if the
scheduler attempts to acquire the lock on that resource before it reschedules the application
thread. The scheduler will be waiting for a lock on a shared resource, which is held by an
application thread. The thread is waiting for a signal on a condition variable which should
be sent by the scheduler, completing the cycle.

To avoid this deadlock, each application thread has an additional “shared resource” lock
associated with it. The application thread will only attempt to access shared resources while
it holds this lock. Similarly, the scheduler will only attempt to suspend a thread if it holds
that thread’s shared resource lock. As a result, the scheduler will never suspend a thread
which holds locks on resources shared with it so is safe from deadlocks.

An Example

Consider a simulation of two threads, a producer and consumer, running on a single core.
The producer iteratively places values on a queue. The consumer polls values of this queue.
Under VTF, the pair will be alternately scheduled for a single virtual timeslice. Figures 2
and 4 show real time scheduling traces of the two threads executed under a virtual time
schedule with and without time scaling.

The size of real timeslice given to a thread is its time scaling factor multiplied by the
virtual timeslice. In the absence of time scaling TSF = 1 for both threads so each will get
equal size real timeslices as is shown in Figure 2. Over the course of this project we have
developed a novel way of visualising program executions in both virtual and real time using
two dimensional plots. These are a natural and information-rich way to represent events
which occur on two timelines (real time and virtual time), and are used throughout this
report to present complex situations clearly. Figure 3 shows the progress of the consumer
and producer threads as a line through a series of coordinates in real time on the x axis
and virtual time on the y axis. Observe that a horizontal line indicates progress in real
time but not virtual time, i.e. a thread is not running. A vertical line indicates a thread
leaps forward in virtual time at in instant in real time. This occurs when a thread is just
about to start running; recall that thread is leapt forward to V Ts, the time at which the last
thread was suspended. When a thread is scheduled it progresses in both real and virtual
time. The “stepping” is a feature of running the threads on a single core processor - only
one can advance at a time can advance in real time and the threads are alternately scheduled.

Suppose that a test is run to investigate the behaviour of the program if the produces
was twice as fast. This is implemented in VTF by giving the producer a TSF of 2. Note
that both virtual timeslices remain constant and the two threads are still alternately sched-
uled. However, assuming a virtual timeslice of 100ms, the producer’s real timeslice will now
be 200ms, twice the size of that of the consumer (Figure 4). The producer will be allowed
to run twice as much code as the consumer each time it is scheduled. This is how VTF

11

Consumer

Producer

100m
s

0m
s

200m
s

300m
s

400m
s

500m
s

600m
s

700m
s

Figure 2: Real time execution trace of threads in the producer/consumer example on a
single core with no time scaling. Solid lines indicate a thread being executed.

Virtual time

Real time

Figure 3: Progress in real and virtual time of the producer (blue) and consumer (red) threads
from Figure 2.

simulates accelerated or decelerated code.

We again plot progress on the real and virtual timelines in Figure 5. Note that when
the producer thread is run the line representing it (blue) takes a shallower gradient. This
is because of the time scaling applied to that thread, which makes the producer thread
progress through virtual time at half the rate of real time. In general, the gradient of a line
corresponds to the inverse of the TSF applied to the thread in represents.

2.6.5 Multicore Virtual Time Execution

The key problem faced by virtual time executions simulating a multicore processor is very
similar to the PDES problem; given multiple virtual timelines, what is the best way to en-
sure events are processed in the correct order without serialising the system onto one global
timeline?

The virtual timelines of the PDES problem correspond to cores in a virtual time execu-
tion. To see the issue for VTF specifically, consider again producer/consumer example with
a TSF of 2 on consumer, but now both threads run in parallel on a dual core processor.
In a simulation of an m core multiprocessor, VTF manages m local virtual timelines, so m
threads can progress concurrently. Naively applying the scheduling algorithm from single
core virtual time execution could lead to each thread running on one core. Given its TSF

12

Consumer

Producer

100m
s

0m
s

200m
s

300m
s

400m
s

500m
s

600m
s

700m
s

Figure 4: Real time execution trace of threads in the producer/consumer example where
the consumer has a time scaling factor of 2. Solid lines indicate a thread being executed.

Virtual time

Real time

Figure 5: Progress in real and virtual time of the producer (blue) and consumer (red) threads
from Figure 4.

Virtual time

Real time

Figure 6: Dual core simulation of the producer/consumer (blue/red respectively) example
with time scaling and no synchronisation.

13

Virtual time

Real time

Figure 7: Synchronised dual core simulation of the producer/consumer (blue/red respec-
tively) example with time scaling.

of 2, the consumer will progress through virtual time at half the rate of the producer with
respect to real time. The producer will therefore run ahead of the consumer in virtual time.
This situation is shown in Figure 6. If the producer places work items on the queue at a
constant rate (marked with circles), the consumer will find them on the shared queue at
that point in real time. As a result, the producer now see work items appear at twice the
original rate in virtual time (since it progresses more slowly) and still not get any additional
real time to process them. Recall that the aim of this simulation was to investigate a con-
sumer which was twice as fast - i.e. saw work items enter the queue at the original rate in
virtual time but half the rate in real time. Without an inter-core synchronisation scheme,
the simulation breaks down.

In order to ensure a correct schedule in virtual time an inter-core synchronisation scheme
is necessary. An example of a synchronised dual core simulation is shown in Figure 7. The
core running the producer thread is prevented from running ahead in virtual time which
allows the consumer sees work units enter the queue at the correct rate. The i-th virtual
timeline represents virtual time progress on core i, each with a virtual time V Ti. Multicore
synchronisation schemes aim to keep the virtual time progress of these timelines close in
real time, while maintaining a low synchronisation overhead.

VTF differs from most PDES systems in that checkpointing/rollbacks are not used.
These are expensive for PDES, but in the case of of VTF where program state is arbitrarily
large checkpointing would not be feasible.

LAX Synchronisation

The LAX multicore synchronisation scheme assumes that in the absence of time scaling,
performance models or leaps forward in virtual time all cores in a simulation will progress
through virtual time at similar rates so synchronisation only needs to be applied when one
of these conditions holds. This assumption seems reasonable, as virtual time will by default
progress at the same rate as real time. Making this assumption reduces the amount of work
that needs to be done to provide synchronisation, so should reduce synchronisation overhead.

14

If one of the special cases holds, for example if a running thread is has a TSF 6= 1, syn-
chronisation will be applied. The minimum core virtual time is V Tmin = min(V T1, ..V Tm).
LAX will generate a barrier to apply the constraint that no core may advance to a virtual
time more than V Tmin + scheduler timeslice. All running cores are within one scheduler
timeslice of the minimum core virtual time. Any cores outside of this interval will be blocked
and the simulation threads running on them will not be allowed to progress until the others
have caught up.

The LAX synchronisation assumption, that by default all cores progress through virtual
time at the same rate, does not always hold. Many things can cause a core to make less
progress in real time (and thus virtual time) than its allocated timeslice. For example,
background load from other processes running on a simulation host may cause the OS to
schedule other tasks instead of the simulation thread for part of the timeslice allocated by
VTF. Time spent in the page fault handler is not counted in the CPU time counters which
VEX uses to measure core progress, but does consume real time. In such cases, cores will
progress through virtual time at different rates with respect to real time, so will fall out of
sync.

Strict Parallel Execution

The Strict Parallel Execution (SPEX) synchronisation scheme subjects the simulation to
tighter synchronisation bounds. The aim of this stricter synchronisation scheme is to handle
circumstances when the LAX synchronisation assumption does not hold. Tighter synchro-
nisation increases the performance overhead of SPEX, but increases its accuracy.

SPEX introduces the concept of active and disabled cores. A core is active when there
are threads to run on it. If no runnable thread exists to be scheduled on an active core it
becomes disabled. This distinction is used in the synchronisation scheme. SPEX also defines
the global virtual time GV T as the minimum virtual time of all active cores in the simulation.

Before resuming a suspended thread on the i-th core, the SPEX synchronisation scheme
will apply one of the following rules considering the GV T , the virtual time at core i V Ti
and the number of active cores:

• If GV T + scheduler timeslice > V Ti core i is permitted to continue execution.

• If GV T + scheduled timeslice < V Ti and there are other active cores, core i is not
permitted to continue and will idle until the other cores have caught up.

• If GV T + scheduled timeslice < V Ti and all cores are disabled there is no other
activity in the simulation (as all cores are disabled) so core i is permitted to leap
forward to V Ti as nothing could occur in the intervening time.

Following this synchronisation scheme prevents running threads from being more than
one timeslice apart.

15

Chapter 3

Distributed Virtual Time
Execution of Programs

The key contribution of this project has been the development of a synchronisation scheme
which allows VTF to produce performance predictions for distributed system. Macroscopic
synchronisation is provided by enforcing lock step execution of threads in virtual time, sim-
ilar to SPEX. Messages between processes are timestamped. We find experimentally that
is enough to get reasonably accurate results.

3.1 Approaches to Synchronisation

We have previously noted that multicore and distributed synchronisation in VTF is an in-
stance of the PDES synchronisation problem. Given this, we consider the approach we have
developed in this project in the greater context of existing PDES synchronisation algorithms.

3.1.1 Conservative Algorithms

Recall that conservative synchronisation algorithms ensure that causality errors never occur,
so a process never receives a message to be delivered at a virtual time which it has already
passed. We have chosen not to use a conservative approach to synchronisation because
ensuring that causality errors could never occur would incur a very high synchronisation
overhead.

3.1.2 Optimistic Algorithms

So called “optimistic” synchronisation algorithms bet that allowing a process to run ahead
in virtual time will not lead to a causality error. When they are correct they reap the
benefits of parallelism between processes. When they are not, they have to deal with a
causality error. In PDES this is typically done using checkpointing and state rollbacks.

16

Checkpointing in VTF would not be feasible as the program state is too large and complex.

Our optimistic synchronisation algorithm differs from the traditional PDES form because
we have no way to repair causality errors and must instead accept them into the simulation.
From the point of view of the application under test, a causality error will appear as latency;
a message will be delivered to the application later than it should have been. This is valid
behaviour which could happen in the “real world”, for example due to network latency.
Introducing additional latency should not break a well engineered distributed system. Al-
lowing causality errors to pass into the simulation therefore does not fundamentally break
the simulation (any simulated virtual time execution is an instance of a possible real time
execution) but does reduce simulation accuracy.

In a traditional PDES environment, the rate of passage of virtual time bears no rela-
tionship with the passage of real time. As a result processes will naturally diverge in virtual
time if no attempt is made to provide synchronisation. In contrast, recall from Section 2.6.5
the LAX synchronisation assumption; in the absence of virtual time scaling, performance
models or leaps forward in virtual time, all threads in VTF will progress through virtual
time at the same rate. The LAX assumption does not always hold, but it is enough to say
that threads in VTF will tend to progress together in virtual time. Using this, we argue
that causality errors experienced by VTF will generally be smaller than those found in a full
PDES system so allowing them to pass into the simulation has less of an effect on accuracy.

3.2 Synchronisation Scheme

We have developed an extension to the SPEX multicore virtual time execution strategy orig-
inally proposed by Nick Baltas [6]. This synchronisation scheme should be run alongside
SPEX.

We redefine the global virtual time, GV T , introduced by SPEX to be the minimum vir-
tual time across all active threads on all nodes of the simulation. Suspended threads which
are more than one timeslice ahead of the global virtual time should not be run. If there are
no runnable threads in this interval the simulation node should idle.

Applying this throttling mechanism has the effect of keeping the virtual times of all
running threads in the interval [GV T,GV T + 2 ∗ timeslice] as only threads in the interval
[GV T,GV T + timeslice] will be scheduled, and a scheduled thread will run for at most one
timeslice. This approach keeps the amount of global state low; there is only one value, the
current GV T , which every node needs to know. Once a node has a value for the GV T it
has enough information to decide which of its threads it can or cannot execute. Since the
GV T is strictly increasing a node which makes scheduling decisions using a stale value will
never incorrectly schedule a thread which it would not have with an up to date GV T (but
might not schedule threads which it could do).

All messages sent between simulation nodes should be annotated with the current vir-
tual timestamp of the thread sending them. When a node receives a message, the receiving
thread should leap forward in time to the timestamp of the message. We note that this

17

assumes negligible network latency.

We define the message delivery error to be the difference between the actual virtual time
a message is delivered to an application and its receive time, as stated by the sender in its
timestamp. By following the above synchronisation scheme, the maximum possible message
delivery error which can be attributed to VTF is bounded above by 2 ∗ timeslice. This is
because all running threads are in the interval [GV T,GV T + 2 ∗ timeslice] in virtual time,
so the receiver could not be more than two timeslices ahead of the sender. We note that a
program may experience unbounded message delivery errors, for example due to queuing in
the network or if an application does not make a read call for a long time, but guarantee
that the contribution of VTF to these will be bounded as stated above.

3.2.1 Known Issues

This synchronisation scheme aims to strike a balance between simulation accuracy and over-
head, and therefore makes some trade-offs.

Message Delivery Errors

The loose synchronisation for messages introduces bounded delivery errors, but these might
still be large enough to effect results. With a 100ms timeslice, the maximum expected error
would be 200ms. If errors of this size are common the framework would not be suitable
for profiling low latency applications. The delivery error bound can be reduced by picking
a smaller timeslice but this means tighter synchronisation between simulation processes so
would provide increased accuracy at the cost of increased overhead.

Performance

The global virtual time will advance at the rate of progress through virtual time of the
slowest simulation process, meaning that faster processes are held back. We believe this
is an unavoidable characteristic of the platform. If faster processes were permitted to go
ahead in time higher message delivery errors would be observed when they interacted with
a slower process.

Changes to Apparent Network Bandwidth

We expect to find that the apparent bandwidth of a network link between two simulation
nodes differs from reality because messages run through the network in real time but are
sent and consumed by processes at rates in virtual time. This is similar to the time scaling
effects used in network emulation.

Consider two processes which advance through virtual time at half the rate of real time
communicating across a single 1Gbps link. The link will become fully saturated when a
process sends 1Gb of data down the link in one second of real time. However, in that one
second of real time, the process will have advanced half a second in virtual time, so the link

18

will appear handle data at a rate of 2Gb per second from the point of view of the simulated
application.

3.2.2 Necessity of Synchronisation

Consider a system of two processes: a client which sends messages to a server. A test is
run simulating a system where the client produces messages twice as fast. Under VTF this
would be implemented by decelerating virtual time on the client by a factor of two (applying
a TSF of 2). Only virtual time is changed; the client still produces messages at the same
rate in real time. If no synchronisation exists between the two processes, the server will
therefore still see the messages arriving at the same rate as if the client were not acceler-
ated, only with smaller timestamps.

Under the synchronisation scheme described above, the simulation node for the server
will be idle 50% of the time. Because the client’s real timeslices are twice the size of the
servers, the client takes twice as much real time to advance an equal amount of virtual time
as the server. The client will therefore hold back the global virtual time and prevent the
server process from running ahead. Note this is almost exactly the same as the multicore
example visualised in 7, but with the producer and consumer threads on different machines.

3.3 Implementation

A distributed VTF simulation has a single master node which is responsible for coordinating
all other nodes, the followers. The master is specified at simulation startup using command
line parameter passed to VTF. No attempt has been made to provide fault tolerance in the
case of master failure or to elect a master dynamically.

On simulation startup all followers will make a TCP connection to the master, forming
a star network. The TCP connection will be used by the follower to submit state updates
and by the master to provide notifications of global virtual time advances. It is also used by
the master to detect follower failures or termination. We note that this channel is used to
transport time critical messages between the master and each follower, so it is import that
the Nagle algorithm is disabled.

Followers wait for the master node to send a start signal before beginning the simulation.
This is to ensure all followers have time to connect to the master and reduce the effect of
staggered starting times during the experiment setup. At the time of writing the master
waits for 10 seconds before sending this signal, but could alternatively wait for a specified
number of followers to connect.

3.3.1 Macroscopic Synchronisation

This section describes the implementation details of the synchronisation scheme which keeps
running threads in the interval [GV T,GV T + 2∗ timeslice]. The global virtual time is com-
puted by the master based on candidates submitted by followers. Changes to its value are

19

relayed to the followers. Each core of a simulation process enforces the constraint that no
newly scheduled thread may start running at a virtual time greater than GV T + timeslice,
which keeps all executing code in the above interval.

Candidate Virtual Times

Followers regularly submit updated candidate virtual times to the master. The candidate
virtual time will be the minimum virtual time of all the runnable (VEX state running or
suspended) threads on this host. Candidate generation and submission is handled by a
dedicated thread to avoid performing network I/O in code executed by instrumentation.

Calculating the GVT at the Master

The global virtual time is the minimum of submitted candidate virtual times from each
follower, excluding times from simulations which have no runnable threads and have been
blocked on network IO for more than a certain duration of real time, min block duration.
These processes are, for example, blocked on network reads, so should not prevent other
simulation processes from making progress.

The value of min block duration is selected so once it has expired we can be sure there
is no message currently in the network which will awaken the blocked process. At this point,
the only way for the simulation to make progress is to allow other simulation processes to
advance.

To see why excluding the candidate from a blocked process is necessary, consider a system
of two processes: a client and server that communicate over a network. The client will sub-
mit a request to server and immediately block on a network read. Its candidate virtual time
will not advance until it exits this read. What happens is shown in Figure 8. If the global
virtual time includes client’s candidate and the server takes more than two timeslices to gen-
erate its response, the system will deadlock. This is because the the client holds back the
global virtual time, so the furthest the server can advance is GV T + 2∗ scheduler timeslice
(black dashed line in Figure 8. If the server takes longer than this to respond it will be
suspended pending advances in the GV T . The client will not advance in virtual time until
it receives a response from the server. We therefore reach a deadlock, where the server will
not be able to advance until the client does and vice versa.

The solution to this deadlock is to allow remove the client’s virtual time from the GV T
computation. With the clients candidate virtual time excluded the global virtual time will
be able to advance beyond the virtual time of the client. When the server responds to the
client, the message timestamp will be in the interval [GV T,GV T + 2 ∗ timeslice], so the
client will return to the valid runnable interval upon receipt of the message.

3.3.2 Additional Instrumentation

We have extended JINE to statically instrument the java.net.Socket and java.net.ServerSocket

classes which provide stream sockets to programs running on the JVM, representing active

20

Virtual time

Real time

V Trequest

Figure 8: Potential deadlock if a blocked client is allowed to hold back the GV T . Client in
blue, server in red. The black dotted line is the GV T + 2 ∗ scheduler timeslice.

(connecting) and passive (accepting) sockets respectively. JINE also dynamically replaces
calls to ServerSocket.accept in application code at runtime.

VTF will not be aware of any network I/O that does not rely on these classes. This means
VTF will not properly annotate messages sent using the java.nio.channels.SocketChannel
class, or native libraries. It would not be difficult to add instrumentation to the SocketChannel
class.

Instrumentation Level

JINE adds instruments by altering the bytecode of certain system and application classes.
Working at the this level has advantages and disadvantages. Adding instruments in this
fashion matches how the rest of JINE works, so the framework required by our extensions
already exists. Conceptually, we want to annotate each message sent between simulation
nodes. However, sockets provide an interface based on streams, not messages. A program-
mer makes write calls which cause messages to be sent, but a particular write may result
in multiple TCP packets being transmitted, or none at all if the Nagle algorithm is in use.
At the receiving host the data collected by a read does not necessarily correspond to a
particular write; it may be collected from many small writes or be only a fraction of the
data from one large one. The discrete messages (TCP packets) which are passed between
simulation nodes are hidden by the socket API, so we instead have to insert annotations
into the TCP bytestream upon a write and scan for the annotations during a read.

Alternatively instrumentation could be inserted at a lower level. Placing instrumenta-
tion within the network stack would have the advantage of being able to timestamp each
individual TCP packet rather than inserting annotations into the connection bytestream.
The would be a much larger engineering effort and would not fit with the current VTF phi-
losophy of avoiding kernel level code. The internals of the network stack are also much more
likely to change than the Socket and ServerSocket classes, so patching it would introduce
additional maintenance costs.

21

Placing instrumentation at a higher level is also an option. Instruments could be manu-
ally placed in particular libraries, e.g. in HTTP client/server libraries. This is the approach
taken by Google in Dapper [12]. In their case it is appropriate since they can identify a
small number of libraries which need to be instrumented in order to capture most interac-
tions between elements in their target applications. This approach is not fit for purpose in
VTF as the framework aims to be general.

bind method of ServerSocket

The bind call signals that the OS should begin to accept TCP connections on a specified
port 1. These connections will be placed in the backlog queue until an accept call from
the application code requests them. Our instrumentation for bind calls starts a simulated
backlog queue (see below).

connect method of Socket

A connect call attempts to establish a TCP connection to a remote host. We have added
instrumentation which makes calls into VTF before and after a thread makes a connect
call. Instrumentation before the blocking call will update the thread’s state within VTF to
reflect its being blocked. When the call returns, further instrumentation will revert this state
change and send this thread’s current virtual time down the newly established channel. This
tells the remote host what the virtual time is at the connecting host (V TC), and therefore
the earliest virtual time at which that application code should receive this connection.

accept method of ServerSocket

An accept call takes a queued TCP connection from the backlog queue, or if the queue is
empty blocks until one is established. JINE replaces calls to accept in application code with
a call into VEX which picks the connection from the head of the simulated backlog queue
and leaps the thread forward to the virtual time that connection was established. After the
call returns further instrumentation code will read the virtual time which was written by
the connecting thread from the channel and leap the thread forward to that time.

Figure 9 shows the connect/accept synchronisation mechanism in action. The blue line
represents a thread blocking in accept at V TA, after which it does not advance in virtual
time as real time passes. When another thread (represented by the red line) connects at
V TC the accepting thread unblocks and is leapt forward to V TC .

It is important to note that a connect call returns when a TCP connection has been
established which, from the application’s point of view, only requires that a socket is bound
to this port on the accepting host. It does not necessarily mean that a matching accept

has returned on the remote host. This is reflected in the asymmetric flow of virtual times,
i.e. only from the connecting process, during socket connection.

1Many socket implementations use a listen call to mark a socket as passive and start queuing connec-
tions, but the JDK makes this differentiation at the class level (ServerSocket is passive, Socket is active)
so the listen is implicit in a bind on a ServerSocket.

22

Virtual time

Real time

V TA

V TC

Figure 9: Interactions in virtual time for a thread calling accept at V TA (blue) and a thread
calling connect at V TC (red).

read and write methods of Socket

Instrumentation of the write method is used to add timestamp annotations to messages.
The virtual time of the current thread is inserted into TCP byte stream, marked out by a
special pair of marker bytes. The marker is written to the socket followed by the sending
thread’s current virtual time. Instrumentation of read calls scans the receive buffer for the
marker. When it finds a marker, the instrumentation code will remove it and the subse-
quent 8 bytes (the virtual time) from the buffer before returning it to the application. The
receiving thread is leapt forward to the annotated time.

Reordering the backlog queue

Since nodes in a distributed VTF simulation are loosely synchronised, the order in which
connections are established in real time is not necessarily the correct order in virtual time.
Consider a hypothetical single threaded “time” server with two clients. The server accepts
connections sequentially and responds with the current time. For simplicity we assume that
the server is infinitely fast. Clients initiate connections and immediately block in a read.
Suppose client A connects first in real time, but is ahead of client B in virtual time as
visualised in 10. V TC1 > V TC2 so the connection from client B happens first in virtual
time. However, taking connections in the order they come from the OS provided backlog
queue would mean client A would be serviced first as it made its connection first in real
time. Notice that the server leaps forward in virtual time as soon as client A connects. This
introduces inaccuracies in the simulation by causing client B to experience an increased
service time as the response from the server will be from a virtual time after the response
for client A despite its request being made at a virtual time before that of client A. The real
time ordering causes the incorrect leap forward in virtual time shown in 10 after V TC2.

To remedy this, we simulate the backlog queue ordering connections in ascending virtual
time order, rather than real time. Each time a listen call is made (which occurs in the
bind method of the ServerSocket class) a new thread is spawned to accept connections
and place sockets in the simulated (virtual time ordered) backlog queue. accept calls in
the application take sockets from this queue. If the socket at the head of the simulated

23

Virtual time

Real time

V TA

V TC1

V TC2

Figure 10: A server (blue) accepts connections in real time order from clients (red and
green), leading to an increased service time for the green client.

Virtual time

Real time

V TA

V TC1

V TC2

Figure 11: A server (blue) accepts connections in virtual time order from clients (red and
green), with “normal” service times for the both clients.

backlog queue is far forward in virtual time when an accept call is made, VEX will block
the accepting thread until the GV T has advanced close to it or a timeout has passed. This
aims to reduce the probability of prematurely leaping forward to accept a connection when
other connections may come in at earlier virtual times. The timeout is in place to reduce
the performance overhead of imposing a stricter synchronisation scheme and preclude the
possibility of deadlocks. We note that it is still possible for connections to be handled out
of order, but less likely.

Figure 11 shows how simulating the backlog queue fixes the problem of out-of-order
connections in virtual time which was described above. The server application will remain
blocked in the accept until the GV T has advanced close to the time at head of the simu-
lated backlog queue. This means that client A’s connection is not immediately passed to the
application at V TC1. As a result, client B has enough time to make its connection, which
will jump in ahead of client A in the queue as client B is at an earlier virtual time. Now,
client B is serviced before client A, so both see normal response times.

24

Chapter 4

Experimental Results and
Analysis

In this chapter we present results of running experiments using simple programs to demon-
strate the distributed synchronisation scheme we have developed in action. We show its
effectiveness at keeping processes synchronised in virtual time and how it allows VTF to
make performance predictions for distributed applications. We also analyse the performance
overhead and scalability of our approach.

We can only expect the results of our tests to be as accurate as the underlying framework
that produces them. Prior evaluations of VTF have found it to be fairly accurate, with a
mean prediction error of 8% in the SPECjvm2008 multicore benchmark [6] using SPEX with
no time scaling. In the same benchmark simulation overhead was measured at 30%.

4.1 Analysis of Connection Errors

In these tests we show experimentally that the maximum error introduced by VTF at the
connection stage is small (typically much less than the 2 ∗ scheduler timeslice limit). We
demonstrate that it remains so under time scaling and is reduced when the scheduler times-
lice is reduced.

Our tests use a single server which serves client requests sequentially on a single thread,
pseudocode for which is shown in Figure 12. We emphasise that server will handle requests
as fast as it can by immediately accepting a connection, writing the current date to it and
immediately closing the socket. All tests use 50 clients (Figure 13). These clients make
requests to the server by opening connections and reading the message sent from the server.
In between requests to spin in a “timewasting” function. This “think time” at the client
is exponentially distributed, with rate parameter λ selected such that load on the server is
very low.

We run experiments to measure the difference between the server thread’s virtual time
when in blocks in the accept V TA at line 2 of Figure 12 and the virtual time of the client

25

thread which connects next V TC . We call this value, V TC − V TA a connection error. As
server utilisation is so low the server will spend most of its time blocked in an accept

call, so the backlog queue will almost always be empty. In a fully correct simulation we
expect V TC − V TA > 0. This is the desirable case; the server thread will leap forward to
V TC to handle the request and the client thread will experience a normal service time. If
V TC − V TA < 0, a “negative leap forward”, the server thread has already passed V TC ,
when the connection should have been made, causing the client to experience a larger than
usual service time as it includes an error of V TA − V TC .

The connection error is the parallel of the message delivery error discussed in Section
3.2 in terms of connect and accept calls rather than write and read calls. In this test
the dynamics of the message delivery errors are quite straightforward. The server never
makes a read call, so receives no messages in this sense. The client blocks immediately in
a read after establishing a connection to the server, which should respond immediately, so
its message delivery errors are almost exclusively zeros.

1 while more requests are expected do
2 accept a connection yielding socket s;
3 write the current time to s;
4 close s;

5 end

Figure 12: Server application code for the connection delay test.

1 for i in 1 .. numberOfRequests do
2 open a connection to the server yielding socket s;
3 read from s;
4 close s;
5 do work taking time t ∼ exp(λ);

6 end

Figure 13: Client application code for the connection delay test.

4.1.1 Effect of reducing the scheduler timeslice

As stated in Section 3.2, our synchronisation scheme holds all running threads in the interval
[GV T,GV T+2∗scheduler timeslice]. Reducing the scheduler timeslice means that threads
will be more tightly synchronised so we would expect to see reduced connection errors.

Since server utilisation is low, the server will spend most of its time blocked in accepts
and will leap forward in virtual time when a client connects. Progress in virtual time of the
server is driven by requests coming in from clients. Errors are introduced when connections
are handled out of order in virtual time. This can only occur when two clients pick con-
nection times within two scheduler timeslices of each other (if they were further apart the
connections could not happen out of order). Reducing the timeslice reduces the prevalence

26

Figure 14: Histogram of 20, 000 connection errors, TSF = 1, scheduler timeslice = 100ms

Figure 15: Histogram of 20, 000 connection errors, TSF = 1, scheduler timeslice = 10ms

27

of errors by making it less likely that two clients will pick connection times which could be
run out of order in real time.

Figures 14 and 15 show measured values of V TC−V TA from experiments with timeslices
of 100ms and 10ms respectively. In these Figures and those which follow, the three blue ver-
tical lines on this histogram denote the 25th percentile, the median, and the 75th percentile.
We note that in a fully correct simulation these histograms would show the interarrival time
of requests at the server.

With a timeslice of 100ms approximately 2.8% of connections lead to a negative leap for-
ward. Reducing the timeslice to 10ms cuts this down to less than 1%. Reducing the timeslice
tightens the synchronisation between threads, so reduces the number of client requests to the
server which could be handled out of order in real time, as these must occur within 2 times-
lices of each other in virtual time. This accounts for the reduction in negative leaps forward.

Recall that the client think times are distributed as exp(λ). Since the service time at
the server is almost 0, clients will spend almost all of their time thinking so the distribution
of arrival times at the server will be approximately exp(50λ). Indeed, the shapes of the his-
togram in Figures 14 and 15 match what we would expect for an exponentially distributed
random variable.

4.1.2 Effect of Time Scaling

Next we consider the effect of applying time scaling to the “timewasting” function. The
client code is unchanged but has a TSF applied to the timewasting code. This changes
the client think time and therefore the rate at which clients send requests to the server.
Applying a TSF of 2 will halve the think time at the client and therefore double the rate
at which the connections arrive at the server. In these experiments we have used a 100ms
timeslice.

Negative Leaps Forward

First we consider Figures 16 and 17, in which the client is accelerated in virtual time by
applying a TSF of 0.5 and 0.2 respectively. We note the reduced number of negative leaps
forward, detailed in 21. A TSF of less than 1 means that the the client think time is in-
creased and therefore reduces load on the server. Client requests are therefore spread over a
larger period of virtual time but still synchronised to within the same 2 ∗ timeslice interval.
A negative connection error will occur when two requests are processed out of order. For
this to happen both must occur within the same 2 timeslice interval as the synchronisation
scheme does not allow threads to diverge by more than this. Spreading client requests over
a larger period reduces the likelihood of two requests falling in the same 2 ∗ timeslice in-
terval. Requests are therefore less likely to be processed out of order, leading to a reduced
prevalence of negative leaps.

Figures 18 and 19 show leaps forward for experiments with a TSF of 2 and 5 respec-
tively. A TSF greater than 1 simulates clients which are faster than reality, with smaller

28

Figure 16: Histogram of 20, 000 connection errors, TSF = 0.5, scheduler timeslice =
100ms

Figure 17: Histogram of 20, 000 connection errors, TSF = 0.2, scheduler timeslice =
100ms

29

Figure 18: Histogram of 20, 000 connection errors, TSF = 2, scheduler timeslice = 100ms

Figure 19: Histogram of 20, 000 connection errors, TSF = 5, scheduler timeslice = 100ms

30

Figure 20: Histogram of 20, 000 connection errors, mixed client TSF , scheduler timeslice =
100ms

think times between requests. Negative leaps forward become more common as detailed in
Figure 21, increasing from 2.8% of cases in the unscaled experiment to 5.6% and 13.1% of
cases in experiments with a TSF of 2 and 5 respectively. This is the same effect as observed
in Figures 16 and 17 but in reverse; client requests are compacted into a shorter period of
virtual time so are more likely to fall into the same 2 timeslice and still synchronised to
within a 2 ∗ timeslice interval, so are more likely to be processed out of order. The leads to
more negative leaps forward at the server.

In Figure 20 we show the leaps forward upon connection when the clients have a variety
of time scaling factors applied to them. This test has 10 clients with a TSF of 1, 2, 5, 0.5
and 0.2, a total of 50 clients. Observe that despite the rates of progress in virtual time of
some clients differing by a factor of 10, the left hand tail of negative leaps forward remains
small. 5.8% of connections are handled late.

We note that in all cases the worst (most negative) connection errors remained much
smaller than the maximum possible error of 2 ∗ scheduler timeslice.

Movement of Median Leap Forward

We also note the movement of the median leap forward. In Figure 16 applying a TSF of 0.5
causes the average client think time to double, so we would expect the average interarrival
time at the server to be doubled. Since message arrivals cause the server to leap forward, we

31

TSF median leap forward (ms) expected percentage difference negative leaps
1 10 baseline - 2.8%
2 5 5 0% 5.6%
5 1 2 -50% 13.1%

0.5 22 20 10% 1.8%
0.2 65 50 30% 1%

Figure 21: Measured and expected median leaps forward under time scaling.

should expect to see the average leap forward double. In general, we predict the median leap
forward to be the baseline (unscaled) median divided by the TSF applied in a particular test.

Referring to Figure 21 we see that this prediction is accurate when the TSF is close to
1. The large percentage error for a TSF of 5 has two causes. Firstly, measurements are
made at millisecond granularity, so are not really precise enough in this case. Secondly, this
experiment exhibits an increased number of negative leaps forward. These causality errors
would, in a fully correct simulation, be positive leaps. Instead they sit below zero and pull
the median down.

4.2 A simple queuing example, with time scaling

In this section we evaluate the ability of VTF to make performance predictions across multi-
ple machines using the synchronisation scheme we have developed. We do this by measuring
the response time of a server under increasingly heavy load from up to 50 clients. We then
apply time scaling to the server using VTF to predict the response time were it to handle
requests twice as fast. This prediction is shown to be accurate to within the VTF profilers
error.

4.2.1 Experimental Setup

The key difference between the programs used in these experiments and the server and client
programs used in the previous section is that the service time of the server is no longer neg-
ligible. The server will handle requests sequentially, on a single thread. The time taken for
the server to generate a response is distributed exponentially with rate parameter λS (line
3, Figure 22). As before, the client think time between requests is exponentially distributed
with rate parameter λC (line 5, Figure 23). We note that the experiment can be modelled
as a closed queuing network with an M/M/1 server.

We select λS = 20 ∗ λC , so expect to see the response time degrade when more than 20
clients are active.

In order to test VTF’s predictive accuracy we run same experiments with a TSF of 2
applied to the server’s response generation code. This simulates a server which is twice as
fast.

32

These experiments are run with a 100ms timeslice.

1 while more requests are expected do
2 accept a connection yielding socket s;
3 generate response taking time t ∼ exp(λS);
4 write the response to s;
5 close s;

6 end

Figure 22: Server application code for the response time test.

1 for i in 1 .. numberOfRequests do
2 open a connection to the server yielding socket s;
3 read from s;
4 close s;
5 do work taking time t ∼ exp(λC);

6 end

Figure 23: Client application code for the response time.

4.2.2 Experimental Results

Figure 24 shows the results of our first pair of experiments, in which we compare response
times reported by VTF when no time scaling is applied to real response times from the unin-
strumented program. This is for validation purposes; we should see the same performance
characteristics in both cases. The blue line shows mean response times for our server under
load from an increasing number of clients when run under VTF with no time scaling. The
green line shows results of the same test run as pure Java without VTF.

In this test, VTF tends to slightly overpredict the response time. The source of the
overprediction is VTF prematurely allowing the server to accept a connection from a client
which is far forward in virtual time, leaping the server thread forward in time and causing
subsequent connections from earlier virtual times to be handled late. Recall that our simu-
lation of the backlog queue is not perfect, and will will occasionally allow premature leaps
forward. These clients therefore experience larger than normal response times, which leads
to the overprediction. The same results are tabulated in Figure 26. We see a maximum
prediction error of 9% and an average of 5%. These errors are within the accuracy of the
VTF framework, so are within the range that we should expect.

The point of the VTF project is to make performance predictions, so we next investigate
how accurately VTF can predict the response time of a the single threaded server under
time scaling. Figure 25 shows a predicted response time curve for the server were it to serve
requests twice as fast (blue line). This prediction is implemented by applying a TSF of 2
to the timewasting function which dictates the servers think time. We see that the response
time is much lower than for the original server. The is because of the lower service time

33

Figure 24: Response time on a single threaded server, no time scaling.

Figure 25: Response time on a single threaded server, with time scaling.

34

Number of clients Predicted response time Actual response time Prediction error
2 43.6 41.3 6%
10 60.9 57.9 5%
20 126 123 2%
30 316 316 0
40 622 569 9%
50 940 871 8%

Figure 26: Predicted and actual response times for the server with no time scaling in Figure
24. All measurements are means and units are milliseconds.

Number of clients Predicted response time Actual response time Prediction error
2 22.3 24.1 −7%
10 25.4 26.6 −5%
20 32.5 35.0 −7%
30 47.3 48.8 −3%
40 74.4 74.8 −0.5%
50 151 154 −2%

Figure 27: Predicted and actual response times for the server with time scaling in Figure
25. All measurements are means and units are milliseconds.

leads to less queuing.

Since the service time of the server is under our control, we can validate the predicted
response time of a double speed server by running the same test in pure Java with a server
which is actually twice as fast. Doubling the rate parameter of the service time distribution
halves the average service time (green line in Figure 25). We see that the prediction lines
up with reality very well.

The results are again tabulated in Figure 27. In this set of experiments VTF underpre-
dicts the response time. The mean prediction error is −4%, which is within the framework
error.

4.3 A Multithreaded Server

Our next set of experiments attempts to tackle two ways in which our previous experiments
have been unrealistic.

Firstly, a real application would not use a single thread to serve requests. We introduce a
more realistic (though still inefficient) server architecture - spawning a new thread to handle
each connection.

The second issue is the lifetime of a connection to the server. A new connection is estab-
lished each time a client makes a request. In this test the client instead establishes a single
connection to the server which it uses for multiple request/response cycles for the entire

35

duration of the test.

4.3.1 Lightly Loaded Server

Our first test uses the same client and and server think time distributions as the single
threaded tests in Section 4.1. We note that while we no longer expect to see client requests
queuing to connect, the threads which handle them will still queue for CPU time.

Figure 28 shows the response time of this server for an increasing number of clients. In
this test, each client makes 1000 requests to the server, the data point for 50 clients is the
mean of 50, 000 response times. The response time remains roughly constant because the
threaded server architecture takes full advantage of its host’s multicore CPU (4 physical, 8
logical cores). This means that the load placed upon the server by this test is very light.

For a single client VTF predicts the mean response time to an accuracy within the
framework error. With larger numbers of clients we observe significant prediction errors,
increasingly large as the number of clients rises, where VTF predicts the response time of
the multithreaded server to be larger than it really is. With 50 clients the error is as much
as 126%.

Figure 30 compares the mean service times measured from the tests with and without
VTF for an increasing number of clients. As the number of clients increases, the mean
service time simulated by VTF increases much faster than the real mean service time. Ob-
serve that for a single client the service time is simulated accurately, which allows VTF to
accurately predict the response time with a single client.

The multithreaded server has one thread for each client, so in the test with a single client
the server only has one thread. When more clients are added, the server will spawn more
threads and make full use of the multicore processor simulated by VTF. Since the errors
in service times arise when the server has multiple clients, we can place the cause of this
problem on VTFs multicore simulation. It appears that VTF does not accurately simulate
processor sharing between threads in this multicore environment.

4.3.2 Increased Server Load

We next consider a moderately heavily loaded multithreaded server. We implement this
test by increasing the server think time by a factor of 4. Client think times are unchanged.

Response time curves for between 10 and 50 clients are shown in Figure 29. For small
numbers of clients (fewer than 30) the prediction is fairly accurate. Past 30 clients, the load
increases and we find that VTF does not accurately simulate the real program behaviour.
At 50 clients the prediction error is 61%.

Figure 31 summarises the median client think time, service time and response time for
this simulation with and without VTF. Observe that the measured client think times are

36

Figure 28: Mean response time on a multithreaded server with light load.

Figure 29: Mean response time on a multithreaded server under increased load.

37

Number of Clients Service time with VTF Service time without VTF Percentage Difference
1 38.9 37.8 2.9%
2 43.0 35.9 20%
5 43.2 35.9 20%
10 46.1 34.1 23%
20 49.7 33.0 51%
30 50.4 33.8 49%
40 52.3 34.2 53%
50 61.1 35.4 75%

Figure 30: Comparison of service times with and without VTF from the tests in Figure 28.
All measurements are means and in millisecond units.

Measurement (ms) With VTF Without VTF Percentage Difference
Client think time 505 461 9%

Service time 433 290 49%
Response time 474 294 61%

Figure 31: Medians measured from the moderately loaded multithreaded servers in figure
29

within the error introduced by VTF. The increased response time reported by the VTF sim-
ulation can be attributed to increased service time in the simulation. This error appears to
be introduced by VTF in moderate to heavily loaded multicore simulations since it appears
only in the multithreaded server’s service time, but not the in the single threaded client’s
think time.

4.3.3 Accuracy of VTF on Multicore platforms

We have continued to diagnose the root cause of this error by devising a multicore stress test
similar to the heavily loaded multithreaded server. The test runs on a single node, spawn-
ing n threads which each perform a specific number of calls to an exponentially distributed
“timewasting” function in sequence, measuring execution time for each call. These tests
were executed on an i7 4470 processor with 8 logical cores backed by 4 physical cores using
hyperthreading. Simulating 8 cores is the closest approximation VTF can provide to this.
Figure 32 shows the median think time spent in each call to the “timewasting” function as
the number of threads n is increased from 1 to 50. We see that VTF is only accurate at low
levels of load. As processor utilisation approaches 100%, around 6-8 threads, the predicted
median think time from VTF diverges from reality. VTF significantly underpredicts the
median runtime of the timewasting function for heavier loads that 30 threads.

Figure 33 summarises the distribution of samples for 50 threads in three cases: with full
VTF, VTF with distributed extensions disabled and pure Java (without VTF). We note that
while the medians differs somewhat between full and non-distributed VTF, the rest of the
distribution is very similar. The distribution of samples measures without VTF is somewhat
different, with a higher median and a lighter upper tail. From these results we can conclude
that the cause of the error in service time seen in Figure 29 likely lies with how VTF treats

38

Figure 32: Median think time in “timewasting” function

multicore simulations. Since the focus of this project is distributed synchronisation we leave
this problem open as future work.

4.4 A real application

A long term aim of the Virtual Time Framework is to be able to profile real world appli-
cations. We have tested our extensions to the VTF framework in using the Jetty servlet
container, aiming to assess how close VTF is to this goal.

This experiment consisted of a 50 clients making HTTP requests to a single server. The

Percentile VTF VTF, distributed extensions disabled No VTF
1 0 0 0
10 5 5 6
25 16 15 49
50 107 86 187
75 463 463 410
90 1109 1107 703
99 1809 1857 1444

Figure 33: Distribution of sample “timewaster” runtimes (ms) measured in multithreaded
stress test.

39

server was implemented as an embedded Jetty instance containing a Java servlet which
generated responses. As in previous experiments, response generation is modelled using a
exponentially distributed amount of work in a “timewasting” function selected so that load
on the server is low. By default, Jetty uses non-blocking I/O via classes from the java.nio

package. Network I/O via these classes bypasses our instrumentation, so we configured Jetty
to use blocking I/O and the Socket and ServerSocket classes. The scheduler timeslice was
100ms. Reported results are averages over 3 runs.

VTF predicted the mean response time of the server to be 68ms. In reality it was mea-
sured as 52ms, an error of 31%. We measured a mean service time of 47ms with VTF and
49ms in reality. In this case, VTF did accurately simulate processor sharing on the server.
This agrees with the results in Section 4.3, where VTF simulations of multicore platforms
are shown to be accurate when few threads are running. Since load on the server is low, the
true response time of the server (52ms) is close to the service time (49ms). VTF introduces
an error which drives the simulated response time of the server up.

The simulation overhead was measured to be approximately 22%, within the 30% over-
head typically shown by VTF on single node platforms. Based on analysis of the client’s
execution traces, we estimate that around 5% of the overhead is due to the distributed
synchronisation scheme.

4.5 Simulation Overhead and Scalability

In this section we investigate the scalability the distributed extensions to VTF. In partic-
ular, we consider the effect of two parameters on wallclock simulation runtime: increasing
numbers of simulation nodes and decreasing timeslice size.

4.5.1 Number of Simulation Nodes

We expect the global virtual time update mechanism at the master to be the bottleneck
in our synchronisation scheme. If GV T updates are not computed and distributed quickly
enough simulation threads will be held back by the synchronisation scheme when they could
run without introducing errors. The key parameter which controls stress upon the GV T
update mechanism is the number of nodes in the simulation; with more nodes, each update
computation must consider more candidates virtual times and an updated GV T must be
distributed to more followers.

To test this, we have devised a experiment to measure the change in synchronisation over-
head as more nodes are added to a simulation. The test program executes a (large) fixed
number of iterations in an exponentially distributed work function similar to the “time-
wasting” functions used in the previous sections. We measure the real time taken for the
simulation to terminate. There is no direct communication between the simulation nodes
as this would complicate the dynamics of the simulation time (a server would experience
increasing load and therefore exhibit increasing response times).

40

Figure 34 shows the results of running this experiment with a timeslice of 100ms for up
to 200 clients. Runtime is allocated into two buckets according to how much time the simu-
lation node spent suspended due to the distributed synchronisation scheme or running. The
area under each graph is coloured accordingly. Time spent “running” represents real time
spent either running the application or in VTF instrumentation code. The “suspended“
state represents the simulation overhead due to the distributed synchronisation scheme.

We see from Figure 34 that simulation runtime grows gradually as the number of clients
increases. The growth is due to increased time spent suspended. For fewer than 100 nodes
the overhead introduced by the distributed synchronisation scheme is very low. With 200
nodes in the simulation, the overhead introduced by the distributed synchronisation scheme
is approximately 17%.

Figure 35 shows the same test run with a 50ms timeslice. Again, the overhead for fewer
than 100 nodes is very low. With between 100 and 200 nodes the overhead grows faster, up
to approximately 65% for 200 nodes.

This overhead is introduced by processes which fall behind in virtual time This may
be caused by background load on its host or GV T update messages being held up in the
network. We see a lower overhead in the 100ms test because the large timeslice acts as a
buffer to absorb slow GV T updates. A slow process does not block others until it is 100ms
behind them. With a 50ms timeslice this buffer is half the size, so it is more common for a
simulation node to fall behind enough to stall the simulation.

4.5.2 Effect of Reducing the Scheduler Timeslice

As demonstrated in Section 4.1, reducing the scheduler timeslice can improve simulation
accuracy. However, this this improved accuracy comes at the expense of increased simula-
tion overhead due to the requirement of tighter synchronisation between threads. In this
section we present experimental results which quantify that overhead. All experiments in
this section use 50 clients.

Figures 36 and 36 show results from the server and client nodes respectively of the con-
nection delay experiment from Section 4.1 ran with with 50 clients. . The graph shows how
the real time taken for the simulation to complete increases as we decrease the scheduler
timeslice. We introduce three new time accounting states to cover blocking network opera-
tions: “connect”, “read” and “accept”.

We can see from Figure 36 that the increase is gradual for timeslices above 25ms, be-
low which it increases sharply. The server spends almost all of its time waiting to accept
connections. Recall that in this experiment the server is lightly loaded, so we expect it
to spend most of its time waiting for connections. Progress in this test is driven by the
client. We therefore turn our attention to the runtimes of the client nodes. Figure 37 shows
an average time breakdown for client nodes. We see that as the timeslice is reduced the
client spends a roughly constant amount of time running but the amount of real time spent
suspended steadily increases, more sharply below 25ms. This is to be expected; reducing
the timeslice does not change the amount of work which a simulation needs to do, reflected

41

Figure 34: Real execution time for a simulation with 5 to 200 nodes with a 100ms timeslice.
Averages over 6 runs.

Figure 35: Real execution time for a simulation with 5 to 200 nodes with a 50ms timeslice.
Averages over 6 runs.

42

Figure 36: Breakdown of real execution time for the connection delay test from Section 4.1
on the server node. Averages over 3 runs.

in the “running” time, but does tighten the synchronisation bounds imposed on it by VTF
and so increased the simulation overhead, the “suspended” time.

Similar results generated using the response time tests with a single threaded server from
Section 4.2. Results for the server and client are shown in Figures 38 and 39 respectively.
Recall that in this test the heavily loaded server is the bottleneck, so controls simulation
runtime. This is reflected in the server now spending most of its time in the “running” state,
and little waiting to accept connections. In Figure 38 we can see that simulation runtime
remains stable when reducing the timeslice from 100ms to 25ms and increases sharply below
25ms. For all timeslices, amount of time the server spends running state remains roughly
constant. The increasing runtime below 25ms can be attributed to increased synchronisa-
tion overhead, as evidenced by the growing amount of time spent in the “suspended” state.

A breakdown of the simulation runtime for a client node of the response time test is
shown in Figure 39. Since the clients are bottlenecked by the server, we see that the client
spends most of its time waiting for a response from the server (“read” time). The amount
of time spent running stays approximately constant. We again observe increased simulation
runtimes for timeslices less than 25ms. This is mostly attributable to a slower server (in real
time) leading to increases in time spent blocked in a network read rather than because of
the client being suspended by the synchronisation scheme. The server is, of course, slower
because it is suspended by the synchronisation scheme.

43

Figure 37: Breakdown of real execution time for the connection delay test from Section 4.1
on a client node. Averages over 3 runs.

Figure 38: Breakdown of real execution time for the response time test from Section 4.2 on
a server node. Averages over 3 runs.

44

Figure 39: Breakdown of real execution time for the response time test from Section 4.2 on
a client node. Averages over 3 runs.

4.6 Effect of Virtual Time on Network Throughput

We would expect to find that apparent network bandwidth is changed by VTF as messages
run through the network in real time but are sent and consumed by processes at rates in
virtual time, meaning that a 1Gbps link could appear to transmit data at a greater or lesser
rate depending on the time scaling factor applied the sending an receiving threads. This
would be similar to the time scaling effects used in network emulation.

Consider two processes which advance through virtual time at half the rate of real time
communicating across a single 1Gbps link. The link will become fully saturated when a
process sends 1Gb of data down the link in one second of real time. However, in that one
second of real time, the process will have advanced half a second in virtual time, so the link
will appear to be a 2Gbps link from the point of view of the simulated application.

However, our tests show that the situation is more complex. The results in Figure 40 are
generated using a pair of programs, a “sender” and a “receiver”, which are run on different
machines connected by a 1Gbps link. The sender will push fixed size chunks of data into the
network at a rate controlled by setting the time it waits between sending messages (“think
time”). As we reduce inter-message time at the sender we expect to see a higher rate of data
transfer. Comparing the transfer rates with and without VTF we find that the simulation
becomes inaccurate when the think time drops below 100, 000ns.

This is due to overheads introduced by instrumentation at the receiver. Figure 41 shows

45

Figure 40: Simulated and actual network throughput on a single link.

Inter-message think time (ns) Median message deliver error (ns) Messages delivered late
250000 175006 ∼ 0%
100000 60567 ∼ 0.01%
50000 26475 3%
25000 10973 17%
12500 −31005600 87%
5000 −1336770000 91%

Figure 41: Median message delivery errors for a range of inter-message think times.

selected median message deliver errors for simulations with various inter-message think
times. Notice that for larger inter-message think times delivery errors are positive, indicat-
ing a thread receiving a message which it can leap forward to and handle correctly. However,
when the inter-message think time drops below 100, 000ns a significant proportion of mes-
sages are delivered late; the receiving thread has already passed the point in virtual time at
which this message should be delivered. Because of extra code executed by the instrumen-
tation added to read calls, the rate at which the sender puts data into the network outstrips
that at which the receiver can read it out. We therefore see a queue develop as messages
collect in the network buffer leading to late message delivery.

46

Chapter 5

Conclusions

5.1 Achievements

We have shown our distributed synchronisation scheme to be effective. Toy examples have
been used to show that VTF can now make accurate predictions about the performance of
distributed systems under time scaling for CPU bound workloads to within the framework
error of approxmately 8%.

We also find the approach to be scalable to medium size systems of a few hundred nodes
when large timeslices are used. In particular, for a large (100ms) timeslice and small number
of nodes, the additional simulation overhead is negligible.

Our experiments with Jetty show that VTF is making progress towards its goal of sim-
ulating real-world applications, but there is still work to do.

5.2 Limitations

We have not been able to properly evaluate our synchronisation scheme with real world
systems or heavily loaded multithreaded programs due to limitations in the underlying
framework. Our synchronisation scheme appears to be very sensitive to small simulation
errors introduced by the framework.

Our extensions to the instrumentation framework only supports network I/O over the
java.net.Socket and java.net.ServerSocket classes. While this is sufficient for toy
programs, high performance applications would use the non-blocking alternatives in the
java.nio package. It would be necessary install further instrumentation in order to profile
such systems.

At this stage, VTF would not be effective at profiling applications whose performance
constraints are based on network throughput because the overhead from read instrumenta-
tion impacts performance. We have not been able to verify our hypothesis that VTF would
exhibit time-dilation like bandwidth scaling properties, but still expect it.

47

5.3 Future Work

This section describes a few possible “next steps” for the VTF project.

5.3.1 Virtual Time Aware End-to-End Tracing

Distributed systems are often organised in multiple tiers - for example a webserver may be
backed by a number of services which themselves use databases. End-to-end tracing sys-
tems attribute activity in each tier to particular requests. Examples can be found from both
industry and research. Google’s Dapper [12] and Twitter’s Zipkin [13] both produce Gantt
chart visualisations of request activity lengths on multiple machines. A virtual time aware
end-to-end tracing system would be a useful tool for visualising how potential optimisations
would effect the ordering and durations events in distributed environments.

5.3.2 Evaluation using Real World Systems

A long term aim of the VTF project is to produce a performance engineering tool which can
be used in the real world. In order to reach this goal, VTF needs to be tested with more
real world applications to expose bugs and prediction errors that only appear in complex
applications. This could be both in single process and distributed system. An interesting
project would be to find a open source project in which performance optimisations have
been implemented and metrics documented and see if VTF can predict the performance
improvements following optimisation using the unoptimised code.

5.3.3 Code Cleanup and Testing in VTF

As more people become involved in the development of VTF the quality of the project
codebase becomes more important. With many developers it is important that the project
has a thorough test suite to avoid introducing regressions. Much of logic of VEX/VTF
is intertwined with side-effecting code which make implementing repeatable, reliable tests
difficult.

5.3.4 Investigate Prediction Errors in Multicore Simulations

The erroneous behaviour described in Section 4.3.2 which VTF exhibits in stressed multi-
core simulations needs attention.

5.3.5 Network Simulation in Virtual Time

As noted above, we expect VTF would exhibit time-dilation like bandwidth scaling prop-
erties, which would make it unsuitable for predicting performance of applications which

48

saturate the network. An application with a TSF of 3 progresses more through virtual time
at a third of the rate of real time, so may push data into the network at a greater rate
in virtual time that the network can handle in real time. A performance prediction based
on this would be wrong, as the real application would block in write calls. To solve this
problem VTF needs a network simulation module similar to its current disk I/O simulator.
A valuable extra use VTF to predict when a change in performance characteristics would
turn a CPU bound application into a network bound application.

49

Bibliography

[1] R. M. Fujimoto, Parallel and Distributed Simulation Systems. Wiley, 2000.

[2] D. R. Jefferson, “Virtual time,” ACM Trans. Program. Lang. Syst., vol. 7, pp. 404–425,
July 1985.

[3] J. Weidendorfer, M. Kowarschik, and C. Trinitis, “A tool suite for simulation
based analysis of memory access behavior,” in Computational Science - ICCS 2004
(M. Bubak, G. van Albada, P. Sloot, and J. Dongarra, eds.), vol. 3038 of Lecture Notes
in Computer Science, pp. 440–447, Springer Berlin Heidelberg, 2004.

[4] D. Gupta, K. Yocum, M. McNett, A. C. Snoeren, A. Vahdat, and G. M. Voelker, “To
infinity and beyond: Time warped network emulation,” in Proceedings of the Twentieth
ACM Symposium on Operating Systems Principles, SOSP ’05, (New York, NY, USA),
pp. 1–2, ACM, 2005.

[5] D. Gupta, K. V. Vishwanath, M. McNett, A. Vahdat, K. Yocum, A. Snoeren, and
G. M. Voelker, “Diecast: Testing distributed systems with an accurate scale model,”
ACM Trans. Comput. Syst., vol. 29, pp. 4:1–4:48, May 2011.

[6] N. Baltas, Software Performance Engineering using Virtual Time Program Execution.
PhD thesis, Imperial College London.

[7] N. Baltas and T. Field, “Software performance prediction with a time scaling scheduling
profiler.,” pp. 107–116, IEEE, 2011.

[8] G. Charles, “A virtual time performance engineering tool,” Master’s thesis, Imperial
College London, 2014.

[9] http://asm.ow2.org/.

[10] K. J. Duda and D. R. Cheriton, “Borrowed-virtual-time (bvt) scheduling: Supporting
latency-sensitive threads in a general-purpose scheduler,” SIGOPS Oper. Syst. Rev.,
vol. 33, pp. 261–276, Dec. 1999.

[11] http://kernelnewbies.org/Linux_2_6_23.

[12] B. H. Sigelman, L. A. Barroso, M. Burrows, P. Stephenson, M. Plakal, D. Beaver,
S. Jaspan, and C. Shanbhag, “Dapper, a large-scale distributed systems tracing infras-
tructure,” tech. rep., Google, Inc., 2010.

[13] http://twitter.github.io/zipkin/.

50

