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Abstract

Motivated by the perpetual goal of automatically generating efficient code from high-level
programming abstractions, compiler optimization has developed into an area of intense
research. Apart from general-purpose transformations which are applicable to all or most
programs, many highly domain-specific optimizations have also been developed.

In this project, we extend such a domain-specific compiler optimization, initially
described and implemented in the context of finite element analysis, to one that is suitable
for arbitrary applications. Our optimization is a generalization of loop-invariant code
motion, a technique which moves invariant statements out of program loops. The novelty
of the transformation is due to its ability to avoid more redundant recomputation than
normal code motion, at the cost of additional storage space.

This project provides a theoretical description of the above technique which is fit for
general programs, together with an implementation in LLVM, one of the most successful
open-source compiler frameworks. We introduce a simple heuristic-driven profitability
model which manages to successfully safeguard against potential performance regressions,
at the cost of missing some speedup opportunities. We evaluate the functional correctness
of our implementation using the comprehensive LLVM test suite, passing all of its 497
whole program tests.

The results of our performance evaluation using the same set of tests reveal that
generalized code motion is applicable to many programs, but that consistent performance
gains depend on an accurate cost model. Applied unconditionally, our optimization
introduces two major execution time improvements of over 30% in the test suite, but
otherwise proves to be very detrimental. Coupled with the current cost model, all
noticeable slowdowns are eliminated, but so is one of the previous speedups. We
believe that with further refinement of the cost model, our technique could bring major
improvements to a wide range of programs.
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Chapter 1

Introduction

Compilers are arguably one of the fundamental pillars of computer science, allowing the
field to thrive and reach the levels of complexity it enjoys today. Apart from mapping
abstract programming languages to the concrete instruction set of a given architecture,
modern compilers also employ a rich toolkit of optimizations which aim to improve
the runtime behaviour of programs. Driven by the ever-increasing need for generating
high-performance executable code, compiler optimization has evolved into a prominent
area of research over the last four decades, spawning a plethora of efficient techniques.

In arithmetic-intensive programs, characteristic to fields such as scientific computing,
a dominant fraction of the total running time is spent executing loops. For such ap-
plications, major improvement is thus achievable if the processing times and memory
footprint of resource-intensive loops are reduced. The spectrum of compiler optimizations
targeting loop constructs ranges from simple, universal procedures such as loop unrolling,
to complex, specialized techniques such as loop blocking.

One of the most applicable and widely used loop optimizations is loop-invariant code
motion (LICM). This transformation identifies expressions that are unnecessarily re-
evaluated at successive loop iterations (loop-invariant expressions), and subsequently
moves them to a program point where they execute fewer times. LICM is an attractive
optimization because it almost invariably achieves a speedup in execution time, due to
reducing the number of times certain statements are evaluated.

1.1 Motivation

Because of their generality, traditional compiler optimizations may achieve suboptimal
results in application domains where programs adhere to a very particular, perhaps
unusual structure. In such cases, specifically tailored transformations often produce
superior code compared to even the most successful general-purpose compilers.

The core idea of this project stems from the previous work of Luporini et al. [27], who
introduced such a toolkit of domain-specific optimizations in the context of the finite
element method (see Section 4.2). The specialized compiler introduced by the authors,
COFFEE, managed to outperform two of the most prominent general-purpose C compil-
ers, through its use of domain-specific knowledge on the input programs.
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In this project, we focus on one of the transformations introduced in COFFEE, which
the authors refer to as generalized loop-invariant code motion (GLICM). GLICM pursues
the same goals as loop-invariant code motion, but is able to identify and precompute
more types of loop-invariant expressions. This optimization was developed in reaction
to the limited amount of code motion performed by vendor compilers on finite element
code, and single-handedly improved the execution time of certain programs by a factor
of up to 2.5.

1.2 Project aim

Our foremost goal is to assess the usefulness and runtime impact of generalized loop-
invariant code motion on typical, generic applications. Although GLICM was initially
developed as a niche optimization for a specific field, we believe that the principles on
which it rests can be suitably extended to a wider category of programs.

To achieve this, we set out to develop a general-purpose compiler optimization based on
the operating principles of the generalized code motion procedure, as originally described
by Luporini et al. Crucially, the project also aims to propose a safety model which ensures
that our optimization is applied correctly and safely to arbitrary programs, without
modifying their semantics or generating unwanted exceptions.

1.3 Main contributions

The main contributions of this project are the following:

e An implementation of generalized-loop invariant code motion as a stand-alone
optimization pass in LLVM [20], a large open-source compiler framework used
extensively across academia and industry (Chapter 5).

e An adaptation of the technique to fit the generality of arbitrary programs. In
addition, the formulation of a set of safety requirements, rooted in compiler theory,
necessary for correctly applying GLICM to arbitrary programs (Section 4.4).

e The development of a heuristic cost model which aims to apply generalized code
motion only when the transformation is profitable (Section 5.4.5).

e An evaluation of our implementation’s functional correctness and performance on
a test suite consisting of hundreds of practical programs and benchmarks. We
also document the effects of our optimization on finite element code, observing
favourable speedups over Clang, LLVM’s C and C++ compiler (Chapter 6).



Chapter 2

Background

This chapter begins by describing the important task of compilers and identifying the
common high-level structure shared among most present-day compilers. Next, it offers an
introduction to several relevant elements of compiler theory, such as control flow graphs,
intermediate representations and the static single assignment property. We proceed to
discuss the general requirements of compiler optimizations, and finally focus our attention
on loop-invariant code motion.

2.1 Compilers overview

A compiler is a software tool which processes a program written in a source language and
translates it to a target language program with equivalent behaviour. Most compilers
map code written in a high-level programming language (such as C, C++, Haskell) to
machine instructions for a given architecture (such as x86 or MIPS). Compilers have
a monumental role in computer science, because they allow us to express programs
concisely and conveniently using abstract, high-level programming languages, instead
of low-level machine operations. Indeed, before the advent of compilers, programs were
written directly in assembly language, an approach that could not have possibly scaled
favourably to the depth and complexity of the software systems we use today.

Modern compilers achieve translation by invoking a well-defined sequence of transfor-
mations on the source program. A common compiler organization is the three-phase
compiler [23, p. 8], which has the following structure:

1. the front-end pass, which begins by interpreting the source program as a character
stream, delimiting it into a set of tokens (lexemes). These represent various
syntactic constructs in the source language, such as operators (+, /), language-
specific keywords (for, static, class) or special characters (;, {). Syntactic
analysis (parsing) processes the stream of tokens to check if it represents a valid
program, matching it against a formal definition of the source language. If the input
program was found to be valid, the parser constructs the Abstract Syntax Tree
(AST) form, a representation that reflects the abstract structure of the program’s
statements. The resulted AST is then checked for semantic errors, such as type
inconsistencies (e.g. assigning an double value to a string variable), multiple
declarations of variables with the same name, or references to undefined variables.
Finally, the AST is traversed and converted to a language-independent form called
the intermediate representation (IR).



CHAPTER 2. BACKGROUND

2. the optimizing pass (optimizer) takes the IR program generated at the end of the
front-end pass, manipulates it through various transformations, and produces an
optimized version of it. Crucially, the optimized IR program must be semantically
equivalent to the original version, i.e. it must produce exactly the same observable
results. In the same time, the resulting IR program should perform better than
the original program, with regard to aspects such as execution speed, memory
bandwidth or energy consumption. While a considerable number of optimizations
are common to all compilers, their implementation, ordering, cost models and
scope differ vastly, making the optimization pass one of the most distinguishing
components of a compiler. In providing its optimizations, a compiler depends
heavily on the expressiveness and properties of its IR.

3. the back-end pass converts the optimized IR program to native code that executes
on a target architecture, a process known as code generation. IR statements are
rewritten to native instructions, and abstract storage locations used in the IR are
mapped to machine registers (register allocation). During the code generation
stage, the back-end pass applies its own target-dependent optimizations, such as
instruction scheduling [23, p. 639], which reorders instructions such that they are
executed more conveniently on the target machine.

Source IR . IR Target
Front End Optimizer Back End
Program Program

Compiler

Figure 2.1: High-level structure of a typical three-pass compiler (taken from [23, p. 8]).

Not all compilers target machine instruction sets. Source-to-source compilers, for instance,
translate programs from one high-level language to another [3]. Also, compilation does
not necessarily have to be a separate, stand-alone process that is carried out before
the program is executed. Just-in-time (JIT) compilation is a technique used by some
languages based on virtual machines, and involves compiling portions of a program to
machine code while the program is being interpreted. A prominent use case of JIT
compilation is in the Java Virtual Machine (JVM), where sequences of bytecode are often
compiled to native code in order to execute faster.

2.2 Control flow graphs

Throughout the compilation stages, it is often useful to represent the source program
using various graph and tree structures [23, p. 226]. For instance, parse trees and
abstract syntax trees are used by the front-end pass when performing syntactic and
semantic analysis. Similarly, IR programs are modelled using a directed graph known as
the control flow graph (CFG) [23, p. 231]. This graph describes the flow of control within
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the given program, and is essential for implementing many compiler optimizations.

The nodes of the CFG are the program’s basic blocks, sequences of non-branching state-
ments that execute consecutively in the absence of exceptions. Edges between nodes
represent potential transfers of control from one basic block to another during program
execution. Control is transferred as a result of conditional and unconditional branches,
which arise from high-level statements such as i f-then-else, for, while or break.
In the absence of branches, a program would execute all its constituent statements exactly
once, in a top-to-bottom fashion.

If A and B are two basic blocks, and there is an edge between them in the CFG, we
say that A is the predecessor of B and, equivalently, B is the successor of A [1, p. 529].
Figure 2.2 shows a pseudocode fragment and a corresponding CFG representation side-
by-side. Here, BBO is the predecessor of BB1 and, conversely, BB1 is the successor
of BBO. However, BB1 is not the predecessor of BB3, because there is no direct edge
connecting the two blocks (thus, the predecessor and successor relations are not transitive).

i=0; BBO
i < n?|BB1
1 s =
2 for (i = 0; i < n; i++) {
3 s =s + i; BB2
4 if (1 < 50) {
5 s =s + 1;
6 }
7 BB3
8 print s
BB4
print s; | BB5
(a) Source view. (b) CFG view.

Figure 2.2: Example mapping between pseudocode and a corresponding control flow
graph representation.

Practically, an edge between two basic blocks A and B means that, during at least one
possible execution of the program, the last non-branching statement of A is followed by
the first statement of B. Inspecting the CFG in our example, we observe two outgoing
edges from BB1. One edge transfers control to BB2 if the condition i < n holds, in
which case the following statement would be s = s + 1i. On the other hand, if the loop
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condition does not hold, control is transferred to BB5, and the first statement executed
after the comparison is the print statement.

Each control flow graph has a conceptual entry node, which has a single edge to the first
executable basic block in the program, but is otherwise empty. Conversely, an ezit node
is used to represent the end of the program’s execution. Any basic block containing a
statement that terminates execution will have an edge to the CFG’s exit node [1, p. 529].

2.2.1 Dominator analysis

Dominator analysis is a technique applied by compilers at the level of the CFG, with
the aim of reasoning about the structure of the underlying program [23, p. 478]. This
analysis relies on the key notion of dominators. In a flow graph, a node A dominates a
node B (A > B) if every path from the entry node to B also includes A [1, p. 656]. In
the CFG of Figure 2.2b, some examples of the dominance relationship are BBO > BB1,
BB2 > BB3 and BB1 >> BBS.

Based on this definition of dominance, every node in the control flow graph automatically
dominates itself. Strict dominance between two nodes A and B requires that A > B and,
in addition, A#B [1, p. 657]. Thus, the three examples of dominance we offered in the
previous paragraph also satisfy strict dominance. Furthermore, every non-entry node
has an immediate dominator, the unique strict dominator which lies closest to it in the
CFG. In our example, BB1 strictly dominates BB3, but it is not its immediate dominator.
Instead, the immediate dominator is BB2, the unique strict dominator with the shortest
path to BB3.

Immediate dominators are used to condense the result of dominator analysis into a single
data structure, the dominator tree. Every node in the dominator tree is a basic block of
the CFG, and a node A is the unique parent of a node B if and only if A is the immediate
dominator of B. From this representation, complete dominance relationships can be easily
reconstructed, by noting that a node is dominated by all its tree ancestors. Figure 2.3
shows the dominator tree constructed for the flow graph used as an example throughout
this section.

BBO0

B

/
\

1
B BB5

B
BB3 B4

Figure 2.3: Dominator tree corresponding to the CFG in Figure 2.2b.
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2.2.2 Natural loops

In the CFG representation, loop statements of the underlying program map to graph
regions called natural loops. We use dominator analysis to define a natural loop as a set
of CFG nodes with the following two properties [23, p. 665]:

1. There is an unique entry node (the loop header) which dominates all the other
nodes in the loop.

2. There is a path from every node in the loop to the loop header, which only uses
nodes from the loop.

In Figure 2.2b, we identify a natural loop (referred to as L in the remainder of this section)
defined by nodes BB1-4 and loop header BB1. It is easily observed that the first required
condition holds, since BB1 > {BB1, BB2, BB3, BB4}. Furthermore, there is a path
through the loop from each of these basic block back to BB1, the loop header. This nat-
ural loop corresponds to the pseudocode for loop defined between lines 2-7 in Figure 2.2a.

There are several regions in the control flow graph which have interesting properties with
respect to natural loops [7]. Among these, we mention:

e The loop preheader: a basic block whose unique successor is the header of some
natural loop. In our running example, BBO is the preheader of L since its unique
successor is BB1, the header of L.

e Back edges: an edge between two basic blocks A and B, whereby B dominates A.
Each natural loop has at least one back edge (also known as a latch) reaching back
to the loop header from some node inside the loop. For instance, L has a single
latch (the edge between BB4 and BB1).

e Loop exit blocks: basic blocks which reside outside of a given loop, but have
predecessors in that loop. In Figure 2.2b, BB5 is an exit block of L.

2.3 Static single assignment form

The static single assignment (SSA) form is a desirable property of intermediate repre-
sentations, which dictates that every variable in the program is only assigned to exactly
once (hence the name). To achieve this, all variable definitions are altered, usually by
appending a counter to the assigned variable’s original name. The counter initially starts
at 0 and is incremented by 1 each time the variable is redefined. Figure 2.4 shows how a
sequence of pseudocode statements are rewritten such that they display the SSA property.

10
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t = 0;11 fo = 0
o ap = to + 1;

a=t + 1; bo = ao;
b =a; air = bo + 5;

a=>b + 5; £, = 9;

t =9; !
co = t1 / 5;

c =t / 5; 0 !

(b) After applying the SSA construc-

(a) Original pseudocode. tion algorithm.

Figure 2.4: Example construction of the SSA form.

Another important aspect of the SSA form relates to how control flow is handled. To
illustrate, consider the code snippet below, which contains a trivial C procedure for
computing the signum function for a given integer.

int getSignum(int n) {
int sign;
if (n > 0)

sign = 1;

} else if (n < 0) {

{

sign =
} else {

sign =
}

return signj;

= O © 00 O Uik W N

— =

Attempting to construct the SSA form for this example, we may end up with a result
similar to the one below:

1 4if (no > 0) {
2 signg = 1;
3 } else if (ng < 0) {
4 signy = -1;
5 } else {

6 signg = 0;
7}

8 return ?

We are faced with the problem that the variable sign has three different definitions,
each of which occurs along a different path in the function’s CFG. However, we must
specify a single value as the argument of the return statement. SSA solves this problem
by inserting a Phi function (¢) at the point where different control flow paths merge:

11
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1 4if (no > 0) {

2 signg = 1;

3 } else if (ng < 0) {

4 signiy = -1;

5 } else {

6 signe = 0;

7}

8 signs = ¢(signg, signi, signz);
9 return signs;

Phi functions are special statements whose purpose is to select between multiple defini-
tions of the same base variable that reach the current basic block. Phi functions choose
a single definition from their list of arguments, based on which block transfers control
to the current basic block during program execution [23, p. 495]. In the above example,
if n = 5 at runtime, signg will evaluate to signg, and if n = -8, it will evaluate to
signy.

The SSA form is beneficial because it simplifies a number of data flow analyses, which
are especially useful for ensuring the safe application of compiler optimizations such as
loop-invariant code motion. Consequently, many intermediate representations (including
the LLVM IR) exhibit this property. For a complete discussion on the SSA form and its
applications, the interested reader is advised to consult Chapter 9.3 of [23].

2.4 Compiler optimizations

The field of compiler optimizations is arguably one of the most well-researched areas in
computer science, and has spawned a wide spectrum of techniques that allow compil-
ers to generate highly efficient target programs [2]. Most compiler optimizations aim
to improve the program’s overall execution speed, but it is not uncommon to target
different aspects, such as code size (e.g. in embedded systems) or energy consump-
tion (e.g. in portable electronic devices). A compiler in which the biggest fraction of
the compilation time is attributed to optimizations is referred to as an optimizing compiler.

Two key properties that compiler optimizations need to meet are safety and profitabil-
ity [23, p. 412]. An optimization is safe if it preserves the behaviour of the program.
Since a compiler’s foremost requirement is to output a target program equivalent to the
source program, the compiler must only apply an optimization if it is provably safe to
do so. Secondly, an optimization should be applied only when it is profitable. A good
compiler will reason carefully about the runtime properties of the program and decide to
apply a code transformation only when there is a strong likelihood that it will improve
performance. To aid this decision, cost models and heuristic rules are sometimes used.

Compiler optimizations are the result of combining two types of processes: analyses and
transformations. [23, p. 14]. Analyses inspect various regions of the control flow graph
without modifying the program’s structure, gathering safety and profitability information
for transformations. The latter subsequently modify the IR in many different ways, e.g.
by inserting and removing basic blocks, combining and moving statements, or inlining
function calls.

12
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2.4.1 Loop optimizations

Loop optimizations are an important category of optimizations, which have the goal of
reducing the amount of CPU time spent in the program’s loops. For application domains
such as scientific computing, where loops often dominate execution times, scalar loop
optimizations are a major source of performance improvement.

Loop optimizations depend on analyses which identify the natural loops in the program’s
CFG. Since natural loops consist of one or more basic blocks in the same procedure,
loop optimizations are qualified as regional optimizations [23, p. 417] in some authors’
taxonomy. These are optimizations that operate on regions of the CFG which are larger
than a single basic block, but smaller than a full procedure.

Table 2.1 shows examples of several common loop transformations, adapted from material
in [2] and [1, p. 848-849].

2.5 Loop-invariant code motion

Loop-invariant code motion (LICM) is a widely used loop optimization, which begins
by searching a given natural loop for expressions whose result does not change between
successive iterations. Once the appropriate expressions are identified, they are moved
(hoisted, or lifted) before the loop entry. The result of each expression is stored in a
temporary variable, and all uses of the expression in the original loop are subsequently
replaced with references to that variable.

In Figure 2.5a, the expressions x * x and x + 5 at lines 4 and 5 are candidates for code
motion, since the value of x is not redefined anywhere in the loop. Figure 2.5b shows the
same loop after LICM was applied. The two expressions have been moved outside of the
loop, their results stored in temporaries t1 and t2 respectively, and references to them
rewritten to use the said temporaries.

1 x = 5;
1 x = 5; 2 t1l =x *x x;
2 for (i =0; i< 50; i++) { 3 t2 =x + 5;
3 a =1 % i; 4 for (i =0; i< 50; i++) {
4 b=a+ x * x; 5 a =1 % i;
5 c=b x (x + 5); 6 b =a+ tl;
6 d=a+b x c; 7 c=Db x t2;
7} 8 d=d+ c;
9 }
(a) Original loop. (b) After loop-invariant code motion.

Figure 2.5: Applying loop-invariant code motion at source level.

13



Transformation

Original code

Optimized code

Loop unrolling
(by factor of 4)

for (i=0; i<100; i++) {
s +=Ali];
}

for (i=0; i<100; i+=4) {
s +=Ali];

s 4= Ali+1];

s += A[i+2];

s += A[i+3];

}

for (i=0; i<100; i++) {

if (0 <n&&n< 100) {
for (i=0; i<100; i++) {
s += A[i];

s += Ali]; Ali] = A[n];
Loop if (0 < né&&n < 100) {
unswitching A[i] = Aln]; }oelse {
} for (i=0; i<100; i++) {
} s +=Al[i];
}
}
for (i=0; i<100; i++) { for (j=0; j<1000; j++) {
for (j=0; j<1000; j++) { for (i=0; i<100; i++) {
Loop Cli][j] =A[j][1] = Cli][j] =A[j][1] =
interchange } BLj][i]; : BLj][i];
} }

Loop fusion

for (i=0; i<n; i++) {
sl += Ali];

for (i=0; i<n; i++) {
s2 += BJ[i];

for (i=0; i<n; i++) {
sl += Ali];
s2 4= B[i];

Loop fission

for (i=0; i<n; i++) {
sl += Ali];
s2 4= B[i];

for (i=0; i<n; i++) {
sl += Ali];

for (i=0; i<n; i++) {
s2 += BJ[i];

Loop skewing

for (i=0; i<128; i++) {
for (j=0; j<128; j++) {
st=A[i][j] = B[j][i];

for (i=0; i<16; i+=8) {
for (j=0; j<16; j+=8) {
for (x=i; x<i+8; x++) {
for (y=j; y<j+8 y++) {
st= Alx][y] *
Bly][x];

Table 2.1: Examples of common loop optimizations.

14
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2.5.1 Finding loop-invariant expressions

Loop-invariant code motion relies on data-flow analysis, a collection of analysis techniques
which reason about the flow of values during program execution. In particular, reaching
definitions analysis is used to discover suitable candidate statements for code hoisting. A
definition of a variable reaches a statement if (a) the statement reads the value of the
variable and (b) there exists a path in the flow graph from the definition to the respective
statement along which the variable is not redefined [23, p. 491]. Thus, if d is a reaching
definition of = at statement s, then there exists a possible program execution in which s
may use the value of = as it was defined by d.

LICM can only legally hoist expressions whose value remains constant after each loop
iteration. Such an expression e is called loop-invariant, and it has the property that
for all variables x it references, all definitions of x reaching e originate from outside e’s
loop. Equivalently, on any flow path possibly taken by the program during runtime, no
value read by e is redefined within the loop. If this is the case, then moving e outside
its loop could not possibly lead to a different result, and e becomes a candidate for hoisting.

Computing reaching definition information normally involves tracking all definitions of
variables in the CFG and solving a set of simultaneous data-flow equations. However,
if the IR used by the compiler obeys the SSA property, the task becomes trivial. Since
the SSA property ensures that all variables are assigned exactly once (see Section 2.3),
checking if a loop statement is hoistable only amounts to verifying that the (unique)
definitions of its operands are all placed outside the loop.

2.5.2 Profitability

Loop-invariant code motion improves overall program execution time by reducing the
number of times loop-invariant expressions are computed by a factor equal to the loop
size. In general, the optimization is profitable, but the achieved speed-up will depend on
the nature of the hoisted instructions, as well as the size of the targeted loop.

In some cases, LICM can incur performance penalties due to the introduction of exces-
sively many temporary variables. During execution, these will typically be stored in
physical machine registers. If there are not enough registers available for storing all the
precomputed results, register spilling will occur in the loop [2], a process which frees
registers by transferring their stored values to memory. This introduces considerable
memory latency in the program, which may outweigh any benefits achieved by code
motion.

In cases where machine registers are sparse, one could prioritize hoisting expensive
statements (such as function calls to complex routines, or floating-point arithmetic
operations) over cheaper ones such as bitwise operations or shifts, which are executed
efficiently by the CPU.

2.5.3 Safety

A central principle underlying the safe application of loop-invariant code motion is that
no instruction should be executed in the modified program if it is not executed without
the optimization [1, p. 641]. The basis of this requirement from a safety standpoint is
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that executing such an instruction may throw an exception in the optimized program
which would not have existed in the original one. Apart from different behaviour, lifting
this restriction also affects the speed of the optimized program, which might end up
executing more statements than the unmodified program.

Loop rotation

In order to preserve behaviour, LICM must transform the input program in a manner
that satisfies the safety requirement identified above. First, we consider the aspects of
hoisting invariant expressions out of loops that may not execute at all during a run of
the program. Usually, these are loops based on for and while constructs, which will
be skipped entirely if the loop condition does not hold initially. Clearly, it is not sound
to hoist invariant statements out of such loops, since they would be executed even when
their loop is not entered.

To allow safe code motion, program loops are typically rewritten using a transformation
known as loop rotation, or loop inversion. Loop rotation replaces for and while-based
loops with an equivalent do—while formulation, which tests for the initial loop condi-
tion in a wrapping if statement [1, p. 642]. After applying this technique, invariant
statements can be safely hoisted before the loop entry, because they will execute if and
only if the initial loop condition holds.

Figure 2.6 shows how this transformation is used to rewrite a loop and allow safe code
motion. In Figure 2.6a, we would not hoist any invariant loop instructions out of the
program, because the i-loop might not execute at all for some values of n. Applying
loop rotation, we obtain the equivalent program in Figure 2.6b. Invariant statements are
now hoistable to the program point before the entry to the do—while loop, and they
will be executed only if the initial loop condition holds. We note that if n were known
to be greater than 0 at compile-time, the wrapping if (i < n) statement could be
eliminated altogether.

1 i = 0;
2 if (i <n) {
1 for (i =0; i< n; i++) { 3 do {
2 a =1 % i; 4 a =1 % i;
3 b =a+ x * x; 5 b=a+ x % x;
4 c=bx (x / n); 6 c=bx (x / n);
5 d=a+b x c; 7 d=a+b x c;
6 1} 8 i=i 4 1;
9 } while (i < n);
10 }
(a) Original loop. (b) After loop rotation.

Figure 2.6: Applying loop rotation to a for loop.
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Figure 2.7 gives the control flow graph representation of this loop, after hoisting the
invariant expressions x * x and x / n. The empty regions following the body of the
loop and the if statement are labelled as loop.exit and if.exit. We note that
BB2, the basic block which contains the hoisted statements, is a loop preheader (see
Section 2.2.2), because its unique successor is the header of the loop. Indeed, in all
instances where code motion is applied, loop-invariant instructions will be moved to a
basic block which is the preheader of their loop.

i = 0;|BB0
i<n? | BB1
tl = x*x;
t2 = x/n; BB2
)
a = 1ixi;
b = a+tl;
c = bxt2; |BB3
d = atbxc;
i = 1i+1;
i < n?|BB4

loop.exit | BB5

A\

if.exit | BB6

Figure 2.7: CFG view of the program in Figure 2.6b after applying loop-invariant code
motion.

Hoisting instructions which are guaranteed to execute

Instructions which are not guaranteed to execute during a run of their loop should not be
hoisted, even if they are invariant. If such statements were to be hoisted, the optimized
program would execute them unconditionally each time before entering the loop, whereas
the original program would have executed them only for some executions of the loop.

The most important category of invariant expressions LICM should avoid hoisting are
those which are guarded by conditional statements inside the loop. These are not guar-
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anteed to execute, since they are skipped whenever the guarding conditional expression
evaluates to false. Of course, we assume that the values of the conditionals are not
known at compile time, since in this case control flow statements could be simply removed.

To illustrate the potential hazards of hoisting such expressions, consider the pseudocode
in Figure 2.8. Here, the sub-expression 2 / (m - n) on line 3 is loop-invariant and
guarded by a conditional statement which cannot be evaluated at runtime. If we were to
hoist this expression and evaluate it outside of the loop, the optimized program would
perform a division by 0 when m is equal to n, raising an arithmetic exception. This fault
would not have occurred in the original program, since the conditional check prevents
the division from happening.

1 // m, n are supplied at runtime

2 for (i =0; 1i<nmn; i++) {

3 if (1 %3 =04&& m!=n) {
4 a=a+2/ (m— n);

5 3

6 a=a-+n * n;

7}

Figure 2.8: Loop containing an invariant instruction which is not guaranteed to execute.

To check that an expression is guaranteed to execute in its loop, a convenient solution is
to first apply loop rotation (if necessary) and then rely on dominator analysis. Specifically,
a statement is guaranteed to execute in a loop L if the basic block containing it dominates
all the exit blocks of L (see Section 2.2.2). Intuitively, this means that any code following
the loop cannot be reached without first executing the expression.

Consider Figure 2.9, which presents the CFG representation of the loop in Figure 2.8
after loop rotation was applied. The invariant expression which we identified as unsafe to
hoist was 2 / (m — n), and its basic block is BB3. BB3 does not dominate the (unique)
loop exit block BB6, due to the edge between BB2 and BB4. Thus, dominator analysis
reveals that we cannot hoist this sub-expression, since there are possible executions of
this loop which do not evaluate it. On the other hand, the basic block of the statement
a = a + n » non line 7 dominates the exit block of the loop. Since this invariant
statement is guaranteed to execute, it can be safely moved to the loop preheader.

Exceptions caused by loop instructions

An invariant expression should not be hoisted if any of the loop statements possibly
executing before it may throw a runtime exception. If the invariant expression were
hoisted, the optimized program might, again, execute some instructions which would
not have been reached in the original one. If the invariant expression itself may cause
execution to terminate suddenly, the optimized program might fail due to a different
exception than the original program, leading to changed behaviour.
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i = 0;|BBO

i < n?|BBI1

B2

B4

BB5

loop.exit | BB6

A\

if.exit | BB7

Figure 2.9: CFG of the program in Figure 2.8 after applying loop rotation.

Aliasing

Loop-invariant statements which interact with memory bear additional safety hazards.
Upon identifying an instruction which loads data from memory as loop-invariant, LICM
must check that there are no statements inside the loop that may write data to that
same memory location. In the code snippet below, A[1] = 5 is an invariant expression,
but B is an alias of A, so the memory location pointed to by A[1] is actually written to
when storing into B[1] at the second iteration of the loop. If we were to ignore aliasing
and precompute the result of A[1] * 5 in a temporary variable, the values in B at the
end of the loop would be {6, 7, 8, 9, 10} in the optimized program, as opposed to
{6, 7, 38, 39, 49} in the original program.

1 A[5] = {1, 2, 3, 4, 5};

2 B =A;

3 s = 0;

4 for (i =0; 1< 5; 1 ++) {
5 Bli] = B[i] + A[1] = 5;
6 }

To avoid these fallacies, LICM makes use of alias analysis, a technique that discovers which
memory locations are possibly accessed in multiple ways (i.e. through more than one
identifier). Alias analyses are prudent, in that they classify two pointers as non-aliasing
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only if this is provably true. If the analysis is not able to make a definitive decision
on two pointers, it cautiously lists them as possible aliases. These properties enable
optimizations such as LICM to correctly modify the placement of memory-accessing
statements. In loops where memory is accessed many times and in complex patterns,
code motion will perform better if an extensive alias analysis is used, at the expense of
compilation time overhead.

2.5.4 Comparison with partial redundancy elimination

Loop-invariant code motion can be regarded as a specialized case of an optimization
called partial redundancy elimination [1, p. 639]. To elaborate, we first need to introduce
the notion of redundant and partially redundant expressions. An expression is redundant
(or fully redundant) if it has already been evaluated on all paths leading to its program
point, and none of its operands changed since the last evaluation. If the same condition
holds for some, but not all the paths leading to its program point, an expression is
partially redundant [23, p. 552].

If the evaluation of an expression is redundant at a program point, it can be completely
eliminated while maintaining correct program behaviour. Consider the CFG in Fig-
ure 2.10a. Here, the sub-expression x * yind = x x vy is redundant, because it was
already evaluated along all paths leading to this block, i.e. in BB2 and BB3. Instead of
re-evaluating it in BB4, we store the expression’s value at BB2 and BB3 in a temporary
t, and then use t to rewrite our statement as d = t + 4. Since neither x nor y
change after the expression’s evaluations in BB2 and BB3, this transformation is safe. As
the authors of [1] note, removing redundant instructions reduces the actual number of
evaluations of an expression at execution time, and not the number of different positions
in the CFG where the expression may be evaluated.

X = 2; X = 2;
7 = 3 BBO 7 = 3 BBO
a = 0?|BB1 a = 0?|BB1
Y/ \N Y/ \N
x = 5; y = 9;
= 5; = 9;
BB2|, _ - ,|BBS  BB2|E =+ yi| |- x v yi|BBS
= X * yj cC=x * yj
\ / o = €8 = &g
d=x vy + 4; | BB4 =t + 4; | BB4
(a) Original code. (b) After eliminating redundant expressions.

Figure 2.10: Elimination of a redundant re-evaluation in basic block BB4.
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Partial redundancy elimination (PRE) consists of identifying partially redundant ex-
pressions and inserting additional evaluations along different program paths such that
the expressions become fully redundant. Once this is achieved, the newly redundant
expressions are eliminated.

In Figure 2.11a, the expression y + 8 is partially redundant in BB3, because its is
evaluated in BB1, but not in BB2. An evaluation is inserted at the end of BB2, which now
makes the expression fully redundant. We eliminate the redundant expression by storing
all evaluations of y + 8 in the same temporary value t and rewriting our statement in
BB3 as z = t. This is possible because y is not redefined following any evaluations of y
+ 8 in BB1 and BB2.

a < 0?|BB0 a < 0?|BB0
y = 5;
y = 5; 6. _ . y = 9;
Ble:y+8; y = 9; | BB2 BBl1|t =y + 8; t:y+8;BB2
z =y + 8;|BB3 z = t; | BB3
(a) CFG with a partial redundancy. (b) After PRE.

Figure 2.11: Applying Partial redundancy elimination to an if statement.

We now consider the implications of optimizing natural loops using partial redundancy
elimination. Figure 2.12a depicts the CFG representation of the loop in Figure 2.5a,
the only change being that the expressions x * x and x + 5 are now stored in two
separate variables, el and e2, before being used.

These two expressions are evaluated on some path up to their current program point
(i.e. the path followed along the loop’s latch). However, they are not evaluated on the
path that enters the natural loop from BBO, which makes the expressions only partially
redundant. Using PRE, we insert evaluations of the two expressions on the remaining
paths needed to achieve full redundancy, and then eliminate the redundant evaluations.
We obtain the CFG shown in Figure 2.12b, which is almost identical to the CFG resulting
after loop-invariant code motion.
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. _ o, |BBO

tl = x * x; BBO

B1

B1

BB2

BB2

exit | BB3

exit | BB3
(a) A loop with partially redundant expres-
sions.

(b) After PRE.

Figure 2.12: Applying partial redundancy elimination to a natural loop.
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Chapter 3

The LLVM project

This chapter introduces the LLVM compiler infrastructure, the environment we have
chosen for implementing our optimization. We discuss the architecture of the language
agnostic optimizer and offer a brief introduction into the rich LLVM intermediate
representation, supporting it with numerous examples from its type system and instruction
set. We present the LLVM command-line tools which we found to be most useful for our
goals, together with a suggested workflow for manipulating simple programs. Finally, we
introduce the testing infrastructure used across the project, which we shall refer to when
discussing our evaluation methodology.

3.1 Introduction

LLVM is an open-source framework providing a modern collection of modular and reusable
compiler and toolchain technologies [20]. The project stemmed from the work of Chris
Lattner, who first implemented core elements of LLVM to support the research of his
master thesis in 2002 [26]. One of the key strengths of LLVM is that it faces active
development from an expert community of contributors, and is widely used across the
industry and academia alike [11]. The project received the ACM Software System Award
in 2012 [4] as an acknowledgement of its contribution to compiler research and imple-
mentation.

LLVM officially acknowledges more than 10 main sub-projects [20], which range in diver-
sity from a debugger [9] to a symbolic execution tool [8]. In addition to these, the official
website presents a long list of miscellaneous projects that are based on components of
the LLVM infrastructure [19].

All projects which are part of the LLVM ecosystem are built upon the core libraries, which
are arguably the centrepiece of LLVM. They host the source- and target-independent
optimizer (Section 3.3), the implementation of the LLVM intermediate representation
(Section 3.2), and a suite of command-line tools useful for code manipulation (Section 3.4).
The core libraries also implement various back-end passes that translate IR to machine
code for different platforms (x86, PowerPC, Nvidia GPUs).

For building a complete compiler for a source language, the LLVM core libraries readily
provide the optimizing pass and code generation for common architectures, the front-
end being the only missing component. Clang is by far the most prominent front-end
implemented in LLVM [5], and it targets the family of C languages (C/C++ and
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Objective-C/C++). Coupled with the core libraries, Clang is a powerful compiler
producing high-performance code, and positions itself as a direct competitor to both gcc
and the Intel compiler.

3.2 The LLVM IR

The LLVM IR (in some contexts known as LLVM assembly) is an expressive code
representation designed to support most practical high-level languages [15]. In the same
time, the IR’s instruction set closely resembles the instruction set of a microprocessor,
facilitating code generation. It obeys the SSA property discussed in Section 2.3, which
reduces the complexity of many compiler analyses. In its textual form, the LLVM IR is
clear and human-readable, allowing new developers to accommodate to it quickly.

Program structure representation

Hierarchically, an LLVM IR program contains the following components:

e Modules: Each module is the result of compiling a single translation unit (source
file) of the original program using an LLVM-based front-end such as Clang. The
most important components of a module are the declarations and definitions of
global variables and functions. When compiling a program that consists of multiple
source files, modules have to be linked together, in the same way C object files are
linked to produce a final executable.

e Functions: Functions are introduced using the define and declare keywords.
Various compilation parameters, such as visibility, garbage collection strategy,
or memory alignment, can be specified on a per-function basis through special
attributes in the IR . Each function definition minimally consists of one or more
basic blocks, together with a list of parameters and a return type.

e Basic blocks: The LLVM IR implements basic blocks as we have defined them in
Section 2.2, i.e. as sequences of non-branching statements, executed in succession.
Basic blocks are named by labels, and delimited by terminator instructions, which
transfer control to other basic blocks.

e Instructions: Instructions are the basic unit of the LLVM IR, and they group
together in basic blocks. Section 3.2 briefly introduces the instruction set.

Identifiers

In the LLVM IR, entities and values are named using two types of identifiers:
e Global (reserved for functions and global variables), prefixed by Q.
e Local (used by local function variables and custom types), prefixed by %.

Identifiers are prefixed with these special characters mainly in order to avoid clashes
between variable names and reserved keywords in the IR [15].

LLVM identifiers can be derived from source-level identifiers, by adding various prefixes,

suffixes or integers. Alternatively, identifiers may be generated by the compiler with no
naming hints from the source program, in which case they are represented by a single
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unsigned integer (a so-called unnamed identifier). To obtain the integer, a counter is
initialized to 0 in each program function, and subsequently incremented by 1 whenever a
new identifier is assigned.

Type system

The LLVM IR maintains detailed type information about all the entities in each mod-
ule. This provides transparent information to the optimizer, and allows the IR to
resemble the source code much more closely. Table 3.1 introduces some of the most
common LLVM types. Note that there is no dedicated boolean type in the IR. Instead,
the 11 type (together with two constant values, true and false) is used as a substitute.

The type system includes two additional types that are not used in relation to program
values. One is the label type, used by the labels of basic blocks. The other is the
metadata type, used to reference metadata nodes, special IR constructs that hold

miscellaneous data about the program, such as debug information.

Type Description Example(s)
Integer N-bit wide integers, for N be- || 11 is a 1-bit integer, while 139
tween 1 and 233 — 1 is a 39-bit integer
Floating point || Floating point types of differ- || half, flocat and double
ent widths are 16-, 32- and 64-bit float-
ing point types, respectively
Pointer Holds the memory location of || double* is a pointer to a
a data item double
Structure A collection of different types, || {135, i64x} denotes a
stored at contiguous memory || structure holding an 135 and
locations a pointer to an 164
Array A C-like array, a sequence of || [16 x float] represents an
elements of the same type array holding 16 elements of
type float
Function Function signature (one type || float (i32x, {i32,
for the returned value and a || 132}*) is a function that
list of parameter types) takes a pointer to an i32
and a pointer to a structure
containing two 1i32s, and
returns a float
Vector Vectors of multiple elements, || <16 x float> is a vector of
used by SIMD instructions 16 floating point values
Void Has no size and represents no || A function with no return
value value has the void return
type

Table 3.1: Common types of the LLVM type system.
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Instruction set

The LLVM instruction set is designed to resemble assembly languages closely in the
amount of low-level operations it can express. Based on their purpose, instructions are
grouped into several major categories, which are shown in Table 3.2.

Key Category

Description

Terminator instructions

Signal the end of basic blocks and transfer control to
another part of the program

Binary operations

Perform arithmetic calculations on two operands of the
same type

Bitwise operations

Perform bitwise calculations on two operands of the
same type

Memory accessing and

Handle all interactions with memory (accessing, allo-

addressing cation, reading and writing)
Conversion operations Convert values between different types
Miscellaneous Instructions which cannot be placed in any of the above

categories

Table 3.2: The main instruction categories in the LLVM IR.

Table 3.3 introduces several important instructions for each category, together with
examples, using the color coding introduced in the table above. The list of instructions
we have chosen is representative for our purposes, but far from complete. For an ex-
haustive presentation of the instruction set, the reader is advised to refer to the official
documentation of the LLVM language [15].

We note that the syntactic structure of the LLVM IR is somewhat different from other
assembly languages, since instructions that produce values explicitly assign them to an
identifier. Thus, most instructions in the IR share a common high-level syntax:

<identifier> = <instruction> <optional parameters> <operands>

The form above clearly emphasizes the IR’s SSA property, while also promoting readability.
By contrast, in other popular assembly languages such as x86 or MIPS, the assignment
of values to their destinations is implicit.
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In-memory and on-disk representation

The IR’s implementation in the core libraries provides the in-memory representation used
by various tools, such as the optimizer, during compile time. Discussing the implementa-
tion of the IR is beyond the scope of this paper, and the reader is advised to refer to the
LLVM developer’s handbook [17] for an overview of the IR’s implementation. Complete
information is available from LLVM’s online source code documentation [16].

On disk, the IR is represented in two ways:

e as bitcode files, which encode an IR program as a stream of bits [13], and typically use
the .bc extension. These files can be executed directly using a bitcode interpreter
(see Section 3.4).

e as assembly files, human-readable ASCII text files represented by the .11 extension.
Most importantly, they allow compiler writers to visually inspect the IR after it is
generated or subsequently manipulated.

Complete example

We conclude this section by providing a full example of the LLVM IR in Figure 3.1, which
showcases all the language features we have discussed so far. The IR is obtained as is
by compiling the simple C program below using Clang, with all compiler optimizations
turned off.

int halfsum (int =*A, int n) {
if (n<=0) {
return —1;

1
2
3
1)

5 int s = 0;

§] for (int i=0; i<n; i++) {
7 s +=A[i];

8 }

9

0

return s >> 1;

Visually, each basic block of the function is clearly represented by a label (e.g. for.cond,
if.then, return) and delimited by one of the instruction set’s terminator instructions.
We believe that most of the IR is self-explanatory, except possibly for the comparisons
on lines 11 and 26, which use two specifiers that we have not yet mentioned: sle (signed
less than or equal) and s1t (signed less than). With this clarification, the reader can
verify that the given intermediate representation mirrors the behaviour of the source
program.
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define 132 @halfsum (132 %A, 132 %n) {
entry:

%retval = alloca 132, align 4

YA .addr = alloca i32%, align 8
Y%n.addr = alloca 132, align 4

%s = alloca i32, align 4

%i = alloca 132, align 4

store i32% %A, i32*x %A.addr, align 8
9 store 132 %n, i32x %n.addr, align 4
10 %0 = load i32, i32% %n.addr, align 4
11 Y%cmp = icmp sle i32 %0, 0
12 br il %mp, label %if.then, label %if.end

0~ O Uk W

14 if.then:
15 store 132 —1, i32x %retval
16 br label %return

18 if.end:

19 store 132 0, i32% %s, align 4
20 store 132 0, 132 %i, align 4
21 br label %for.cond

23 for.cond:

24 %1 = load i32, i32% %i, align 4

25 %2 = load i32, i32% %n.addr, align 4

26 Y%cmpl = icmp slt 132 %1, %2

27 br il %mpl, label %for.body, label %for.end

29 for .body:

30 %3 = load i32, i32% %i, align 4

31 %idxprom = sext 132 %3 to i64

32 %4 = load i32%, i32%x %A.addr, align 8

33 %arrayidx = getelementptr inbounds i32, i32x %4, i64 %idxprom
34 %5 = load 132, i32% %arrayidx, align 4

35 %6 = load 132, i32x% %s, align 4

36 %add = add nsw i32 %6, %5

37 store 132 %add, i32x %s, align 4

38 br label %for.inc

40 for.inc:

41 %7 = load 132, i32x %i, align 4
42 %inc = add nsw i32 %7, 1

43 store 132 %inc, i32* %i, align 4
44 br label %for.cond

45

46 for.end:

47 %8 = load 132, i32x% %s, align 4
48 %shr = ashr i32 %8, 1

49 store 132 %shr, i132* %retval

50 br label %return

51

52 return:

53 %9 = load 132, i32% %retval

54 ret i32 %9

55 )

Figure 3.1: Unoptimized IR program containing the definition of a single function,
which computes half the sum of an array of integers.
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3.3 The optimizer

The source- and target-independent optimizer consumes LLVM bitcode files, analyses
and transforms them, and finally emits a bitcode file with identical behaviour, but more
efficient runtime properties.

The basic unit of the LLVM optimizer is the pass. A pass is a single, distinct operation
applied to the input program. Based on their nature, passes fall into two categories:

e Analysis passes, which traverse the program and collect information that is used
by subsequent passes. Analysis passes do not modify the program at all. As an
example, the 1oops analysis pass inspects the program and identifies the natural
loops in the body of each function.

e Transform passes, which modify the input program in some particular way in
order to improve its efficiency. These passes perform a variety of transformations,
such as reordering, moving or replacing instructions, rearranging basic blocks,
restructuring loops, or vectorization. Most transform passes require information
from analysis passes in order to ensure that the changes they propose are safe and
result in a semantically equivalent program.

This clear twofold separation between passes mirrors an idea we outlined in Section 2.4,
where we argued that optimization consists of analysis followed by transformation.

Passes are also distinguished based on which region of a program they operate on. From
this point of view, the main types of passes are module passes, function passes, loop
passes, basic block passes and call graph passes (which traverse the program’s call graph
from callees to callers). Within each of these subcategories, we commonly find both
analysis and transform passes.

For a pass to be enabled in the optimizer, its implementation must be registered with
an object called the pass registry, to which it provides information such as its name,
description and command-line flag. Each pass also specifies all the transform and analysis
passes that must be scheduled before its execution. Optionally, each pass specifies which
analysis results become outdated after its execution and which remain unchanged. For
instance, a pass that creates new loops will invalidate the result of the loops anal-
ysis, which identifies natural loops in the program. On the other hand, a pass that
rewrites instructions with constant operands will not affect a dominator tree analysis pass.

The pass registry is not responsible for generating an optimal sequence of optimizations.
Instead, any tool that builds upon the optimizer is responsible for specifying the desired
running order for optimizations, by adding them to a queue called the pass manager.
Clang uses its own optimization sequence, suitable for C-based languages, but other
front-ends may choose to apply optimizations differently. The order in which passes are
queued is the order in which they will execute, subject to dependency constraints.

The pass manager uses the information gathered by the pass registry and is responsible
for efficient and correct pass execution. It achieves this by:

e scheduling the prerequisites of each pass to be executed before that respective pass;
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e reusing the results of analyses between passes. Analysis information required by a
pass is recomputed only when it is believed that an earlier pass invalidated it. If a
pass does not specify which analyses it preserves, the pass manager will assume
that all analyses are invalidated.

3.4 The LLVM toolchain

LLVM provides more than a dozen command-line tools, all of which manipulate source
and IR programs in different ways [14]. Some commonly used command-line tools are:

e clang: the LLVM-based front-end for the C family of programming languages.
This tool is not distributed with the core LLVM project, but maintained in its
own separate repository. The user can either build the tool from source, download
a pre-built binary for their architecture, or obtain the tool from official software
repositories on some Linux distributions. Many of the command line options
accepted by clang are identical to gcc’s for compatibility reasons. Conveniently,
clang can compile source files to LLVM IR if the —emit-11vm flag is passed.

e opt: the LLVM optimizer. As with clang, the user can specify a general opti-
mization level (such as -01, -02 or —03) which applies a preconfigured sequence
of optimizations. Alternatively, the user can provide a list of passes which will be
scheduled and executed by the pass manager in the order in which they are given.

e 11lc: the LLVM static compiler, which compiles LLVM programs (encoded as
bitcode files) to assembly language for a specified target architecture. Users can
also cross-compile code for a different architecture than that of the host machine.

e 1lvm-as: the LLVM assembler, which converts human-readable LLVM assembly
language files to bitcode files.

e 11vm-dis: the LLVM disassembler, performing the reverse operation, i.e. con-
verting bitcode files to ASCII .11 files.

e 11i: the LLVM interpreter, which interprets a program in LLVM bitcode format,
or executes it using a JIT compiler.

e 11lvm-link: the LLVM bitcode linker, which links multiple bitcode files in a
single bitcode file, useful for compiling programs consisting of multiple source files.

Figure 3.2 shows how these different tools may be used to compile, optimize and execute
a single-source C program.
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Figure 3.2: Methodology for compiling and executing a single-source C program.
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3.5 Testing infrastructure

LLVM relies on two types of tests for evaluation [18]. One is a collection of small unit tests
which stress specific features of LLVM subcomponents (such as individual optimization
passes), and the other is a sizeable collection of real-world programs, together with the
supporting infrastructure to evaluate them using a full-fledged compiler. This section
describes the latter, which we used extensively when carrying out performance evaluation.

The LLVM whole program tests (also known as the LLVM test suite) consist of hundreds
of practical applications and benchmarks written in C and C++. Due to its scale, the
test suite is maintained in a separate repository, as opposed to the LLVM source tree.
There are three types of whole-program tests:

e Single-source tests, small programs that consist of a single source file.

o Multi-source tests, larger applications which are built by compiling and linking
multiple source files.

e FExternal tests, for which the test suite does not provide the source code, but only the
Makefiles necessary to compile them. The most prominent external test supported
by LLVM is arguably the SPEC benchmark [25].

The aim of the test suite is to evaluate the correctness of the compilation process for a
given compiler, and the performance of the resulting executable programs. Most often,
the compiler under test is Clang, but using different compilers is also supported. In
summary, the testing procedure is the following:

1. Compile (and possibly link) each program’s source files, timing the process.

2. If any compilation errors occur, or the compilation time exceeds a specified threshold,
the test case is reported as failing at compile-time.

3. Execute the program and time its duration.

4. If the program produces an output that is different from a stored reference output,
or the execution time is greater than a runtime threshold, the test case is marked
as failing at runtime.

5. After all tests are processed, a report is generated containing all the information
gathered during the test run.

To run the test suite conveniently, a command-line tool called 1nt [22] is provided, a
wrapper around a Makefile-based infrastructure which LLVM had used initially. 1nt
provides a simple interface for running all or a subset of the test suite, and allows users
to configure per-run parameters, such as the path to the compiler under test or the
amount of parallelism in the build process. After the run completes, a report in JSON
format is produced and stored in a local SQLite database. Running another one-line 1nt
command, the tester can start a local server backed by the database of test reports, and
then use a web browser to visualize and compare the results of different runs.
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Chapter 4

Generalized loop-invariant code
motion

This chapter introduces generalized code motion, the main contribution of this project.
First, we present the methodology of our optimization, and we describe the application
domain which motivated its development. Afterwards, we identify and discuss the main
sources of runtime improvements and slowdowns, and address the safety concerns of our
transformation. Finally, we present two ideas that may further improve the versatility
and applicability of our technique.

4.1 Overview

The optimization technique we have developed and implemented in this project is called
generalized loop-invariant code motion (GLICM). GLICM shares the same underlying
mechanics and motivation as regular loop-invariant code motion, but (as the name
implies) generalizes the procedure by identifying more types of invariant expressions and
hoisting code at multiple program locations.

In Section 2.5, we described how LICM identifies statements which are invariant with
respect to an IR loop, and then hoists these statements in the preheader block of the
respective loop, subject to several safety considerations. By contrast, our optimization
finds expressions which are invariant not with respect to the current loop, but to some
parent loop (superloop), a higher-level loop enclosing it. For an expression to be invariant
under this notion, none of its operands must be redefined anywhere in the chosen parent
loop, except if the operand is the induction variable of the current loop. After such
invariant expressions are identified, our optimization proceeds with the following steps:

1. Place a new, empty loop in the preheader of the parent loop. We shall refer to this
loop as the cloned loop. The cloned loop must crucially have the same iteration
pattern as the loop that is currently being processed.

2. Hoist the invariant expressions to the cloned loop. Because the results of these
expressions must be remembered at each iteration of the original loop, we cannot
simply store them in scalar variables. Instead, they are stored in temporary one-
dimensional arrays, which we allocate before the entry of the cloned loop. These
arrays will be as large as the size of the loop, and will have the appropriate type
for storing the result of each hoisted statement.
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3. Replace references to the hoisted statements in the original loop with references to
the appropriate temporary array element.

To help the reader envision our transformation, we will apply GLICM at source level on
a pseudocode example. Consider the code snippet in Figure 4.1a, which shows a triple
nested loop performing some calculations on a two-dimensional array (we omitted initial-
ization code for brevity). We shall use our transformation to hoist invariant statements
from the innermost k-indexed loop out to the preheader of its immediate parent, the
j-indexed loop.

The following steps are taken:

1. We inspect the body of the k-loop, looking for invariant expressions. We identify the
expression B[1] [k] * B[k] [i] at line 6 as a candidate for generalized hoisting.
This expression is invariant with respect to the j-loop, because i is not redefined
within the body of that loop, and k is the induction variable of the current loop.

2. We create an empty clone of the k-loop in the preheader of the j-loop (see
Figure 4.1b). Note that this has the same iteration space as the original loop.

3. We hoist the statement B[i] [k] * B[k][i] to the body of the cloned loop.
We allocate a one-dimensional array of 100 doubles and store the value of this
expression at the ith iteration of the cloned loop into the ith element of the
temporary array. The state of the code after this stage is shown in Figure 4.1c.

4. Finally, we replace references of the invariant expression in the original loop with
references to the array in which its result was stored (see Figure 4.1d). This
concludes the optimization process.

We note two distinctive characteristics of GLICM that follow from this overview. Firstly,
as opposed to regular loop-invariant code motion, GLICM cannot hoist statements out of
arbitrary loops. The supported loops have to be part of a loop nest, and their iteration
must be governed by an induction variable. For loops with different types of termination
conditions, generating the cloned loop and assigning results to temporary arrays becomes
a highly non-trivial problem, which we have not yet investigated.

Secondly, this description of the technique only suits loops with induction variables that
are initialized to 0 and subsequently incremented by 1 at each loop iteration.
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1 double B[100][100] = ...;
1 double B[100][100] = ...; 2 s = 0;
2 s = 0; 3 for (i=0; i<100; i++) {
3 for (i=0; i<100; i++) { 4 for (k= 0; k < 100; k++) {
4 for (j=0; j<10; j++) { 5 }
5 for (k=0; k<100; k++) { 6 for (j=0; j<10; j++) {
6 s += B[i][k] = B[k][i]; 7 for (k=0; k<100; k++) {
7 s +=B[j][k] = B[k][j]; 8 s +=B[i][k] » B[k][i];
8 } 9 s +=B[j][k] = B[k][j];
9 } 10 }
10 1} 11 }
12}
(a) Original loop nest. (b) After insertion of cloned loop.
1 double B[100][100] = ...; 1 double B[100][100] = ...;
2 s = 0; 2 s = 0;
3 for (i=0; i<100; i++) { 3 for (i=0; i<100; i++) {
4 double t[100]; 4 double t[100];
5 for (k = 0; k < 100; k++) { 5 for (k = 0; k < 100; k++) {
6 t[k] =B[i][(k] = BK][i]: 6 t[k] =B[i][k] * B[k][i];
7 7
8 for (j=0; j<10; j++) { 8 for (j=0; j<10; j++) {
9 for (k=0; k<100; k++) { 9 for (k=0; k<100; k++) {
10 s 4= B[i][k] * B[k][i]; 10 s 4= t[k];
1 s +=B[j][k] * B[K][j]; 1 s +=B[j][K] * B[k][j]:
12 } 12 }
13 ) 13}
14 ) 14}
(c) After generalized hoisting. (d) After replacing original references.

Figure 4.1: Example application of GLICM at source level.

4.2 Original motivation

Generalized loop-invariant code motion was introduced by Luporini et al. in [27]. Their
paper documents the improvements brought by this optimization and others in the
context of the finite element method, a numerical technique for approximating solutions
of partial differential equations (PDEs), with wide applications in computational science
and simulation. In finite element analysis, the full domain of a PDE is discretized into
many smaller regions, on which complex mathematical operations (kernels) are applied.
This process is known as local assembly. The results of local computations are then com-
bined into a global system of equations, which, when solved, yields the final approximation.

A novel and increasingly popular approach for consistently achieving efficient, high-
performance numerical solutions is to automatically generate the local assembly code
from an abstract mathematical specification of the problem, using a tool such as Fire-
drake [6]. The generated code typically includes a multiple nested loop enclosing a
complex chain of arithmetic expressions in the innermost loop, such as the one in Fig-
ure 4.2.

For this variety of loop nests, the authors noted that popular compilers such as the Intel
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compiler and gecec perform suboptimally, since they hoist expressions from the innermost
loop only if they do not depend on the k variable [27, p. 7]. This limitation prevents
many mathematical expressions in the k-loop from being precomputed in advance. Since
local assembly operations are executed many times over (on every element in the dis-
cretized domain of the PDE), missing these hoisting opportunities prevents significant
performance gains.

To mitigate the shortcomings faced by general-purpose compilers on this type of programs,
[27] introduces GLICM as one of several optimizations performed on local assembly code
after generation. In the experiments presented in the paper [27, p. 14], the execution
time of several finite element calculations is reduced by a factor of up to 3 as a result of
GLICM, showing the applicability and potential of this optimization.

1 for (int i = 0; i < 14; ++i) {

2 for (int j = 0; j < 10; +j) {

3 for (int k = 0; k < 10; ++k) {

4 Alj]lk] + ((( DO[i][k] = DOo[i][j]) + (((a2 = D3[i][k]) +
5 (a5*D2[1][k])+(a8*D[in])) *

6 ((a2 = D3[i][j]) + (ab * D2[i][j]) +

7 (a8 x DI[i][]j]))) + (((al = D3[i][k]) +

8 (ad x D2[1][k]) (a7 = D1[i][k])) = ((al =
9 D3[i[j]) + (a4 x D2[i][j]) + (a7 =

10 D1[i][j]))) + (((a0 = D3[i][k]) + (a3 =

11 D2[i][k]) + (a6 = D1[i][k])) = ((a0 =

12 D3[i][j]) + (a3 = D2[i][j]) + (a6 =«

13 DI[i][j])))) =* det * W[i]);

14 }

15 }

16}

Figure 4.2: Generated local assembly code for a Helmholtz equation (after simplifying
variable names for clarity).

4.3 Trade-offs

This section documents the advantages and disadvantages of generalized loop-invariant
code motion. Because this technique is aggressive in the way it modifies a program, by
adding new loops and allocating multiple arrays, balancing between the various trade-offs
becomes an important task.

4.3.1 Benefits

Precomputing invariant expressions

The main benefit introduced by GLICM is that it prevents the redundant evaluation
of invariant expressions belonging to multiply-nested loops. Instead, these expressions
are evaluated at an appropriate program point and their results made available in the
original loop through a temporary array.
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As we saw in the previous section, GLICM offers significant performance improvements
when applied to arithmetic-intensive loop nests, where the largest fraction of the exe-
cution time is devoted to computing arithmetic operations in the CPU. This is due to
the high execution costs of these operations (especially multiplications and divisions
on floating-point numbers) relative to other instructions. Another important source
of runtime improvement stems from precomputing the results of calls to complex functions.

Recall that generalized code motion is applied to the current loop and some chosen parent
loop, which does not necessarily have to be the immediately enclosing loop. To quantify
exactly how much redundant computation is avoided, we will consider a general case,
whereby we are processing a loop lying at depth ¢ in a multiple loop nest. Thus, our loop
(we shall refer to it as L;) is enclosed in ¢ — 1 outer loops, L1, Lo...L;_1.

Assume we choose Lj,1 < j < i—1 as the parent loop of L;. Any statements of L;
which are invariant with respect to L; (according to our definition in Section 4.1) will
be moved by GLICM before the entry to L; and wrapped in a cloned loop with the
same iteration pattern as L;. If we take ny to be the number of times loop Lj executes
(its trip count), the instructions hoisted by generalized code motion in the cloned loop
will be executed ny * ... ¥ nj_q1 * n; times in the transformed program. By contrast,
they were executed ng * ... ¥ nj_1 * n; * ... * n; in the original program. The number of
times these statements are evaluated has thus been reduced by a total factor of nj*...xn;_;.

Figure 4.3a presents a slightly modified version of the code we used as an example when
we presented GLICM. The updated pseudocode now includes a new statement on line 9,
A[k] * BIlk] [k], which is invariant not only with respect to the j-loop, but also with
respect to the i-loop, which means it can be hoisted outside of it. Figure 4.3b shows the
program code after applying generalized code motion on the k-loop, considering both
the i-loop and the j-loop as potential parent loops.

In the original version of the program, all the statements of the k-loop would have been
executed 10° times. After the transformation, the statement on line 7, hoisted in the
preheader of the j-loop, is executed 10* times, while the statement on line 9, hoisted
in the preheader of the outermost loop, is executed 10? times. The reader can verify
that the total number of evaluations for both statements was reduced by a factor which
corresponds to the formula given above.

Better cache performance

Significant increases in cache performance can be achieved as a result of GLICM if the
unoptimized loop contains large invariant sub-expressions which include many memory
accesses. By hoisting these statements, memory accesses are moved towards the outer
loops in the nest, and are replaced by a single access to the one-dimensional array storing
the expression’s result. This frees up the CPU cache in the original loop, creating more
space for other data items that may be required by unhoistable statements.
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1 double B[100][100] = ...;
2 double A[100] = ...;
3 s = 0;
4 double t1[100];
1 double B[100][100] = ...; 2 foilﬁz] 0:’ /1;[<k1}00>; ET;])“‘E].
2 double A[100] = ...; 7 ) '
3 s = 0; c o
4 for (i=0; i<100; i++) { S fogoiaeo’téfllggj;“ur) {
> for (j=0; j<10; ‘]++) { 10 for (k=0; k<100; k++) {
7 s += B[i][k ]*B[k][l] 1o }
8 s = Bj][k] « BIk][j]; 13 for (j=0; j<10; j++) {
13 ) s = Alk] » B[k][k]; 14 for (k=0; k<100; k++) {
ny 15 s 4= t2[k];
BN 16 s +=B[j1[k] * B[K][j];
17 s += t1[k];
18 }
19 }
20 }

(b) After generalized loop-invariant

(a) Original loop. code motion.

Figure 4.3: Applying GLICM with respect to two different parent loops.

Enabling automatic vectorization

Automatic vectorization is a popular approach for exploiting parallelism in a program.
This technique identifies code regions containing instructions that operate on single data
elements, and rewrites them to use SIMD (Single Instruction, Multiple Data) instructions,
which process vectors of multiple elements at the same time [24]. An important require-
ment of vectorization is that there are no data dependencies between the vectorized
instructions, since in this case they may not be executable in parallel.

Loops are a typical target for automatic vectorization, because they often process
collections of elements sequentially. The cloned loop introduced by GLICM is a good
candidate for vectorization, because there are no dependencies between executions of the
same instruction during consecutive loop iterations. Otherwise, these instructions would
not be invariant, and would have never been hoisted in the first place. If the cloned loop
is vectorized, the invariant statements will be executed not only fewer times, but also
faster in the optimized program.

4.3.2 Disadvantages
Storage costs

Generalized code motion creates additional storage constraints on the program, since
it may allocate several temporary arrays at multiple program points for each loop it
processes. To avoid quickly running out of memory or stack space (depending on where
the arrays are allocated), an upper bound must be placed on the amount of total storage
space introduced by the transformation. This could be achieved by setting the threshold
at a percentage of the total memory used by the program, allowing the user to control
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the amount of space GLICM is allowed to use, or relying on heuristic methods.

Runtime penalties

While our optimization can achieve impressive speed-ups for some loops, it can equally
deteriorate execution times if applied in the wrong manner. If the hoisted invariant
expressions are trivial (they are composed of few primitive operations) and inexpensive
(e.g. bitwise operations, comparisons), precomputing them in an additional loop and
then loading them from an array may actually be slower than recomputing them on the
spot. GLICM should thus be driven by a cost model which avoids these cases, and only
moves instructions out from a loop when it is profitable to do so.

In Section 4.3.1, we argued that temporary arrays may improve performance by decreasing
memory traffic in the loop and freeing up the CPU cache. However, the reverse could
happen if invariant instructions operating on scalar values in the original loop are replaced
with references to many temporary arrays. Portions of these arrays will be brought
into the cache during execution, which leaves less space for storing other memory items
accessed inside the loop.

Compilation cost

On its own, GLICM is a costly transformation, because it requires alias analysis (and
possibly reaching definitions analysis) to be performed on multiple regions of the control
flow graph. When applied as a step in a pipeline of optimizations, generalized code
motion may also affect the time required by subsequent transformations, since it increases
the size of the program.

Increased compilation times are an inevitable downside of any compiler optimization, and
as such we regard this factor as less important compared to the potential improvements
in execution time. Nonetheless, implementations of GLICM should strive to minimize
compilation overhead through the use of efficient algorithms and data structures.

4.4 Generalizing safety requirements

To preserve program behaviour, GLICM needs to assess the safety of any potential
transformations before modifying the program’s IR. This section describes an important
contribution of the project, namely a set of safety considerations we have developed,
which ensure that GLICM can be extended to safely operate on arbitrary general-
purpose programs. Since our transformation generalizes loop-invariant code motion,
these guidelines are similarly an extension of the requirements of LICM, outlined in
Section 2.5.3.

Loop rotation

Firstly, loop rotation must be applied to all loops in the unoptimized program. The
do-while formulation provided by this transformation will be useful when considering
which invariant expressions can be appropriately hoisted. Figure 4.4 revisits loop rotation,
showing how the technique is applied on a modified version of the loop nest given in
Figure 4.1.
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1 double Bln][n] = ...;
2 s=0;
3 i=0;
4 if (i<m) {
5 do {
6 i =0;
1 double B[n][n] = ...; 7 if (j<n) {
2 s = 0; 8 do {
3 for (i=0; i<n; i++) { 9 k=0;
4 for (j=0; j<n; j++) { 10 if (k<n) {
5 for (k=0; k<n; k++) { 11 do {
6 s += B[i][k] * B[k][i]; 12 s+=B[i][k]*B[k][i];
7 s +=B[j][k] «B[K][j]; 13 s+=B[j ] [K]+B[K] [} ];
8 } 14 k=K +1:
9 } 15 } while (k<n);
10 } 16 }
17 j=j+1;
18 } while (j<n);
19 }
20 i=i+1;
21 } while (i<n);
22}
(a) Original loop. (b) After loop rotation.

Figure 4.4: Applying loop rotation on a multiple nested loop.

Hoisting instructions which are guaranteed to execute

A key idea which we stressed when discussing the safety of code motion is that invariant
statements should be executed in the optimized program only if they are executed in the
unoptimized version. For LICM, we stated that an instruction can be safely hoisted if its
basic block dominates all the exit blocks of its loop (Section 2.5.3). Equivalently, the
expression should be guaranteed to execute whenever its loop executes. For generalized
code motion, this condition is not sufficient.

To understand why, consider the code in Figure 4.5a, and assume GLICM is used to hoist
invariant statements from the j-loop to the preheader of the i-loop. Here, the expression
B[Jj] = B[m] is invariant with respect to the parent loop, and it is guaranteed to exe-
cute in the j-loop. The optimized program produced by GLICM is given in Figure 4.5b.
The problem with hoisting this expression is that, when m is not an integer between 0
and 9, B[j] = B[m] is not executed in the original program (because the j-loop will
never be entered), but it is executed in the optimized program. The optimized program
will access invalid memory in the B array, leading to undefined behaviour which is not
present in the unoptimized code.

The generalized hoisting procedure should only move invariant statements which are
guaranteed to execute not only in their loop, but in the parent loop. In control flow graph
terminology, this requires the invariant instructions to dominate all the exit blocks of the
parent loop after loop rotation was applied. Thus, if there exists a path in the parent loop
along which an invariant statement of the current loop is not executed, that statement
should not be hoisted.
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1 int m = atoi(argv[1l]);
2 int A[10], B[10];
1 int m = atoi(argv[1l]); 3 ..
2 int A[10], B[10]; 4 int t[10];
3 ... 5 for (int j = 0; j < 10; j++) {
4 for (int 1=0; i<10; i++) { 6 t[j] = B[j]*B[m];
5 if (i =m) { 7}
6 for (int j=0; j<10; j++) { 8 for (int i=0; i<10; i++) {
7 A[i]+=B[j]*B[m]; 9 if (i =m) {
8 } 10 for (int j=0; j<10; j++) {
o} 1 Alil+=t1j1;
10 } 12
13 }
14 )
(a) Original loop nest. (b) After GLICM.

Figure 4.5: Applying GLICM on a loop guarded by a conditional statement inside the
parent loop.

Previously, we saw that statements may not be guaranteed to execute due to a guarding
conditional statement in the current loop. The wider implication of this safety require-
ment is that if it is possible for the current loop, together with any of its superloops
up to (but excluding) the parent loop, to not execute at all during an execution of the
parent, then no invariant instructions should be moved by generalized code motion. If
such statements were hoisted, they would be executed in the optimized program and not
in the original one. Thus, GLICM can safely process a given loop if it can determine at
compile-time that it executes whenever the chosen parent loop does.

Consider the pseudocode in Figure 4.4b, which shows a multiple nested loop after loop
rotation. Suppose we wish to hoist instructions out of the k-loop to the preheader
of the j-loop. Before moving the invariant expression B[i] [k] * B[k] [1] to this
program point, we must ensure that it is executed whenever the parent loop is entered
(i.e. whenever 0 < n). The only other conditional guarding the expression (k < n) is
the initial test for entering the k-loop. Since k is also initialized to 0, and the value of n
is not modified, the current loop is guaranteed to execute whenever the parent loop is
entered. Thus, the expression can be hoisted safely.

Exceptions caused by loop instructions

Generalized code motion should not move invariant expressions to some parent loop’s
preheader if are any statements between their program point and the entry to the parent
loop which may throw exceptions. This ensures that the optimized program does not
have altered exception behaviour, and that it does not execute more instructions than
necessary when the loop nest exits early.

Aliasing

When discussing the safety of LICM in Section 2.5.3, we stressed that we must avoid
hoisting expressions which read data from memory if the same memory location may be
written to by other statements in the loop. In other words, we must use pointer aliasing
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information when considering to hoist statements that involve memory.

In generalized code motion, we rely on alias analysis for avoiding the same type of hazards,
but we require a larger area of the CFG to be inspected. Assume our transformation is
currently processing a loop L inside a loop nest, and let P denote the parent loop we have
chosen as a hoisting point. Further assume that we identified an expression of L which is
invariant with respect to P and reads data from a memory location . Generalized code
motion can only hoist this expression out to P’s preheader if there is no other statement
in the entire body of P which may write to «.

Consider the C code snippet in Figure 4.6. Here, pointers A and B are aliases of each other,
since they point to the same memory. Consider the sub-expression A[k] * A[k] in the
k-loop, which is invariant with respect to the outermost loop. In theory, this expression
could be precomputed by GLICM outside of the i-loop. However, the statement B[1]
= A[i] * A[i] on line 6 writes to memory locations which our invariant statement
reads. Based on this insight, GLICM will choose to not move the invariant expression
out to the preheader of the i-loop. Had the instruction been hoisted, the optimized code
would have produced a different value in s following the execution of the nested loop,
altering the program’s intended behaviour.

1 double *A = malloc(n * sizeof(double));
2 double *B = A;

3 double s = 0;

4 ...

5 for (i =0; i < mn; i++) {

6 B[i] = A[i] * A[i];

7 for (j = 0; j <n; j++) {
8 for (k = 0; k < n; k++) {
9 s 4= A[K] * A[k];

10 }

11}

12 )

Figure 4.6: Pointer aliasing in a multiple loop nest.

4.5 Comparison with loop interchange and LICM

The single most important goal underlying our optimization is to avoid more redundant
recomputation than typical loop-invariant code motion is able to achieve. Generalized
loop-invariant code motion is the methodology we developed to reach this end, but other
transformations may be used to achieve similar results.

In some cases, loop interchange followed by loop-invariant code motion is one such
alternative. Figure 4.7 compares the optimized programs obtained by applying both this
sequence of transformations and GLICM to a simple loop nest. In Figure 4.7¢c, the i- and
j-loops are interchanged, which causes an expression to become invariant with respect to
its loop, and thus hoisted by the subsequent code motion pass. For this particular loop
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nest, the combination of loop interchange and LICM seems to produce superior code,
because a single scalar value (as opposed to an array) is used for storing the result of the
hoisted sub-expression.

double A[100][100];
double B[100][100];

for (int i=0; 1i<100; i++) {
for (int j=0; j<100; j++) {
BLiJ[j]+=Alj1[J]=A[99—j][]];

0 O Utk W

(a) Original code.

1 double A[100][100];
; double B[100][100]; 1 double A[100][100];
4 double £[100]; ?)) double B[100][100];
5 for (int j=0; j<100; j++) { 4 for (int j=0; i<100; i+4) {
? }t[J}:A[‘]][J]*A[ng‘]][J}; 5 double t:A[‘]][‘]]*A[ggf_]][_]},
8 for (int i=0; i<100; i++) { ? fo;[i(ﬁt.];_:tof <1005 j+4) {
9 for (int j=0; j<100; j++) { 2 =
10 Bli][jl+=t[J];
11 9 }
12}
(b) After GLICM. (c) After loop interchange and LICM.

Figure 4.7: Comparison between GLICM and loop interchange followed by LICM.

In general, however, GLICM is not substitutable by this sequence of two optimizations.
Firstly, loop interchange is only applicable to perfect loop nests [2, p. 362], i.e. nests in
which only the innermost loop contains code statements. GLICM does not suffer from
this limitation. Secondly, GLICM generally helps avoid more redundant computation
than loop interchange combined with loop-invariant code motion.

Consider the code in Figure 4.8a. The expression on line 5 is loop-invariant, so it can
be hoisted out of the j-loop. However, once this is done, the expression on line 6 will
remain stuck in the loop, since it is not invariant and we cannot perform loop interchange
any further, due to compromising our perfect loop nest. Alternatively, if we begin by
interchanging the two loops, the expression on line 6 will become invariant with respect
to the i-loop, now enclosing it. Even though we are now able to hoist this expression, the
overall situation is no better, since now the statement on line 5 is stuck in the innermost
loop.

In conclusion, no matter the order in the loop nest, only a single expression at a time

can be hoisted out of the innermost loop. An optimal outcome (shown in Figure 4.8b) is
achieved instead by hoisting one of the expressions using LICM and the other one using
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GLICM.
1 int A[100];
2 int x=0, y=0;
3 for (int i=0; i<100; i++) {
4 for (int j=0; j<100; j++) {
5 xt=A[1][i]*A[n—i][n—i];
6 y+=A[j ] [n=j 1*A[n—j ][] ];
T}
8 }

(a) Original loop nest.

0~ O UL ix W N -

—
o ©

11
12
13

int A[100];

int x=0, y=0;

int t1[100];

for (int j=0; j<100; j++) {
} 61[§)=ATj 1 [n=j ] *A[n=j 1[j];

for (int i=0; i<100; i++) {
int t2 = A[i][i]*A[n—i][n—i
for (int j=0; j<100; j++) {
x+=t2;
y+=t1;
}
}

15

(b) After LICM and GLICM.

Figure 4.8: A loop nest where loop interchanging and LICM hoist a suboptimal number

of invariant expressions.

Even for programs such as the one in Figure 4.7, where we can use both methods to
hoist the same number of invariant instructions, the GLICM-optimized version might
perform better in practice. Firstly, the cloned loop introduced by GLICM is vectorizable.
If automatic vectorization is enabled, the hoisted operations will be executed using
SIMD instructions, achieving a speed-up compared to the scalar versions. Secondly, loop
interchanging might have other detrimental effects on the runtime of the program, such
as increasing cache misses due to inefficient memory access patterns.
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4.6 Possible extensions

More types of induction variables

In Section 4.1, we noted that GLICM operates only on non-innermost loops with a
special form of induction variable, which is initialized by 0 and incremented by 1 after
each iteration. This restriction simplifies the task of storing precomputed results, since
it allows us to place the value of a sub-expression at the ith iteration of the cloned
loop into the ith element of the appropriate temporary array. We propose two distinct
approaches which could be used to make GLICM applicable to loops with other types of
induction variables:

e Invoke an optimization dedicated to rewriting loops prior to applying GLICM. This
optimization would attempt to transform loops to a form which uses the supported
type of induction variable.

e GLICM could use an additional analysis module to compute the trip count of
loops which use unsupported types of induction variables. This information is
necessary in order to know how much space to allocate for temporary arrays. For a
given loop, GLICM would then proceed in its normal fashion, picking a suitable
parent loop, identifying appropriate invariant expressions, and hoisting them to
the cloned loop. As a new step in the process, GLICM would introduce a fresh
induction variable, starting from 0 and incremented by 1 at each iteration of the
cloned loop. This will be used for storing results computed in the cloned loop
into temporary arrays. Another fresh induction variable with the same iteration
pattern is introduced in the original loop, in order to load the precomputed results
in the correct order. Figure 4.9 illustrates how GLICM could be applied using this
extended methodology.

1 int s=0;
2 int A[30];
3 int t[10];
4 int freshl1=0;
1 int s=0; 5 for (int j=0; j<30; j+=3) {
2 int A[30]; 6 t[fresh1]=A[k]+A[k/3];
3 for (int i=0; i<10; i++) { 7 freshl++;
4 for (int j=0; j<30; j+=3) { 8 }
5 st+=A[k]+A[k/3]; 9 for (int i=0; i<10; i++) {
6 } 10 int fresh2=0;
7} 11 for (int j=0; j<30; j+=3) {
12 s+=t [fresh2 ];
13 fresh2+4+-+;
14 )
15 }
(a) Original loop nest. (b) After GLICM.

Figure 4.9: Applying GLICM on a loop with a non-standard induction variable.
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Nested cloned loops and multi-dimensional temporary arrays

When we described the methodology of generalized code motion in Section 4.1, we said
that an expression in a loop L is invariant with respect to a parent loop P if each of
its operands is either defined outside of P, or is the induction variable of L. We may
generalize this definition to allow for the presence of more than one induction variable
among an invariant expression’s operands.

We propose the following amended notion of invariance: an expression in a loop L is
invariant with respect to a parent loop P if each of its operands is either defined outside of
P, or is the induction variable of L, or is the induction variable of a superloop of L which
is also a subloop of P. As a result of this extension, generalized code motion can now
hoist even more expressions to outer levels of loop nests, at the cost of multi-dimensional
temporary arrays and nested cloned loops.

In Figure 4.10a, we revisit the code fragment we used in our initial exposure of GLICM.
We note that the sub-expression B[j] [k] * B[k][J] in the k-loop (the current loop)
is invariant with respect to the i-loop (the parent loop) in the light of our revised defini-
tion of invariance. This is because k is the induction variable of the current loop, and j
is the induction variable of the j-loop, which is both a superloop of the current loop and
a subloop of the parent loop. This expression is thus hoistable, but because it contains in-
duction variables of two loops, we will require a nested cloned loop and a two-dimensional
temporary array for holding its evaluation. The transformed code is shown in Figure 4.10b.

Although we acknowledge the feasibility of extending GLICM in this direction, we have
not fully investigated the performance and safety implications of this generalization.
Thus, we can only list this development as a possible, but not necessarily worthwhile,
vector of future exploration.

1 double B[100][100] = ...;

2 s = 0;

3 double[10][100] t;
1 double B[100][100) = ...; . fOEOEJ(:f;ojfklgm‘]flﬁf) (
5 tor (1=0: 1 <100; i+4) { g } t[j][k] =B[j][k] = B[k][j];
4 for (j=0; j<10; j++) { 8 1
5 for (k=0; k<100; kt+) { 9 for (i=0; i<100; i++) {
6 s 4= B[i][k] « B[k][i]; 10 for (j=0; j<10; j++) {
7 s += B[j][k] = BIk][]]; 11 for (k=0; k<100; k+-4) {
g }} 12 s+:Bm[1£]*B[k][i];
0 ) 13 }b+—t[JH I;

15}

16}

(b) After generalized loop-invariant

(a) Original loop code motion

Figure 4.10: Storing precomputed results in two-dimensional temporary array.
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Implementation

This chapter treats the implementation of generalized code motion in the LLVM project.
Firstly, we motivate our choice of compiler, and briefly describe the main development tools
we used. We proceed to pinpoint the location of our implementation in the LLVM core
libraries, highlight key aspects of the pass registration process (discussed in Section 3.3)
and discuss GLICM’s pass dependencies. The core sections of this chapter describe how
our implementation guarantees the safety requirements of the transformation, and the
methodology of the generalized code hoisting process. Since our implementation relies
heavily on the LLVM libraries and is thus not self-contained, we will favour high level
descriptions to source code listings throughout the chapter.

5.1 Choice of compiler

Our decision to use LLVM as the platform for implementing generalized code motion
was influenced by many factors. Among these, we list the following;:

e LLVM is arguably the most extensive and successful open-source compiler framework.
It supports a variety of source languages and target architectures, and its state-of-
the-art optimizer is the building block of Clang, which is in turn among the most
efficient C and C++ compilers.

e The official documentation is clear, rich and well-structured, offering detailed
guidance on how to obtain, build and use the source code of the project. This
alleviates most of the initial learning curve caused by installing and setting up a
system as large as LLVM.

e The project’s source code is generally well-documented, well-organized and well-
tested. The codebase is fairly easy to navigate, and the automatically generated
online documentation is helpful for untangling the relationships between code
components.

e Although the LLVM project is arguably biased towards C-based languages, its
intermediate representation is designed to express generic source programming
languages. Thus, even though our optimization is mostly motivated by C-like
languages, LLVM provides a platform for potentially integrating it with other
front-ends.

e Since LLVM is under active development, the implementation of new optimization
techniques is open to public scrutiny from an expert community. This could lead
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to improvements and refinements in our technique, should it be included in the
main repositories, as well as increased interest in the area.

e The LLVM project uses a comprehensive test suite, which contains both tiny,
single-file programs and large, full-fledged applications. This provides us with a way
to evaluate our technique in terms of correctness, impact on runtime performance
and applicability in different domains.

e Integrating a new optimization in the LLVM core libraries is done with minimum
overhead, due to the inherent modularity in the design of the optimizer (see
Section 3.3).

5.2 Development tools

Version control

The source code of all the official LLVM projects is maintained using Subversion reposi-
tories. In addition, automatically updated Git mirrors of these repositories are provided,
either hosted on LLVM’s own Git servers, or on Github. Due to the seamless integration
provided by LLVM, we preferred to use Git over Subversion for version control, due to
our familiarity with the former.

To set up a working LLVM environment, we required four different Git repositories, as
per the official starting guide [10]. These are used to host:

e Clang;

e compiler—-rt (a library supporting code generation);
e The LLVM test-suite;

e The LLVM core libraries.

Since we needed the first three repositories for building and testing LLVM, but otherwise
did not intend to modify any of their source files, we cloned them directly from the LLVM
Git servers. The implementation of generalized code motion would live entirely in the
core libraries, so we only required changes in the latter repository to be versioned. Our
approach was to create a fork of the repository’s Github mirror!, and develop our pass
on a separate branch, constantly merging it against the most recent changes.

IDE

The LLVM project is entirely implemented in C++, and its build process relies on an
infrastructure of hierarchical Makefiles. Although development on the command-line is
possible, we immediately acknowledged the positive impact a good IDE would provide
on such a large codebase. Fortunately, LLVM supports the use of CMake?, a tool which
can automatically generate project files for many IDEs.

Initially, we attempted to use Eclipse CDT, an extension of Eclipse for C and C++.
Although Eclipse CDT is abundant with features, we were confronted with an extremely

"https://github.com/llvm-mirror/llvm
http://www.cmake.org/
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slow and cumbersome build cycle, and unacceptable source file indexing times. After
several attempts at improving performance, we switched to Code::Blocks?, a much
lighter IDE written in C++. Although it may suffer from occasional buggy behaviour,
Code::Blocks compensates by being much more responsive and using less than half the
memory needed by Eclipse CDT.

5.3 Pass setup

5.3.1 Organization

Our implementation of generalized loop-invariant code motion consists of a single C++
source file, GLICM. cpp. The location of this file relative to (a simplified view of) the
LLVM codebase is given in Figure 5.1. Together with many other scalar optimizations
(techniques that focus on improving execution speed on a single thread [23, p. 539]),
generalized code motion lives in the Scalar subdirectory of Transforms, which hosts
all transformation passes.

I v R Project root
o Lo Y- Files for generating online documentation
N 15 oo 5 T LT AP Most header files
o b ol @ =Y & i Projects in separate repositories

compiler-rt
test-suite

I ol oY 20 = 2 AP Command-line tools
clang
opt
e I RPN Core libraries
TR ittt ittt ettt ettt aa ettt e IR implementation
(07 @Y 1= 1D o L Code generation
N o = 4 B Analysis passes
JI = o o 11 AR Transform passes
ST oL R Scalar optimizations
L GLICM. cpp
ULl S teeteetiiineeeeeeeenneaaeeeeannaaaaeeannnnanns Miscellaneous passes
Ve CEL O L ZB it iiteiieeienneennecenaecnnasonaannnnn Vector optimizations

Figure 5.1: Location of generalized loop-invariant code motion in the LLVM codebase.

Before deciding to implement GLICM as a separate optimizer pass, we contemplated
the possibility of extending the existing implementation of loop-invariant code motion
(LICM.cpp). This was motivated by similarities in the methodology of the two optimiza-
tions, and the fact that LICM provided helper functions and methods that we would also
require. We ultimately decided against this approach based on several considerations:

e The implementation of loop-invariant code motion is highly non-trivial, and our

3http://www.codeblocks.org/
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own code would have added extra complexity to it, affecting readability and
maintainability. Furthermore, we would have had to extend many functions and
methods for supporting the generalized case, which faced the risk of introducing
accidental bugs.

e Generalized code motion modifies a program’s control flow graph by creating new
basic blocks for the cloned loop, whereas LICM only moves instructions from
one basic block to another. Hence, although both optimizations serve the same
purpose, they affect the program structure in radically different ways. Combining
the two transformations in a unified pass would have conflicted with LLVM’s design
philosophy.

e The LICM pass is invoked liberally in optimization sequences, since it invariably
speeds up programs and has a small processing overhead. For instance, in the
complex optimization pipeline employed by Clang, LICM may be invoked up to
4 times*. For generalized code motion, a single invocation at the right place in
the sequence should be sufficient for hoisting invariant expressions unsupported by
LICM. With a single pass for both transformations, generalized code motion would
be attempted an excess number of times, causing slowdowns in compilation times
and little, if any, additional runtime gains.

e We would have been burdened by many merge conflicts in LICM. cpp whenever
syncing our forked repository with the main branch of LLVM.

5.3.2 Pass registration and dependencies

In GLICM. cpp, the generalized code motion pass is declared as a struct that inherits
from LoopPass, a class containing base functionality for all passes that process loops.
The GLICM structure contains the private fields and methods needed across the lifetime
of our transformation, and overrides two crucial virtual methods:

e getAnalysisUsage, which specifies a list of passes that must be run prior to
invoking GLICM.

e runOnLoop, which describes the optimization process.

To register the pass with the pass registry (discussed in Section 3.3) and to initialize its
pass dependencies, several special macros are used. Figure 5.2 illustrates the registration
of our transformation, which specifies a short (GLICM) and a descriptive (Generalized
Loop-Invariant Code Motion) name, as well as a command-line flag (glicm) for
invoking our pass using opt.

Macros are also used to initialize the five pass dependencies of GLICM, which are declared
as prerequisites in getAnalysisUsage:

e DominatorTreeWrapperPass, a pass which computes a dominator tree for the
program.

e LoopInfoWrapperPass, an analysis pass that collects information about natural
loops in the program. It exposes several useful utility functions that we use in our
implementation.

4See http://llvm.org/docs/doxygen /html/PassManagerBuilder_8cpp_source.html.
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1 INITIALIZE _PASS_BEGIN(GLICM, ”glicm”,

2 ” Generalized Loop—Invariant Code Motion”

3 true, /* Modifies the CFG of the function =/
4 false) /x Is not an analysis pass x/

5 INITIALIZE _PASS_DEPENDENCY(DominatorTreeWrapperPass)

6 INITIALIZE _PASS_DEPENDENCY(LoopInfoWrapperPass)

7 INITIALIZE _PASS_DEPENDENCY( LoopSimplify )

8 INITIALIZE _PASS_DEPENDENCY( ScalarEvolution)

9 INITIALIZE AG_DEPENDENCY( AliasAnalysis)

10 INITIALIZE _PASS_END(GLICM, ”glicm”, "GLICM”, true, false)

Figure 5.2: Pass registration and initialization of pass dependencies.

e LoopSimplify, a transformation which ensures that every loop has a preheader
where instructions can be safely hoisted.

e ScalarEvolution, an analysis pass which provides useful information about
loop induction variables.

e AliasAnalysis, an interface for alias analysis. As opposed to the other de-
pendencies in this list, which represent passes with an unique implementation,
alias analysis is an analysis group (AG) in LLVM terminology, an interface that is
implemented by multiple passes. By specifying this form of dependency, we require
the results of some implementation of alias analysis to be made available to GLICM,
without dictating the use of a specific analysis technique.

We note the absence of loop rotation (which we discussed in Sections 2.5.3 and 4.4)
in the list of dependencies. This transformation, implemented by the LoopRotate
pass, cannot be scheduled before other passes using getAnalysisUsage due to its
current configuration. To address this, loop rotation should be explicitly scheduled before
generalized code motion in the pipeline of optimizations.

5.4 Pass implementation

All LLVM LoopPasses must supply an implementation of the runOnLoop method,
which contains all the optimization’s logic. When the given pass is scheduled to run on
an LLVM module, this method will be called for every loop of every function in that
module. Loops in the same function are processed in a top-to-bottom, innermost-first
fashion.

In our implementation of generalized loop-invariant code motion, runOnLoop performs
the following tasks:

1. Checks that the current loop meets the required conditions for processing.
2. Finds statements that can be hoisted to the parent loop.
3. Uses a profitability model to filter out statements that should not be hoisted.

4. Creates the cloned loop, if there are statements remaining after the previous step.
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D.

Hoists invariant instructions to the cloned loop, storing results in temporary arrays
and replacing references in the original loop.

Compared to the description presented in Chapter 4, our implementation suffers from
two main limitations:

1.

Only the immediate superloop of the current loop is considered as a potential
hoisting point. This restriction was introduced in the early stages of implementation,
and time constraints later prevented us from rigorously implementing and testing
the more general case. We will use the term parent loop to refer to the immediate
parent of the current loop in the remainder of this section.

. When processing a loop with GLICM, we rely on knowing loop’s trip count for

creating the cloned loop and allocating temporary arrays. Unfortunately, the LLVM
libraries do not provide a reliable way of obtaining the upper bound of a loop’s
iteration variable unless that bound is constant. Thus, we only apply generalized
code motion to loops with constant trip counts.

5.4.1 Checking suitability of current loop

The first step of generalized code motion is to check that the currently inspected loop is
suitable for the transformation. The code sample in Figure 5.3 shows the conditions our
implementation tests for, given a current loop L:

The current loop must have a parent loop.

The parent loop must have a dedicated preheader block, where invariant instructions
can be hoisted (this is checked by the condition on line 11).

The current loop has a canonical induction variable, which starts at 0 and is
incremented by 1 after each iteration. The pointer to the Phi function defining the
loop’s induction variable is provided by the LoopInfoWrapperPass analysis.

The current loop’s trip count must be known at compile-time. In the code sample,
we obtain the value of the trip count from the SCEV object, which holds the results
of the ScalarEvolution analysis.

The body of the parent loop contains no exceptions. The 1oopMayThrow helper
iterates over all the basic blocks of ParentLoop, searching for instructions that
may throw exceptions. This is a coarser check compared to our discussion on
exception behaviour in Section 4.4.

The current loop is guaranteed to execute whenever the parent loop is executed. For
this requirement, we implemented the subloopGuaranteedToExecute helper
function, which checks that the current loop’s header dominates all the exit blocks
of the parent loop. The approach is similar to the technique described in Section 4.4,
but checks that the loop itself (as opposed to individual instructions) is guaranteed
to execute.

53



CHAPTER 5. IMPLEMENTATION

0~ Utk WN

—
N = O O

13
14
15
16

bool GLICM::runOnLoop(Loop *L, LPPassManager &.PM) {

Loop *xParentLoop = L—>getParentLoop ();
PHINode #*IndVar = L—>getCanonicallnductionVariable ();
unsigned TripCount = SCEV—>getSmallConstantTripCount (L);

if (!(ParentLoop &&
ParentLoop—>isLoopSimplifyForm () &&
IndVar &&
TripCount > 0 &&
!loopMayThrow (ParentLoop) &&
subloopGuaranteedToExecute (CurLoop, ParentLoop, DT))) {
return false;

}

Figure 5.3: Testing that GLICM is applicable for the current loop.

If not all of these conditions are met, GLICM cannot be applied to the current loop.
In this case, the function returns false, signifying that the input IR program was left
unchanged.

5.4.2 Conditions for hoisting an instruction

To decide which instructions of the current loop can be hoisted to the preheader of the
parent loop, our implementation uses the helper method in Figure 5.4. This decision
requires that several facts about the given instruction hold simultaneously:

e The instruction has loop-invariant operands with respect to the parent loop. Recall

that the LLVM IR obeys the SSA property, meaning that each named value in
a program is assigned to exactly one. We iterate over each of the instruction’s
operands and check that either (a) the operand is the induction variable of the
current loop, (b) the operand is a constant, or (c¢) the (unique) instruction defining
the operand lies outside the parent loop. If, for each of the instruction’s operands,
at least one of these conditions holds, the instruction is invariant in the sense
required by GLICM.

If the instruction is a load, it cannot be hoisted if it is marked as volatile (a
directive which indicates that its location in the program should not be changed), or
if it reads from a memory location which may be written to by another instruction
in the parent loop. Also, call instructions cannot be hoisted if they write to
memory locations which are read in the parent loop. Effectively, this ensures
the aliasing constraints we stressed in Section 4.4. These checks are made by
the canSinkOrHoistInst helper, which was initially a private method in the
LICM pass, but was subsequently extracted to a shared header to promote code
reuse. This method also disallows code hoisting altogether for certain categories of
instructions, such as phi and branch statements.

Of this method’s arguments, the CurAST object is used for fulfilling aliasing
queries. CurAST is a so-called alias set tracker (AST), an LLVM data structure
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that constructs sets of possibly aliasing pointers [12]. AST’s are initialized from an
AliasAnalysis object, which holds the results of the alias analyses scheduled
before the current pass, but which exposes a limited interface. Program regions
of interest (such as basic blocks or individual instructions) can be subsequently
added to an AST for processing, which causes existing alias sets to be updated and
possibly new ones to be created. The AST used by our implementation is built
from all the basic blocks of the parent loop, since this is the CFG region GLICM is
responsible for.

e The instruction is guaranteed to execute in its current loop. Below, this is checked
by isSafeToExecuteUnconditionally, yet another method in LICM.cpp
that we were able to reuse. Together with the condition that the current loop itself
is guaranteed to execute in the parent loop (as explained in the previous section),
this ensures that the given instruction executes whenever the parent loop executes.
Thus, hoisting it would preserve program behaviour.

e The identifier defined by the instruction is not used outside of the current loop. We
defer the explanation of this item to Section 5.4.4, which discusses our approach to
hoisting invariant instructions.

1 bool GLICM:: canHoist (Instruction =I) {

2 return hasLoopInvariantOperands (I, ParentLoop) &&

3 canSinkOrHoistInst (xI, AA, DT, CurLoop, CurAST, Safetylnfo) &&
4 isSafeToExecuteUnconditionally (xI, DT, CurLoop, SafetylInfo) &&
5 lisUsedOutsideOfLoop (I, CurLoop, LI);

6 }

Figure 5.4: Testing that a given instruction can be safely hoisted by generalized code
motion.

5.4.3 Inserting the cloned loop

This section describes how our implementation accomplishes the insertion of an empty
clone of the current loop in the program’s control flow graph. We illustrate the application
of the algorithm using an artificial example, which aims to insert a cloned loop with
canonical induction variable %$1i and trip count 100 in the preheader of a parent loop. For
convenience, we label the header and preheader blocks of the parent loop as P.Header
and P.Preheader respectively. The CFG region we will be operating on is represented
in the figure below.
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P.Preheader:
br label P.Header

P.Header:
br label ...

Figure 5.5: CFG region containing the preheader and header of the parent loop.

The algorithm consists of four main stages, and is tailored to the specific types of loops
handled by generalized code motion, characterized by canonical induction variables and
constant trip counts. The effect of each stage on the initial control flow graph is given in
Figure 5.6.

Step 1 We split the control flow edge between P .Preheader and P.Header, creating
a new basic block between the two. This block will be the header of the cloned loop
(hence, we label it C.Header, and will contain all the invariant instructions hoisted from
the current loop. Next, we split the edge between the newly created C.Header and
P.Header, inserting yet another basic block. This basic block will be used to handle
control flow in the cloned loop, and is labelled C.Latch.

Step 2 In the cloned loop header, we insert a Phi function corresponding to the cloned
loop’s induction variable, i. Momentarily, this Phi function is empty (i.e. it does not
select between any values). In C.Latch, we create an instruction that increments the
induction variable value by 1, writing the result to %$1i.inc.

Step 3 In this step, the edges of the control flow graph are manipulated in order to
reorganize the two basic blocks we inserted so far into a proper loop. To achieve this, we
first insert a comparison that tests whether %1i . inc is less than the known trip count,
100. We change the unconditional branch at the end of C.Latch to a conditional one,
which branches back to C.Header if the loop condition %i.inc < 100 holds, or to
P .Header if the cloned loop has finished execution.

Step 4 This step completes the definition of %1 in Step 1. Control flow can arrive to
C.Header from two sources. When the basic block is entered from P.Preheader, the
cloned loop is at its first iteration, hence %1 is initialized to 0. On the other hand, when
control arrives from C.Latch, the basic block is re-entered following a previous iteration
of the cloned loop. Thus, %1 is set to $1.1inc, the incremented iteration variable. This
marks the end of the procedure.
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B Erchondon - P.Preheader:
br label C.Header
br label C.Header l
C.Header:
ST %1 =phi i64 ...
. . br label C.Latch
br label C.Latch l
l C.Latch:
C.Latch: %$i.inc = add i64 %i, 1
br label P-Hfader br label P.Header
P.Header: P.Preheader:
br label ... br label ...
(a) After Step 1. (b) After Step 2.

P.Preheader:
br label C.Header

P.Preheader:

br label C.Header i
l C.Header:
%1 =phi 164
C.H'eader.: i [0, P.Preheader],
%1 =phiied ... [%i.inc, C.Latch]
oL el C'LftCh br label C.Latch
C.Latch: l

C.Latch:
$i.inc =add i64d %i, 1
$cmp = icmpl slt 64 $i, 100

%$i.inc =add i64 %i, 1
%cmp = icmpl slt 64 $i, 100
br il $cmp,

label C.Header, br il $cmp,
label P.Header label C.Header,
l label P.Header
P.Header:
br label ... P Header:
(c) After Step 3. br label ...

(d) After Step 4.

Figure 5.6: The four steps of the cloned loop insertion algorithm.

5.4.4 Code motion methodology

We now describe the core of our implementation, the complete process which achieves the
program transformations advertised by GLICM. To help the reader visualize the distinct
stages of the hoisting process, we will conceptually apply generalized code motion to
the C program in Figure 5.7. Our aim is to hoist the redundant sub-expression A[7j]
* 7 in the j-loop to a cloned loop placed in the preheader of its parent, the i-loop. A
suitable LLVM intermediate representation of the program, containing only the CFG
regions of interest to our optimization (the i and j loops, together with bordering basic
blocks), is given in Figure 5.8.
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1 int main() {

2 int A[100];

3 for (int k=0; k<100; i++) {
4 Alk] =k % 5;

5 )

6 int s = 0;

7 for (int i=0; i<100; i++) {
8 for (int j=0; j<100; j++) {
9 st= A[j]xj;

10 }

1}

12 printf ("%d\n”, s);

13 }

Figure 5.7: Source program used for outlining the stages in the implementation of
generalized code motion.

Stage 1: Computing the hoistable set

Once we ascertain that the current loop is supported by generalized code motion (see Sec-
tion 5.4.1), we begin our search for invariant expressions. We make use of the function’s
dominator tree (computed by the DominatorTreeWrapperPass pass dependency
listed in Section 5.3.2) for traversing the basic blocks of the current loop. Starting from
the loop header, we recursively visit the dominator tree in depth first order, stopping
when we reach nodes lying outside of our loop. For each visited node, we inspect the
instructions of the underlying basic block from top to bottom. This direction of traver-
sal (both with respect to the loop’s basic blocks and individual instructions in a single
basic block) ensures that we visit variable definitions before the instructions that use them.

As GLICM processes a loop’s basic blocks, it constructs and maintains a hoistable set
of instructions. The hoistable set is a custom data type we implemented, a sequential
container that iterates over its elements in insertion order, and also provides methods for
membership testing. As instructions are inspected during the dominator tree traversal,
they are added to the hoistable set if and only if they could be moved to a hypothetical
cloned loop (subject to the constraints in Section 5.4.2), provided that all other members
of the hoistable set were hoisted prior to the instruction. Using a hoistable set allows us
to keep track of which instructions in the current loop would be potentially hoisted by
GLICM, but without actually moving them.

In our example in Figure 5.8, the j-loop is defined by two basic blocks, for. j.header
and for.j.inc. As the loop is traversed, the following definitions are added to the
hoistable set, specifically in this order:

e %arrayidx: meets all hoisting requirements (uses the iteration variable of the
current loop).

e %1: meets all hoisting requirements, provided that $arrayidx (now a member of
the hoistable set) is hoisted.

e 22: meets all hoisting requirements (uses the iteration variable of the current loop)
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e smul: meets all hoisting requirements, provided that $1 and %2 (members of the
hoistable set) are hoisted.

e %7.inc: meets all hoisting requirements (uses the iteration variable of the current

loop).

e %exitcond. j: meets all hoisting requirements, provided that % 7. inc is hoisted.

for.i.preheader:
br for.i.header

for.i.header:
%$s.1 =phi i32 [ 0, $for.i.preheader ], [ $s.add.i, $for.i.inc ]
%1 =phi i32 [ 0, %for.i.preheader ], [ %i.inc, %for.i.inc ]

br label %for.j.header
for.j.header:

%$jJ=phi i64 [ 0, $for.i.header ], [ $j.inc, $for.j.inc ]

%$s.j=phi i32 [ %$s.i, $for.i.header ], [ $s.add, %$for.j.inc ]

%$arrayidx = getelementptr inbounds [100 x 132], [100 x 132]* %A,
i64 0, i64 %3

%1 = load 132, i32«% $arrayidx, align 4

%2 =trunc 164 %j to i32

gmul = mul nsw 132 %1, %2

%$s.add = add nsw 132 $mul, %s.]

br label $for.j.inc

for.j.inc:
%j.inc = add nuw nsw i64 %3, 1
%$exitcond.j = icmp eq i64 $j.inc, 100
br i1 %$exitcond. j, label %$for.i.inc, label %for.j.header

for.i.inc:
%$s.add.i =phi i32 [ $s.add, %$for.j.inc ]
$i.inc = add nuw nsw 132 %i, 1
$exitcond.i = icmp eq i32 %$i.inc, 100
br 11 $exitcond.i, label %$for.i.end, label $for.i.header

!

for.i.end:

Figure 5.8: Initial IR of the nested loop in Figure 5.7.
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Stage 2: Applying the profitability model

After computing a hoistable set, we use a heuristics-driven cost model which filters out
those instructions which should not be hoisted due to profitability concerns. The cost
model is discussed in more detail in Section 5.4.5. For now, it suffices to say that the
cost model takes the initial hoistable set as input and reduces it to a possibly smaller (or
even empty) hoistable set.

When applied to the example hoistable set computed in the previous stage, the cost
model will decide against hoisting its last two definitions (%3j.inc and %$exitcond. j).
Intuitively, this is because these two instructions are part of the current loop’s control
flow, and because it is not efficient to precompute an instruction as inexpensive as
a comparison into a temporary array. Therefore, the hoistable set now contains four
definitions: %arrayidx, %1, $2 and %mul. Note that, together, they form the IR
representation of the source code sub-expression we want to hoist, A[j] * 7.

Stage 3: Hoisting instructions

The instructions remaining in the hoistable set after the cost model was applied are those
that our optimization will hoist. Firstly, our implementation checks if the hoistable set is
empty. If this is true, there are no instructions to hoist out of the current loop, and thus
the entire procedure terminates. Otherwise, we use the method described in Section 5.4.3
to create the empty cloned loop after the preheader block of the parent loop.

We proceed to iterate over all the instructions of the hoistable set, and move each
instruction to the header of the cloned loop, placing it immediately before the last
statement in the basic block (the delimiting branch statement). With this approach,
hoisted instructions are guaranteed to appear in the same order in the cloned loop as they
initially did in the current one. Consequently, there is no risk of breaking the semantic
correctness of IR program by having instructions attempt to use values defined later in
the program. This is the main reason why we required holding instructions in a data
structure that preserves insertion order.

As a final step that needs to be taken when moving invariant instructions, any occurrences
of the current loop’s induction variable among the instruction’s operands must be replaced
with the induction variable of the cloned loop. Thus, in our case, the use of %7 in the
definition of $arrayidx must be changed. Figure 5.9 shows the state of the IR after
this stage of the generalized code motion process.
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for.i.preheader:
br for.j.clone.header

|
for.j.clone.header:
%j.c=phi i64 [ 0, $for.i.preheader ],
[ $j.c.inc, %for.j.clone.latch ]
$arrayidx = getelementptr inbounds [100 x 132], [100 x 132]* %A,
i64 0, i64 %j.c
%1 =1load 132, 1i32% $arrayidx, align 4
%2 =trunc 164 $j.c to 132
$mul = mul nsw 132 %1, %2
br label $for.j.clone.latch

|
for.j.clone.latch:
%Jj.c.inc = add nuw nsw 164 %$j.c, 1
$exitcond.j.c =icmp slt i64 $j.c.inc, 100
br il $exitcond. j.c, label %for.j.clone.header,
label $for.i.header

for.i.header:
%$s.1i =phi i32 [ 0, $for.i.preheader ], [ $s.add.i, $for.i.inc ]
%1 =phi 132 [ 0, $for.i.preheader ], [ %$i.inc, %for.i.inc ]

br label $for.j.header
for.j.header:

%3 =phi i64d4 [ 0, $for.i.header ], [ $j.inc, $for.j.inc ]
%$s.j=phi i32 [ $s.i, $for.i.header ], [ $s.add, $for.j.inc ]
%$s.add = add nsw 132 $mul, %s.]

br label $for.j.inc

for.j.inc:
%j.inc = add nuw nsw 164 %3, 1
$exitcond.j=icmp eqi64 $j.inc, 100
br i1 $exitcond. j, label $for.i.inc, label %for.j.header

l
for.i.inc:
%$s.add.i=phi i32 [ $s.add, $for.j.inc ]
%$i.inc = add nuw nsw 132 %1i, 1
$exitcond.i = icmp eq 132 %$i.inc, 100
br il $exitcond.i, label %$for.i.end, label $for.i.header

for.i.end:

Figure 5.9: IR of the nested loop in Figure 5.7, after several invariant instructions have
been moved to the cloned loop.
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Stage 4: Storing and loading precomputed expressions

To complete the process of generalized code motion, we must store the results of certain
instructions in the cloned loop into temporary arrays, and then load the precomputed
results into the main loop. Our implementation achieves this through the following steps:

1. Iterate over all the hoisted instructions now present in the cloned loop. If the value
defined by an instruction is used in the original loop, then it must be stored in a
temporary array. We take note of this by adding the respective instruction to a
special list L. Otherwise, all the users of that value are in the cloned loop. In this
case, the instruction is most likely a single step in a longer chain of calculations
that result in an invariant expression. The result of such instructions need not be
stored in temporary arrays.

2. For promoting clarity in the structure of the IR, we create an additional basic
block dedicated to array declarations, before the entry to the cloned loop. For each
instruction I in L, we allocate an array (denoted by A) in this basic block. The
array will hold elements of the same type as the value produced by I, and its size
will be equal to the trip count of the current loop.

3. Let i.c be the induction variable of the cloned loop. Before and after each instruction
I in L, we insert two additional instructions, respectively: a getelementptr
which computes «, the address of Afi.c|, and a store which writes the result of I
to a.

4. Let i be the induction variable of the current (original) loop. For each instruction
I in L, we insert two additional instructions at the beginning of the current loop’s
header: a getelementptr which computes o/, the (same) address of Ali], and a
load which reads the value at memory location o/ into a fresh scalar variable, V.

5. Replace all uses of I in the original loop with V. Now, any instruction in the
original loop that required the value defined by I will use V', the precomputed
result of the instruction, loaded from a temporary array. At this point, generalized
code motion finishes processing the current loop.

In Section 5.4.2; we stated, without justification, that the result of an instruction must
not be used outside of the current loop for that instruction to be hoistable. This final step
of code motion provides the reason for this restriction: if a hoisted invariant value were
to be referenced outside the current loop, we would have no way of replacing those uses
with loads from a temporary array, since we would be outside of the induction variable’s
scope.

Figure 5.10 shows the final IR produced by generalized loop-invariant code motion for
our ongoing example. Of all the instructions hoisted in the cloned loop, only $mul is
stored in a temporary array, because it is the only one with lingering uses in its original
loop. The value of $mul at a given iteration of the j-loop is loaded from the temporary
array into $glicm.load. Finally, we replace the use of $mul with $glicm.load in
the %s.add instruction.
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for.i.preheader:
br for.j.clone.arr

for.j.clone.arr:
%glicm.arr = alloca 132, 164 100
br label %for.j.clone.headers

)
for.j.clone.header:
%$j.c=phi i64 [ 0, $for.i.preheader ],
[ $j.c.inc, %for.j.clone.latch ]
%$arrayidx = getelementptr inbounds [100 x 132], [100 x 132]* %A,
i64 0, i64 %j.c
%1 = load i32, 132% %$arrayidx, align 4
%2 =trunc 164 $j.c to 132
$glicm.arrayidx = getelementptr 132, i32% %$glicm.arr, 164 $j.c
$mul = mul nsw 132 %1, %2
store i32 %$mul, i32x% $glicm.arrayidx

br label $for.j.clone.latch
for.j.clone.latch:
%$j.c.inc = add nuw nsw 164 %$j.c, 1
$exitcond.j.c =icmp slt i64 $j.c.inc, 100

br i1 %$exitcond. j.c, label $for.j.clone.header,
label $for.i.header

for.i.header:
%$s.1 =phi i32 [ 0, %$for.i.preheader ], [ $s.add.i, $for.i.inc ]
%1 =phi i32 [ 0, %for.i.preheader ], [ %i.inc, %for.i.inc ]

br label %for.j.header

for.j.header:
%) =phii6d [ 0, $for.i.header ], [ $j.inc, %for.j.inc ]
%s.j=phi i32 [ $s.i, $for.i.header ], [ $s.add, $for.j.inc ]
%glicm.arrayidxl = getelementptr 132, i32x% $glicm.arr, 164 %3

%glicm.load = load 132, 132+ %glicm.arrayidxl
%$s.add = add nsw 132 $glicm.load, %s.]

br label %for.j.inc

for.j.inc:
%$j.inc = add nuw nsw 164 %7j, 1
%$exitcond.j = icmp eq i64 $j.inc, 100
br il %$exitcond. j, label %$for.i.inc, label %$for. j.header

l
for.i.inc:
$s.add.i =phi 132 [ $s.add, $for.j.inc ]
%$i.inc = add nuw nsw 132 %i, 1
$exitcond.i = icmp eq 132 %$i.inc, 100
br 11 $exitcond.i, label $for.i.end, label $for.i.header

for.i.end:

Figure 5.10: IR of the nested loop in Figure 5.7, after completing generalized code
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5.4.5 Cost model

The cost model we implemented is driven by heuristic considerations, drawn from our
experiences with GLICM on a wide variety of programs. Its purpose is to prevent certain
legally hoistable instructions from being moved to the cloned loop, if there is sufficient
reason to believe that it would lead to degraded performance.

In our initial implementation of GLICM, we would immediately hoist invariant instructions
to the cloned loop during the traversal of the dominator tree. This approach is used by the
LICM implementation, which does not have an associated cost model, and therefore moves
any hoistable instructions unconditionally. Once we realized the need for a cost model,
the technique became inappropriate, since it presented us with two equally inconvenient
choices:

e Hoist all invariant instructions and then attempt to 'unhoist’ the unprofitable ones,
which requires us to remember us the initial locations of those instructions in the
original loop.

e Perform several profitability checks on instructions before hoisting them, but without
much knowledge on that instruction’s impact on the other hoistable instructions of
the loop.

It was because of these shortcomings that we devised the hoistable set data structure
and changed the hoisting process to its current form.

The implementation of the cost model is effectively a single pass over the initial hoistable
set, removing invariant instructions that should rather be kept in the current loop. When
an instruction is removed, any users of that instruction’s result must also be taken out of
the set. Otherwise, there would be instructions living in the cloned loop that require
values defined at a later program point, causing a semantic inconsistency with the SSA
form.

The cost model avoids precomputing instructions based on two heuristic checks, which
we outline below. If an instruction fits at least one of them, the profitability model
removes it from the hoistable set. The cost model can be easily extended, by adding new
heuristics or by performing additional passes on the hoistable set.

1. Unprofitable instructions

We deem an instruction in the hoistable set unprofitable if redundantly computing it in
the current loop is actually preferred to loading its precomputed result from an array. The
canonical example is the LLVM getelementptr instruction, which is used for address
computation when accessing elements of arrays and other aggregate data structures.
Consider the simple pseudocode loop nest below:

for (i=0; i<100; i++) {
for (j=0; j<100; j++) {
sH=A[j]*1;
}
}

Tt W N =~
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In LLVM IR, the innermost loop would be roughly translated into following instruction
sequence (which uses a relaxed syntax, to promote clarity):

%0 = getelementptr %A, %j
%1 = load %0

%2 = mul %0, %i

%s.add = add %s, %2

=W N =

The getelementptr instruction defining $0 is loop-invariant with respect to the outer
loop, and therefore hoistable by GLICM. Assuming the result of this instruction is stored
in a temporary array %t, the inner loop will contain the following after generalized code
motion:

%glicm .idx = getelement ptr %t, %j
%glicm . load = load %glicm .idx

%1 = load %glicm .load

%2 = mul %0, %i

%s.add = add %s, %2

Uk W N~

In this unfortunate case, generalized code motion did not optimize the source program,
but rather achieved the opposite. One getelementptr instruction was hoisted from
the current loop, but only to be replaced by another getelementptr, together with a
load from a temporary array. Furthermore, the cloned loop which was hypothetically
inserted before the outer loop also incurs additional overheads, both in terms of execution
time and memory footprint.

There are other types of instructions which produce similar detrimental effects when
precomputed. For example, it would not make much sense to hoist an invariant 1oad
instruction, store the value it produces in a temporary array, and then load the precom-
puted value from the temporary array in the original loop. On different grounds, we
should also avoid precomputing inexpensive instructions such as bitwise operations, since
redundantly re-evaluating them on the spot will most likely be faster than loading data
from an array.

Our cost model limits the instructions which can be evaluated into temporary arrays
to binary arithmetic operations and function calls (we refer to such instructions as
profitable). We impose this restriction with the hope that the processing time saved by
cutting redundant evaluations outweighs the memory latency caused by loading from
temporary arrays. Instructions such as getelementptr and load will still be hoisted,
but only if they have a role in defining a larger sub-expression.

To achieve this, our implementation iterates over the hoistable set in reverse order
and removes any unprofitable instructions whose result is not used by other remaining
members of the set. We justify the reversed iteration order using the example hoistable
set below, which contains three invariant instructions. Assume that we are processing
the set in normal order, and that we have iterated over the first two instructions so far.

According to our heuristic, the third and last instruction should be removed, because it is
unprofitable and has no further uses in the set. However, once it is removed, the second
instruction (a getelementptr) becomes unprofitable, and must now be removed. Thus,
with this approach, we often have to revert decisions concerning previously inspected
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1 2 3
$2 = load %1]

!

Current instruction

%0 = sext %3j to i32‘ %1 = getelementptr %A, %O‘

instructions. In some cases, this could lead to a large cascade effect, causing unnecessary
complexity in the cost model. By iterating over the set in reverse order, the instructions
we visit never use a value defined later in the program, and thus we are never required to
reconsider previous decisions.

2. Single-instruction invariant sub-expressions

The other heuristic we applied in our cost model acts against precomputing invariant
sub-expressions that consist of a single instruction. This restriction is based on our
practical experiences with GLICM, which showed that some programs perform poorly
if such small sub-expressions are hoisted. Based on this criterion, our implementation
filters out instructions from the hoistable set if they neither use nor are used by any other
members of the set. Together, these two conditions check that a given instruction does
not contribute to the computation of a larger sub-expression.

This rule also removes any single-instruction sub-expressions involving the original loop’s
induction variable from the hoistable set. In particular, we mention the instruction in the
current loop which increments the induction variable at the end of an iteration. Without
the cost model, this instruction would have its result precomputed in the cloned loop for
every loop that is processed by GLICM.
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Evaluation

In this chapter, we describe our approach to evaluating the implementation of generalized
code motion, both in terms of functional correctness and runtime impact, on a wide set
of real-world programs. We present the results obtained on several types of benchmarks,
and discuss some fundamental challenges in evaluating the performance of compiler
optimizations.

Our evaluation was carried out exclusively on C and C++ programs, due to a number of
reasons. Firstly, the LLVM test suite (see Section 3.5) readily provides an infrastructure
for benchmarking a heterogeneous collection of programs written in these two languages.
Constructing an equally comprehensive collection of tests in a different source language,
and compiling it using an appropriate language front-end, would have been infeasible in
the time frame of the project.

Secondly, we wanted to evaluate the performance of generalized code motion in the
context of automatically generated local assembly programs, the original motivation for
the technique (see Section 4.2), which are also written in C. Lastly, the prominent SPEC
benchmark [25], which we also refer to, contains mostly C and C++ programs.

6.1 Safety and functional correctness

When discussing the fundamental properties of compiler transformations in Section 2.4,
we identified safety as the most important characteristic for any optimization. Based
on empirical evidence derived from extensive testing, we have satisfying guarantees
that our implementation of GLICM adheres to the safety requirement. This section
provides justification for this claim, and also describes our approach towards verifying
the functional correctness of our implementation.

6.1.1 Unit tests

In the early stages of the implementation, we relied on several simple C programs for
checking the high-level correctness of our pass. These programs act as unit tests, since
they exhibit behaviour that should prevent our safety model from applying generalized
code motion. Table 6.1 describes the particular safety requirement stressed by each test.

Fach test consists of a single source file, containing one or two functions that process a
statically initialized multi-dimensional array, derive a value from the it (e.g. by adding
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all its elements) and print the result at the end of the program run. Programs are tested
using the following process:

1. The program is compiled to LLVM IR using clang -00 -emit-1lvm (no opti-
mizations).

2. We invoke opt on the resulting bitcode file, applying a minimal list of optimizations
which we found to create generalized code motion opportunities, followed by the
GLICM pass itself.

3. (Optional) The post-GLICM bitcode file is disassembled using to a human-readable
assembly file using 11vm-dis, in order to visually inspect the generated IR and
spot any anomalies.

4. The bitcode file produced by GLICM is executed using 11i, the IR interpreter,
and its output is written to a file on disk.

5. The actual output of the run is compared to a stored reference output, produced
by a gcc-compiled executable of the program.

The command-line invocations corresponding to the steps above, for a hypothetical C
program code.c, are the following;:

clang —O0 —emit—llvm code.c —c —o code.bc

opt —tbaa —basicaa —scalarrepl —mem2reg —loop—rotate —indvars
—instcombine —reassociate —licm —glicm code.bc —o code—glicm . bc

llvm—dis code—glicm . bc

11i code—glicm .bc > code.actual _output

diff code.actual _output code.reference_output

To allow for more flexibility in the process, we wrote a Makefile with separate targets for
each stage of the testing procedure. We achieved complete automation by using a script
that iterates over all the test files and applies the steps above. Although simple, this
testing methodology allowed us to smoke test our pass for major defects, before carrying
out extensive, more costly evaluation.

Program Tested feature

call.c invariant function call

complex—expr.c large invariant sub-expression

controlflow.c invariant sub-expression wrapped in conditional
currentloop-aliasing.c invariant read with aliasing write in current loop
inv-and-var.c current loop with both invariant and variant expressions
parentloop-aliasing.c invariant read with aliasing write in parent loop
simple—expr.c simple invariant sub-expression
subloop—guaranteed.c current loop guaranteed to execute
subloop-notguaranteed.c | current loop not guaranteed to execute

Table 6.1: Unit tests for GLICM.
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6.1.2 LLVM test suite

LLVM’s official test suite, consisting of 497 test cases at the time of this writing, provided
us with a great spectrum of real-world programs and benchmarks for stress-testing the
stability of our implementation. With GLICM enabled in Clang (see Section 6.2.1), we
attained a 100% pass rate in the test suite, a result which has persisted across hundreds
of runs. The implications of this are twofold.

Firstly, the transformation proves itself to be robust, by never causing Clang to fail
while processing a source file. Thus, our implementation takes edge cases into consider-
ation, manages its data structures cautiously, and produces semantically correct LLVM IR.

Secondly, generalized code motion preserves program behaviour, since any test case
affected by our pass produces identical results compared to the reference output (see
Section 3.5 for an overview of the testing process). Therefore, our implementation of
GLICM is functionally correct, and the safety requirements we proposed were not found
to be vulnerable.

6.2 Performance evaluation methodology

We evaluate the effects of our optimization on individual programs by compiling them
with gce and three different versions of Clang, and then comparing the running times of
the generated executables. Table 6.2 describes the four different compilation techniques
we use, and introduces a notational shorthand for each.

Notation | Description

GCC gcc -03

CLANG clang -03

GLICM¢ys | clang -03 (including GLICM)

GLICMgg7 | clang -03 (including GLICM without the cost model)

Table 6.2: Four different compilation techniques used for performance evaluation.

We are mainly concerned with benchmarking GLICM¢j; and GLICMg7 against CLANG,
in order to identify the net differences introduced by our pass. Occasionally, we shall
also compare the performance of the different Clang variants to that of GCC.

6.2.1 Enabling GLICM in Clang

To obtain GLICM¢ s and GLICMg7;7, we added our generalized code motion pass to
the pass manager which defines Clang’s optimization sequence!. As some authors have
noted [23, p. 9], finding the ideal placement of an optimization in relation to tens of other
interrelated transformations is a daunting, if not infeasible task. However, we believe
that we have chosen an appropriate point for scheduling GLICM in Clang’s complex

'Practically, we inserted our pass in the populateModulePassManager method defined in
lib/Transforms/IPO/PassManagerBuilder.cpp
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optimization pipeline.

Firstly, our pass is scheduled after loop rotation (which we discussed in Sections 2.5.3 and
4.4), LICM and expression reassociation, a transform pass which rewrites expressions to
a form that promotes more code motion opportunities. Furthermore, GLICM is invoked
after function inlining, an optimization which replaces certain function calls with the
actual body of the called function. If a function containing its own loops is inlined in a
callee loop, new nested loops will be created, which introduces more opportunities for

GLICM.

Lastly, like most other scalar optimization passes, generalized code motion runs before
any vectorization passes. Thus, the cloned loop inserted by GLICM can be potentially
rewritten by Clang’s automatic vectorization passes.

6.2.2 Experimental setup

All our performance tests were run on a remote machine with an Intel 17-2600 CPU
running at 3.4 GHz on 8 virtual cores, with a 32KB L1 cache and a 256KB L2 cache.
We took several steps to ensure that our performance evaluation produces accurate and
reliable results:

e Each collection of tests was run multiple times with the same configuration param-
eters, to promote statistical significance in our findings. To this end, we repeated
test runs between 30 and 100 times, depending on their size and complexity.

e We disabled frequency scaling techniques in the CPU, so that our machine’s cores
always run at constant speed. This eliminates any variations in program runtime
behaviour which are due to fluctuations in the CPU’s workload.

e Apart from kernel and OS processes, no other applications were allowed to run
on the machine while tests were being executed, in order to minimize CPU and
memory contention in the system.

6.3 Results

6.3.1 Local assembly code

As outlined in Section 4, the initial motivation for generalized code motion lies in compute-
intensive applications, such as the finite element method, where the particularities of the
code might render traditional optimizations ineffective. To validate our implementation,
we wanted to confirm that it creates major execution time improvements in such applica-
tion domains.

To this end, we carried out performance evaluation on two programs that compute local
assembly kernels for the finite element method (see Section 4.2 for an overview of the
technique). The local assembly computations are characteristic to a Helmholtz and
an elasticity partial differential equation, respectively. Both programs contain three
equivalent variants of the same local assembly computation:

e Variant 0, which contains unoptimized C code that was automatically generated by
the Firedrake tool [6] from a high-level mathematical description of the problem.
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e Variant 1, the code in Variant 0 after some optimization by COFFEE, the compiler
introduced by Luporini et al. in [27]. To create this variant, COFFEE applies a
subset of its specialized toolset of optimizations (including GLICM) directly on the
source code of Variant 0.

o Variant 2, the code in Variant 0 fully optimized by the COFFEE compiler.

The two programs contain an instrumentation function that executes every code variant
repeatedly for a fixed amount of time (by default, 100ms), maintaining counters for the
number of completed executions. At the end of a run, the code variant with the greatest
execution counter is declared the fastest.

We compiled the programs with the four different compilers we described previously
(CLANG, GCC, GLICM¢ys and GLICMg;) and then ran the experiment. Our expecta-
tion was that GLICM¢ajs performs better than GCC and CLANG for Variant 0, which
is the unoptimized, automatically generated code version. On the other hand, we did
not expect Variant 0 to be faster than either Variant 1 or 2 using any of the compilers,
since the latter are code versions produced by COFFEE using a tailored domain-specific
set of optimizations, in addition to generalized code motion. However, we did expect
GLICM¢ s to not cause Variant 1 or 2 to execute slower, through correct assumptions
made by its cost model.

Table 6.3 presents the results of our experiments, averaged over 100 runs. We draw the
following key points based on this data, which mostly confirms our initial assumptions:

e GLICM¢ s performs much better than CLANG for Variant 0. The speed-up factors
achieved by our optimization are 2.22 and 1.64 for the Helmholtz and elasticity
kernels, respectively. For one of the equations, GLICM¢), is superior to GCC by
a factor of 1.41, while for the other GCC generates code that runs roughly 10%
faster. Thus, based on our experiments, it can be said GLICM¢js performs at least
as well as GCC for Variant 0.

e Our cost model performs efficiently on local assembly code. Consider the perfor-
mance of Variants 1 and 2 for the elasticity equation, which are both 40% slower
with GLICMg;; than CLANG. With GLICM¢yy, the slowdowns disappear entirely.
In the case of the Helmholtz equation, the cost model does not eliminate the
penalties completely, yet it reduces them significantly, i.e. from 8% and 15.2% to
2% and 3.77% respectively.

e Although not related to our optimization and the purpose of our experiment, we
note that GCC outperforms CLANG massively for Variants 1 and 2 of the local
assembly code.
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Helmholtz equation
Variant 0 || Variant 1 Variant 2

GCC 72934 192921 221094
CLANG 46429 123982 146818
GLICMc 103390 121413 141275
GLICM&77 98996 114097 124355

Elasticity equation
Variant 0 || Variant 1 Variant 2

GCC 26096 47905 63684
CLANG 14306 24761 30508
GLICM¢e 23459 24816 30554
GLICM&77 22194 14820 18012

Table 6.3: Number of executions of each local assembly code variant using four different
compilers. A greater number signifies better performance.

6.3.2 LLVM test suite

We carried out extensive experiments on the programs in the LLVM test suite, using
the infrastructure described in Section 3.5. To mark the source files which were actually
transformed by our optimization during compilation with GLICMg#z; and GLICM¢ )y,
we placed several debug prints in our pass’ implementation, which documented important
events such as hoisted instructions or allocated arrays. When invoking Clang, we enabled
debugging information to be displayed exclusively for our pass, with a special command-
line flag?. This caused events related to GLICM to be written in per-file compilation logs
by the testing framework. With the help of grep, we were able to isolate the programs
of interest from the rest of the test suite.

This section presents our performance evaluation results on the programs distributed
with the official LLVM test repository. As per Section 3.5, these are of two types:

e Single-source tests, programs consisting of a single source file. These are fur-
ther structured into three main subdirectories, Benchmarks, Regression and
UnitTests, containing to mini-benchmark programs, regression tests and unit
tests, respectively.

o Multi-source tests, applications that are built from multiple source files. Multi-
source test cases are also divided among three subcategories, Benchmarks and
UnitTests, as before, and Applications, which hosts real-world programs that
were minimally adapted for integration with the test suite.

When discussing runtime effects, we will be completely ignoring programs with an
execution time of under 50ms. We introduce this restriction because we found execution
times of programs to vary within this order of magnitude between successive test runs.
For such programs, we could thus not be sure if the incurred speedup is circumstantial,
or actually a consequence of our transformation. On similar grounds, we ignore programs
that exhibit either speedups or slowdowns of under 1%.

2 mllvm —debug-only=glicm
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GLICM;

Let us first discuss the results obtained for GLICMg7;, which are shown in Tables 6.4
and 6.5 for single-source and multi-source tests, respectively. The tables describe the
speedups and slowdowns achieved by GLICMg#;; compared to CLANG and GCC, for
most of the programs modified by our pass. Several test cases in both the single-source
and multi-source suites have been omitted due to space considerations.

The ratios displayed for each test case are obtained by dividing the execution times of the
original programs, compiled with CLANG and GCC respectively, to the execution time of
the program optimized with GLICMgz7. Thus, values greater than 1 indicate speedups,
while values less than 1 indicate slowdowns compared to the initial programs. The
execution times we used for aggregating these metrics were averaged over 100 repeated
runs of the test suite for CLANG and GLICMg#3; , and over only 3 runs for GCC, since
our main concern is comparing GLICM#;7 to CLANG.

At first glance, experimental results show that generalized code motion was applied to a
considerable amount of programs, constituting approximately a third of the test suite.
However, for both sets of programs, the mostly insignificant improvements introduced
by generalized code motion are largely overshadowed by performance regressions, both
numerically and in terms of magnitude. Multi-source programs were particularly affected,
often doubling their execution time when compiled with GLICMg77, with several extreme
outliers.

The cause of the overwhelming number of regressions is the unconditional application of
GLICM to any non-outermost program loop in the test suite. Without the cost model,
any instruction which passes the invariance and safety tests is hoisted, leading to many
cases of bitwise operations, loads, or address computations being moved to the cloned
loop and subsequently stored in temporary arrays.

However, we do note that major improvement was achieved for two test cases:

e mandel, a single-source program which computes elements of the Mandelbrot set.
Here, generalized code motion hoisted an invariant floating point division (together
with other less profitable statements) from a doubly-nested loop in the main body
of the program. With GLICMg7;, the program achieved speedups of 1.614 and
1.734, when compared to CLANG and GCC respectively.

e power, a multi-source program which is part of a benchmark centred on evaluating
dynamic data structures [28]. GLICM modified this test case by precomputing
instructions that we normally deem unprofitable (including two getelementptrs
and a comparison) into temporary arrays, in a small function that dominates the
program’s execution time. We were surprised by the speedup achieved for this test
case, as it contradicts our intuition of profitability. When compiled with GLICMg77,
this particular program executes 1.495 times faster than the version produced by
CLANG, and 1.441 times faster compared to GCC.
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Total test cases 313
Total source files affected by GLICM 55
Total test cases affected by GLICM 55
Improvements CLANG | GCC
Benchmarks/Misc/mandel 1.614 | 1.734
Benchmarks/Misc/matmul 64 _4x4 1.018 | 2.004
Benchmarks/Polybench/linear-algebra/solvers/durbin/durbin 1.012 | 0.698
Regressions CLANG | GCC
Benchmarks/BenchmarkGame/puzzle 0.185 | 0.149
Benchmarks/Shootout /matrix 0.251 | 0.231
Benchmarks/Misc/fp-convert 0.299 | 0.294
Benchmarks/Shootout-C++/matrix 0.329 | 0.485
UnitTests/Vectorizer/gcc-loops 0.338 | 0.570
Benchmarks/Polybench /medley/floyd-warshall 0.402 | 0.474
Benchmarks/Misc/dt 0.502 | 0.500
Benchmarks/Misc-C++/oopack_v1p8 0.546 | 0.577
Benchmarks/Polybench/linear-algebra/kernels/syrk 0.585 | 0.597
Benchmarks/Polybench/datamining/correlation 0.669 | 0.667
Benchmarks/Polybench/linear-algebra/kernels/3mm 0.707 | 0.712
Benchmarks/Polybench/linear-algebra/kernels/2mm 0.709 | 0.746
Benchmarks/Polybench/linear-algebra/kernels/syr2k 0.712 | 1.120
Benchmarks/Polybench/linear-algebra/kernels/gemver 0.719 | 0.574
Benchmarks/Polybench/linear-algebra/kernels/atax 0.744 | 0.494
Benchmarks/Polybench/linear-algebra/kernels/gemm 0.758 | 0.833
Benchmarks/Polybench/datamining/covariance 0.762 | 0.756
Benchmarks/Polybench/linear-algebra/kernels/mvt 0.778 | 0.596
Benchmarks/Polybench /stencils/adi 0.810 | 0.858
Benchmarks/Polybench/linear-algebra/solvers/dynprog 0.829 | 1.395
Benchmarks/Polybench/linear-algebra/kernels/doitgen 0.851 | 0.883
Benchmarks/Linpack /linpack-pc 0.868 | 1.494
Benchmarks/Misc/ReedSolomon 0.890 | 0.863
Benchmarks/Polybench /stencils/fdtd-2d 0.936 | 0.940
UnitTests/Vector/multiplies 0.945 | 0.000
Benchmarks/Misc/oourafft 0.949 | 0.941
Benchmarks/Stanford /Puzzle 0.974 | 1.053
Benchmarks/McGill/misr 0.976 | 1.236
Benchmarks/Polybench/linear-algebra/solvers/gramschmidt 0.978 | 0.970
Benchmarks/Polybench/linear-algebra/kernels/cholesky 0.979 | 1.002
Benchmarks/Polybench/linear-algebra/kernels/bicg 0.986 | 0.636
Benchmarks/Polybench/linear-algebra/kernels/symm 0.987 | 0.963
Benchmarks/Polybench /stencils/jacobi-2d-imper 0.988 | 1.005

Table 6.4: Speedups and slowdowns of GLICM#7; over CLANG and GCC for single-
source programs in the LLVM test suite. This table omits the 10 least significant
slowdowns.



Total test cases 184
Total source files affected by GLICM 220
Total test cases affected by GLICM 94
Improvements CLANG | GCC
Benchmarks/Olden/power 1.495 | 1.441
Benchmarks/Prolangs-C++-/life 1.014 | 1.092
Applications/SIBsim4 1.013 | 0.961
Applications/oggenc 1.013 | 1.026
Benchmarks/Ptrdist /be 1.012 | 1.022
Applications/lemon 1.011 | 0.958
Regressions CLANG | GCC
Applications/viterbi 0.111 | 0.135
Benchmarks/TSVC/GlobalDataFlow-flt 0.170 | 0.174
Benchmarks/TSVC/Symbolics-fltc 0.189 | 0.226
Benchmarks/TSVC/Equivalencing-flt 0.195 | 0.133
Benchmarks/TSVC/ControlLoops-flt 0.231 | 0.225
Benchmarks/TSVC/Equivalencing-dbl 0.268 | 0.279
Benchmarks/TSVC/Expansion-flt 0.286 | 0.334
Benchmarks/TSVC/Crossing Thresholds-flt 0.312 | 0.354
Benchmarks/TSVC/InductionVariable-flt 0.343 | 0.323
Benchmarks/TSVC/ControlLoops-dbl 0.348 | 0.345
Benchmarks/TSVC/NodeSplitting-flt/ 0.359 | 0.403
Benchmarks/TSVC/GlobalDataFlow-dbl 0.361 | 0.359
Benchmarks/TSVC /Packing-flt 0.366 | 0.430
Benchmarks/TSVC/Symbolics-dbl 0.373 | 0.436
Benchmarks/TSVC/Searching-dbl 0.377 | 0.491
Benchmarks/TSVC/Packing-dbl 0.388 | 0.441
Benchmarks/TSVC/Searching-flt 0.392 | 0.483
Benchmarks/TSVC/CrossingThresholds-dbl 0.419 | 0.460
Benchmarks/TSVC/ControlFlow-flt 0.426 | 0.440
Benchmarks/TSVC/Indirect Addressing-flt 0.434 | 0.435
Benchmarks/Trimaran/enc-rc4 0.436 | 0.509
Benchmarks/TSVC/Expansion-dbl 0.445 | 0.490
Benchmarks/TSVC/InductionVariable-dbl 0.456 | 0.445
Benchmarks/TSVC/NodeSplitting-dbl 0.461 | 0.466
Benchmarks/Prolangs-C/gnugo 0.481 | 0.500
Benchmarks/TSVC/LoopRerolling-flt 0.482 | 0.452
Benchmarks/TSVC/ControlFlow-dbl 0.497 | 0.509
Benchmarks/TSVC/Indirect Addressing-dbl 0.522 | 0.519

Table 6.5: Speedups and slowdowns of GLICMg5; over CLANG and GCC for multi-
source programs in the LLVM test suite. This table omits the 20 least significant
slowdowns.
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GLICMc¢

The impact of generalized code motion on single-source and multi-source programs, when
applied together with its cost model, is described in Tables 6.6 and 6.7. We immediately
notice that the number of programs modified by our optimization is now drastically lower.
The cost model proved to be efficient in eliminating all but four regressions, all of which
are much less severe than those we had experienced initially. Due to relying on purely
heuristic measures that do not take wider program context into account, the cost model
is not immune to inaccurate behaviour. As a consequence, several speedups are also lost
with GLICM¢)y, including one of the two most significant improvements we noted in the
previous section.

The improved single source program which we have discussed earlier, mandel, maintains
its behaviour also in the presence of the cost model. We believe that the speedup achieved
in this case (which is impressive, given that it is induced by a single optimization) is a
glimpse into the potential of GLICM in real-world applications.

Total test cases 313
Total source files affected by GLICM 6
Total test cases affected by GLICM 6
Improvements CLANG | GCC
Benchmarks/Misc/mandel 1.624 | 1.744
Regressions CLANG | GCC
Benchmarks/Polybench /stencils/adi/adi 0.995 | 1.055

Table 6.6: Speedups and slowdowns of GLICM¢js over CLANG and GCC for single-
source programs in the LLVM test suite.

Total test cases 184
Total source files affected by GLICM 17
Total test cases affected by GLICM 12
Improvements CLANG | GCC
Applications/oggenc 1.013 | 1.026
Regressions CLANG | GCC
Benchmarks/TSVC/Crossing Thresholds-flt 0.987 | 1.118
Benchmarks/TSVC/CrossingThresholds-dbl 0.994 | 1.093
Benchmarks/7zip 0.998 | 1.035

Table 6.7: Speedups and slowdowns of GLICM¢jys over CLANG and GCC for multi-
source programs in the LLVM test suite.
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6.3.3 SPEC CPU 2006

Wanting to investigate more applications which could potentially benefit from generalized
code motion, we turned to the SPEC family of benchmarks [25], which are used as
an industry standard. Fortunately, several SPEC-based benchmarks are supported as
external tests by the LLVM testing infrastructure, which meant that the benchmark
programs could be readily built and run using the same tools we have used so far.

The specific benchmark we chose use is CPU 2006, the most recent version of SPEC’s well
renowned CPU-intensive benchmark. This benchmark consists of integer and floating
point applications written in C, C++ and Fortran. Given our purposes, we only evaluated
the performance of C and C++ benchmarks. Unfortunately, 6 of the 17 floating point
benchmarks, which we were of considerable interest to us, are implemented in Fortran,
and are thus unreachable by our optimization.

Table 6.8 shows the results following compilation and subsequent execution of the CPU
2006 benchmark using GLICM#7;. Although generalized code motion modified 11 of the
16 test cases that were executed in total, there was no significant improvement detected
in any of the programs. Moreover, regressions continued to appear due to the application
of GLICM in the absence of a cost model.

Enabling the cost model, the total number of affected programs decreases to 4. In addition,
we found that there were neither reliable speedups nor slowdowns in the test suite, since
the execution times of the affected programs was modified only marginally. Although we
would have enjoyed for GLICM to achieve tangible speedups on the applications in the
CPU 2006 benchmark, we are content with the fact that our cost model seems to always
cull the number of slowdowns to a bare minimum.

Total test cases 16
Total source files affected by GLICM 117
Total test cases affected by GLICM 11
Regressions CLANG | GCC
External/SPEC/CFP2006/433_milc 0.764 | 0.771
External/SPEC/CFP2006/447 _dealll 0.860 | 0.095
External/SPEC/CINT2006/464_h264ref 0.876 | 0.850

Table 6.8: Speedups and slowdowns of GLICMg#;; over CLANG and GCC for the
SPEC CPU2006 benchmark.
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6.4 Challenges and limitations

The performance evaluation of our new loop optimization was challenged by several
factors. While we managed to mitigate some of the impediments, others have proven to
be inherently difficult problems with no optimal solution.

Firstly, the results of our entire performance evaluation are determined by GLICM'’s
place in Clang’s optimization pipeline. In Section 6.2.1, we justified GLICM’s position
in the optimization sequence by relating to other optimization passes which we know
affect GLICM’s performance. However, considering the often subtle interactions between
Clang’s different passes, there may possibly be a more optimal position in the pipeline
for invoking generalized code motion.

Secondly, a considerable fraction of the programs in the LLVM test suite cannot be
reliably used as speed benchmarks, because their execution times are in the order of tens
of milliseconds or less. Despite our best efforts, we found that runtime variations of this
magnitude between identical runs of the same test case are not uncommon. One solution
to this problem would have been to wrap such programs in a loop and execute them
many (e.g. 1000) times, but this approach does not scale too well. In the end, we tested
the programs in test suite without altering them, at the potential cost of not detecting
some speedup opportunities.

There is yet another major limitation we faced when evaluating GLICM using real,
general-purpose applications. No matter what effect GLICM may have on a particular
loop nest, our evaluation methodology only reflects changes in the overall runtime of an
entire program. Thus, major local improvements and regressions alike are obstructed
if the loop which experiences them is computationally insignificant in the optimized
program.
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Conclusion

In this report, we described our approach towards mapping a highly domain-specific
compiler optimization to a general-purpose environment, by adapting the initial descrip-
tion of the technique and introducing additional safety considerations. Afterwards, we
outlined our strategy for implementing generalized code motion as a pass in the LLVM
optimizer, and lastly discussed our evaluation methodology.

We believe that we managed to fulfil most of the goals we set to achieve at the beginning
of this project. Firstly, we provided a functionally correct implementation of our optimiza-
tion pass in the most popular open-source compiler framework. Most importantly, this
allowed us to reach our central objective, which was to evaluate the effects of GLICM on
programs and applications of all sizes and shapes, ranging from full database applications
to focused micro-benchmarks.

The main conclusion we draw from our experiments is that generalized code motion
cannot be applied unconditionally to arbitrary programs, because it may have severely
detrimental effects on their runtime if instructions are hoisted inappropriately. Instead,
the transformation should be driven by the considerations of a cost model. Although
our proposed version proves to be efficient in cutting slowdowns, it also suffers from
inaccuracy, since it simultaneously prevents some improvements. This situation arises
due to coarseness in the model, which does not take wider program context into account,
but rather relies on local information pertaining to the currently processed loop.

Objectively, the results of the performance evaluation show that our optimization does
not generally introduce as many speedups as we had initially hoped, most likely due
to the considerable trade-offs it involves. However, this does not necessarily mean that
GLICM does not have the potential of performing better on general-purpose programs,
provided that a more accurate cost model is used. We did observe two cases of major
improvement introduced by generalized code motion, which highlight the impact a single
optimization can make if applied opportunely. Lastly, we confirmed that GLICM achieves
a considerable performance improvement on local assembly kernels when compared to
plain Clang and, occasionally, the GNU C compiler.
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7.1

Future work

Despite its achievements, the project certainly has its shortcomings, and remains open-
ended for future development. Below, we suggest a list of possible directions for extending
our work:

The cost model used by GLICM can be supplemented with more fine-grained checks,
which, as we discussed, may increase the overall usefulness of the transformation.

Although we believe our pass implementation generally adheres to good software
design practices and also to the LLVM style guide, we did not have the possibility
of fine-tuning for performance due to time constraints. A particular direction of
improvement would be reimplementing the hoistable set data structure, which
currently uses memory rather inefficiently.

The implementation of GLICM could be extended to support hoisting instructions
not only to the immediate parent of the current loop, but also to other superloops.

The applicability of our optimization can be further assessed by testing against more
benchmarks and applications. Since GLICM is enabled directly into Clang, the
evaluation process is in no way tied to the LLVM testing infrastructure. Different
C and C++ programs can be compiled with Clang and then benchmarked using
another tool set, or even directly, e.g. with the Unix time command. Alternatively,
one could focus on exploring the benefits GLICM may have on other computational
kernels specific to the finite element method.

A significant step forward would be to engage in discussions with LLVM developers
concerning the inclusion of GLICM in the main LLVM repositories. If this were to
happen, the optimization would become usable by the entire community, potentially
knowing uses that we have not envisioned.
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