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Abstract

We present an investigation into the mobile networking opportunities avail-
able on the London Underground transport network. We study the network
conditions available on the Underground by developing a signal tracking ap-
plication that locates users when travelling and allows everyday passengers
to crowd-source data. We also present DeepOpp, a context-aware mobile
system that can pre-fetch content using opportunistic signals based on mea-
surements from SignalTracker. DeepOpp also integrates an optimized ap-
proach to determine which social contents should be cached based on signal
data and phone state information. DeepOpp is implemented as an Android
application and tested on the London Underground. We also built a device
to device Android application which creates ad-hoc networks to disseminate
content on deep-line trains on the Underground.

Travelling on the Underground consumes a significant amount of time for
many commuters. Tunnels, the lack of traditional networking infrastructure,
and moving trains means that it is a challenging environment to construct
networks and share information. Using our innovative techniques we have
explored approaches covering both sub-surface and deep-line trains. Our
DeepOpp middleware offers significant improvements over previous imple-
mentations by using 2.5 times less power for each media item retrieved.
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1 Introduction

1.1 Motivation

Walk down a busy street and the wild success of social media and networks is
clear. Accessing sites such as Facebook, Twitter, and LinkedIn has become
a ubiquitous part of people’s daily routines to manage social interactions.
Media sites are increasingly offering up-to-minute bulletins as they seek to
distribute information and provide live coverage of developing events. Grow-
ing mobile network coverage and speeds, combined with decreased costs mean
that users are ever more likely to access this content on their mobile devices.
Facebook, for example, has over a billion active mobile users and accounts
for a fifth of all mobile traffic1. This level of interaction demonstrates how
people have become accustomed to accessing content through their mobile
devices and see it as a key way to receive updates and interact with people.

Coverage maps show that major cities, such as London, are fully blan-
keted in high speed mobile network coverage. However they neglect to ac-
count for the Underground train network that forms the backbone of the
city’s public transport network. London’s Underground network carries mil-
lions of workers, tourists, and students everyday underneath one of the bus-
iest global cities in the world. Each year, over two billion journeys on the
Underground are completed and the number of hours spent travelling on the
Underground each day is enough to complete 180 MEng Computing degrees
2. The Underground speeds through tunnels deep below ground as well as
tunnels near the surface that navigate through roads, parks, and even under
rivers. These conditions make relying on existing mobile networking infras-
tructure extremely difficult. On sub-surface lines with intermittent signal,
passengers have trouble knowing when they can use their phones. Users may
constantly attempt to refresh content or simply give up trying to update app
data both of which are poor user experiences. On deep line trains passengers
assume they have no access to content at all.

No public data is available regarding the exact coverage and bandwidth
available across the Underground. Projects such as OpenSignal3 rely on GPS
to collect, aggregate, and publish signal strength data, but the reliance on

1http://qz.com/301011/facebook-is-simply-crushing-it-in-mobile/
2Based on ECTS estimates (http://www.doc.ic.ac.uk/internal/

teachingsupport/ects/ects-meng.htm) and TfL Data [12]
3http://opensignal.com/

1

http://qz.com/301011/facebook-is-simply-crushing-it-in-mobile/
http://www.doc.ic.ac.uk/internal/teachingsupport/ects/ects-meng.htm
http://www.doc.ic.ac.uk/internal/teachingsupport/ects/ects-meng.htm
http://opensignal.com/


satellites for location is not feasible on a subterranean transport network.
We aim to build a system that is user friendly and can be deployed on the
Underground to collect mobile network data. With a crowd-sourced app it
should be possible to build a complete picture of networking opportunities
at each station.

Existing social media apps pay limited attention to the different media
types (text, image, and video) that can be retrieved. We can build an intel-
ligent caching system that uses our aggregated network data to decide when
to download content and which types of media can be efficiently be fetched
dependent on our network situation.

A commute during rush hour or nearly anytime within Central London
is likely to be uncomfortable with growing numbers of passengers crowding
onto the tube every year. This density and flow of travellers can be used
to provide fresh content to passengers in even the deepest tube lines. Com-
bining principals introduced to build and manage wireless sensor networks
and infrastructure-less regions, we can build a system that keeps the bustling
metropolis connected where it was not previously possible.

1.2 Objectives

1.2.1 Signal Mapping

Build a mobile app that can build a map of the network conditions on the
Underground. It should be able to scale to map the entire network and include
relevant data.

Signal mapping and data collection will provide us with knowledge of
what opportunities are available and what to priortise in the later stages of
the project. This is the primary focus of Section 3.

1.2.2 Caching Middleware

Develop an application that can target usage on the Underground to pre-fetch
and cache social media content, offering improved battery and data usage.
The app should integrate novel optimization techniques to select what content
should be downloaded.

This work will allow individual devices to have better access to informa-
tion on the Underground by building on existing state-of-the-art optimiza-
tions techniques. The work should provide fresh content while saving battery,
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memory, and data usage.

1.2.3 Device to Device Networking

Design and implement a protocol that can establish ad-hoc networks and use
passengers to bring data into the network from the surface.

We aim to tackle the final sections of the Underground that do not even
have intermittent coverage by designing and implementing a mobile ad hoc
network protocol to be used by mobile phones. The implementation and
protocol will need to be fast and adaptable given the constraints imposed by
moving trains.

1.2.4 Real World Data

Throughout the project we will test on the Underground to provide accurate
results using real hardware.

We aim to collect data in the real world which will provide us with greater
confidence in the usefulness and correctness of our solution.

1.3 Contributions

• SignalTracker - A SignalTracker Android application designed for
recording and submitting crowd-sourced data measurements. An intu-
itive interface that provides users with direct feedback of their record-
ings makes it accessible for a non-technical user base. SignalTracker
was able to record over 20,000 signal readings submitted by six users
from a range of backgrounds.

• Underground Location Service A location database and mapping
scheme which does not rely on GPS. The scheme can locate a phone
to station-level accuracy within seconds of entering a platform. Over
33 stations were mapped using this scheme using the SignalTracker
application. The location service is used by both SignalTracker and
DeepOpp.

• Data collection - Using controlled supervised collection and crowd-
sourced data we have collected the first available mobile signal data
on the Underground. In addition, both 3G bandwidth and latency
readings were collected on a portion of the Underground.

3



• DeepOpp - A mobile prefetching and caching system that runs on
Android, integrating optimization techniques to selectively download
different types of media and content, providing savings of up to 52%
on data transferred. A scheduling system, that relies on historic signal
data locating passengers and their direction of transport can reduce the
amount of power needed to download social media items by 2.5 times
in comparison to baseline techniques.

• MetrOpp - A protocol is proposed that allows for a mobile ad hoc
network to be created that can disseminate information between phones
using WiFi Direct. An implementation application on Android has
been created to demonstrate the protocol with a real use case scenario.
The protocol allows phones to discover, connect and share updated
state information within 6 seconds.

• Research Paper - Collaborated on the DeepOpp: Context-aware Mo-
bile Access of Social Media with Opportunistic Connectivity in the Lon-
don Underground which is to be submitted to The 35th Annual IEEE
International Conference on Computer Communications.

• ICRI Presentation - Presented initial findings and methods from
our Underground data collection at the Intel Collaborative Research
institute (ICRI) Sustainable Connected Cities workshop in London.

1.4 Structure

The report is divided into three dedicated sections for SignalTracker, Deep-
Opp, and MetrOpp. Each of these is discussed in their section in full with
distinct designs, implementations, evaluations, and conclusions.

4



2 Background

It is important to consider and understand background information on the
London Underground network as it forms the motivation for the project.
We will discuss some patterns and information regarding the specifics of the
Underground and then proceed on to consider related works in section 2.7.

2.1 London Underground

London Underground consists of 11 different lines making up 403km of tracks
[16], that covers Greater London. Seven of these lines are considered deep-
lines, the remaining four are Sub-surface. Lines may travel both underground
and above ground depending on where the train is. For example, the North-
ern line is a deep line train but has 14 of its 50 stations above ground. For
lines like the Piccadilly line, the above ground sections tend to occur further
away from Central London.

Figure 1: Tower Hill junction [14].

Lines on the tube often share tracks and platforms with certain stations
offering the chance to interchange between lines. Figure 1 shows a an ex-
ample of the interaction between lines and stations. The Circle line and
District lines share the route from Monument station to Tower Hill station.
At Monument station both lines stop on the same platform. After Tower
Hill station, going East, the lines diverge with the Circle line continuing to
Aldgate and the Distict line going to Aldgate East. There are several types
of ways a passanger may interchange between lines:

Same Platform At Tower Hill to switch between the Circle and District
lines a passenger can exit a train and wait on the same platform for
the next District line train to continue their journey.
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Different Platform At Bank to switch between the Northern line and the
Central line, a passenger will stay in the same station but must go to
a different platform. For some stations these platforms are located in
different area. For example, at South Kensington station, Platforms 1
and 2 (District and Circle lines) are above ground and Platforms 3 and
4 (Piccadilly line) are deep below ground.

Pedestrian Subway The standard map shows an interchange between Mon-
ument and Bank. To make this change a passenger will go through a
pedestrian underground tunnel. This is similar to changing platforms
within a station, but passengers actually end up in a different station.
The passenger doesn’t pass through any exit gates and may not be
aware that they have even moved to a new station.

Above Ground Walk A passenger at Tower Hill could change from a Cir-
cle line train to the Docklands Light Railway (DLR) by exiting the
station and going above ground to a nearby station (Tower Gateway).

Passengers may depart from the tube directly to other means of transport
without exiting a station above ground. This includes stations that offer
connections to airports, rail, or shopping centres.

According to Transport for London (TfL) in 2009/2010 the average Lon-
doner spent 9.3 minutes per day on the tube [13]. There are over 2 billion
journeys made on the Underground network each year. TfL partnered with
telecommunications provider Virgin Media to bring WiFi to the tube [15].
Currently they provide service to 150 of the 270 stations that the Under-
ground serves. Customers of Virgin Media, EE, Vodafone, O2, and Three
networks can access the WiFi at no extra cost. For passengers that are not
customers of the previously mentioned networks, prices range from £2.00
for a day pass to £15.00 for a two month pass [35]. In Zone 1 all but one
(Tottenham Court Road) station has activated WiFi [17], with outer zones
generally having less access.

According to Virgin Media [36] 2.5 million people have registered for
WiFi.

TfL publishes a number of feeds that are publicly available. There is a
live feed for tube arrival time predictions, giving an estimate for when a given
train will arrive on a station platform.

6



2.2 Mobile Networks and Signal Measurement

2.2.1 Network Structure and Standards

This project focuses on the mobile network and operators in the United
Kingdom. There are four main mobile network operators in the UK: EE,
Vodafone, O2, and Three. Additionally, BT Group and UK Broadband own
mobile spectrum licenses. The amount of spectrum varies greatly between
operators. Figure 2 shows the mobile spectrum holdings of these companies.
The spectrum frequency used and the locations of base stations will affect
the quality of the link.

Figure 2: UK mobile spectrum holdings in MHz after the 2013 4G auction
[5]

Table 1 shows the technologies that each operator utilizes in their net-
work. The theoretical down-link speeds are the highest theoretical speeds for
each technology, but variations in implementations and specification devel-
opment for each technology means they may differ fbetween networks. 3G
commonly refers to EDGE, UMTS, and HSDPA. 4G can refer to DC-HPSA+
and LTE. These classifications are set up the United Nations’ International
Telecommunications Union (ITU), but marketers and phone signal indica-
tors may use different classifications. We can see that the type of connection
we have greatly affects the possible speeds that we can attain. According
to OfCom [38], in mid 2014 the average London HTTP download speeds on
4G networks were 13.1Mbps and 4.1Mbps for 3G networks. We refer to the
Ofcom Research Document [38] for a detailed breakdown of mobile network
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performance.

Table 1: Mobile Operators and Network Technology

Technology Operators [39] Downlink Speed
GPRS EE, O2, Vodafone 0.171Mbps [21]
EDGE EE, O2, Vodafone 0.384Mbps [21]
UMTS (W-CDMA) EE, O2, Vodafone, Three 0.384Mbps [21]
HSDPA EE, O2, Vodafone, Three 21Mbps [23]
HPSA+ (DC-HSPA+) EE, O2, Vodafone, Three 168Mbps [28]
4G LTE-A EE, O2, Vodafone, Three 300Mbps [22]

2.2.2 Measuring Cellular Data Signal Strength

Measuring signal strength is important to this project and also if techniques
like Bartendr[42] are to be used. Tan, Lam, and Lau [44] provide various
measurements taken under different network conditions to asses the stability
and bandwidth related to measuring signal strength. Their work shows that
downlink data bandwidth can vary depending on the level of network activ-
ity. At an urban ferry pier there was a difference in downlink bandwidth
of only 0.67% between a moderately busy network and a near idle network.
The paper indicates a great difference in network bandwidth when the net-
work activity becomes very busy. Data collected at an urban shopping center
shows a drop in bandwidth of 48.53% between near idle and very busy net-
work levels. Unfortunately, the authors don’t go into detail about how they
categorized the network activity levels making it hard to relate back to Un-
derground data. The research does highlight the potential issue of bandwidth
changing significantly in the same location during times like rush hour when
the Underground can get extremely crowded. The paper also notes that even
though signal strength may be stable at a location, the bandwidth could still
change by up to 54%.

The research also indicates many differences between network operators
and the impact that is has on data transmission. The authors conclude that
the network configurations vary substantially between operators for measure-
ments such as TCP retransmissions and guaranteed minimum bandwidth
allocations.
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Spirent Communications 4, a telecommunications testing company that
Ofcom uses, found that there is significant differences in measured download
speeds between mobile devices running under the same conditions [9]. They
attribute this difference to issues ranging “from firmware issues to antenna
issues to poor design or IP configuration” [9]. Ofcom describe their method-
ology for measuring mobile network statistics in their research report [38].
Ofcom ensured fair readings amongst network operators by taking simul-
taneous readings, using identical handsets, rotating SIMs between devices,
and others outlined in their report. Both research and industry experience
indicates that several considerations have to be taken into account when
measuring and recording mobile network data.

2.2.3 Signal Strength in Android

This section gives a brief overview of the options and APIs available in An-
droid for retrieving signal strength and other relevant cellular data. There
are two techniques that the Android API exposes to get signal strength.
The first is the event handler, onSignalStrengthsChanged. The event handler
provides a SignalStrength object exposing various methods to get different
types of signal strength. We are interested in the GSM signal it provides
5 as values 0-31 and 99. These values are outlined in the ETSI (European
Telecommunications Standard Institute) Technical Specification [26]. RSSI
values from 0-31 correspond to range from -113dBm to -5dBm and an RSSI
of 99 representing an unknown or undetectable signal.

Starting in Android API level 17 (4.2 Jelly Bean) Google introduced
the getAllCellInfo() call in TelephonyManager which can be called on de-
mand. This returns a list of CellInfoGsm, CellInfoCdma, CellInfoLte and
CellInfoWcdma with each object corresponding to the relevant network tech-
nology (see Table 1). Each object has a method to get the signal strength
which can be easily retrieved in a variety of measures such as dBm or ASU.
The ASU measure conforms to the relevant ETSI specification 10.3.0 [27],
and for our purposes is the same RSSI as described above with regards to
conversion to dBm. While this API is documented there are several devices
that do not implement it and an open bug report exists with Google regarding

4http://www.spirent.com/
5The getCDMADbm() refers to the CDMA standard, a GSM competitor, not to be

confused with W-CDMA which can be used with GSM.
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this 6.

2.3 Mobile Data Collection

Collecting data is a crucial part of understanding signal patterns on the
Underground. There are several existing frameworks and tools that can be
used to collect necessary data such as WiFi access points, cellular signal
strength, and device information.

2.3.1 Funf

The Funf Open Sensing Framework 7 is an open source and “extensible sens-
ing and data processing framework for mobile devices.” Funf targets Android
smartphones and offers a built-in set of data probes providing sensor informa-
tion that is then stored and can be analyzed. The framework uses a resilient
storage solution and has been deployed for long periods of time by its devel-
opers at the Massachusetts Institute of Technology (MIT). While there is no
built-in probe for retrieving signal strength, the framework can be extended
to accommodate this. The developers offer an off-the-shelf app called Funf
in a box which requires very little configuration and setup to use. Funf in a
Box does not provide sensing for getting mobile signal data.

2.3.2 Open Data Kit

The Open Data Kit 8 is an alternative data collection project for Android.
The open source app offers a set of data forms that can be used to collect
manual data or interact with the phone sensors. No pre-built forms are able
to capture the cellular signal data we require, but it would be possible to
create a new one. To automate the collection process the source code would
likely need to be modified. Funf is targeted more at the automated sensor
collection we require and includes a more comprehensive pipeline allowing
easier data analysis.

6https://code.google.com/p/android/issues/detail?id=60430
7http://www.funf.org
8https://opendatakit.org
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2.3.3 Spirent Datum

The Spirent Datum [9] tool was used by Ofcom in their 2014 testing of mobile
broadband [38]. The tool is available for free download on all three major
mobile app stores. Its comprehensive tests cover various use cases such as
downloading data while in a call, web page load times, and HTTP speeds
for various size files. The app with default settings takes over a minute to
conduct a test. The tool is likely too slow to give us the granular data that
we need whilst on a moving train. It is also limited to collecting either just
WiFi or just mobile network signal, but we want to scan for multiple data
at the same time. The tool may be useful in helping measure the accuracy
of other sensing apps, like Funf. If we require stationary measurements (for
example at platforms) then we could use the Datum app - but we must be
cautious to calibrate the readings to match ones from Funf.

2.3.4 LiveLab

While the previous two data collection solutions are based on the Android
mobile OS, LiveLab [43] runs on iOS. The application is also able to collect
data from more sources than just physical sensors or user input. For example,
it can collect detailed usage information for a user’s apps such as the number
of launches and time spent in a given app or app category. This could be
particularly useful for understanding passenger app behaviours when on the
Underground. The authors seem to limit their reach by writing the code for
iOS and requiring users to ’jailbreak’ their devices in order to gain root access
on the phone required for the data collection. While the project website lists
a section for the source code, it doesn’t appear to be currently available.
The data they collected showed that Facebook was one of the most popular
communication apps used by the study participants.

2.3.5 Wireless Sensor Networks and Data Collection

Adeel, Yang, McCann[1] propose a sensing network that can collect under
both real-time and delay tolerant scenarios. In their Mobile Urban Sensing
System (MUSS) phones can either submit collected data directly or though
multiple other phones communicating using short range radios. With large
amounts of data it is not always feasible to rely on cellular networks to trans-
port this data. Instead the authors capture on the increasing prevalence of
short range communications available on mobile phones in order to efficiently
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communicate these large data packets. Their work outlines a neighbour dis-
covery scheme as well as techniques for the MUSS to self organise and handle
heterogeneous data types with differing characteristics and restrictions. An-
other approach by the same authors in [50] improves routing by using social
awareness to optimize the use of having people transport and offload sensing
data in an urban environment.

CrowdWiFi [49] proposed by Wu et al. is specifically targeted at map-
ping WiFi access points (APs) for vehicles using crowdsourcing. Their system
builds roadside AP distribution estimates to help travelling vehicles intelli-
gently manage their connectives based on AP profiles and location. Crowd-
WiFi operates using two components on the phone and server which help
assemble and aggregate information to build these estimates. As vehicles
are often fast moving it relies on Compressive Sampling [8] to build a more
accurate measure of signal strength of WiFi APs. CrowdWiFi can take sig-
nificantly less signal readings to build an accurate measurement and provide
improvements of over 80% compared to existing technologies.

2.3.6 Incentivisation in Data Collection and Relay

When any agent is required to perform a task or sacrifice resources it is impor-
tant to consider their motivation and ways to incentivise them to participate
in large scale data collection or distributed network. MUSS[1] provides an
economic framework allowing each agent to set a data selling price which can
be translated into a monetary value using a server set parameter. By using
their neighbour discovery scheme each node can calculate the neighbour that
will generate the most profit when forwarding data to be offloaded. In [50] an
economic network for data production and transport is used allowing trading
between people who act as carriers of sensing data.

2.4 Device to Device Communication

2.4.1 Wireless Communication Standards

As part of the project we will be interested in device to device communication
between Android phones and so provide some background and research into
the offerings available. The key characteristics when we make a decision
about which wireless standard to use will depend on the range, bandwidth,
energy consumption, as well as support for the standard. We look at each of
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these aspects for different standards.

2.4.2 Bluetooth

Bluetooth was originally created to replace data cables and enable short
range transfers between devices. It operates between 2.4 to 2.485 GHz on
unlicensed spectrum. Several classes of Bluetooth radios exist that can pro-
vide differing ranges, with class 2 radios found in most phones providing a
range of 10 metres. The advertised throughput of Bluetooth is 1-3Mbps using
100mW of power. Bluetooth has been part of the Android OS since its first
release and the recommended API libraries have been included since 2009
9. Bluetooth supports service discovery so that devices can find peers that
specifically work with a given service. Bluetooth supports multiple different
protocols for various tasks (service discovery being one of them). Radio fre-
quency communication (RFCOMM) provides a data stream similar to TCP
for transferring data and also supports several other protocols that can ac-
complish similar tasks such as File Transfer Protocol (FTP) and Object Push
Profile (OPP).

2.4.3 Bluetooth Low Energy

Bluetooth Low Energy (or Bluetooth Smart) is a power friendly version of
Bluetooth targeted towards devices running with very small batteries for long
periods of time. It aims to match the ranges of Bluetooth, but with consid-
erably less power usage. It has a maximum application layer throughput of
236.7 kbps[20], although actual transfer rates can be much lower than this.
Gomez et al. found in experiments that their throughput rate was only 58.48
kbps.

2.4.4 WiFi Ad-hoc

WiFi provides an ad-hoc mode which can create networks without infras-
tructure. Ad-hoc mode is able to chain up connections and doesn’t rely on a
central group owner or access point meaning that the range of the network
can be quite large and there is much less reliance on the presence or location
of a single node. It is also quite dynamic to topology changes in a network

9http://developer.android.com/reference/android/bluetooth/

package-summary.html
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and offers true peer to peer networking. WiFi ad-hoc mode has no explicit
requirements for security either giving the developer more flexibility with
how they want to authenticate users and control access to data. It possible
to create an ad-hoc network without any encryption at the networking layer
and instead rely on higher layers to provide the data encryption mechanism.
This mode is not supported by Android phones, unless they have been rooted.
This appears to be a deliberate omission by Google as Thinktube.com10 have
attempted to merge support for WiFi Ad-hoc into the Android Open Source
Project (AOSP), but had their patch rejected. They have included support
for this mode in CyanogenMod, an open-source mobile OS based on Android.
It doesn’t appear that this mode will be available in any versions of Android
and so will not have widespread support.

2.4.5 WiFi Direct

WiFi Direct is a new specification designed for device to device communi-
cation built on top of WiFi and managed by the Wi-Fi alliance11. Devices
proceed through two stages in forming groups - device discovery and group
formation. In device discovery devices scan through multiple WiFi channels
to find existing clients. There are multiple procedures for group formation,
which can occur unilaterally by a single node or through a negotiation when
forming a group with a neighbouring node. In [10] Conti et. al measure the
times for group discovery and group formation, displayed in Figure 3. We
can see that under autonomous unilateral group creation the process finishes
within five seconds and can take longer for the other two processes. The
worst case is a time of 27 seconds to complete the process.

WiFi Direct does rely on the Group Owner (GO) to be present and will
require new group formation if that GO drops from the network and in this
sense is not a true peer to peer network system. It also means that all devices
must be within range of the GO. The range of WiFi direct can be up to 200
metres12, but most devices support a signal range of 100 metres. WiFi Direct
also supports service discovery. Throughput speeds can be up to the regular
WiFi speeds of 250Mbps.

10http://www.thinktube.com/component/content/article/

19-technicalinformation/46-android-wifi-ibss
11http://www.wi-fi.org/discover-wi-fi/wi-fi-direct
12http://www.wi-fi.org/knowledge-center/faq/how-far-does-a-wi-fi-direct-connection-travel
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Figure 3: CDF Discovery and Group Formation[10].

2.4.6 WLAN-Opp

WiFi-Opp is a proposed standard put forth by Trifunovic et. al in [45] and
implemented as WLAN-Opp on Android in [46] to tackle the shortcomings
of some of the aforementioned standards. The authors cite WiFi ad-hoc’s
lack of support on mobiles and Bluetooth’s short range and pairing process
as being too limited for real world mobile opportunistic networks. The initial
system design was published in September 2011 and Google only released the
first version of Android supporting WiFi Direct in October of the same year
13, although the authors believed it would not deliver the desired freature
set. WLAN-Opp can either connect devices without existing infrastructure
or through open access points. The authors detail how phones can connect
to open WiFi access points and use this infrastructure to send peer to peer
messages. They claim this approach can also work on some paywall access
points which still allow the node to node communications as long as they
do not make any external requests to the internet. This is an innovative
approach to save on battery life by not requiring any of the participating

13urlhttp://developer.android.com/about/versions/android-4.0-
highlights.html#UserFeatures
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phones to act as an access-point which is a power intensive operation. In
order for phones to join the same open network they will cycle through and
attempt to connect to available networks.

If no access points are available then the phones can communicate through
a single phone that acts as an access point. If no available networks are found
then a phone will create an access point with a probability of pAP. Access
points are created by using hidden Android APIs and enabling the internet
tethering features available on most phones. pAP is dependent on the number
of recent neighbour nodes CNR encountered which is defined as

C(Nr) =

{
Nr if Nr > 0

2 otherwise.
(1)

pAP is then set to

pAP
on

(
tAP
off , Nr

)
=

{
1

C(Nr)
if tAP

off > tAP
on,min

0 otherwise.
(2)

where tAP
off tAP

on,min determines whether sufficient time has passed since
the device was last in access point mode.

The authors claim that this is the ideal trade-off between finding the next
available access point quickly and not creating two disjoint networks. Tri-
funovic et al. presents a compelling new system that can indeed improve
upon many of the limitations in existing wireless communication standards.
The authors were correct that WiFi Direct does not provide a comprehensive
solution and still suffers from cumbersome pairing processes. Their solution
is impressive and novel, but does rely on using hidden APIs which are undoc-
umented and may change at anytime without notice. They leave some minor
UI problems as WLAN-Opp is making use of tethering features to implement
WiFi access points on Android.

Both Kalic, Bojic, Kusek [29] and Friedman, Kogan, Krivolapov [18] have
published results comparing energy consumptions and throughput of WiFi
and Bluetooth communications on Android phones. Friedman et al. finds
that WiFi communication is much more vulnerable to the interference cre-
ated by other WiFi transmissions than Bluetooth with respect to the interfer-
ence created by Bluetooth transmissions. The authors note that the specific
devices used were able to handle interference differently. Friedman et al.’s
research shows that sending a file through Bluetooth was about 2.92 times
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more energy efficient than sending it over WiFi. Work in [29] shows this ratio
to be a more modest 1.32. According to Kalic et al. for larger file downloads
WiFi becomes more efficient per byte transferred. The throughput ratio for
WiFi over Bluetooth was found to be 2.78 in [29].

These results are going to differ based on the exact devices used and
software installed. We can see that in the differing values obtained between
the two papers and it is important to note that while both papers were only
published two and three years ago, Android has gone through multiple new
OS releases since then.

2.5 Routing Protocols

Routing protocols for delay tolerant networks aim to transport and route
data throughout a network from a source to a destination. Routing may in-
volve unicast messages (addressed from one node to another arbitrary node),
multicast (one to many), broadcast (one to all) and others. We will look at
some of the routing protocols that are important and relevant to delay tol-
erant networks (DTNs) and Mobile Ad Hoc Networks (MANETs) and some
of the specific schemes set up using these protocols.

2.5.1 Epidemic and Gossip Routing

Epidemic routing uses ”random pair-wise exchanges of messages among mo-
bile hosts [to] ensure eventual message delivery”[48]. The goals are to maxi-
mize delivery rate and minimize latency and power consumption. Each node
communicates with nodes that it intermittently comes into contact with. To
prevent duplications, the nodes maintain a ’summary vector’ which is a hash
table indexed by a unique identifier for the messages it is holding. When
nodes come in contact with each other they exchange summary tables. Then
each node requests copies of the messages it has not seen. A hop count limits
the maximum number of times a message will be copied to reach its desti-
nation. Optional acks provide confirmation on delivery. The authors of [48]
used the Monarch simulator to implement this protocol and found that for
radio ranges of 25m and over there was a 100% delivery rate.

PRoPHET [34] and MaxProp [7] both seek to improve on the efficiency of
epidemic routing by only eliminating redundant message transfer. PRoPHET
uses non-randomness of real world movement to generate probabilities that
passing on a message will increase the chance of it being delivered. MaxProp
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does copy all messages like in epidemic routing, but uses an ordered queue
to manage which messages get copied first and which ones get dropped first.

Allavana, Demers, and Hopcroft present a gossip protocol in [2]. In their
protocol nodes maintain lists of views which contain subsets of the overall
group membership. In each round the two lists are updated with nodes
picked at random based on a reinforcement weighting factor.

Epidemic and gossip protocols are simple and can easily propagate in-
formation. Their shortcomings are related to their power consumption and
efficiency in sending redundant information in the hope that it will reach
its destination. In an information dissemination scenario this is not such a
problem.

2.5.2 Trickle

In [33] Levis, Patel, Culler, and Shenker propose Trickle which is a system
to provide code updates in wireless sensor networks. Dealing with the power
constraints imposed by these networks they seek to minimize maintenance
while allowing rapid propagation and scalability. A node in Trickle will
periodically transmit metadata if it has not heard other motes send this
same information. An example is if node A has code version ϕi and node
B has version ϕi+1. It does not matter which of these two nodes transmits
their version first. If A transmits first then B will know that A needs a newer
version of the code. If B transmits first then A will realize a newer version
is available. The protocol has been used as part of the Deluge protocol and
on Berkeley motes.

Trickle is specifically designed for information dissemination and updating
nodes to their most recent versions. It keeps messages to a minimum by
only broadcasting periodically and remaining silent if known nodes are on
the same version of metadata as they are. This is an efficient system for
managing such data and could potentially be used in other contexts outside
of low power motes in wireless sensor networks.

2.6 Network Simulators

2.6.1 NS-3 and NS-2

Ns-3 is an open source discrete-event network simulator. It allows a variety
of routing algorithms and models to be run on top of it and is specifically
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designed to be open and extensible to target the research community. It
supports a real time simulator and can be integrated with existing networking
infrastructure to provide simulations based off WiFi IP and non-IP protocols.
According to [31] the NS-2 simulator is the most popular simulator used in
papers submitted to the ACM International Symposium on Mobile Ad Hoc
Networking and Computing (Mobi-Hoc) conference.

2.6.2 The ONE Simulator

The Opportunistic Network Environment (ONE) simulator[30] is designed to
test and simulate delay tolerant networks. The main features of ONE are:

• generating node movement

• routing messages between nodes using DTN routing algorithms

• visualizing these simulations in a graphical user interface.

The simulator is Java based and specifically tailored towards testing delay
tolerant networks. Different scenarios are setup that can test the performance
of opportunistic networks depending on node mobility, density, routing algo-
rithms, range of transmission technology among others.

The simulator’s website14 hosts the source code of the project which allows
developers to extend the project to include new message creation types and
routing algorithms. The compiled project is run alongside a configuration
file that contains all of the parameters for the simulation. We will not go
into detail about the parameters here, but more information can be found in
the README and by browsing the javadocs for the simulator.

2.6.3 Accuracy of Simulators

Kurkowski, Camp, and Colagrosso [31] study the accuracy, believability, and
repeatability of simulators used in papers submitted to ACM’s Mobi-Hoc
conference. They find that less than 15% of the published MobiHoc pa-
pers are repeatable and only approximately 12% of the MobiHoc simulation
results appear to be based on sound statistical techniques. They outline sev-
eral pitfalls that researchers succumb to when they run simulations. These
include mistakes such as:

14http://www.netlab.tkk.fi/tutkimus/dtn/theone/
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• Not changing the pseudo random number generator (PRNG) seed be-
tween trials.

• Relying on a single set of source data or not stating the number of
simulations run.

• Not discussing statistical analysis methods or providing confidence in-
tervals.

The paper surveyed papers submitted between 2000-2005, so hopefully the
more current results are more accurate and repeatable.

2.7 Related Works

2.7.1 Location Aware Networking

There are several projects and research that has gone into using location
and previous signal strength history to predict future movements and co-
ordinate networking activities around these predictions. BreadCrumbs [42]
uses a second-order Markov model to predict future movements. Locations
are grouped into discrete areas and predictions for future movement can be
made for varying times in the future. Their results are promising and pro-
vide better than 70% accuracy for looking one step in the future. By allowing
for location prediction mistakes where the network conditions between the
prediction and actual future location are similar the accuracy is 90% for one
step predictions and 80% for predictions six steps in the future. The paper’s
methods were specifically designed to take into account the low energy and
computing requirements that mobile computing imposes. BreadCrumbs uses
Place Labs [32] to predict locations. Place Labs is able to estimate loca-
tions even when direct GPS measurements are not available. It does this by
mapping fixed beacon (WiFi access points, bluetooth connections, and cell
base stations) locations to the beacon’s unique identifier. This technique is
tested and proved quite accurate in indoor locations, providing accuracy to
20.5 metres in an urban setting. Deshpande, Kashyap, and Das use a simi-
lar technique when attempting to predict availability of future WiFi access
points in moving vehicles [11]. Their technique generates an RF fingerprint
which consists of even more information than Place Labs uses. The RF fin-
gerprint includes the signal to noise ratio, MAC address, SSIDs, access point
security information, and network layer data such as the default gateway and
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DNS server. The authors use some of this additional information to provide
a more detailed picture of what access points a device may be able to connect
to.

Place Labs uses the wigle.net 15 database to obtain additional WiFi to
location mappings. The service offers over 170,000,000 WiFi network map-
pings. The service also offers an API and access to the data. An Android
application is also available that allows automatic mapping and uploading.
Unfortunately this app must rely on the GPS coordinates provided by the
phone’s OS in order to get the location. This will prove problematic on the
Underground when no GPS signal is available.

Bartendr [42] builds upon some of the previous work from the Bread-
Crumbs and Place Labs. Crucially the authors find that “pattern of varia-
tion in signal strength is quite stable when location is coupled with direction
of travel.” By using prior tracks of signal data Bartendr is able to “predict
signal strength 800 s in the future without a significant increase in error.” By
introducing the idea of measuring and predicting based off of signal tracks
we can get an accurate estimate of what our signal strength will be over
ten minutes in the future. This recording and measuring method is highly
suitable to the Underground network where we have a well defined track we
are measuring against.

The authors of the Bartendr paper also measure the difference in signal
strength when traveling in one direction and when traveling in opposite di-
rections. Their experiment is conducted by traveling on a road for a length
of 17km. Figure 4 shows the differences which the authors conclude that “it
is clear that there is less correlation when traveling in opposite directions”
[42]. This will be particularly relevant to take into account when measuring
signal strengths when traveling in opposite directions on the tube.

2.7.2 Contextual Information in Opportunistic Networking

We can incorporate additional contextual information to help better deter-
mine how we will manage inter-device communication. Boldrini, Conti, Del-
mastro, Passarella present a context and social aware middleware for oppor-
tunistic networks [6]. They define three types of contexts which are summa-
rized as:

User Context The name, location, timetable, and other personal informa-

15https://www.wigle.net
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(a) Signal Strength over a number of
drives in the same direction (Schulman
et al., 2010)

(b) Signal Strength over a number of
drives in different directions (Schulman
et al., 2010

Figure 4: Differences in measuring signal strength depending on the direction
of travel

tion of the user. We can use this to build a picture of the user’s social
network.

Service Context The interests of the user. Could be obtained by manual
input or from the user’s social network profiles.

Device Context Sensor information, battery profile, and other device data
that can be used to help manage resources.

The service context is used to determine the interests that users will
have in particular pieces of content. For our purposes this could be more
easily related to the benefit function and utility value described by O2SM[51].
O2SM describes a concrete algorithm and process for obtaining a numerical
value to represent this which can be used and is especially powerful as it
more closely relates to our problem of providing efficient access to a user’s
personal social media news feed.

The goal of using the context and socially aware middleware is to “exploit
traveler nodes to establish opportunistic communications between separate
communities, making all the users able to share and disseminate contents
even with those users that they will never get in touch with” [6]. We can
expand the definition of a community to include the general internet as a
community. Traveler nodes will be people entering and leaving tube carriages
as they offer the opportunity to transfer data between different unconnected
communities (isolated train carriage members and the wider internet). The
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paper also introduces the concept of the weighted value for how willing a
participant is to cooperate with neighbour nodes. This is assumed to be 1.0
for a node and itself. We need to be able to balance a participant’s own
needs, but also help spread inter-community information.

2.7.3 Smart Caching

Smart caching techniques allow for data to be retrieved at optimal times.Pre-
fetching data allows data access when no connectivity is available and can
help reduce energy consumption by only accessing data at times of high signal
strength. O2SM outlines a system architecture for an Android app called
oFacebook. The authors introduce motivation for providing access to social
media on mobile devices with 55% of smartphone users access Facebook
on their phones. Their paper focuses on a general approach to providing
offline access to social media and identifies three main motivations for this:
sporadic network availability, bandwidth limitations, and high access costs.
In London, the focus of this project, these concerns are not particularly
relevant. Coverage of 3G and 4G is comprehensive across most of London.
Figure 5 shows mobile network operator EE’s 4G coverage map in London
with 4G coverage in turquoise 16.

Coverage is very comprehensive, although the map is not perfect and
indoor conditions will vary.

One of the author’s main contributions is to rank content based on the
probability that a user will view and enjoy it. Facebook continually invests
in their algorithms to “show the right content to the right people at the
right time” [4]. Twitter has begun a similar rollout of a ranking feature that
displays posts in a ranked order rather than just chronologically [41]. We
can rely on Facebook’s ranking (which is exposed through its API) to get
this ordered set of posts rather than implement it ourselves.

The system design involves a middleware that runs as a service on An-
droid shown in Figure 6. This middleware handles fetching content, profiling,
and content ranking. Individual apps then rely on the middleware to provide
them with the content they can display. This approach allows for a common
middleware platform for multiple social media services and keeps the main
ranking logic separate from the individual social app. An alternative to this
that is not discussed in the paper is to host the middleware on a server. The

16http://ee.co.uk/ee-and-me/network/4gee/coverage-checker
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Figure 5: Mobile operator EE’s 4G coverage map for London according to
their website.

app could interact with this server directly. The server could allow for more
computing power, apply compression, be easily adaptable to multiple mo-
bile platforms (iOS, Windows Phone), and more easily allow synchronization
across multiple devices. Using a server for this would also introduce privacy
concerns of storing user data, require transmitting all profiling data, and in-
troduce the cost and maintenance of the server. As a follow-up to O2SM, [52]
proposes using a broker/proxy system architecture to achieve similar goals.
Their prime motivation was that resources are wasted to check if there are
updates when no new content has been processed, and in some cases also re-
quires retrieving multiple data items and analyzing them. Their work using
the broker/proxy infrastructure offered improvements of up to 9.1 times when
on cellular data. The update service was intended to run throughout the day,
something not necessary when focusing on just tube journeys. Limiting the
scope will hopefully allow us to reduce extraneous update checks.

In order to pre-fetch data Zhao et al. propose a scheduling algorithm
targeted specifically towards mobile devices. There is a lot of research re-
garding caching social media data at Content Delivery Network sites, but
these do not take into account the energy and processing constraints of cell
phones. The scheduling algorithm is shown in Figure 7. We will briefly
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Figure 6: Middleware architecture proposed by Zhao et al. for a social media
stream of data on a mobile device. [51]

cover the Cost/Benefit and O2SMPS techniques referenced in the scheduling
algorithm.

Figure 7: Pre-fetching schedule proposed by Zhao et al. for a social media
stream of data on a mobile device. [51]

The cost/benefit model builds up a value C(i, tpre) which is the cost of
pre-fetching content i at slot tpre. This cost is a function of the weigted
energy and data costs to download the content i. A benefit value C(i, tpre)
is the benefit to pre-fetch content i if the user navigates to the social content
stream in time period tnav. This benefit function considers the energy benefit
which is modeled on models from PowerTutor 17. A similar benefit value for

17http://ziyang.eecs.umich.edu/projects/powertutor/
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cell data is factored into the benefit as is the viewing performance benefit.
The O2SMPS problem aims to maximise the total gain (benefits minus

costs) and develop a schedule that achieves this. As presented in the paper
we build up a two dimensional matrix representing whether we will download
content i at time k. The total benefit and costs equations for a given matrix Z
are shown in Figure 8. This can be represented as a Generalized Assignment
Problem.

(a) Benefit function of a scheduling matrix Z (Zhao et al.)

(b) Cost function of a scheduling
matrix Z (Zhao et al.)

Figure 8: Cost and Benefit functions of the O2SMPS problem.

2.7.4 Data Offloading

Data offloading allows data intended for one network to reach its destia-
tion by passing through others. Data offloading can take many forms, the
MADNet[24] architecture allows mobile users to transfer data between each
user’s phones and then when one of the phones has connection to a WiFi
hotspot or cellular data it can transmit messages on as part of the wider net-
work. Their data indicates that constantly scanning for WiFi access points
can bring the battery life of a phone down from 300 hours to only five hours.
The authors measure two variables that help reduce energy consumption:
scanning less frequently and scanning in areas with few available WiFi ac-
cess points.

Helgason, Yavuz, and Kouyoumdjieva propose a middleware architecture
for a mobile peer-to-peer content distribution system[25]. The structure of
contents is based on a publish/subscribe model where individual nodes in
the network can choose different data feeds to follow and communicate with
nearby nodes relaying information related to these data feeds. Users who are
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on the edge of the peer-to-peer network and are able to communicate with the
internet act as gateways to the ad-hoc mobile network. The system is best-
effort based with no guarantees on the order of delivery. To transfer larger
amounts of data the authors suggest using chunks which allow incomplete
data to be easily transferred. Their recommended size for these chunks is
16kB. Like in MADNet, battery life is significantly reduced from about 20
hours to five. The authors postulate that 802.11 wireless draws much more
energy than Bluetooth, but Bluetooth has limitations such as a “long and
inefficient discovery process” [25].

In an opportunistic network nodes may not always have a direct link to
their destination and node location and state will be dynamic. In a tube
carriage we can see that this will be the case as people and their phones en-
ter and exit trains at each platform. As the network is constantly changing
global knowledge of the network topology is not necessarily straightforward,
but can greatly help in making routing decisions. PeopleRank [37] is a novel
approach proposed that relies on user’s social graph interactions. Unlike
network topology which is dynamic and would be changing every few min-
utes on an underground car, social information is more stable and so can
provide more efficient routing decisions. PeopleRank’s approach is based off
the PageRank technique used to rank web pages. The algorithm relies on
existing social network information that is available on sites like Facebook
or LinkedIn. A PeopleRank value is calculated as shown in (3) taken from
the PeopleRank paper where N1, N2, ..., Nn are the nodes, F (Ni) is the set of
neighbours that links to Ni, and d is is the damping factor which is defined as
the probability, at any encounter, that the social relation between the nodes
helps to improve the rank of these nodes [37].

PeR(Ni) = (1− d) + d
∑

Nj∈F (Ni)

PeR(Nj)

|F (Nj)|
(3)

One of their datasets and tests rely on building relationships based on
shared common interests from Facebook profiles. At a delay time of 10 min-
utes the decentralized PeopleRank algorithm has a normalized success rate
of over 86% compared to only 58% achieved by a degree-based algorithm.
This method must rely on users opening up their social accounts to the rout-
ing infrastructure, which is not a limiting factor given we will be developing
specifically for a social network application. It also does not deal with nodes
which don’t have any social profiles or presence. Given the diverse set of
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people and number of users on a public transport system such as the London
Underground it is not likely there will be significant direct social relations be-
tween passengers, but common information such as shared interests or place
of work could be valuable in helping to determine routing decisions.

Their results across a number of datasets suggest an optimal dampening
factor of about 0.8.

Zhuo et al. outline a model for providing incentives for users on a sat-
urated network to rank and prioritize specific data to be offloaded. The
incentives in the paper comes from network operators providing discounts
for users who are willing to allow a greater delay in their data being trans-
mitted. The TfL could also be a potential source of incentives for users to
offload data. The paper details an auction and bid algorithm allowing the
incentives to be distributed and attempts to accomplish an efficient alloca-
tion of limited bandwidth between users who are waiting to offload data.
The algorithms also make use of the fact that not all users have the same
bandwidth available (dependent on mobile devices and network operators) so
we should try make use of those devices that have more bandwidth available
to them.
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3 Part I - Measuring Networking Character-

istics on the Underground

We aim to develop a data collection system that can measure mobile network
characteristics on London Underground train carriages. Before beginning to
design methods of improving data access we need objective measurements
and an understanding of what opportunities we have for building these im-
provements. There is little public data about mobile phone network charac-
teristics on the Underground.

3.1 Design

A mobile phone based solution was chosen for the data collector. Desktop
solutions running on a traditional operating system allow for full network
analysis programs to be run18, but mobile phones provide accurate and real-
istic measurements. Professional equipment may have also been an option,
but by using commodity hardware we allow for data to be crowd sourced and
incorporated into subsequent portions of this project. The available measure-
ment frameworks and tools are presented in Section 2.3. The Funf framework
was chosen due to its existing probes, open source code, and customizability.
Rather than writing a measurement application from the ground up, Funf
provided mechanisms for data persistence and backup.

The specific requirements for the app to be successful are:

• Collect data for: Mobile signal strength, WiFi access points, and mobile
network bandwidth.

• Persist data so it can be easily retrieved from devices and analysed.

• Continue to work in the face of unreliable and constantly changing
network conditions.

• Run at a high enough frequency to provide insights for sections that
are covered by a rapidly moving train.

• Run in the background when the app is not directly open.

18Wireshark - https://www.wireshark.org/ and Google Resource Timing API -
https://developer.chrome.com/devtools/docs/network among others
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• Consume a reasonable amount of battery so that multiple iterations of
data could be collected without having to charge a phone.

• A GUI to allow monitoring and operation by non-technical smartphone
users.

The Funf framework provides some of the basis of these requirements,
specifically:

• Existing code design to allow new data probes to be added and inte-
grated into the application workflow.

• Data persistence and resilience. Funf includes the ability to post results
to a simple server.

• A scheduling system that relies on some of Android's timing services
to configure and run probes at given intervals.

• Background service setup.

• An extremely basic GUI giving users the ability to toggle data collec-
tion, run scans on demand, and persist data to an SD card.

To meet our goals we would need to extend the application to provide
the following missing functionality:

• Probes for mobile signal strength and bandwidth that work in unreli-
able conditions on the Underground.

• Build a useable GUI providing more information and control.

We need a way of mapping the results of the readings to the location
on the tube network. Getting an accurate GPS signal did not work when
tested, as much of the journey is in a tunnel or on a platform below ground.
Actual results were either delayed, inaccurate, or non-existent using location
frameworks. Train timings could be used to estimate where we were on
the route and relate the readings back to the scheduled location. Like any
transport system, the timings would not be accurate enough to give locations
as trains often stop for different amounts of times and are held on platforms
and in tunnels. A difference of a minute could mean assigning high signal
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strength to a tunnel instead of the platform it was actually recorded. Taking
enough samples could help minimize these drifts, but we still want to achieve
a higher degree of location accuracy.

We chose an approach that relies on the available WiFi access points
installed at nearly all of the Central London stations. Each access point
contains a unique MAC address, which can be mapped to the station. This
method assumes that the physical access points are stationary and aren’t
moved around frequently. These mappings would give us station/tunnel level
accuracy of our data. While there are many services that provide WiFi to
location mappings, none of them provided coverage on the Underground with
mappings to stations. Measuring bandwidth also required a new probe. The
solution chosen was to begin the download of a file and measure the progress
that was made and amount of data transferred. This would mean that even
if the download took a large amount of time or needed to be reset we could
still obtain measurements.

3.2 Implementation

The probes in the Funf framework are built on top of the provided Probe.Base
class which allows the probe to fit into the lifecycle shown in Figure 9 19. Each
probe begins disabled and then enters an enabled (but stopped) state when
the user chooses to run the app. Each time the probe runs its data collecting
code it is in a running state and upon completion returns to the enabled
state until it is scheduled to run again.

Figure 9: Funf Probe Life-cycle .

3.2.1 Cell Signal Probe

As outlined in Section 2.2.2 there are two available methods to get cellular
signal strength readings on Android. We attempt to use the TelephonyMan-

19http://www.funf.org
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ager.getAllCellInfo() call which provides more detailed information, but
if it returns null then we assume the device does not support the API and fall
back to using the onSignalStrengthChanged() listener. If the phone was
in flight mode it could report that it did not support the getAllCellInfo()
call, but by running the check each time the probe is enabled we will be able
to use the best information as soon as it is available.

Depending on the type of network we are connected to (LTE, WCDMA,
etc.) different sets of information is available. For example, if a WCDMA
network is available then we can record the ’Primary Scrambling Code’, a
value described in the specification for WCDMA. For each of the different
network types we provide overloaded methods to extract and store all of the
provided information.

3.2.2 Bandwidth Probe

The bandwidth probe was created to incorporate bandwidth estimates into
the SignalTracker app and record them through the Funf framework. The
android.app.DownloadManager class in Android provides functionality to
start a download easily and then monitor its progress. A test download file
was chosen from Think Broadband 20 which hosts several different sized test
files that can be downloaded over HTTP. The DownloadManager runs the
download in the background and we query how much data was transferred
in the given time period. If the download completes then the download
manager will restart it again keeping track of the data downloaded between
downloads. Using HTTP and existing download managers means an easy
setup and will rely on the same networking protocols that actual data would
likely use in an application.

In practice the bandwidth probe did not provide reliable readings. An al-
ternative method was used to get these measurements. The popular Speedtest.net
21 Android application was used to make bandwidth downlink, uplink, and
latency estimates. As the test could take upwards of a minute to complete
the experiment was designed so that if a mobile signal was registered by
the time the train carriage doors opened then I exited the train and took
three measurements on the platform of that station before continuing the
journey. Upon the train leaving the platform a test was begun, although
in most instances the signal was too low for the test to complete between

20http://www.thinkbroadband.com/download.html
21http://www.speedtest.net/
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stations. Three trials were run for each of the measurements. All of the tests
connected to the same server helping to achieve consistent measurements.

3.2.3 UI Features

An important goal of this part of the project is gathering enough data to
make conclusions about significant portions of the Underground. It is possi-
ble for one person to collect data on a subset of the lines, but ideally people
could regularly carry out this task as they go about their day. Our goal for
this part of the project is to streamline the usage of the app so that someone
can contribute to our signal data without being burdened with a deep under-
standing of the app or any technical knowledge. The app should be simple
enough to be used and follow existing design conventions recommended for
Android applications.

With these requirements in mind we have produced an interface that
can provide a user with information about what data is being collected and
provide an intuitive way for new station mappings to be added.

3.2.4 Top Control Buttons

The top control buttons allow users to easy control the usage of the appli-
cation. These are presented on the main view of the app to allow one click
disabling, saving, or forced scanning.

3.2.5 Card Interface

Card views were introduced into Android’s Best UI Practices with the in-
troduction of Google’s Material Design language22. They provide an easy
way to convey separate pieces of information on cards. Each different set of
information is displayed on a separate card.

3.2.6 Live Measurement Information

If users are running the application voluntarily they are likely to be inter-
ested in the results reported from SignalTracker. We provide a card that
shows the exact ASU measurements as the app progresses and an enlarged
icon of the signal strength. Users are also presented with a graph of their

22https://developer.android.com/training/material/lists-cards.html
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(a) SignalTracker enabled and collecting
data.

(b) Adding a new station mapping for the
first time.

Figure 10: The SignalTracker app
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measurements over time which can be of interest to them. This graph can
also help identify any bugs in measurements and allow users to match up
recorded measurements to their experiences and expectations of signal on
their journey.

3.2.7 Station Information

Users can see what station they are currently at. This helps to identify any
mis-mapped stations.

3.2.8 Experimentation

The experimentation consisted of riding on the Underground and collecting
data in a real world scenario. Multiple journeys were carried out and this
section goes into detail about the experimentation conditions used.

Figure 11: The Route Covered.

The trials were carried out on the Circle Line between the stations South
Kensington and King’s Cross St. Pancras anti-clockwise. This set of 18
stations covers areas that are both above and below ground and ones that
have a potential for having any cellular signal strength at all. It also runs
through Central London and some of the most used stations on the Tube
network. Additionally, all of the stops on this route are shared with at least
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one other line making the data applicable to other routes that travel through
the same stations.

Data was collected across three different networks: EE, O2, and Vodafone.
Three different phones were used with each one having a SIM card from one
of the chosen operators.

The following controls were kept:

• Phone location Phones were kept in separate pockets of a polyester
jacket.

• Carriage location / platform All data was collected on the centre car-
riage on a seat facing the inside of the tracks.

• Time The data was all collected outside of rush hour from 20:35 22:15
when carriages were generally empty.

• Initial Battery The batteries of all the phones were fully charged at
the start of the data collection.

During the data collection for this portion there was a single unexpected
stop on one of the trains, but this was not likely to affect any of the readings
or results.

3.2.9 Initial WiFi Mappings

The initial WiFi MAC address mappings needed to be created so that we
could later use the access points to determine our location. For the first
round trip on the route we recorded a timestamp of when we entered a
station on the train. This was determined as the point when the seat passed
the beginning of the platform. Exiting the platform was determined as the
point when the seat passed the end of the platform. The WiFi Probe marked
each set of available WiFi access points with a timestamp.

The station entry and exit time intervals could then be mapped to the
WiFi MAC addresses that appeared at the given platform. In this stage
of the mapping we only considered WiFi networks with the SSID ’Virgin
Media WiFi’. This helps eliminate personal hotspots that may travel between
stations and allows us to focus on the networks maintained by TfL/Virgin
Media. Every MAC address was unique to a station. There were two MAC
addresses that appeared only in tunnels which were left as unknown and may
have been results of a delayed scan. A total of 108 access points were mapped
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this way. Two stations out of the 18 did not have any Virgin Media WiFi
access points available: Farringdon and Moorgate. TfL lists these stations as
having WiFi available, but it possible that they do not provide the service on
the Circle Line platform or they were temporarily down (Farringdon station
was undergoing construction work for the Crossrail project).

3.3 Results

Here we present the results from our signal tracker measurements.

Figure 12: A single journey between South Kensington and St. James’s Park.

Figure 12 shows the data from one single run of a subset of the route
covered and was collected outside of the main data collection period. Areas
shaded in dark grey are in tunnels and areas in white grey are at the platform.
The timings were taken manually for this set of data. We can see the high
sampling rate of data gives us a picture of the many changes in signal strength
during one trip. We can see drops that take place upon entering a tunnel
section and the variation between the stations. There is a delay between
entering a platform and gaining signal. Upon entering the tunnel between
South Kensington and Sloane Square we continue to get signal for a portion
of the journey and see a steady decrease in signal.

There is a mixture of both steady, slow changes in signal strength (SK-
SS tunnel) and more drastic changes (Victoria to St. James’s Park tunnel).
We see changes before we even leave platforms and delays in coming into
platforms. There is also an outlier recorded at the platform at St. James’s
Park which is likely an error in reporting. This data stresses the difficulties
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and unreliable nature of working with cellular networks on the Underground.
There are patterns specific to each location so understanding what station
we are at will be the only way we can make reasonable assumptions and
predictions about the connectivity available.

Figure 13: Average signal strengths by station and network operator.

Figure 13 shows the average signal strengths taken at each individual sta-
tion, separated by the network operator. The stations are ordered according
to their location on the route. No operator has a clear advantage across all of
the stations. At most stations where one operator can provide a signal above
8 ASU the others can too. Vodafone had recorded signal strength above eight
ASU in seven stations, EE in five stations and O2 in three stations.

The strong signal between adjacent stations suggests that we can get
longer stretches of good signal for which we can transfer data. However, the
signal may be completely gone in the tunnels between these highly connected
stations. The distribution of stations with signals does open the opportu-
nity to selectively pull down and cache data at each area. For example, if
travelling from South Kensington to Liverpool Street we could pre-fetch data
at South Kensington which could be used on the journey through stations
without any signal.

Signal strength gives us one indicator of the usability of mobile data
networks, but more telling is the estimated bandwidth available. In Figure
14 we only consider the stations, which had usable bandwidth available and
measure on the Vodafone network. All of the download bandwidths, with
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Figure 14: Average bandwidth measurements at each station that had usable
signal. Standard error bars are displayed. Ofcom London averages [38] are
displayed for comparison.

the exception of Monument station, sit between 0.5 to 1.5MB/s. The upload
bandwidths can reach higher speeds up to 2.0 MB/s.

These are all usable speeds to transfer small amounts of data. Interest-
ingly, the upload speeds are all relatively high. This makes offloading through
the cellular data a more attractive prospect. According to Ookla 23 the av-
erage mobile download speed at the time of writing in London is 15.1Mbps
and upload speed is 8.8Mbps. The published Ofcom average speeds are much
lower for London though and can be seen in Figure 14.

In Figure 15 we see that across all of the stations measured the latency
sits between 40 to 60 ms. The variation of the latency varies greatly between
stations. We can see that this value is inline with Ofcom’s London averages.

Figures 16 and 17 show the same data, but for the tunnels that have usable
signal. The downlink bandwidths are quite low in two of the tunnel sections
and the Farringdon to Kings Cross tunnel have a relatively high latency
of 122 ms. There is a particularly strong difference between the download
and the upload bandwidths in these tunnel sections suggesting they should
be treated differently. It’s also important to note that there are only three
tunnel sections that have signal high enough to conduct the bandwidth test
compared to the seven platforms in Figures 14 and 15.

23http://www.netindex.com/mdownload/4,105023/London,-GB/
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Figure 15: Average latency measurements at each station measured. Stan-
dard error bars shown. Ofcom London average [38] is displayed for compar-
ison.

Figure 16: Average bandwidth measurements at each tunnel measured. Stan-
dard error bars shown. Ofcom London average [38] is displayed for compar-
ison.

3.3.1 Accuracy and Comparison of Station Mapping

We now consider the accuracy of the WiFi MAC address scheme discussed
previously. GitHub user ’benjojo’ has published24 an incomplete list of MAC

24https://github.com/benjojo/TubeWifi
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Figure 17: Average latency measurements at each tunnel measured. Stan-
dard error bars shown. Ofcom London average [38] is displayed for compar-
ison.

address mappings to stations. None of the MAC addresses matched between
our data. However, the user’s methodology is not known and we don’t know
if they covered the same platforms or areas that the Circle line passes. The
Westminster data was added April 10, 2014 (although it is not clear on what
date the data was actually collected) so it could be out of date. If it is out of
date it could indicate that the access points change regularly at each station
(due to upgrades, maintenance, etc.). This would mean it is important to
automate the mapping and consider that access points may change during
this process.

During later experimentation the results of the station mapping could be
checked during further data collection. The station mapping was accurate
and in nearly all cases managed to identify the station before the train had
come to a stop on the platform.

3.4 Optimizations

The data gathered from the dedicated collection runs gives us a good indi-
cation as to the levels of signal strength at various stations. However, there
is only so much data that one person can collect and we can see variances
in the sample size of the data from the limited number of trials. After the
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initial data collection was carried out the app was extended to allow the col-
lection of data from any number of phones. One of the limiting factors of the
previous design was collecting the data and parsing it for analysis. While the
app’s UI allows for easy interaction getting the actual data into a workflow
was more laborious.

In [19] Gallacher et al. present three challenges of crowd sensing data.
They are:

Accessibility Engaging less technical competent individuals.

Incentivisation and Sustained Participation Need to consider rewards and
incentives for participation. The authors claim that many existing
devices do not provide any visual feedback of what is being sensed
making it hard to engage the user.

Deployment Practicalities For dedicated sensors it must be possible to de-
ploy without causing alarm or suspicion. This is less relevant to our
mobile application.

We seek to address these concerns in our optimizations.

Figure 18: System structure with Signal Tracker Web service
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Introducing a server to collect data allows us to easily get access to signal
readings and station MAC address mappings and also allows the app to
update with the most recent version of the tube graph. The structure and
basic interactions of the system are displayed in Figure 18 with client devices
sending updates to the web server which provides updated tube graphs to
each client on synchronization.

A combination of Node.js, Mongodb, and Express were chosen to build
the backend infrastructure of the server. These technologies all integrate
well together as part of the MEAN stack 25 and can be set up with little
overhead using Yeoman 26. This quick setup as well as prior familiarity with
the tools meant the functionality could be added relatively quickly allowing
for further data and evaluation to be performed on the app. Mongodb was
a logical choice for storing the document data as the app was already using
JSON objects to represent the tube graph and could store these in Mongo’s
native format.

Selecting a REST API means it is supported well by Android libraries
and can be integrated in a future workflow if needed. The REST interface
sits between the Android application and the data store. This means that
we can better manage authorization to the data and do not have to store any
database credentials on the distributed application. This layer also means we
only have to maintain one codebase to do the processing of the data before
adding it to the database.

The implementation of the server exposes three API endpoints which
the app can communicate with. These are listed in Table 2 alongside a
description of each endpoint.

Table 2: API Endpoints for SignalTracker Server

End Point REST Method Description
/api/stations POST Send updated station MAC mappings
/api/signals POST Send updated station signal readings
/api/tubegraph GET Retrieve a new copy of the tube graph

25http://mean.io
26http://yeoman.io/
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We use the Retrofit 27 library to create a Java interface (SigTrackWebService)
out of these API endpoints. When we collect either signal strength data or
MAC address mappings we update our local tube graph to represent these
changes. In addition we also persist these in the form of JSON files to the
phone’s storage. By doing this we ensure that any data collected is not lost
if the app is restarted and keep memory usage low. When the app is ready
to synchronize, these files are POSTed to the server and upon successful ac-
knowledgement we can clear our local cache. We also request a new tube
graph representation that should take into account the changes that we have
sent as well as any new data from other phones. This new tube graph comes
directly as JSON and replaces the previous tube graph on storage and is
reloaded into the TubeGraph class.

This server addition means the app could be adopted by a large number
of people all contributing to the same set of data with processing and storage
all being taken care of on the server side.

3.5 Evaluation

To evaluate the optimisations of the SignalTracker app we will look at the
additional data generated as well as some user experience studies to under-
stand if the app actually provides a seamless experience that can enable large
scale crowd-sourced data collection on the Underground.

3.5.1 Experimentation

In order to test out our enhancements to the SignalTracker application we
deployed it to a small set of people. These users were given the app and ran
it either on their own phone or on a phone provided to them. They were
instructed as to the basics of the application - it’s intended purpose and the
how to enable and disable the data collection. During their daily journeys
we requested they collect data and map as many stations as possible, but
were not instructed to travel additional routes. The data collected by them
was all submitted to our web service and usage analytics was automatically
logged to the MixPanel28 service. Data was also collected by me on my daily
commutes, but no additional trips were taken to expand coverage. A total of
six people collected data. All were in their mid 20’s and included a range of

27http://square.github.io/retrofit/
28https://mixpanel.com/
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people. The participants include fellow Computing students, a professional
in the financial services sector, and one participant who has a background
in fashion studies. This range of participants was a valuable opportunity to
develop an app that can target the general public.

3.5.2 Testing on the Play Store

Developing and testing the application with real users meant having to man-
age and deploy and update SignalTracker when bug fixes and new features
were added. At first, with only one other tester, this was done by sending
the application .apk installation file to them and informing them to update
the application as necessary. This started to become cumbersome and time
consuming for both of us involved and would not scale well to more testers.

The Google Play store offers a Beta channel29 which allows application
updates to be deployed to a private listing in the store and updates are
managed by the Google Play store app on a user’s phone. The benefit of using
the Beta channel feature is controlling exactly who uses the application. In
order to grant access to the private store listing the developer creates a group
on the Google+ social network and invites people to this group which is linked
to the store’s developer account. This process was setup and used amongst
early testers. It was found that the procedure to get people onto Google+ was
not easy with none of testers (and myself) familiar with Google+. There is
also several hours delay between a user joining the group and the permissions
propagating which made it difficult to communicate with them and get the
app on their phone quickly.

When the app was ready to be rolled out to more people it was published
on the Play store as shown in Figure 19. This made the installation process
much easier. The app currently has six active devices (not all of the test
devices I provided use the Play store version of the application). The app
was downloaded on some devices but never used as potential participants did
not take the tube.

Finding users highlighted some limitations of the design. Within our
University entry year, the number of students who had Android phones was
lower than the overall market share would have suggested. The app had
originally been designed to be used by myself on the given test devices and
as such targeted Android 4.4 KitKat. This version, as of June 1st 2015, has

29https://support.google.com/googleplay/android-developer/answer/

3131213?hl=en-GB
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Figure 19: Google Play store listing for SignalTracker seen from a phone.

51.6% market share30 and some users did not have phones capable of running
the app. There is also a large number of people who do not regularly take the
Underground and who rely on buses, bikes, or walking to get into University.

3.5.3 Number of Stations Mapped

By spending a considerable amount of time manually collecting data during
the first trials outlined earlier we obtained data for 14 stations on the under-
ground. Figure 20a shows we were able to over double the number of stations
mapped to 33.

Figure 20b shows the cumulative number of mapped stations over 23 days.
The increase is steady with an average rate over the period of 1.46 stations
per day with a total of seven devices used. Some days show jumps of multiple

30https://developer.android.com/about/dashboards/index.html?utm_source=

suzunone
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(a) The total number of stations mapped
before and after usability improvements.

(b) Station mapping over time by multi-
ple users.

Figure 20: Number of station locations mapped using our scheme.

stations which is likely when a route was being mapped for the first time.
Some of these devices were used by multiple people.

Data collected through the app covered all four mobile network providers,
including Three for which no data was collected during the manual trials.

3.5.4 Data by Phone

Figure 21: Amount of data collected by phone device.
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In Figure 21 we can see the distribution of the total number of data
readings by phone. There is certainly a discrepancy between the amount
that each phone was used to collect data. Some devices were only used for a
few readings (the minimum being 10 on one phone).

3.5.5 Comparison of Results

We compare three of the stations that recorded data using both the controlled
experiment and through the second version of the SignalTracker app.

Taking readings from EE at South Kensington from both the publicly
pooled data and the originally collected data we see that there is a difference
in the average signal reading. Running a t-test on the two data sets shows
that there is a statistical difference. The differences in averages is shown in
Table 3.

Station
Signal Strength

Difference
V1.0 V2.0

South Kensington 8.86 11.92 -3.06
Victoria 0.75 5.28 -4.53
St. James’s Park 1.26 1.23 0.03

Table 3: Comparison of results using two different measurement methods.

Both Victoria and St. James’s park which also had data collected by
both versions of the app with operator EE also have differing values for the
average signal strengths as shown in Table 3. If we were using a threshold of
eight ASU then we would see that there would be no difference between the
two data sets.

There are several factors which could account for the differences in data.
These are the control variables we used, the most notable being: phone
model, seat positioning, and time of day. The data was also collected months
apart when the actual network configuration may have changed at these
stations. The collected data from users may be more representative of actual
usage habits.

Moving forward it would be good to combine the values which are col-
lected under controlled conditions with those from crowd-sourced data. In a
deployment scenario to the mass public the amount of data collected would
be much more valuable. Insights into the particular behaviour of certain
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phone models, trips during times of day and over time are cannot feasibly be
collected by one person dedicated to riding the tube for a few hours. From
logs submitted by the crowd-sourced version of SignalTracker it is a straight-
forward process to generate these statistics using aggregate functions over
the data logs stored in our web hosted database.

3.5.6 Auto-Sync

Once a few testers were using SignalTracker it became problematic to remind
them to manually synchronise the data with our server. As a result the
automatic sync functionality built on Android’s sync framework was added
to the app on May 21st. Figure 22 shows the resulting number of syncs
made. As soon as the user had the syncing handled for them the number of
times they manually sync’d data dropped. The total number of syncs also
increased meaning the user was more likely to hold an up-to-date copy of the
tube graph and we would have improved access to their submitted readings.
The data for this was collected through the MixPanel analytics service that
we integrated into SignalTracker.

Figure 22: Sync Button and Auto-Sync usage in SignalTracker
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3.5.7 User Retention

Figure 23: User retention for the SignalTracker app.

Using MixPanel analytics the user retention was recorded for the Signal-
Tracker application with a significant number of users starting on May 27th.
This is displayed in Figure 23 from MixPanel’s dashboard. It shows the per-
centage of users retained after a number of days since the date in the first
column. The data was put together on June 6th, explaining the limited num-
ber of days displayed. At the end of each period there were still users using
the tracking application. On May 27th there were six users and a full six days
later half of those had interacted with the application. Ten days later only
two had still interacted with the application. This data suggests that users
will continue to use the application past the first day they install it which is
a significant achievement. However, they likely won’t maintain a sustained
usage over a long term. This may be due to them already feeling they have
mapped their daily route, forgetting about the application, or deciding that
it was too resource intensive on the phone. In the future we could focus
on developing ways to get users to maintain usage over longer time spans.
This could be done by implementing an ’auto-enable’ feature similar to the
one that is outlined in Section 4.2.7. Alternatively focus could be spent on
marketing the app to a larger number of users. The high turnover would not
be a massive problem if new users are constantly joining the platform. This
focus on new users would also likely bring in a more diverse set of routes and
help expand the coverage of our readings, whereas focusing on user retention
would improve the depth and reliability of our data. With only a limited
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number of participants it would be best to expand the current studies to
include more users as six unique users is quite limiting.

3.5.8 User Feedback

Discussions were held with some of the test users of SignalTracker. The main
users said that they enabled the application on about 70-80% of their tube
journeys. All found the tagging process intuitive and straightforward. Testers
were able to understand the purpose of the application and understood that
their data was being collected to map signal patterns on the Underground.
Particularly being able to see the graph of signal data and the current station
was well received and likely contributed to more usage. Providing a usable
application is important to be able to gather sufficient information to deploy
solutions on the Underground and users all felt that SignalTracker was a
good enough app to do so.

3.5.9 Limitations and Future Work

SignalTracker performs well at meeting the challenges imposed when col-
lecting signal data on the Underground, but it is important to recognise the
limitations and aspects that are not captured by the app. We present some of
the limitations of the application and include suggestions to overcome these
which act as the future work for SignalTracker.

We place a large amount of trust with the users of our app and the
devices they have. There is currently no easy interface to correct incorrectly
mapped stations and everyone’s input data is treated equally. We rely on
average recordings which means if one person has a faulty device or malicious
intent they can influence our collected data. While all data and its source is
logged making it possible to revert any of these attempts it is not possible
to automatically identify these faulty readings. Research has been made into
successfully identifying accuracy and trust in wireless sensor networks by
Asmare and McCann [3] and some of these techniques could be applied to
our data collection.

When attempting to deploy the application and find testers the number of
users running compatible Android devices was lower than anticipated. While
rolling out SignalTracker to a wider audience would mean that the iPhone
bias would diminish, but it would still be wise to consider a cross-platform
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application which could be developed using a tool such as Xamarin31.

The location scheme using Virgin Media WiFi access points proved to
be effective in the areas covered. However, outside of Zone 1 many stations
do not have Virgin Media WiFi available. Some may have other WiFi from
nearby buildings APs which could be used to map a location. To handle
these it is important to eliminate any non-stationary access points. Ideally
the mapping would rely on no infrastructure.

User engagement was strong in the first few days following installation
of SignalTracker, but fell off quickly after this. Introducing gamification us-
ing profiles and a scoring scheme could allow users to see how much they
have contributed to the project and encourage them to make more measure-
ments over a longer period. Giving the public access to the collected data
through an internet site or the app itself would help them feel like they are
participating more.

The design for SignalTracker included a plan and outline of how band-
width data could be collected using the application. Bandwidth data is more
useful than signal data by itself, but the technique used was not successful.
Devising a way to calculate bandwidth would be beneficial. Including trans-
fer speed data collection in the other parts of this project (namely DeepOpp)
could be a source of this data.

An important aspect of data collection is privacy of user details. Signal-
Tracker has access to users’ location, but does not currently take explicit
steps to protect this confidential information. A privacy policy is included
in the app outlining the collection and use of data, but more could be done
to prevent the identification of specific users and to encrypt and transfer all
data to the server securely.

3.6 Conclusion

In Part I we presented the challenge of building up an objective measure
of network characteristics on the London Underground. The lack of avail-
able data means that we have to take an initiative to collect real world
data on one of the world’s busiest public transport networks. The nature
of the Underground means that we were faced with several challenges that
network mapping presents. We require a precise measure of a phone’s loca-
tion, but GPS was not available as a solution. Moving train carriages mean

31http://xamarin.com/
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that the mobile connections are constantly changing and network availabil-
ity is unreliable along many routes. We have developed a robust solution
to provide the required information. Initial trials riding the Underground
built a preliminary view of signal patterns along the Circle Line in Central
London. A location mechanism was built which can figure out with station
level accuracy where a phone is on the Underground. An app was built that
exposes this data collection platform to everyday users who could help to
expand our knowledge of the changing conditions of the Underground. The
app proved to be intuitive, reliable, and greatly expanded our coverage by
crowd-sourcing the collection and aggregating submitted data automatically
through our server structure. While signal strength readings will always have
inherent shortcomings due to changing external conditions we have built a
relatively comprehensive understanding of the network patterns in parts of
Central London.
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4 Part II - DeepOpp: Middleware Caching

The data collected in Part I provides evidence that there are opportunities
to exploit network condition differences between stations in order to provide
an intelligent data retrieval mechanism.

Passengers on the Underground want to access the internet on their jour-
ney, but as we saw in Part I, data access is only available in certain stations.
Having the user constantly check their phone to refresh content is a drain on
limited phone resources and leaves the user frustrated. Many apps are de-
signed with constant internet access assumed. Apps that do cache data often
only do so a few times a day leading to stale content. Apps, such as Face-
book, appear to make no distinction between the type of content displayed
when there is little bandwidth available.

In this section we utilize the data from Part I and present a design, im-
plementation, and evaluation of a mobile phone pre-fetching caching system
targeted towards use on the London Underground.

4.1 Design

4.1.1 System Design

As travellers make a journey on the London Underground they may pass
through stations, some of which have access to a mobile network connection.
The system design presented here takes advantage of this variation between
stations to pre-fetch and cache data. The goal of the middleware is to fetch,
cache, and make content available to a client application. This is shown in
Figure 24. While at the station in 1 the DeepOpp middlware will fetch and
store contents even if the user is not currently using a client application.
When underground, without signal, in 2 the user can use the client appli-
cation and consume the data downloaded in 1. This process repeats as we
download data again in 3 for use later.

4.1.2 App Separation and Design

The middleware is separated from the client application and has been built
as a separate Android application. The roles of the DeepOpp middleware
are to:

• Provide access to the internet and APIs of client applications
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Figure 24: DeepOpp overall design to use stations with good signal to down-
load and cache contents.

• Fetch data from the internet at scheduled intervals

• Store the data in a structured format that can be retrieved

• Provide user defined settings and preferences

• Enable and disable the middleware

The user interacts with their content through a client application. Keep-
ing the middleware separate shows how it could be integrated in an actual
scenario, as part of the networking APIs provided by the Android OS. It also
shows how the techniques and algorithms are generic and can be applied to
multiple client apps.

4.1.3 Schedulers

We propose three schedulers which are to be used as part of the DeepOpp
middleware. Each of these defines the process for how often and under which
conditions the middleware will fetch and obtain new data to store in the
cache.

Basic Scheduler This baseline scheduler runs on a fixed interval and will
make a fetch at this interval.
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One Dimensional Scheduler This runs on a fixed interval scheduler and
will make a fetch if the current signal strength is above a set threshold.

Location Scheduler This uses the location scheme and data collected in
Part I to reschedule fetches only at stations that we know have usable signal
strength. It determines the current location and an estimate of the direction
of travel to reschedule at the next station that has a signal higher than a
given threshold. See Section 4.2.8 for a more detailed discussion.

4.1.4 Middleware Design

There are two possible implementations that could be used for the caching
logic in the middleware.

Server Side Hosting the caching and pre-fetching code on an intermediary
server has several advantages. We can host the cache on this server and
include a content ranker and optimizer. The app middleware can provide
the profiling information and get the relevant cached data from the server.

This approach means that the bulk of the optimization and processing can
be done on a powerful server that is not constrained by the limited battery
available on phones. It can also be adapted and used on multiple platforms.
We can also compress and optimize media before sending it to the phone.

Phone Based Application Storing all of the logic and middleware on
the phone has several advantages over using a server side approach. We
can save data by not having to transmit profiling state and instead only
retrieve contents meta-data. There are less privacy concerns as users will not
be sending their data and content through a third party host. It is also a
more scalable approach that doesn’t require the maintenance of an external
middleware service.

For these reasons we chose to use a single phone side application to provide
the caching functionalities.

4.1.5 DeepOpp Dataflow

Figure 25 shows the flow of operation of DeepOpp. In (a) DeepOpp is en-
abled by the user which starts a given scheduler. Once started the scheduler
will rerun at set intervals depending on the type of scheduler and provided
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Figure 25: DeepOpp operational flow.

conditions as shown in (b). When a scheduler starts a fetch of data in (c)
metadata is retrieved from an external remote service and passed to the op-
timizer in (e). The Optimizer filters potential media items based on phone
profile conditions. The remaining content to be downloaded in (f) is re-
trieved from the remote service and stored in the DeepOpp cache (g). When
the cache receives a request for data it provides it to a client app in (h). The
client app can then display the content to the user as appropriate in (i).

4.2 Implementation

4.2.1 Facebook Client Application

It would be ideal to modify the existing Facebook application to support the
middleware, but the application is closed source and not easily modifiable.
Intercepting the app’s requests would be a possibility and allow us to rely on
the existing application. Facebook encrypts its data making this problematic.
Reverse engineering their app to provide this would require substantial work
when the front-end application is not the focus of this project. A custom app
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(a) Posted link with comments. (b) Posted photo with comments.

Figure 26: The Faceboop client app for the DeepOpp middleware.
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(a) The main screen of the DeepOpp mid-
dleware control app.

(b) The user settings available.
(c) Changing the battery threshold of the
DeepOpp middleware.

Figure 27: The DeepOpp app

that supports the basic content display would suffice in demonstrating the
abilities of the middleware. The app created, Faceboopp, supports displaying
user posted statuses, links, and photos. Users can see the number of ’likes’ a
post has gotten and see comments on a post. There is the option to manually
refresh the content displayed.

4.2.2 DeepOpp Application and User Interface

The DeepOpp application provides some controls that the user of the phone
can manage. If the middleware were integrated into the Android OS then the
features and controls could be found in the phone’s main settings. Figure 27a
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shows the user interface presented to the user when they open the application.
A native Facebook login button is shown allowing them to add their Facebook
and authenticate through Facebook as described in Section 4.2.4. Buttons
are shown that allow the user to start or stop the background middleware
service, overriding the automatic geofencing feature. There is information
about whether the optimizer is enabled and which scheduler is being run
at the bottom of the screen. The user also has access to settings shown in
Figure 27b letting them control specific thresholds for the optimizer. Figure
27c shows how a user can intuitively change settings using native Android
controls.

4.2.3 Inter-app Communication

As discussed in the Section 4.1.2 of the design, the middleware is built around
a base app providing the caching functionalities and interacting with individ-
ual client applications that can display the cached content to users through
a custom interface such as the one created in the Faceboopp application. In
order for the two components to interact, a form of inter-app communication
was implemented. The first attempt in doing so used Android’s Bounded
Service Messenger interface32. This interface defines Message objects that
can be sent between different processes and handled in the way necessary.
However, when sending media items the predefined size limits of 1Mb 33

were too restrictive. Android ContentProviders were used to provide this
functionality. ContentProviders are a lot more flexible and make sending
larger media items possible.

4.2.4 Facebook SDK and API

Facebook provides an official SDK and API to access their content. The
Facebook login and authentication button34 will interact with the native
Facebook application if it is installed or open a web browser page to enable
login by the user. An ’app’ was created on the Facebook Developer Platform.
The user is presentedwith the option to authenticate with the application

32 http://developer.android.com/guide/components/bound-services.html#

Messenger
33http://developer.android.com/reference/android/os/

TransactionTooLargeException.html
34https://developers.facebook.com/docs/facebook-login/android/v2.3
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and see the Facebook permissions (specifically read stream) required by the
app. After this a session token is created and managed by the Facebook SDK
library which can be retrieved from within the DeepOpp application context.

Figure 28: The Json metadata is used to build the Faceboop UI.

The only endpoint used is at /me/home35. This provides the metadata
needed and will select the relevant ranked content of a user’s news feed. An
example of the metadata is shown in Figure 28. Important to note is any
media that is part of the post can be accessed through the provided url. This
makes it possible to download a list of these metadata objects and then select
which media we want to download. According to the Facebook documenta-
tion 36 this API endpoint is not designed to be used on platforms such as
Android that already have existing Facebook applications. By keeping the
Facebook Platform application in development mode and assigning each user
as a tester for this app we are able to proceed to test using real Facebook
metadata.

4.2.5 Data Storage

Caching data is a core responsibility of the DeepOpp middleware and there
are several possibilities of how to store Facebook feed data. A SQLite

35https://developers.facebook.com/docs/graph-api/reference/v2.3/user/

home
36https://developers.facebook.com/docs/graph-api/reference/v2.3/user/

home
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database was an obvious choice for this task as it provides many of the ad-
vantages of a relational database in terms of structure and is well supported
and integrated into the Android ecosystem. The Json response data from
the Facebook API could be handled natively by Json-based databases like
MongoDB or by relational databases such as PostgreSQL which provide Json
data types. Using these options would rely on third party libraries and the
additional complexity in an Android app would not provide much benefit.
Querying through supported classes also helps the apps integrate well with
the ContentProvider pattern used for inter-app communication.

Three tables are created and maintained by DeepOpp:

Feed Pull Table Stores a reference to each unique fetch of data we have
made, allowing grouping of individual posts together.

Feed Item Table Each row is a single post from the Facebook timeline.
Each of these has a reference to the pull from which it originated,
the type of post, and some additional information such as the object
identifier generated by Facebook.

Media Table Contains blobs of media items and relations back to the items
from which they originated. Each record also holds the size of the
media, type, and other meta information.

In order to provide a cleaner syntax in Android’s Java code additional
wrapper classes have been created to facilitate interaction with the database.
These are contained in the storagetypes package with a corresponding
helper class for each of the data tables described. The DataSource classes
contain methods for adding new items through standard Java syntax. Each
DataSource returns a Cursor37 object which can be passed natively by the
ContentProvider to the Faceboop app.

4.2.6 Media Caching

Facebook text posts and statuses are relatively small and are, by default,
contained in the metadata result returned by the Facebook API. Text posts
are the lightest possible content so we do not focus on optimizing or caching
these and include them in the metadata. Users can post pictures and videos

37http://developer.android.com/reference/android/database/Cursor.html
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to their Facebook feed and we aim to filter potential media items so that we
may cache these items in an optimal manner.

If a post contains a media item then it will be marked as such in the meta
data retrieved from Facebook and a link provided to fetch the full item. If
a post has not been filtered out then we will proceed to add it to the local
SQLite MediaTable. We check to see if the media is already in the table if it
is then we don’t require downloading it again. If we do proceed to download it
then we use an ImageLoader to download the image and store the blob in the
MediaTable. As the MediaTable exposes a Cursor to the ContentProvider,
the Faceboop client application can directly request a specific media item
which is returned on demand by the ContentProvider.

4.2.7 Geofencing

Even though one of the aims of the DeepOpp middleware is to reduce bat-
tery drain by limiting unnecessary network calls there will be overhead in
running the middleware application. Ideally we would like to only run the
background service when the user is on the Underground. Requiring the
user to manually enable and disable the service would break the seamless
experience of connectivety that DeepOpp hopes to achieve. By using the
user’s location and the Geofencing libraries we can manage the lifecycle of
the service automatically without any user interaction.

Android supplies a set of Geofencing APIs 38. These allow the program-
mer to define geographical areas which can trigger actions within applica-
tions. Using this and a list of station coordinates39 we can generate and
register geofence areas for all of the stations on our chosen route. Upon
entering the geofence area we activate and enable the tube middleware by
starting an Intent.

In practice the background location technique used by the geofencing
services was not highly accurate and through preliminary testing it often
took up to half an hour before presence in the area was registered. In order
to maximise the likelihood that the service was enabled upon entering a
station area, this radius of the geofence was increased. With a larger area we
increase the possibility that the user inadvertently enabled DeepOpp when
travelling past a station entrance even though they have no intention to travel
on the Underground.

38https://developer.android.com/training/location/geofencing.html
39http://www.doogal.co.uk/london_stations.php
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We also want to disable the middleware when a user exits the Under-
ground. Simply relying on the geofencing areas would trigger exits between
every stop we travel on. The geofencing methods become even more unreli-
able on the Underground likely due to the lack of GPS. To achieve automatic
disabling the middleware tracks of the amount of time since the phone last
encountered a known tube location. After a set interval of not encounter-
ing a station we disable the middleware. Using Java’s thread management
Handler class we can easily manage this with little overhead. In practice we
set the time limit before disabling to ten minutes. This handles both cases
where a user may simply walk by a station and when the user finishes their
journey on the Underground. With enough usage and trace data of passen-
ger journeys on the Underground and their travels near stations it would be
possible to optimize the time limits before disabling DeepOpp.

An alternative to relying on the geofencing libraries could be to only
rely on the Underground location scheme discussed earlier in this report.
By default many Android phones perform background WiFi scans and a
lightweight background service could run which checks these identified WiFi
MAC addresses to our tube graph dataset and enables the middleware upon
finding a known station location. This solution burdens us with the overhead
of running the background service and will only be able to run at stations
that we have mapped manually. It would be a good source for a future
extension.

4.2.8 Location Scheduler

Three schedulers were presented in Section 4.1.3. The Basic Scheduler and
One Dimensional were covered in sufficient detail given their complexity, but
the implementation of the Location Scheduler merits additional discussion.
The scheduler works by locating the user on the tube and scheduling a fetch
over the network for when the user is at the next station that has sufficient
signal strength.

Figure 29 shows an example situation where the scheduler can be used.
If we are currently at station S1 and travelling towards S4 we have several
stations where we do not have any signal (S1, S2, S3). The location scheduler
will find our current direction and location as S1 travelling towards S4. It
then adds up the total time between these stations in order to schedule the
next fetch. In the example in Figure 29 this would be six minutes.

The location scheduler uses the same tube graph used by the Signal-
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Figure 29: An example scenario where the Location Scheduler can be used.

Tracker in Part I. This common Json representation means we can rely on
the same web service to retrieve updates and easily utilize the signal data col-
lected through SignalTracker. Again, we build up an in-memory JsonObject
containing all of the station objects and their neighbouring stations.

To identify the direction of travel we record the user’s previous station
and can infer direction from this. Once we have the direction of travel it
is possible to traverse the graph of stations to find the next station that is
likely to have sufficient signal. The graph also includes the estimated travel
times to each of these stations and this gives us a time for when we should
schedule the next fetch attempt.

4.3 Evaluation

4.3.1 Evaluating the Optimizer

Experimentation Conditions The conditions for the evaluation of Deep-
Opp is aimed to measure the performance and improvement that the mid-
dleware provides in real world scenarios. One of the key focuses of these
investigations has been relating them directly to the real world and work-
ing with the actual conditions of the London Underground which can prove
to introduce high levels of unreliability and variable network conditions as
examined in Part I. For this reason we continued to experiment on the Un-
derground rather than rely on simulators for data.

A total of about eleven hours worth of data was collected at various times
riding on the Circle Line route used throughout this report. The significant
amount of time spent travelling on the tube gives us confidence in our results
and means that we can break down readings by time of day.
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Trial Direction Start End Time
1 Clockwise 29/04/2015 07:31 29/04/2015 08:11 Morning
1 Anti-Clockwise 29/04/2015 08:15 29/04/2015 08:49 Morning
2 Clockwise 29/04/2015 08:52 29/04/2015 09:44 Morning
2 Anti-Clockwise 29/04/2015 09:45 29/04/2015 10:19 Morning
3 Clockwise 29/04/2015 12:32 29/04/2015 13:06 Afternoon
3 Anti-Clockwise 29/04/2015 13:08 29/04/2015 13:39 Afternoon
4 Clockwise 29/04/2015 16:44 29/04/2015 17:23 Evening
4 Anti-Clockwise 29/04/2015 17:25 29/04/2015 18:04 Evening
5 Clockwise 30/04/2015 07:29 30/04/2015 08:11 Morning
5 Anti-Clockwise 30/04/2015 08:22 30/04/2015 09:02 Morning
6 Clockwise 30/04/2015 09:12 30/04/2015 09:47 Morning
6 Anti-Clockwise 30/04/2015 09:55 30/04/2015 10:31 Morning
7 Clockwise 30/04/2015 12:30 30/04/2015 13:04 Afternoon
7 Anti-Clockwise 30/04/2015 13:05 30/04/2015 13:40 Afternoon
8 Clockwise 30/04/2015 16:42 30/04/2015 17:19 Evening
8 Anti-Clockwise 30/04/2015 17:24 30/04/2015 18:01 Evening

Table 4: Data collection trial journeys with times.

Each trial consists of a round-trip. Start and end times are broken up
into the direction travelled. Four morning trials were conducted during rush
hour and two trials were conducted during the evening rush hour. During
these trials the train carriages ranged from busy to very packed and near
capacity. Another two trials were carried out during the afternoon when
the train carriages were generally quite empty with seats available. Specific
timings are displayed in Table 4.

The data was collected on two LG G3 smartphones running Android 5.0
Lollipop with EE sims and data plans. On each trial one phone ran the
DeepOpp middleware with the optimizer enabled and one with the optimizer
disabled. Both phones ran the one dimensional scheduler at an interval of
thirty seconds.
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4.3.2 Data Collected Summary

The data was logged and written to files using the ’logback-android’ library40.
These files were retrieved at the end of data collection and parsed using
python scripts and then imported into an SQLite database.

Battery The optimizer will have some overhead in order to be able to run,
but it also aims to save battery by filtering out media items based on current
phone state. By measuring battery we can compare the effectiveness of the
optimizer. In order to do so we record the battery percentage throughout
each of the trials.

Database Size Storage space is another resource consumed by DeepOpp.
DeepOpp will cache pre-fetched items so this metric will give us an indication
of the overall amount of space that is consumed by the middleware. We can
also compare the difference in data generated and stored by the optimizer.
SQLite stores a single database file on the Android filesystem that we use for
our cache. We monitor the size of this database file and measure it.

Filtering This measures how much of the content is filtered out by the
optimizer code. We record the number of media items to be downloaded as
a proportion of the total items available for download. For the phone not
running the optimizer code no content is ever filtered.

Network Traffic One of the goals of the optimizer is to reduce the amount
of network usage and we can measure both of the amount of data transmitted
and received independently. We can also compare this with the amount
of items that were filtered by the optimizer. To measure this we rely on
Android’s TrafficStats41 library which comes as part of the API. It allows us
to retrieve the transmitted and received data for the app process.

Fetches In order to compare and benchmark the two phones we also mea-
sure each time that we make an attempted fetch of data from Facebook’s
API.

40http://tony19.github.io/logback-android/
41http://developer.android.com/reference/android/net/TrafficStats.html
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4.3.3 Results

Figure 30: Average download rate for DeepOpp with standard error.

In Figure 30 we can see that the optimizer is dramatically reducing the
amount of data received. We can see that the optimizer is actively filtering
out contents meaning that we are seeing about 33% of the data received
on the clockwise direction and approximately 52% of the data on the anti-
clockwise direction. The t-test data shown in Table 5 shows that both direc-
tion are statistically different.

Direction T-Stat Critical Value
Clockwise 4.24 2.31
Anti-Clockwise 3.02 2.18

Table 5: T-test results for recorded download rates of DeepOpp.

4.3.4 Battery

Figure 31 shows the power used by DeepOpp during one of the trials in
the anti-clockwise direction. The data displayed is the moving average over
the previous 100 seconds. The data for this battery measurement has been
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Figure 31: Power consumption of DeepOpp over the course of a single run.
Data recorded with PowerTutor.

collected by the PowerTutor42 application which can give breakdowns for
specific applications running on an Android phone and used in [51]. Despite
the middleware’s aims it appears that the power used by the application
does not differ significantly between running DeepOpp with the optimizer
enabled and with it disabled. The overhead in running the optimizer negates
the savings in only running at any given time.

4.3.5 Fetches and Content Received

We can see in Figure 32 that the size of the our cache databse grows much
slower when running the optimizer code. This result agrees with our results
for the data transmitted shown in Figure 30.

4.3.6 Comparison to Existing Solutions

The O2SM OfflineFacebook provides a prefetching and caching design that
aims to reduce battery drain and network bandwidth. Their efforts are tar-
geted towards ranking content, but their O2SMPS problem is also formulated

42http://ziyang.eecs.umich.edu/projects/powertutor/
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Figure 32: Cache Database size on disk.

in terms of battery usage and phone state. We would like to compare our mid-
dleware caching implementation to theirs. The authors’ app is not currently
available for download43, so it is not possible to compare their implemen-
tation directly. Their algorithm used to solve the O2SMPS problem they
present is non-trivial to implement. In order to provide a measure of how
well DeepOpp performs we run a trial comparing our LocationScheduler to
the basic scheduler which has no knowledge of our position and direction on
the Underground. This will provide the best estimate as to the improvements
DeepOpp delivers.

The trial was run on the same section of the Circle Line used throughout
the report and signal strength data is based on a combination of the signal
data collected manually with SignalTracker and the additional crowd-sourced
data gathered as part of the optimization to SignalTracker. The same two LG
G3 phones were used under the same experimentation conditions previously
discussed. DeepOpp makes requests to Facebook and then additional media
item requests.

Tables 6 and shows some of the metrics collected comparing the basic
scheduler to the location scheduler. The number of requests was significantly
more for the basic scheduler and it provided over 30 times as many success
full retrievals of metadata. Figure 33a shows the percentage of successful

43http://www.ics.uci.edu/~dsm/oFacebook/
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Table 6: Comparison of DeepOpp Schedulers

Scheduler
Basic Location

Total Requests 359.00 6.00
Successful Requests 92.00 3.00
Total Power (mW) 405053.00 5118.00
Power per Successfull Request 4402.75 1706.00
Power per Media Item 442.20 176.48
Power per Byte 0.04 0.01

requests. While the Basic Scheduler made many more requests, a larger
proportion of these requests failed. Reasons for failure were likely due to
network errors as reported by the Facebook SDK. The Location Scheduler
was nearly twice as likely for one of its requests to be successful.

The total power used by each scheduler is shown in Table 6. The power
data was collected using PowerTutor. Due to the significant number of re-
quests made by the Basic Scheduler it consumes much more power. The total
power consumed will depend on the interval at which the Basic Scheduler
runs and so is not representative by itself. The amount of power per success-
ful request displayed in Figure 33b shows that the Location Scheduler needs
2.58 times less power for each successful request of data. This is due to the
wasted power the basic scheduler uses on failed attempts at making requests.

Figure 33c shows the total amount of power used by each app divided
by the number of media items retrieved. This is similar to results in Figure
33b as most feed items from Facebook contain some media item. In our trial
each metadata request contained ten feed items, which is why the power for
each media item is approximately a tenth of that for each metadata request.
Measuring the media items, the Location Scheduler is 2.51 times as efficient
at getting media items successfully.

Finally, we look at the efficiency of data downloaded compared to the
power used by each of the two Schedulers. Figure 33d shows the total power
used divided by the total bytes downloaded over the course of the experiment.
The Location Scheduler is a lot more efficient for the amount of data used.
The Basic Scheduler is going to schedule downloads at points with little
signal strength where the download may begin, but fail due to the low signal
strength in that location. Each time this happens the data downloaded
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(a) Percentage of Successful requests.

(b) Power used divided by number of suc-
cessful metadata requests.

(c) Power used divided by media items
requested.

(d) Power used divided by number of
bytes downloaded.

Figure 33: Evaluating the Location Scheduler against the Basic Scheduler.73



is wasted, but it still contributes to a user’s data allowance and consumes
energy on their battery. The overhead in making these failed requests will
mean more used power.

Each of the metrics shows that the Location Scheduler offers a significant
improvement over a naive scheduler. The Basic Scheduler is much more likely
to waste data and energy on failed requests than the Location Scheduler we
have designed and implemented. For each amount of content retrieved we
using much less power with the Location Scheduler.

4.3.7 Working with the Research Team

As part of the development of the tube middleware, I worked as part of a
team with four researchers. The team consisted of Lampros Lamprinos, Julie
McCann, and Di Wu44 from Imperial College and Dmitri Arkhipov45 of Uni-
versity California, Irvine. I maintained communication with them through
in person meetings, Skype calls, emails, and instant messenger. The code for
the optimizer found in CacheOptimizer.java was written by Dmitri. Work-
ing remotely with this experienced team provided a unique opportunity to
participate as part of a research team at a high level.

Contributions to the Team The work discussed in this section covers
the contributions I made to the team and the work we set to accomplish. My
main contributions are:

• Design and implementation of the middleware architecture. The design
and classes discussed are all my own work and were mainly driven by
decisions I undertook. Dmitri wrote the optimization class which was
integrated as part of my work.

• Faceboop client application. All architectural design, code and UI de-
sign was implemented by myself.

• Testing and data collection. Infrastructure to support data collection,
testing in the real world, and riding on the Underground to get real
results. Initial analysis and parsing recorded data into usable formats.
All analysis and results presented in this report.

44{l.lamprinos, j.mccann, d.wu}@imperial.ac.uk
45darkhipo@uci.edu
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• Location Scheduler design, implementation, and testing.

• Discussions and contributions. I was involved in discussions and many
design decisions with the team with my input being considered, valued,
and factored into the project.

• Additional contributions. Preparing screenshots and writing up sec-
tions of the paper among other smaller tasks.

Submission to IEEE INFOCOM We are proud of the results of the of
the middleware caching layer and what it accomplishes and the progress it
has made in the field and have been working diligently to publish the results.
As of writing we are aiming to publish the results at the IEEE INFOCOM
2016 Conference on Computer Communications in San Francisco 46. We are
confident that we can get our work included at this prestigious conference.

Figure 34: Submission entry for IEEE INFOCOM.

4.4 Limitations

The DeepOpp middleware provides intelligent pre-fetching and caching on
the Underground. The integration of the optimization scheme has reduced
data consumption by 52% and the location scheduler provided 2.5 times
gains in power efficiency by limiting failed fetch attempts. The scheduling

46http://www.ieee.org/conferences_events/conferences/conferencedetails/

index.html?Conf_ID=30862
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for DeepOpp’s fetches still resulted in a 50% failure rate of retrieving content
through the network. More accurate ways to identify the location of the
phone and signal strengths would help reduce this failure rate. Incorporat-
ing bandwidth measurements as discussed in Section 3.5.9 would be helpful
in determining accurate measurements. The geofencing technique to enable
DeepOpp did not operate quickly and accurately. Relying on our WiFi map-
pings instead of Android’s GPS based geofencing library could improve the
accuracy of this feature. In predicting our path we oversimplified the model
to include one route when in fact the Underground is a complex series of
interchanges and lines that share routes and split into separate directions.
Research and implementations exist that can use historical travel data to
provide more accurate predictions of the paths and destinations of users.
DeepOpp only downloads data when most applications will allow users to
post data back to a service (comments, statuses, photos, etc.). DeepOpp
could be expanded to include this functionality and incorporate some of the
same techniques to schedule these uploads at stations that have high upload
bandwidth available. Current signal data is used as an overall average, but
research from Tan[44] shows there are a number of factors that influence the
effective bandwidth that can be used on a mobile network. With a larger set
of data that can be broken down to specific times our predictions would be
stronger.

4.5 Conclusion

The DeepOpp middleware provides intelligent pre-fetching and caching of so-
cial media data on the Underground where users suffer from interruptions in
their data collection. The nature of travelling on an Underground transport
system means that there is constantly variation in the network availability
and we may be presented with only limited opportunities to fetch data. Deep-
Opp provides a seamless experience where client apps rely on a background
middleware that understands location, network conditions and a profile of
the phone to schedule updates to content. Integrating a novel optimiza-
tion technique means that the middleware will selectively filter out content
to provide a positive user experience and maximise the amount of relevant
items to be displayed to the user. Our evaluation shows a reduction of over
half of network traffic for providing this content to the user. The Faceboop
client app is a usable Facebook client application that can authenticate with
Facbook to display a user’s main feed with comments.
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5 Part III - MetrOpp: A Protocol for Dis-

seminating Ordered Content on the Under-

ground

5.1 Introduction

DeepOpp introduced a novel caching scheme and implementation that pro-
vided promising results by targeting specific content under constrained sit-
uations. It operates on the surface level lines, but relies on intermittent
individual network connectivity. In Part III we introduce MetrOpp which
provides the final piece of network coverage on the Underground by target-
ing the deep lines. MetrOpp relies on peer to peer connections to introduce
data into temporary networks created deep below the ground-level to create
a delay tolerant network that can provide users with a stream of informa-
tion. We will discuss the design of the system, implementation details, and
evaluate the protocol and implementation.

5.2 Design

Our goal is to be able to share streams of data on deep line carriages of the
Underground that do not have access to the internet. The data should be
continuous, linear, and update frequently. At each stop on the Underground
passengers enter and leave a train. Some of these may be entering from other
deep line trains and some will be entering from either surface level trains or
directly into the station through a street-level entrance. MetrOpp will use
passengers entering from surface level to introduce new and fresh content to
an ad-hoc network on a train carriage and disseminate this data throughout
participating phones on the network. MetrOpp will need to deal with a
highly dynamic network as passengers are constantly entering and leaving a
carriage every few minutes.

5.2.1 Choosing a Wireless Access Standard

Device to device opportunistic networking has been approached before on
Android phones. The WLAN-Opp platform (cf. Section 2.4.6) provides peer
to peer communication using a combination of WiFi and Bluetooth. The
theory and design behind the system would be a suitable fit for the aims
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of this part of the project. WLAN-Opp claims to offer fast and power effi-
cient communication on unrooted Android phones by piggybacking off of the
internet-sharing tethering feature to create pseudo-ad-hoc WiFi networks.
This method means that the user is never presented with any pairing dia-
logues and we can connect quickly to an available network of phones. This
offers a major UI advantage over using either Bluetooth or WiFi Direct which
require a pairing process to authenticate between any two devices for the first
time.

In practice WLAN-Opp was not reliable and despite significant effort
in getting the basic platform and demo chat app working on the devices
available, it could not reliably find peers, maintain a connection, or deliver
messages. Problems may have occurred due to different devices and OS
versions being used or due to other unknown issues.

After attempting to build MetrOpp on top of WLAN-Opp we moved
focus to deciding a new medium for data transmission. The three considered
here are Bluetooth, WiFi Ad-hoc, and WiFi Direct (also referred to as WiFi
P2P in Android’s implementation47). Each of these is a realistic possibility
to use, so we can compare them and justify our choice.

In Section 2.4.1 we looked at the wireless communication standards avail-
able on Android. The range of Bluetooth is particularly limiting as all of
the London Underground rolling stock trains are over 100 metres (with the
exception of the Waterloo and City line trains). WiFi allows us to cover a
much larger area of the train carriage and makes it more likely we can set up
a single network that covers the entire carriage. Bluetooth’s bandwidth also
limits the extensibility of the protocol to support multimedia images. Ad-
hoc wireless isn’t supported on un-rooted Android phones so is not a realistic
solution for deployment. It would be an ideal choice given it’s resilience to
dynamic network topology changes and lack of reliance on a single access
point or node. WiFi Direct by itself offers the best solution for achieving our
goals.

Support for WiFi Direct is available on all four of the test devices we
were using as part of the project and is supported on many other modern
smartphones. As the technology is relatively new many previous attempts at
creating mobile ad hoc networks have not been able to use the technology so
this is a good opportunity to further explore its applicability in the context of
a user application of a MANET running on smartphones. The listed range of

47http://developer.android.com/guide/topics/connectivity/wifip2p.html
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100 metres can cover most of a train carriage even if the Group Owner (GO)
is not in the middle carriage. The high data bandwidth means it is a suitable
medium for future extensions when transfer of media items such as pictures,
animated GIFs, or videos could be shared through the network. WiFi Direct
has a reliance on a single access point (the GO) which means if this one node
drops from the network we will lose the network. We hope to overcome this
limitation imposed by the underlying protocol by building MetrOpp’s higher
level protocol around this. While there are several supported authentication
modes, the least intrusive requires the user to accept a dialogue prompt
allowing a connection from a previously unknown device for the first time.
In a real deployment scenario this would be a very large problem as the
protocol is designed to connect to strangers and this authentication would
result in a poor experience for the user and potentially open up security
issues if the user becomes accustomed to accepting new connection requests.
According to posters online it is possible to automatically bypass this user
prompt, but requires the phone to be rooted 48. We will not address this UI
issue here, but it is a limitation of the chosen technology. Instead we will
focus on an efficient protocol that is designed to be effective in the space and
time requirements imposed by an underground mass transport system.

There are several routing protocols that have been studied and imple-
mented as part of delay tolerant networks (DTNs) (cf. Section 2.5). The
particular topology constraints of WiFi Direct and information flow required
by MetrOpp will dictate how we define our communication protocol. It is
important that we are not sending or routing data to any particular desti-
nation, but rather disseminating it amongst all participating nodes. Gossip
protocols are effective at this task and essentially flood the network, but with
certain constraints. One of the main determining factors is our use of WiFi
Direct which only acts as a pseudo-P2P network. We must still have a single
GO in the networks we form, but we can support creating networks with
many different devices that are clients. For this reason we can use the GO
to coordinate communication on our application level protocol.

5.2.2 Roles

In the MetrOpp protocol we propose the following roles and rules.

48http://stackoverflow.com/a/18629705/1257925
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(a) Potential hosts schedule host cre-
ation.

(b) A host has been created and other
nodes cancel scheduled host creation.

Figure 35: MetrOpp Host Creation

Host The host is the Group Owner of the WiFi Direct Group. The host
broadcasts their service using the Service Discovery protocol available on
Android phones and communicates with each of the devices. The host main-
tains a list of the connected clients in the current group along with their IP
addresses and ports.

Clients Clients connect to host WiFi Direct groups and share their con-
tent information and subscribe to get updates about any new content made
available to the group.

5.2.3 Host Creation

We want to minimize the number of hosts on a train carriage. The ideal
situation is that there is one host and no disjoint networks of nodes. On
initialisation the node will search for any service broadcasts. If it finds a
service broadcast from a host advertising the MetrOpp service then it will
join that host’s WiFi Direct group. If no service discovery is found then we
want the client to assume the role of the host.

It is especially likely in our context that we may have multiple nodes that,
at the same time, search for an existing host and find none. This will happen
when a GO disconnects. We want exactly one of these nodes to become the
host. To handle this we use a probabilistic method to create the host based
on a technique used in WLAN-Opp. In the first stage each node schedules
a timeslot to set it self up as a host as shown in Figure 35a. In this Figure
the first phone randomly gets a slot at ti and the second phone at tj. At tj
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the first phone assumes the role of a host. After a service discovery delay (d)
at time ti+d the host is visible to neighbour nodes as shown in Figure 35b.
At this point the second phone joins the first’s network and cancels its own
host creation slot. WLAN-Opp uses a probability that is proportional to the
inverse of the number of neighbours that each node has. This means that
nodes that have more neighbours they can reach directly will have a lower
probability of assuming the host role. This is the opposite of what we want
as the ideal new host will be within range of the most nodes. For this reason
we select the number uniformly based on a threshold (tmax).

If we have a case where multiple hosts are created then we will allow this
continue. We are assuming a highly dynamic topology and so it will not be
a long amount of time before the additional hosts depart the tube carriage.

5.2.4 Finding and Joining a Host

When nodes scan and find a host advertising the MetrOpp service through
service discovery they will join them. If multiple hosts are available then
they will join the first one they find in the search. The approach used in
WLAN-Opp was to randomly choose a host with uniform probability. But
rather than waiting to find all service discovery broadcasts we simply join
the first one speeding up the connection time and maximising the time spent
as part of a network.

5.2.5 State

The state is the content that we wish to be able to distribute through
MetrOpp. States are strictly ordered. We say that:

Si < Sj (4)

if Sj has newer information than Si.
The state will be generated and updated from external sources. This is

likely a web server publishing updated ordered content. This means that
nodes may be in different locations, but still hold the same state. For these
examples we assume that: Si < Sj < Sk.

5.2.6 Protocol Messages

INITIAL JOIN(Sc) Upon connecting to a MetrOpp WiFi Direct group
the client will send this message which indicates it has just joined the group
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and includes its current state Si
c.

OWNER REPLY UTD() If the host receives an INITIAL JOIN mes-
sage from a client Si

c such that Si
c >= Sh then the host sends this message

informing the client that their state is up to date and no further content
exists.

OWNER REPLY NEW CONTENT(Sh) If the host receives an INI-
TIAL JOIN message from a client Si

c such that Si
c < Sh then the host sends

this message informing the client that the newer state Sh is available and
including it in the message to client.

NEW CONTENT(Sc) Similar to OWNER REPLY NEW CONTENT,
but for general new content. The host sends this to all clients that need to
be updated with new content that has become available to the host.

Similar to the Trickle protocol we do not manage any heartbeats as we
don’t expect any exiting nodes to be able to gracefully close their connection.

5.2.7 Scenarios

We now look at some scenarios to illustrate how the MetrOpp protocol works
in propagating information.

Figure 36: A client joins with a stale state.

Figure 36 demonstrates an example of a client joining a host where the
host has a newer state than the client joining. We see the initial join allows
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the host to determine if it should reply with OWNER REPLY UTD or as is
the case in Figure 36 it replies with the new content.

Figure 37: A client joins with a fresh state.

In Figure 37 a group involving the Host and clients A and B is already
formed and has a state less than Si. When C joins it sends Si to the host
which then proceeds to store it locally and forward this newest state to both
A and B.

Figure 38: A more complete example of the MetrOpp protocol.

In Figure 38 we see a more complete example. A joins and sends its local
state of Si, but the Host replies with the more recent state Sj. B then joins
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with Sj as well and the Host informs B that it is up to date. Then C joins
with Sk which the Host stores and forwards on to A and B.

We look at a timed example of the exchange in Figure 38 in the context of
the Underground. Assume we are only considering the deep tunnel sections
of the lines.

15:00 Alice enters the Piccadilly line from above ground.

15:05 Harry enters the Northern line from above ground and Bob enters the
Victoria line from above ground.

15:10 Alice switches to a Northern line train that Harry is on and joins his
network. Alice gets updates up until 15:05.

15:15 Bob switches to the Northern line train and joins the group. No one’s
state is updated.

15:15 Carol enters the Northern line from above ground and joins the group.
She sends updates until 15:15 to Harry who then sends these onto Alice
and Bob.

At the end of this exchange all parties have the most recently available state.

5.3 Implementation

We have introduced the problem of providing fresh content on deep line
trains that lack signal. We have then proceeded to discuss the MetrOpp
protocol, it’s specific design decisions, and chosen the core technology to
base it on. We now focus on the implementation of a prototype application
that demonstrates how WiFi Direct can be used in a mobile ad hoc network
and show how the MetrOpp protocol can be used to provide a valuable service
for users.

5.3.1 Demonstration Scenario

To demonstrate the abilities of MetrOpp we have built an Android appli-
cation that provides users with live text commentary for football matches.
With fans not able to follow each match in person or on television many
will use a service that provides them with up to the minute updates about
what is going on during a live match. Almost all major sports websites will
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Figure 39: Live text football commentary on BBC Sport.

provide some level of this commentary and apps such as OneFootball49 are
amongst the most popular in the Play app store. An example feed from BBC
Sport’s website can be seen in Figure 39. The results and actions of a match
are highly time sensitive as fans want to stay as up to date as possible as
new commentary is coming in every minute. There are a limited number
of matches played at a single time which means fans are often interested in
the same games. The rapid number of updates that serve a large audience
makes it an ideal problem that can be solved by MetrOpp. There are other
use cases that could also be used as part of MetrOpp such as disseminating
public emergency information, breaking stories stories, public Twitter feeds
and others.

5.3.2 Managing WiFi Direct and MetrOpp Protocol

Our application will provide an interface for users to view each event item.
It also provides all of the WiFi Direct connection and management logic.

49http://www.onefootball.com/
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The WiFiP2PManager class included in Android’s API helps us manage
the key interactions and lifecycle of our WiFi Direct connections. Using
ActionListeners we can get the results of the various searching and connecting
requests we make with the P2P manager.

On the start of the application we add a service request and listen for any
broadcast services that match the String ’MetrOpp’. Once a client finds a
MetrOpp service broadcast it initiates a connection request using WPS Push
Button Connection to authenticate. This is the least intrusive authentication
method available through WPS and displays a dialogue box on the remote
device to accept the connection. Other WPS methods involve displaying
and entering PINs. The WiFiP2PManager will notify us upon a successful
connection and we proceed to set up a server which can handle incoming
connections.

The WiFiP2P classes provide the functionality to discover peers and es-
tablish connections and manage the connection lifecycle. Once we have es-
tablished a connection we rely on Java’s Socket classes to transfer data and
send protocol messages between devices. Once we establish a connection we
start a ServerSocket. The ServerSocket uses a blocking call while waiting for
connections so we run the server in a separate thread using FileServerAsync-
Task(Object, Long, ProtocolMessage). It does not take in any parameter
objects or post any status updates. Upon completion of the socket we return
the message to our main thread for processing. We immediately start a new
FileServerAsyncTask to allow us to receive subsequent messages.

Each socket communicates over a network port. To avoid clashing with
ports used by system processes or other apps available on the phone we use
automatic provisioning to obtain an available port. For the host node we
include this port in the service broadcast. For service broadcasts we rely on
the DNS Service Discovery which includes format rules for TXT Records.
The DNS TXT records provide additional information about an instance of
a service discovery in a key/value pair format. We use these TXT records to
include the port that the host is listening on. Each message from a client also
includes the port that the host can reply to. Device addresses are included
in both the WiFi Direct and Socket communications so we don’t have to add
any worthwhile consideration to obtaining these.
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Figure 40: The MetrOpp app UI.

5.3.3 App UI

Figure 40 shows the main screen of the demo application. A stream of match
commentary is displayed to the user. As soon as new information becomes
available it is added to this stream for the reader to consume.

5.4 Evaluation

We have outlined the design of a delay tolerant network protocol targeted at
the London Underground and presented an implementation that runs on An-
droid phones using WiFi Direct. We now proceed to evaluate the possibility
of running a delay tolerant network on the Underground and how MetrOpp
could be used to disseminate information.

Figure 41 shows the average connection and state update phases for a
client phone running the MetrOpp application. The initialisation phase be-
fore the searching begins takes a negligible amount of time. The overall
average time for a client who joins an existing network to search, connect,
and received the most recent state is 5.13 seconds. This is sufficient to handle
the entrance and exits of people on a journey.
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Figure 41: MetrOpp connection and state exchange timings.

5.4.1 Connection Times

One of the key concerns for the MetrOpp app on Android is whether it can
discover, connect, and exchange state within the time constraints imposed
by the Underground. We have tested the various connection timings for a
client connecting to a host and going through the WiFi Direct discovery and
MetrOpp state sharing phase.

5.4.2 The ONE Simulator

The ONE Simulator was selected due to its focus on delay tolerant networks.
In the context of the ONE Simulator a host refers to any node that is part
of the network.

5.4.3 Geographical Representation of the Underground

The simulator has many different movement models for nodes. One of the
supported modes allows for a map of route data to be imported and have
nodes follow these paths. This is the movement mode chosen for this project
as we can simulate the tube routes and move nodes along these paths. The
coordinates for the route definitions are provided in Well Known Text (WKT)
files. WKT files define lines and polygons by specifying individual line seg-
ments, or groups of line segments. For example, a line from (0, 1) to (2, 4)
is defined as:

LINESEGMENT (0 1, 2 4)
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The coordinate system used by the ONE Simulator was not stated in
the documentation and the standard geographical latitude and longitude
coordinates were not accepted. After research into coordinate systems and
checking example files it was determined that the best coordinate system to
use is the Universal Transverse Mercator (UTM) coordinate system. UTM
uses a 2-dimensional coordinate system making it easy to represent on a
grid like area used by the ONE simulator. Coordinates are given with the
longitude first then latitude.

Geographical coordinates for the tube lines was obtained from Doogal50

in Keyhole Markup Language (KML) format. These were parsed to extract
each line segment as a pair of coordinates. An online conversion tool KML
Tools51 was used to convert these coordinates to UTM format. Some of the
results were spot checked to ensure they were reasonable.

Figure 42: The Circle Line and Victoria Lines loaded into the ONE Simula-
tor.

Each tube line had its segments added to a WKT file for that line. The
resulting routes are shown in Figure 42 in the ONE simulator GUI for the
Circle and Victoria line data.

50http://www.doogal.co.uk/london_stations.php
51http://kmltools.appspot.com/geoconv
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5.4.4 Groups

A group is a set of nodes that share movement and routing module settings.
Each group we create represents movement along a single tube line. We
present our configuration options for a group and justify each choice.

Group2.bufferSize = 50M The message buffer size for each node. 50MB
is the default and sufficient for our purposes of representing a text
commentary for a football match.

Group2.movementModel = ShortestPathMapBasedMovement The Short-
estPathMapBasedMovement uses Dijkstra’s algorithm to find the short-
est path between two points in the graph provided in the route file.

Group2.routeFile = data/circle line movement.wkt Here we define the route
which this set of nodes can move along. In this case this represents the
Circle line nodes. We take actual journey information based on the
routes within the Circle line made by passengers52. The data is from
midday on 2nd December, 2013. We process this data to generate a
shuffled WKT file. Each route should be chosen by the simulator with
a probability reflected from actual TfL journeys.

Group2.routeType = 1 A route type of 1 will send the nodes in a circular
route of the track. A route type of 2 sends nodes back and forth between
two points.

Group2.waitTime = 90,150 The time each node spends waiting at points.
As the points represent stations we enter values of 90 and 150 seconds.
The simulator will uniformly randomly choose a value in this range.
This value corresponds the the amount of time a station is stopped at
a platform.

Group2.speed = 7, 10 In m/s the speed of nodes. The average speed of an
Underground train is 33km/h [47] which corresponds to 9.17m/s, but
we lower the range of possible speeds to 7m/s to account for slowing
down and speeding up when leaving platforms.

52https://www.tfl.gov.uk/info-for/open-data-users/
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5.4.5 Other Simulator Conditions

The first investigation into the feasibility of the MetrOpp protocol will involve
looking at the scale that the Underground presents. The Android app proves
that the protocol can work with the given functionality needed. We want to
know how many people would need to be using the app for it to work on a
public transport network the size of the Underground. We will look at the
environment conditions to evaluate the feasibility of the app.

Our first experiment runs on just the Circle line. Adding more lines made
the simulator run prohibitively slow.

Message generation is done using the OneToEachMessageGenerator. The
generator creates one message and delivers it to a list of hosts. We set 20%
of hosts to generate messages and attempt to deliver to all of the nodes in
our simulation.

The nodes use an epidemic routing protocol. This is similar to how
MetrOpp works as it attempts to deliver its messages to all other nodes
(set by our message generator) and does so by contacting all nodes it comes
in contact with.

We run the simulation for 9450 seconds (157.50 minutes). A football
match (90 minutes) with half-time (15 minutes) runs over 105 minutes. Injury
time in the Premier League averages 6 minutes[40]. Commentary typically
starts 30 minutes before a match when team sheets are released. With time
left over for post-match discussion this brings us to our 157.50 minutes to
run the simulation.

These conditions and parameters make up our scenario. We use 10, 50,
100, 500, and 1000 nodes. The numbers used in this scenario are the total
number of hosts on the entire line. For comparison, according to TfL data
from Saturday, November 12th, 2012 from 15:00 to 15:15 there were 962
passenger entrances into South Kensington alone. Most football matches in
the Premier League kick-off at 15:00 on a Saturday.

5.4.6 Simulator Results

Here we consider the results of running the Epidemic Routing protocol in-
cluded in the ONE Simulator on the Circle Line. The simulator was run with
10, 50, 100, 500, and 1000 nodes. These are based on real passenger journeys
on an accurate representation of the Circle line route. The simulator run
with 10 nodes did not deliver any messages so is not included in the figures.
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(a) Average number of messages deliv-
ered.

(b) Average latency for delivered mes-
sages.

Figure 43: Metrics for an epidemic protocol running on the Circle line.

Figure 43a shows the percentage of messages delivered throughout the
simulation for each of the different number of hosts. The trial with 1000
hosts is able to deliver a much higher percentage of the messages created.
Figure 43b shows the average latencies for delivered messages. All are on par
with each other and offer very reasonable latencies for the data considered.

The above simulation results assume hosts are constantly travelling on
journeys for the entirety of the simulation. In reality host journey times will
be much shorter. To account for this we use the connection data output from
the previous trial and parse it to limit the host’s active time on the network.
Each host is given a 20 minute to be active and we eliminate all connections
created when either host in a connection was in this active state.

Table 7: Connection Statistics for Time Limited Nodes.

Number of Hosts
10 50 100 500 1000

Number Connected 0 7 31 439 956
% Connected 0% 14% 31% 88% 96%
Average Connections 0 0.16 0.36 2.48 4.748

Table 7 shows connection statistics for each number of hosts. Here the
hosts is the total number of hosts present on the entire trip and each node is
active for 20 minutes. Figure 44a highlights how the increase in participating
nodes has a dramatic effect in increasing the percentage of hosts that are able
to establish a connection. In Figure 44b we see that the average number of
connections made by hosts grows linearly as the number of hosts increase.
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(a) Percent of nodes that made at least
one connection.

(b) Average number of connections made.

Figure 44: Connection metrics for a simulation with a 20min node lifetime.

5.4.7 Summary of Evaluation and Limitations

We have gathered preliminary data from running the MetrOpp app on An-
droid phones. The app requires large quantities of participants to test in the
field, which means we were not able to test the app in a real world scenario.
In practice the app was able to connect and find hosts quickly and updating
state between phones was near-instant.

We have provided some preliminary results as to feasibility of running a
device to device ad hoc network on the Underground using the ONE Simula-
tor. Several assumptions and simplifications have been made in the models
used in the simulator. The simulator did not scale to handle loading and
running simulations on all of the tube lines, so we limited our scope to only
consider the Circle line. The protocol was not fully implemented in the simu-
lator and a similar epidemic protocol was used in its place. We did not trace
the introduction and dissemination of messages on the network, but rather
just the number of connections established between hosts that were active.
These limitations mean that it is not possible to draw any definitive conclu-
sions. However, this work has meant we have established a base for testing
the app in the future. We were able to locate and parse tube map data to
provide an accurate representation of the route we would deploy along. The
passenger trace data was based on actual journey data published by TfL.

Future work can involve expanding the simulation to directly include an
MetrOpp implementation. The protocol can also be expanded to handle
media items exchange. Adding media items will mean that the size of the
entire state is not negligible. using hashes of the media items means that
they can be exchanged as part of the initial state transfer and specific request
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messages could be sent separately when requested.
MetrOpp has shown the technical feasibility of developing an app that

can use the relatively new WiFi Direct protocol to create and disseminate
information across a delay tolerant network. The initial simulator results are
promising and provide justification for further experiments before designing
a large scale experiment.
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6 Conclusion

6.1 Applications Outside London

Our work has shown success at providing improved access and efficiency when
making mobile network connections on the London Underground. Targeting
one of the most iconic and busiest transport systems in the world provided
focus and the ability to control our results. A true test of achievement would
be in understanding how our insights can be applied to the rest of the world.
Wikipedia lists 160 metro systems across 55 countries53 and the World Metro
Database lists 19554. Even if only a small fraction of these exhibit similar
network opportunities as the Underground the reach and applicability of our
work has the potential to be used by many more users. In DeepOpp we
saw how we could understand network patterns of intermittent connectivity
while on a moving train to improve the efficiency and effectiveness at which
we can retrieve content. Network rail has some of these similar properties
but on a much larger scale. Rural communities around the world lack the
ubiquitous access to network coverage that is available in a global city like
London. Adapting both DeepOpp and MetrOpp to target this use case could
provide benefits outside of set rail transport networks.

6.2 Conclusion

Our objectives set out a range of targets to understand and use opportunis-
tic networks to improve access to content on the London Underground. Our
SignalTracker application showed that it is possible to gather station level
mobile signal strength data in an unreliable environment. Although it is not
able to gather bandwidth data its results were proven when the data was
used as part of the DeepOpp middleware. DeepOpp was able to integrate an
efficient optimization algorithm that can help determine what media items
to fetch based on current phone state conditions. A novel scheduling system
designed was able to reduce the power required to fetch social media items by
2.5 times. While the location scheduler reduced failed fetch attempts it can
still be greatly improved and future work could focus on providing more con-
tent at the same levels of efficiency we have achieved. Finally, the MetrOpp

53https://en.wikipedia.org/wiki/List_of_metro_systems
54http://mic-ro.com/metro/table.html
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protocol has been a demonstration that it is technically possible to use newer
WiFi Direct to set up mobile ad-hoc networks on the Underground and use
passengers entering and leaving carriages to transport data. The three parts
of this project have been developed as separate applications. With confi-
dence in each of the parts they could be become part of one system. The
SignalTracker abilities could be run in the background and provide analytics
and constant updates to changing network characteristics. DeepOpp could
run alongside the MetrOpp protocol providing a hybrid approach to access-
ing fresh data and allow a seamless experience for the user as they move
between sub-surface and deep-line trains. Targeting network improvements
on a Metro system is challenging, but can provide utility to millions of people
each day. We have shown, by building on previous research, that tangible
improvements can be made by relying on opportunistic networking.
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