
Computing with Real NumbersI. The LFT Approah to Real Number ComputationII. A Domain Framework for Computational GeometryAbbas Edalat1 and Reinhold Hekmann21 Department of Computing, Imperial College, 180 Queens Gate,London SW7 2BZ, UK.e-mail: ae�do.i.a.uk2 AbsInt Angewandte Informatik GmbH, Stuhlsatzenhausweg 69,D-66123 Saarbr�uken, Germany.e-mail: hekmann�absint.omAbstrat. We introdue, in Part I, a number representation suitable forexat real number omputation, onsisting of an exponent and a man-tissa, whih is an in�nite stream of signed digits, based on the interval[�1; 1℄. Numerial operations are implemented in terms of linear fra-tional transformations (LFT's). We derive lower and upper bounds forthe number of argument digits that are needed to obtain a desired num-ber of result digits of a omputation, whih imply that the omplexityof LFT appliation is that of multiplying n-bit integers. In Part II, wepresent an aessible aount of a domain-theoreti approah to om-putational geometry and solid modelling whih provides a data-type fordesigning robust geometri algorithms, illustrated here by the onvexhull algorithm.Part I: The LFT Aproah to Real Number Computation1 IntrodutionComputing with real numbers is one of the main appliations of \omputers".Yet real numbers are in�nite mathematial objets (digit sequenes, Cauhysequenes, nested sequenes of intervals, or the like). Within �nite time, onemay only hope to obtain a �nite part of a real number, giving an approximationto some auray.This also means that omparison on real numbers is undeidable. Considerthe prediate x > 0 applied to the number x represented as the nested sequene ofintervals ([� 1n ; 1n ℄)n�0. Within �nite time, only a �nite number of these intervalsan be inspeted, whih always ontain positive as well as negative numbers sothat no deision on the sign of x is possible.



The problems mentioned above an be avoided by restriting attention tosome subset of real numbers whih an be �nitely desribed. An obvious hoieare the rational numbers, but this means that operations suh as square rootor tangent are not possible. A larger suh set onsists of the algebrai numbers,i.e., the roots of integer polynomials. With algebrai numbers, square roots andhigher roots are possible, but trigonometri funtions suh as sine, osine ortangent are still not supported.Usually, a di�erent approah is hosen. A �nite set of mahine-representableoating-point numbers is singled out, and fast operations are provided whihapproximate the standard operations and funtions: if, say, the square root ofa oating-point number is omputed, then the resulting oating-point numberis usually not the exat mathematial answer, but a number very lose to it.The errors introdued by these approximations are known as round-o� errors,and the easiest approah is to simply ignore them beause they are so small.Yet in ertain situations, round-o� errors may aumulate to yield a big error.An example where this happens is the following number sequene de�ned byJean-Mihel Muller (found in [40℄):a0 = 112 ; a1 = 6111 ; an+1 = 111� 1130� 3000an�1an :With the Unix program b, one an ompute with an arbitrary, but �xed numberof deimal plaes. Let a(k)n be the sequene element an omputed with an au-ray of k deimal plaes. Computing with 5 deimal plaes yields the followingresults (rounded to 3 plaes for presentation):a(5)0 5:500a(5)1 5:545a(5)2 5:590a(5)3 5:632 a(5)4 5:648a(5)5 5:242a(5)6 �3:241a(5)7 283:1 a(5)8 103:738a(5)9 100:209a(5)10 100:012a(5)11 100:001From this, one gets the impression that the sequene onverges to 100. Toon�rm this impression, we ompute the number a100 with an inreasing numberof deimal plaes:a(5)100 100.041a(30)100 100.0291a(60)100 100.057997a(100)100 100.01798 . . . a(110)100 100.0792 . . .a(120)100 �3:790 : : :a(130)100 5.978697 . . .a(140)100 5.9787925 . . .Here, the \exponents" indiate the number of repetitions; for instane, 100.041means 100.00001. As expeted, the omputations with 5, 30, and 60 deimalplaes show that a100 is lose to the presumable limit 100. They are onsistentin their result value, and it is tempting to think \I know that round-o� errors



may lead to wrong results, but if I inrease the preision from 30 to 60 and theresult obtained with 30 digits is on�rmed, then it must be aurate." Yet theomputations with 100 and 110 deimal plaes indiate that a100 is less lose to100 than expeted, and worse, the omputations with 120, 130, and 140 deimalplaes show that all the deimals obtained from the less preise omputationswere wrong. Or do the more preise omputations yield wrong answers? Whatis the orret answer after all? Using the approah to exat real arithmeti pre-sented in the sequel, one an verify that the number a(140)100 omputed with 140deimal plaes is an aurate approximation of the real value of a100 (and witha bit of mathematial reasoning, one an show that the sequene onverges to6, not to 100). Thus, on the positive side, we see that there is a preision (140)whih yields the right answer for a100, but in programs suh as b, one has to �xthis preision in advane, and without a detailed analysis of the problem, it isunlear whih preision will be suÆient (all preisions up to 110 give ompletelywrong, but onsistent answers near 100).In the approah to Exat Real Arithmeti presented here, one need not spe-ify a �xed preision in advane. Instead, a real number is set up by some oper-ations and funtions, and then one may ask the system to evaluate this numberup to a ertain preision. The result will be an interval whih approximates thereal number with the required preision, and it is atually guaranteed that thenumber really is ontained in this interval: with this arithmeti, it is impossibleto get wrong answers (well, sometimes it may take very long to get an answer,but one the answer is there, it is trustworthy).1.1 OverviewIn Setion 2, we introdue a number representation suitable for our purposes,onsisting of an exponent and a mantissa, whih is an in�nite stream of signeddigits. A few simple operations like �x and jxj are implemented diretly on thisrepresentation. All other operations are implemented in terms of linear frationaltransformations (LFT's). Individual LFT's at on number representations anddigit streams in a uniform way whih is �xed one and for all. Thus they providea high-level framework for implementing funtions without the need to thinkabout their ation on the low-level digit streams.LFT's and basi LFT operations are introdued in Setion 3. Setion 4 studiesmonotoniity properties of general funtions, in partiular LFT's. Suh proper-ties are useful in the design and analysis of algorithms. In Setion 5, we har-aterize those LFT's whih map the base interval [�1; 1℄ into itself (re�ningLFT's). The ation of re�ning LFT's on digit streams is de�ned in Setion 6:the absorption of argument digits into an LFT, and the emission of result digitsfrom an LFT. Absorption and emission are the main ingredients of an algorithmthat omputes the result of applying an LFT to a real number (Setion 6.3).Setion 6.5 ontains some example runs of this algorithm.In Setion 7, we derive lower and upper bounds for the number of argu-ment digits that are needed to obtain a desired number of result digits of anLFT appliation. This information is omplemented by information about the



omplexity of individual absorptions and emissions (Setion 8). Taken together,these results imply that LFT appliation is quadrati in the number n of emit-ted digits|provided that digits are absorbed and emitted one by one. If manydigits are absorbed and emitted at one, the omplexity an be redued to thatof multiplying n-bit integers (Setion 9).All basi arithmeti operations are speial instanes of LFT appliation. InSetion 10, the results about general LFT appliation are speialized to addition,multipliation, and reiproal 1=x. Transendental funtions an be implementedas in�nite LFT expansions. Setion 11 de�nes the semantis of suh expansions,and shows how they an be derived from Taylor expansions (Setion 11.4) orontinued fration expansions (Setion 11.5). In Setion 12, this knowledge isused to implement exponential funtion and natural logarithm; other funtionsare handled in the exerises.Setions 13{18 present a domain-theoreti framework for omputational ge-ometry. Setion 19 ontains historial remarks to both parts, and Setion 20ontains exerises.2 Digit StreamsIn the approah to real number omputation presented here, (omputable) realnumbers are represented as potentially in�nite streams of digits. At any time, a�nite pre�x of this stream has already been evaluated, e.g., � = 3:14159 � � �, andthere is a method to ompute larger �nite pre�xes on demand.A �nite pre�x of the digit stream denotes an interval, namely the set of all realnumbers whose digit streams start with this pre�x. For instane, the pre�x 3.14denotes the interval [3:14; 3:15℄ sine all numbers starting with 3.14 are between3:14000 � � � and 3:14999 � � � = 3:15. The longer the pre�x, the smaller the interval,e.g., 3.141 denotes [3:141; 3:142℄. In this way, the digit stream denotes by meansof its pre�xes a nested sequene of intervals whose intersetion ontains exatlyone number, namely the real number given by the digit stream.The losed intervals of IR form a domain when ordered under opposite inlu-sion. A nested sequene of intervals is an inreasing hain in this domain, withits intersetion as the least upper bound. The real numbers themselves are inone-to-one orrespondene to the maximal elements of this domain, namely thedegenerate intervals [x; x℄. The Sott topology of the interval domain induesthe usual topology on IR via this embedding.2.1 The Failure of Standard Number SystemsThe examples above are based on the familiar deimal system, whih is atuallyunsuitable for exat arithmeti (Brouwer [10℄). We shall demonstrate this bymeans of an example, and note that similar examples exist for bases di�erentfrom 10, i.e., this is a prinipal problem a�eting all standard positional numbersystems.



Consider the task of omputing the produt y = 3 �x where x is given by thedeimal representation � = 0:333 � � �. Mathematially, the result is given by thedeimal representation � = 0:999 � � �, but is it possible to ompute this result?Reall that at any time, only a �nite pre�x of � is known, and this �nite pre�xis the only soure of information available to produe a �nite pre�x of the result�. Assume we know the pre�x 0:333 of �. Is this suÆient to determine the�rst digit of �? Unfortunately not, beause the pre�x 0:333 denotes the interval[0:333; 0:334℄, whih gives [0:999; 1:002℄ when multiplied by 3. So we know that� should start with 0. or 1., but we do not yet know whih is the right one,sine neither the interval [0; 1℄ denoted by 0. nor the interval [1; 2℄ denoted by1. overs the output interval [0:999; 1:002℄. Worse, it is easy to see that thishappens with all pre�xes of the form 0:33 � � �3. Hene if � is the stream 0:333 � � �with `3' forever, we an never output the �rst digit of � sine no �nite amountof information from � is suÆient to deide whether � should start with 0. or 1. .A solution to this problem is to admit negative digits (�1, . . . , �9 in base10). If we now �nd that � begins with 0:333, we may safely output `1:' (even1:00) as a pre�x of � sine we an ompensate by negative digits if it turnsout later that the number represented by � is less than 1=3, and so the resultis atually smaller than 1. More formally, the interval denoted by the pre�x0:333 is now [0:332; 0:334℄, sine the smallest possible extension of 0.333 is nolonger 0:33300 � � �, but 0:333(�9)(�9) � � �. This interval yields [0:996; 1:002℄ whenmultiplied by 3, whih is ontained in the interval [0:99; 1:01℄ represented by thepre�x 1:00, i.e., we an safely output 1:00 as the beginning of the output stream.2.2 Signed Positional SystemsSigned positional systems are variants of standard positional systems whih ad-mit negative as well as positive digits. Like the standard systems, they are har-aterised by a base r, whih is an integer r � 2. One the base is �xed, the setof possible digits is taken as Dr = fd 2 ZZ j jdj < rg. For r = 10, we obtainD10 = f�9;�8; : : : ; 0; 1; : : : ; 9g (signed deimal system), but the signed binarysystem with r = 2 and D2 = f�1; 0; 1g is pratially more important. Mostof these leture notes deal with the ase of base 2, whih will therefore be thedefault ase when the index r is omitted.To avoid a speial notation for the \deimal" (or \binary") point, let's assumeit is always at the beginning of the digit stream. Then an (in�nite) digit stream� = hd1; d2; d3; � � �i with di 2 Dr represents the real number [�℄r =P1i=1 dir�i asusual. A �nite digit sequene Æ represents the set [Æ℄r of all numbers [Æ�℄r whihare represented by extensions of Æ to an in�nite stream. For Æ = hd1; d2; � � � ; dni,this set an be determined as the interval [Æ℄r = [Pni=1 dir�i�r�n; Pni=1 dir�i+r�n℄ of length 2r�n. Note that the empty pre�x hi (n = 0) denotes the interval[�1; 1℄, whih is the set of all real numbers representable by now. For the otherones, see Setion 2.3 below.In the sequel, we shall usually omit the parentheses and ommas in digitsequenes to obtain a more ompat notation. Instead, we shall write onrete



examples of digits and digit sequenes in a speial style, e.g., 4711 for h4; 7; 1; 1i,to distinguish these sequenes as syntati objets from the numbers they denote.For further notational onveniene, the minus sign beomes a bar within digitsequenes, e.g., we write 1�101 for the sequene h1;�1; 0; 1i. The digit sequenewhih results from attahing a single digit d to a sequene � will be written asd : � (like \ons" in the lazy funtional languages Haskell and Miranda). Unlikethese languages, we shall abbreviate d1 : d2 : � by d1d2 : �.What is then the proper semanti meaning of this \ons" operation? Forin�nite streams, we may alulate[d : �℄r = d � r�1 + 1Xi=2 �i�1r�i = 1r  d+ 1Xi=1 �ir�i! = 1r (d+ [�℄r) :Hene, we have [d : �℄r = Ard([�℄r) where Ard denotes the aÆne funtion withArd(x) = x+dr . A similar alulation an be done for �nite digit sequenes de-noting intervals; the result is again [d : �℄r = Ard([�℄r), but this time, bothsides are intervals, and for an interval I , Ard(I) is the image of I under Ard,whih may as well be obtained as Ard([u; v℄) = [Ard(u); Ard(v)℄. For �nite digit se-quenes, these onsiderations lead to an alternative haraterisation of [d1 � � � dn℄ras Ard1(� � �Ardn([�1; 1℄) � � �).In ontrast to the \ons" operation, the \tail" operation (omitting the �rstdigit) has no semanti meaning. In base 2, 010 : : : and 1�10 : : : both representthe number 14 , but their tails 10 : : : and �10 : : : represent two di�erent numbers( 12 and � 12 ).Let's now onsider the pratially important ase r = 2, D = f�1; 0; 1gmorelosely. Here, we have (suppressing the index 2) A�1(x) = 12 (x� 1), A0(x) = 12x,and A1(x) = 12 (x+1). All possible digit sequenes up to length 2 and the intervalsdenoted by them are given by the following table: [11℄ = [ 12 ; 1℄[1℄ = [0; 1℄ [10℄ = [ 14 ; 34 ℄[01℄ = [1�1℄ = [0; 12 ℄[ ℄ = [�1; 1℄ [0℄ = [� 12 ; 12 ℄ [00℄ = [� 14 ; 14 ℄[0�1℄ = [�11℄ = [� 12 ; 0℄[�1℄ = [�1; 0℄ [�10℄ = [� 34 ;� 14 ℄[�1�1℄ = [�1;� 12 ℄We see that the intervals overlap onsiderably, and some intervals are outrightequal, e.g., [1�1℄ and [01℄. The latter observation an be strengthened to thefat that for all �nite or in�nite digit sequenes Æ, the sequenes 1�1 : Æ and01 : Æ are equivalent in the sense that they denote the same interval (�nitease) or the same real number (in�nite ase). The semanti reason for this isA1 Æ A�1 = A0 Æ A1 = (x 7! 14 (x + 1)). Similarly, �11 : Æ and 0�1 : Æ are alwaysequivalent.Therefore, most real numbers have several (often in�nitely many) di�erentdigit stream representations. This redundany, or more preisely the overlapping



whih auses it is important for omputability: if an output range rosses theborder point 0 of [�1℄ and [1℄ and is suÆiently small, then it will be ontainedin [0℄, i.e., the digit 0 may be output. This observation may be strengthened asfollows:{ If an interval J � [�1; 1℄ has length `(J) � 12 , then it is ontained in (atleast) one of the three digit intervals [�1℄, [0℄, [1℄.An interval J with 12 < `(J) � 1 may or may not �t into one of the three digitintervals; onsider [��; 12 + �℄ whih does not �t for � > 0, and [0; l℄ whih �tsinto [1℄ = [0; 1℄ for l � 1. Finally, an interval J with `(J) > 1 annot �t into anyof the three digit intervals.These observations an be generalised to digit sequenes of length greaterthan 1 and arbitrary bases r as follows:Proposition 2.1. Let J � [�1; 1℄ be an interval.1. If `(J) � r�n, then J � [Æ℄r for some digit sequene Æ of length n in base r.2. If J � [Æ℄r for some digit sequene Æ of length n in base r, then `(J) � 2r�n.2.3 ExponentsWe have seen that a signed positional number system as de�ned above an onlyrepresent numbers x with jxj � 1 by digit streams. To obtain representations forreal numbers x of any size, one may write x as re � x0 where re is a power of thebase and x0 satis�es jx0j � 1 so that it an be represented by a digit stream. Inpriniple, exponents e � 0 are suÆient, but allowing arbitrary e 2 ZZ has itsvirtues. Thus, we arrive at representations (e jj �) where e is an integer (alledexponent) and � is a digit stream (alled mantissa), and (e jj �) represents[(e jj �)℄r = re � [�℄r. Semantially, the attahment of the exponent an again beaptured by an aÆne map, namely [(e jj �)℄r = Ere ([�℄r), where Ere is given byEre (x) = re � x.The resulting number representation is similar to the familiar exponent-mantissa representation. The di�erenes are that the mantissa is (potentially)in�nite and may ontain negative digits, and that no leading sign is required torepresent negative numbers. (A further syntati di�erene is that the exponentomes �rst; this reets the fat that all algorithms deal with the exponent �rstbefore working with the mantissa.)Clearly, the exponent in the number representation is not unique. Sine[0 : �℄r = 1r [�℄r, a representation (e jj �) an always be replaed by (e+1 jj 0 : �),or more generally by (e+ k jj 0k : �), where 0k : � means that k 0-digits are at-tahed to the beginning of �. On the other hand, we may remove leading 0-digitsfrom � and redue (re�ne) the exponent aordingly: [(e jj 0 : �)℄r = [(e�1 jj �)℄r,or more generally [(e jj 0k : �)℄r = [(e� k jj �)℄r .Note that 0-digits may be squeezed out of a digit stream even if it does notbegin with a 0-digit. For instane, in base r = 2, we have seen that 1�1 : � and01 : � are equivalent, and so are �11 : � and 0�1 : �. Thus, we have [(e jj 1�1 : �)℄ =[(e� 1 jj 1 : �)℄ and [(e jj �11 : �)℄ = [(e� 1 jj �1 : �)℄.



Re�nement of the exponent is no longer possible i� the mantissa � starts withone of 10, 11, �10, or �1�1. We all a representation with this property normalised.A normalised mantissa represents a number x with 14 � jxj � 1. All real numbersexept 0 have normalised representations, but in ontrast to the familiar ase ofunsigned digits, the exponents of two normalised representations for the samenumber may still di�er by 1, e.g., 13 = [(�1 jj (10)!)℄ = [(0 jj 1(0�1)!)℄.The omputation of a real number y (more exatly, one of its representations)generally proeeds in the following stages:1. Obtain an upper bound for the exponent of y.2. Re�ne the exponent until it is suÆiently small or the representation isnormalised.3. Compute pre�xes of the mantissa aording to the required preision.In simple ases, the exponent of the result is immediately known, but sometimes,onsiderable work is to be done in the �rst two stages.2.4 Calulations with Digit StreamsSuppose we want to implement a funtion f : IR! IR whih takes real numbersto real numbers. Then we need to �nd a orresponding funtion ' on representa-tions, i.e., a funtion ' that maps representations (e jj �) of x into representations(e0 jj �) of f(x). Often, this funtion will be based on some funtion '0 that mapsdigit streams into digit streams. Algorithms for suh stream funtions an usuallybe spei�ed reursively in the spirit of a lazy funtional programming languagesuh as Haskell or Miranda.We are now ready to present the implementations of a few simple funtions(and onstants), always assuming base r = 2. We shall usually not distinguishbetween a stream � and its denotation [�℄, nor between a funtion f and itsrepresentation '.Zero may be represented by (0 jj 0!), and one by (0 jj 1!) or (1 jj 10!).Negation �x an be implemented by leaving the exponent alone, and negating(the number represented by) the mantissa: �(e jj �) = (e jj ��).The latter an be done by ipping all digits around:�(1 : �) = �1 : (��); �(0 : �) = 0 : (��); �(�1 : �) = 1 : (��):Absolute value jxj an also be realised by ating on the mantissa:j(e jj �)j = (e jj j�j).As long as the leading digit of � is 0, we do not know whether [�℄ is positive ornegative. But beause of [0 : �℄ = 12 [�℄ and j 12xj = 12 jxj we an safely output a0-digit for every 0-digit we meet: j0 : �j = 0 : j�j.One the �rst non-zero digit has been found, we know [�℄ � 0 or [�℄ � 0, andan swith to the identity stream funtion or negation:j1 : �j = 1 : �; j�1 : �j = 1 : (��) :



Other operations. Implementations of the minimum funtion min(x; y) andaddition x+ y in this framework are straightforward (see also Exerise 1). Mul-tipliation is a bit more diÆult, but division already requires some ingenuity,and there is no immediate way to obtain funtions like square root, exponential,logarithm, et. Fortunately, linear frational transformations (LFT's) provide ahigh-level framework that makes the implementation of suh real number oper-ations muh easier. Individual LFT's at on number representations and digitstreams in a uniform way whih is �xed one and for all. The desired real num-ber operations may then be implemented in terms of LFT expressions, withoutthe need to think about their ation on the low-level digit streams. (Anotherapproah was used by Plume [42℄ who worked on digit streams using auxiliaryrepresentations and an auxiliary limit funtion. These also provide an abstra-tion from the underlying digit streams.)3 Linear Frational Transformations (LFT's)We have already seen that the semanti meaning of digits and exponents an beaptured by ertain aÆne transformations : [d : �℄r = Ard([�℄r) with Ard(x) = x+dr ,and [(e jj �)℄r = Ere ([�℄r) with Ere (x) = re � x. The general form of these aÆnetransformations is A(x) = ax+b with two �xed parameters a and b. ConsideringaÆne transformations would already be suÆient to obtain some useful results,but to handle division and ertain transendental funtions, one needs the moregeneral linear frational transformations or LFT's.3.1 One-Dimensional LFT's (1-LFT's) and MatriesA one-dimensional linear frational transformation (1-LFT), also alled M�obiustransformation, is a funtion of the form L(x) = ax+bx+d with four �xed parametersa, b, , and d. In general, these parameters are arbitrary real (or even omplex)numbers, but we shall usually only onsider 1-LFT's with integer parameters.The notion of 1-LFT inludes that of aÆne transformation. A 1-LFT ax+bx+dis aÆne if and only if b = 0; in this ase it beomes adx+ d .For ease of notation, we abbreviate the funtion x 7! ax+bx+d by 
 ab d�. Thefollowing are some examples of 1-LFT's:x 7! x 
 10 01� x 7! �x D�10 01Ex 7! x+ 1 
 10 11� x 7! 3x 
 30 01�x 7! 1x 
 01 10� x 7! 2x+34x+5 
 24 35�x 7! Ard(x) = x+dr D 10 drE x 7! Ere (x) = re � x D re0 01EThe notation 
ab d� for 1-LFT's looks similar to a 2-2-matrix M = �ab d�. In-deed, any suh matrix M = �ab d� de�nes a 1-LFT, namely hMi = 
 ab d�, with



hMi(x) = ax+bx+d . Yet this orrespondene is not one-to-one: in a 1-LFT, ommonfators of the four parameters do not matter; 
ab d� and Dkakb kkdE are the same1-LFT if k is a non-zero number. Thus, we have hMi = hkMi for k 6= 0. In fat,the opposite diretion also holds: if hM1i = hM2i, then M1 and M2 di�er onlyby a non-zero multipliative fator. In partiular, we have hMi = h�Mi. As aslight normalisation, we usually present 1-LFT's in a way suh that the lowerright entry is non-negative (d � 0).The matrix-like notation for 1-LFT's arries mathematial meaning beauseof the following:Proposition 3.1. The omposition of two 1-LFT's L1 and L2 is again a 1-LFT.Composition of 1-LFT's orresponds to matrix multipliation: hM1i Æ hM2i =hM1 �M2i (Exerise 2).Reall from linear algebra how two matries are multiplied:�ab d� ��a0b0 0d0� = �aa0 + b0ba0 + db0 a0 + d0b0 + dd0� (1)If b = b0 = 0, then also ba0+db0 = 0, hene aÆnity is preserved by multipliation.The neutral element of matrix multipliation is the identity matrix E = � 10 01�,whose 1-LFT 
 10 01� is the identity funtion. Reall further the important notionof the determinant of a matrixdet�ab d� = ad� b (2)and its basi properties:det E = 1 det(A � B) = detA � detB det(kM) = k2 � detM (3)Beause of the last equation above, the determinant is not a well-de�ned prop-erty of a 1-LFT (remember that hkMi = hMi for k 6= 0). Yet the sign of thedeterminant is a perfet 1-LFT property beause for k 6= 0, det(kM) >=< 0 i�detM >=< 0.A matrix M is non-singular i� detM 6= 0. The inverse of a non-singularmatrix M = �ab d� is given by �ab d��1 = 1detM � d�b �a�. For 1-LFT's, thefator 1detM does not matter, and we may de�ne the pseudo inverse M� instead:�ab d�� = � d�b �a� (4)Note that the pseudo inverse of an integer matrix is again an integer matrix,and aÆnity (b = 0) is preserved as well. The following are the main propertiesof this notion (in the matrix world):E� = E (M�)� = M(k �M)� = k �M� (A �B)� = B� �A�detM� = detM M �M� = M� �M = detM � E (5)



Sine non-zero fators do not matter for 1-LFT's, the last property gives the1-LFT equation hM�i Æ hMi = hMi Æ hM�i = id for detM 6= 0, i.e., hM�i is theinverse funtion of hMi.3.2 Two-Dimensional LFT's (2-LFT's) and TensorsThe 1-LFT's de�ned above are funtions of one argument, and as suh, notsuitable to apture the standard binary operations of addition x+y, subtrationx�y, multipliation x �y, and division x=y. For this purpose, we introdue LFT'sof two arguments (two-dimensional LFT's, shortly 2-LFT's).A two-dimensional linear frational transformation (2-LFT) is a funtion ofthe form L(x; y) = axy+x+ey+gbxy+dx+fy+h with eight �xed parameters a, b, , d, e, f , g,and h. For ease of notation, we write this funtion as Dab d ef ghE. The followingare some examples of 2-LFT's:(x; y) 7! x+ y 
 00 10 10 01� (x; y) 7! x� y D 00 10 �10 01E(x; y) 7! x � y 
 10 00 00 01� (x; y) 7! x=y 
 00 10 01 00�(x; y) 7! x+y1�xy D 0�1 10 10 01E (x; y) 7! 2x+34y+5 
 00 20 04 35�The notation Dab d ef ghE for 2-LFT's looks similar to a 2-4-matrix T = �ab d ef gh�,alled tensor. The relation between tensors and 2-LFT's is similar to the rela-tion between matries and 1-LFT's. Any tensor T de�nes a 2-LFT hT i. Twotensors de�ne the same 2-LFT if and only if their entries di�er by a non-zeromultipliative fator. Thus, hT i = hkT i for k 6= 0; in partiular hT i = h�T i. Weusually present 2-LFT's in a way suh that the lower right entry is non-negative(h � 0).If the seond argument of a 2-LFT F = Dab d ef ghE is a �xed number y, thenF jy is a funtion in one argument, given byF jy(x) = F (x; y) = (ay + )x+ (ey + g)(by + d)x + (fy + h) = �ay + by + d ey + gfy + h� (x) :A similar alulation an be done if the �rst argument is a �xed number x,leading to another 1-LFT F jx. Thus, if we de�ne for tensors T = �ab d ef gh�T jx = �ax+ ebx+ f x+ gdx+ h� and T jy = �ay + by + d ey + gfy + h� (6)then hT jxi(y) = T (x; y) and hT jyi(x) = T (x; y).While there is no obvious way to ompose two 2-LFT's in the frameworkpresented here, there are several ways to ompose a 2-LFT and a 1-LFT (or tomultiply a tensor and a matrix). Let for the following M be a matrix and T atensor.



First, the funtion F de�ned by F (x; y) = hMi(hT i(x; y)) is again a 2-LFT,namely F = hMT i, where MT is an instane of ordinary matrix multipliation:�a0b0 0d0��ab d ef gh� = �a0a+ 0bb0a+ d0b a0+ 0db0+ d0d a0e+ 0fb0e+ d0f a0g + 0hb0g + d0h� (7)Seond, the funtion G de�ned by G(x; y) = hT i(hMi(x); y) is again a 2-LFT,namely G = hT LMi, where T LM is a speial purpose operation de�ned by�ab d ef gh� L�a0b0 0d0� = �aa0 + eb0ba0 + fb0 a0 + gb0da0 + hb0 a0 + ed0b0 + fd0 0 + gd0d0 + hd0�(8)Third, the funtion H de�ned by H(x; y) = hT i(x; hMi(y)) is again a 2-LFT,namely H = hT RMi, where T RM is a speial purpose operation de�ned by�ab d ef gh� R�a0b0 0d0� = �aa0 + b0ba0 + db0 a0 + d0b0 + dd0 ea0 + gb0fa0 + hb0 e0 + gd0f0 + hd0�(9)All these operations are onneted by various algebrai laws:(M1 �M2) � T = M1 � (M2 � T ) (T LM1) RM2 = (T RM2) LM1 (10)(M1 � T ) LM2 = M1 � (T LM2) (M1 � T ) RM2 = M1 � (T RM2) (11)(T LM1) LM2 = T L (M1 �M2) (T RM1) RM2 = T R (M1 �M2) (12)3.3 Zero-Dimensional LFT's (0-LFT's) and VetorsIn analogy to 1-LFT's whih take one argument and 2-LFT's whih take twoarguments, there are also 0-LFT's 
ab � whih take no argument at all, but deliverthe onstant ab .The notation 
ab � for 0-LFT's looks similar to a vetor �ab �. Clearly, twovetors orrespond to the same 0-LFT if and only if they di�er by a non-zeromultipliative fator.A 1-LFT 
ab d� an be applied to a 0-LFT 
uv � resulting in a new 0-LFTDau+vbu+dvE. If the �rst argument of a 2-LFT F = Dab d ef ghE is a �xed 0-LFT w =
uv �, then F jw is the 1-LFT Dau+evbu+fv u+gvdu+hvE. Similarly, F jw = Dau+vbu+dv eu+gvfu+hvE.These absorption rules an be used to deal with rational numbers in thereal arithmeti. An expression like 13� an be set up as 
 10 00 00 01� (
 13� ; �) usingthe tensor for multipliation, and then simpli�ed to 
 10 03� (�). If only rationaloperations on rational numbers are performed, this is equivalent to a rationalarithmeti, with the disadvantage that in general, denominators double in theirbit size in every addition and multipliation. Alternatively, a rational numberan be treated like any real number and transformed into a digit stream.



4 MonotoniityBy interval, we always mean a losed interval [u; v℄ with u � v in IR. If I is aninterval and f : I ! IR a ontinuous funtion, then its image f(I) is again aninterval. To atually determine the end points of f(I), it is useful to know aboutthe monotoniity of f .A funtion f : I ! IR is{ inreasing if x � y in I implies f(x) � f(y),{ dereasing if x � y in I implies f(x) � f(y),{ stritly inreasing if x < y in I implies f(x) < f(y),{ stritly dereasing if x < y in I implies f(x) > f(y),{ monotoni if it is inreasing (on the whole of I) or dereasing (on the wholeof I).For monotoni funtions, we also speak of their monotoniity type, whih is" for inreasing funtions, and # for dereasing funtions. Clearly, f([u; v℄) =[f(u); f(v)℄ for inreasing f , and f([u; v℄) = [f(v); f(u)℄ for dereasing f . Henefor monotoni f , f([u; v℄) is the interval spanned by the two values f(u) andf(v), extending from their minimum to their maximum. If J is another interval,then f([u; v℄) � J if and only if both f(u) and f(v) are in J .Let hMi be a 1-LFT suh that the denominator bx + d of hMi(x) = ax+bx+dis non-zero for all x in an interval I . We all suh a 1-LFT bounded on I sineit avoids the value 1 whih formally ours as a fration with denominator 0.Analogous notions an be introdued for 2-LFT's.A 1-LFT f = hMi whih is bounded on I is a ontinuous funtion f : I ! IR,given by f(x) = ax+bx+d . Clearly, this funtion is di�erentiable with derivativef 0(x) = ad�b(bx+d)2 . In this fration, the denominator is always greater than 0 (itannot be 0 sine f was supposed to be bounded on I), while the numerator isa onstant, namely detM . Thus, the monotoniity behaviour of hMi dependsonly on the sign of detM (whih is a meaningful notion for a 1-LFT):{ If detM > 0, then hMi0(x) > 0 for all x in I , hene hMi is stritly inreasing.{ If detM < 0, then hMi0(x) < 0 for all x in I , hene hMi is stritly dereasing.{ If detM = 0, then hMi0(x) = 0 for all x in I , hene hMi is onstant on I .In any ase, hMi is monotoni, and therefore, the remarks on monotoni fun-tions given above apply. All this relies on the fat that we let the 1-LFT at onan interval; for instane, 
 01 10� = (x 7! 1x ) with det � 01 10� = �1 is dereasing on[1; 2℄ and on [�2;�1℄, but not on [�1; 1℄ n f0g.We now turn to funtions of two arguments. Let I and J be two intervals.Geometrially, their produt set I � J is a retangle. For a funtion F : I � J !IR, we de�ne F jx : J ! IR for �xed x in I by F jx(y) = F (x; y), and duallyF jy : I ! IR for �xed y in J by F jy(x) = F (x; y); these funtions are thesetions of F .A funtion F : I � J ! IR is monotoni if all its setions F jx for x 2 I andF jy for y 2 J are monotoni. Reall that all the setions of a 2-LFT are 1-LFT's,



and therefore monotoni by the results above. Hene, every 2-LFT is monotonion every retangle where it is bounded (i.e., its denominator avoids 0).Proposition 4.1. If F : [u1; u2℄ � [v1; v2℄ ! IR is ontinuous and monotoni,then its image F ([u1; u2℄ � [v1; v2℄) is the interval spanned by the four ornervalues F (u1; v1), F (u1; v2), F (u2; v1), and F (u2; v2), i.e., it extends from thesmallest of these values to the largest.Corollary 4.2. If F : [u1; u2℄� [v1; v2℄! IR is ontinuous and monotoni, thenfor all intervals J , the inlusion F ([u1; u2℄� [v1; v2℄) � J holds if and only if allthe orner values F (u1; v1), F (u1; v2), F (u2; v1), and F (u2; v2) are in J .If F : I�J ! IR is monotoni, then it may happen that some of the setionsF jy are inreasing, while some other setions F jy are dereasing. We say F isinreasing in the �rst argument if all setions F jy for y 2 J are inreasing.The properties to be dereasing in the �rst (or seond) argument are de�nedanalogously. We say F has type ("; #) if F is inreasing in the �rst argument anddereasing in the seond. The 3 other types ("; "), (#; "), and (#; #) are de�nedsimilarly.Let's onsider some examples. On I0�I0 = [�1; 1℄2, addition F (x; y) = x+yhas type ("; "), subtration F (x; y) = x� y has type ("; #), while multipliationF (x; y) = x�y is of ourse monotoni like all other 2-LFT's, but does not have anyof the four types. For, F j1(x) = x is inreasing, but F j�1(x) = �x is dereasing.5 Bounded and Re�ning LFT'sLater, we shall apply LFT's to arguments given by digit streams. Of ourse,this makes only sense if the LFT is well-de�ned for arguments from the \baseinterval" I0 = [�1; 1℄, i.e., is bounded in the sense that its denominator avoids 0for arguments from I0. If we want the result to be represented by a digit streamas well, then the LFT should moreover be re�ning, i.e., map I0 into itself.In this setion, we shall derive some riteria for LFT's to be bounded andre�ning, and prove some properties of these notions. These proofs involve somemanipulations of absolute values, so that it is worthwhile to establish someproperties of absolute values in the beginning. Realljxj = max(x;�x) � jxj = min(x;�x) (13)for real numbers x. The following lemma will be useful in dealing with sums.Lemma 5.1.max(jx+ yj; jx� yj) = jxj+ jyj and jx+ yj+ jx� yj = 2max(jxj; jyj).5.1 Bounded 1-LFT'sA 1-LFT 
 ab d� is bounded i� the denominator D(x) = bx+ d is non-zero for allx 2 I0. Sine I0 is an interval and D is ontinuous, this means either D(x) > 0



for all x in I0, or D(x) < 0 for all x in I0. Under the general assumption d � 0,the seond ase is ruled out beause D(0) = d. To hek D(x) > 0 for all x 2 I0,it suÆes to onsider the minimal value of D on [�1; 1℄. For b � 0, this isD(�1) = d � b, and for b � 0, it is D(1) = d + b. In any ase, the minimum isd� jbj. Therefore, we obtain:Proposition 5.2. 
ab d� with d � 0 is bounded if and only if d > jbj. In thisase, the denominator bx+ d is positive for all x in I0.5.2 Bounded 2-LFT'sFor a 2-LFT F = Dab d ef ghE, the denominator is D(x; y) = bxy+dx+fy+h. Wesay F is bounded if D avoids 0 for (x; y) in I20 . Under the general assumptionh = D(0; 0) � 0, this is again equivalent to positivity of D on I20 . FuntionD is monotoni; this is most easily seen by noting that D = D b0 d0 f0 h1E is a2-LFT. Hene, the range of possible values of D on I20 is spanned by the fourorner values D(�1;�1). Thus, F is bounded i� the four values b + d + f + h,�b� d+ f +h, �b+ d� f +h, and b� d� f +h are positive. Equivalently, thismeans h > max(b+ d� f; b� d+ f;�b+ d+ f;�b� d� f) : (14)In ase of b = 0, the ondition an be simpli�ed to h > jdj+ jf j with the help ofLemma 5.1.Proposition 5.3. If Dab d ef ghE with h � 0 is bounded, then h > max(jbj; jdj; jf j).Proof. We start with (14). Adding the two relations h > b+d�f and h > b�d+fgives 2h > 2b, and adding h > �b+ d+ f and h > �b� d� f yields 2h > �2b.Together, h > jbj follows. In a similar way, h > jdj and h > jf j an be derived.ut5.3 Re�ning 1-LFT'sA bounded 1-LFT f = 
ab d� is re�ning if f(I0) � I0. Sine f is monotoni, thisis equivalent to the two onditions f(�1) 2 I0 and f(1) 2 I0, or jf(�1)j � 1and jf(1)j � 1. With the assumption d � 0, the denominator of f(x) = ax+bx+d ispositive. Hene, the two onditions an be reformulated as j � aj � d � b andj+aj � d+ b, or d � max(j�aj+ b; j+aj� b) = max(+a� b; �a+ b;�+a+ b;�� a� b).Note the similarity of this ondition to the ondition for a 2-LFT to bebounded (14); the only di�erene lies in the variable names and the relationsymbol. Hene everything what has been said about bounded 2-LFT's holdshere as well in an analogous way:Proposition 5.4.An aÆne 1-LFT 
a0 d� with d > 0 is re�ning if and only if d � jaj+ jj.Proposition 5.5. If 
 ab d� with d � 0 is re�ning, then d � max(jaj; jbj; jj).



5.4 Re�ning 2-LFT'sA bounded 2-LFT F = Dab d ef ghE is re�ning if F (I20 ) � I0. Sine F is mono-toni, this is equivalent to the ondition that all four orner values F (�1;�1)are in I0, or jF (�1;�1)j � 1. With the assumption h � 0, all denominators arepositive. Hene, the four onditions an be reformulated asja+ + e+ gj � b+ d+ f + hja� � e+ gj � b� d� f + h j�a� + e+ gj � �b� d+ f + hj�a+ � e+ gj � �b+ d� f + h (15)We now show that the lower right entry h of a re�ning 2-LFT dominates all otherones (under the assumption h � 0). First, we know from Prop. 5.3 that h >jbj; jdj; jf j. Adding the two equations in the �rst olumn of (15) gives max(ja+gj; j + ej) � h + b with the help of Lemma 5.1. Similarly, adding the seondolumn yields max(ja � gj; j � ej) � h � b. Next, adding ja + gj � h + b andja� gj � h� b gives max(jaj; jgj) � h, and adding the other two relations yieldsmax(jj; jej) � h.Proposition 5.6. If Dab d ef ghE with h � 0 is re�ning, then h � jaj; jj; jej; jgjand h > jbj; jdj; jf j.6 LFT's and Digit StreamsNow we onsider the appliation of (re�ning) LFT's to arguments from I0. TheLFT's will be represented by matries, and the arguments and results by digitstreams (exponents are handled later). We take the freedom to oasionally iden-tify LFT's and their representing matries, and thus to apply the LFT notionsbounded, re�ning, monotoni et. to the representing matries as well.6.1 Absorption of Argument DigitsAbsorption into Matries. Let f = hMi be a 1-LFT to be applied to a digitstream. Remember that a digit k in base r orresponds to an aÆne transfor-mation Ark with Ark(x) = x+kr . This is a speial ase of a 1-LFT, with matrixArk = �10 kr�. Using this matrix, we may alulatehMi([k : �℄r) = hMi(hArki([�℄r)) = hM �Arki([�℄r):Thus, we may absorb the �rst digit of the argument stream into the matrix Mby multiplying M with Ark from the right:{ Absorption: M(k : �) = (M � Ark) (�).An expliit formula for the produt M � Ark may be obtained by speialisingEquation (1): M � Ark = �ab d� � �10 kr� = �ab r+ kard+ kb� (16)



For the following, let M = �ab d� and M 0 =M �Ark = �a0b0 0d0�, where the atualvalues of a0 et. are given by (16).1. If M is bounded with positive denominator, then so is M 0.Proof: Let D(x) = bx + d be the denominator of M , and D0(x) = b0x + d0the denominator of M 0. Both D and D0 are 1-LFT's, namely D = � b0 d1�and D0 = � b0 rd+kb1 �. By (16), D � Ark is D00 = � b0 rd+kbr �. By hypothesis,D(x) > 0 for all x in I0. Hene, D(x) > 0 for all x 2 Ark(I0) � I0, andtherefore, D00(x) = D(Ark(x)) > 0 for all x in I0. From this, positivity ofD0(x) = r �D00(x) immediately follows.2. If M is re�ning, then so is M 0.Proof: If M(I0) � I0, then M 0(I0) =M(Ark(I0)) �M(I0) � I0.3. If M is inreasing (dereasing), then so is M 0.Proof: M 0 is M omposed with the inreasing funtion Ark.Absorption into Tensors. The absorption of a digit into a tensor T rests ona similar semanti foundation. It omes in two versions, depending on whetherthe digit is taken from the left or the right argument.{ Left absorption: T (k : �; �) = (T L Ark) (�; �).{ Right absorption: T (�; k : �) = (T R Ark) (�; �).Expliit formulae for the produts T L Ark and T R Ark may be obtained byspeialising (8) and (9):T L Ark = �ab d ef gh� L�10 kr� = �ab d re+ karf + kb rg + krh+ kd� (17)T R Ark = �ab d ef gh� R �10 kr� = �ab r+ kard+ kb ef rg + kerh+ kf� (18)For the following, let T 0 = T L Ark or T 0 = T RArk.1. If T is bounded with positive denominator, then so is T 0.2. If T is re�ning, then so is T 0.3. If T has a monotoniity type, e.g., ("; "), then T 0 has the same type.The proofs of these statements are analogous to the orresponding ones formatries.6.2 Emission of Result DigitsOf ourse, absorption is not enough; we also need a method to emit digits of theoutput stream representing the result of a omputation.



Emission from Matries. Let M be a matrix and � a digit stream. To emita digit k of hMi([�℄r), we must transform this value into the form [k : �℄r =hArki([�℄r). This an be done by writing M as produt Ark �M 0 for some matrixM 0. The equation M = Ark �M 0 yields M 0 = Ark� �M using the inverse of Ark.Thus, emission is performed by M(�) = k : (Ark� �M)(�).An expliit formula for the produt Ark� �M is obtained by speialising (1):Ark� �M = �r0 �k1 � � �ab d� = �ra � kbb r� kdd � (19)Of ourse, we annot emit an arbitrary digit. If the output stream is to beginwith k, then the result of the omputation should be in the orresponding digitinterval [k℄r; otherwise the method would be unsound. Thus, we an only emitk from M(�) if we know that its value is ontained in [k℄r. Without looking into�, we know nothing about it. Thus, the ondition M(�) 2 [k℄r must hold for alldigit streams �, whih is equivalent to M(I0) � [k℄r.{ Emission: M(�) = k : (Ark� �M)(�).This operation is permitted only if M(I0) � [k℄r.For the following invariane properties, let M 0 = Ark� �M .1. If M is bounded with positive denominator, then so is M 0.Proof: This is obvious sine M and M 0 have the same denominator.2. IfM is re�ning and the emission leading toM 0 was permitted, thenM 0 is re-�ning again. Proof: IfM(I0) � [k℄r = Ark(I0), thenM 0(I0) = Ark�(M(I0)) �Ark�(Ark(I0)) = I0.3. If M is inreasing (dereasing), then so is M 0.Proof: M 0 is M omposed with the inreasing funtion Ark�.Emission from Tensors. Emission from a tensor works similar to emissionfrom a matrix:{ Emission: T (�; �) = k : (Ark� � T )(�; �).This operation is permitted only if T (I20 ) � [k℄r.An expliit formula for the produt Ark� � T is obtained by speialising (7):�r0 �k1 � � �ab d ef gh� = �ra� kbb r� kdd re� kff rg � khh � (20)This variant of emission satis�es invariane properties 1{3 analogous to thosefor matries.6.3 Sketh of an AlgorithmWe are now able to sketh an algorithm for applying a re�ning 1-LFT given bya matrix M to a digit stream:



Algorithm 1Let M0 =M . Then for every n � 0 do:If there is a digit k suh that Mn(I0) � [k℄r,then output digit k and let Mn+1 = Ark� �Mn,else read the next digit k from the input stream and let Mn+1 =Mn �Ark.The matries M0, M1, et. represent the internal state of the algorithm. Hene,we refer to them olletively as the state matrix. (In an imperative language,they would all oupy the same variable.)For tensors an additional problem omes up: if no emission is possible, shouldwe absorb a digit from the left argument or from the right? A simple strategyis to alternate between left and right absorption, while a more sophistiatedstrategy ould look into the tensor to see whih absorption is more likely to leadto a subsequent emission.6.4 The Emission ConditionsAlgorithm 1 was not very spei� on how to �nd a digit k suh that the imageof the LFT is ontained in [k℄r, or to �nd out that suh a digit does not exist.These questions will be handled for base r = 2 only sine this ase allows for asimple solution: try the 3 possibilities k = 1;0;�1 in turn. (An idea of what todo for a general base an be obtained by looking at Setion 9.3 below.)The atual omputation is simpli�ed if we know some properties of the statematrix (or tensor) in question. Remember that some LFT properties are pre-served by absorptions and permitted emissions. Thus, if the initial matrix isre�ning and bounded with positive denominator, then so will be all state ma-tries enountered in Alg. 1. Moreover, if the initial matrix has some spei�monotoniity property, then all state matries will have this property. Thus,for the following, we always assume a re�ning bounded matrix with positivedenominator, and we shall try to exploit monotoniity as far as possible.Base 2: Matries. Let M be a re�ning bounded matrix with positive de-nominator. First, we onsider the ase that M is inreasing, so that M(I0) =[M(�1);M(1)℄. Sine M is re�ning, we know M(I0) � I0, or M(�1) � �1 andM(1) � 1. Then M(I0) � [1℄2 = [0; 1℄ i� M(�1) � 0 and M(1) � 1, where theseond ondition is redundant. The �rst ondition reads �a+�b+d � 0. Sine thedenominator is positive, this is equivalent to a � . Similarly, M(I0) � [�1℄2 =[�1; 0℄ i� M(�1) � �1 and M(1) � 0, where the �rst ondition is redundant.The seond ondition reads a+b+d � 0. Sine the denominator is positive, this isequivalent to �a � .Finally, M(I0) � [0℄2 = [� 12 ; 12 ℄ i� M(�1) � � 12 and M(1) � 12 , where noondition is redundant. The �rst ondition reads �a+�b+d � � 12 , or 2(�a) � b�d.The seond ondition reads a+b+d � 12 , or 2( + a) � b + d. Cheking these twoonditions beomes more eÆient if they ontain ommon subexpressions thatan be evaluated ahead. Indeed, the �rst ondition an be transformed into



b� 2 � d� 2a, and the seond into 2� b � d� 2a. Hene, the two onditionsmay be even ombined into one, namely j2� bj � d� 2a.If M is dereasing, the roles of M(1) and M(�1) are interhanged. Thismeans that in the emission onditions, a and b have to be replaed by �a and�b, respetively, while  and d remain unhanged. Thus, the ondition a �  foremission of 1 beomes �a � , the ondition �a �  for emission of �1 beomesa � , and �nally, the ondition j2� bj � d� 2a beomes j2+ bj � d+ 2a. Allonditions are summarised in the following table:Type 1 �1 0" a �  �a �  j2� bj � d� 2a# �a �  a �  j2+ bj � d+ 2aSine the ondition for 0 is more ompliated than the other two, we proposeto hek the onditions in the order 1, �1, 0. This has the additional advantagethat there is a situation where some tests an be avoided beause they are boundto fail. Suppose the heks of the emission onditions for 1 and �1 both failed, butthe hek for 0 sueeded. Then the digit 0 is emitted, and the urrent matrix�ab d� is replaed by � 2ab 2d � aording to (19). Yet the relationship between�2a and 2 is the same as between �a and , whih means that the emissiononditions for 1 and �1 will again fail; therefore, only the ondition for 0 needsto be heked again.Base 2: Tensors. Now let T be a re�ning bounded tensor with positive de-nominator. First, we onsider the ase that T is of type ("; "), so that T (I20 ) =[T (�1;�1); T (1; 1)℄. Then T (I20 ) � [1℄2 = [0; 1℄ i� T (�1;�1) � 0; the other on-dition T (1; 1) � 1 holds anyway sine T is re�ning. The relevant ondition readsa��e+gb�d�f+h � 0. Sine the denominator is positive, this is equivalent to +e � g+a.Similarly, T (I20 ) � [�1℄2 = [�1; 0℄ i� T (1; 1) = a++e+gb+d+f+h � 0, whih is equivalentto + e � �(g + a).Finally, T (I20 ) � [0℄2 = [� 12 ; 12 ℄ i� T (�1;�1) � � 12 and T (1; 1) � 12 . The�rst ondition reads a��e+gb�d�f+h � � 12 , or �2(a� � e+ g) � b� d� f + h. Theseond ondition reads a++e+gb+d+f+h � 12 , or 2(a + + e+ g) � b+ d + f + h. The�rst ondition an be transformed into d+f �2a�2g � h+ b�2�2e, and theseond into 2a+ 2g � d� f � h+ b� 2� 2e. Again, these two onditions anbe ombined into one, namely j2(g+a)� (d+ f)j � (h+ b)� 2(+ e). Note thatg + a and + e also our in the tests for 1 and �1; they need only be evaluatedone.If T is of type ("; #) instead, then T (�1;�1) must be replaed by T (�1; 1),and T (1; 1) by T (1;�1). This orresponds to negation of a, b, e, f , while theother four parameters are unhanged. The other two monotoniity types an behandled by similar negations. The results are olleted in the following table:



Type 1 �1 0("; ") + e � g + a + e � �(g + a) j2(g + a)� (d+ f)j � (h+ b)� 2(+ e)("; #) � e � g � a � e � �(g � a) j2(g � a)� (d� f)j � (h� b)� 2(� e)(#; ") e�  � g � a e�  � �(g � a) j2(g � a)� (f � d)j � (h� b)� 2(e� )(#; #) �� e � g + a �� e � �(g + a) j2(g + a) + (d+ f)j � (h+ b) + 2(+ e)If T is of unknown monotoniity type or does not have any type at all, then theonjuntion of the four onditions in eah olumn must be onsidered. The fouronditions for 1 an be ombined into the two onditions j + ej � g + a andj� ej � g � a, and similarly for �1, while no simpli�ation seems to be possiblein ase of 0.Again, the onditions for 0 are more ompliated then the other two. If theorder 1, �1, 0 is hosen, then as in the matrix ase, 1 and �1 need not be hekedagain after emission of 0.6.5 ExamplesExample 6.1. Let's �rst onsider the matrix M = � 30 04� whih means multipli-ation by 34 . The d-entry 4 is positive, and the determinant 12 is positive aswell. The funtion is bounded (d = 4 > jbj = 0), and re�ning ([M(�1);M(1)℄ =[� 34 ; 34 ℄ � I0). Therefore, we an use the emission onditions in the " row ofthe matrix table. Generally, we hek the onditions in the order 1, �1, 0, exeptafter emission of 0, where the onditions for 1 and �1 are skipped beause theyare known to fail as pointed out above. We also take any opportunity to anelommon fators of the four parameters of the state matrix. Let's assume thedigit sequene denoting the argument starts with 101.Start: M = � 30 04�a � , 3 � 0 fails, �a � , �3 � 0 fails, j2� bj � d� 2a, 0 � �2 fails.Absorb 1 and set M to � 30 38�.a � , 3 � 3 sueeds.Emit 1 and set M to �60 �28�. Canel a fator of 2 so that M = � 30 �14�.a � , 3 � �1 fails, �a � , �3 � �1 fails, j2� bj � d� 2a, 2 � �2 fails.Absorb 0 and set M to �30 �28�.a � , 3 � �2 fails, �a � , �3 � �2 fails, j2� bj � d� 2a, 4 � 2 fails.Absorb 1 and set M to � 30 �116 �.a � , 3 � �1 fails, �a � , �3 � �1 fails,but j2� bj � d� 2a, 2 � 10 sueeds.Emit 0 and set M to � 60 �216 �. Canel a fator of 2 so that M = � 30 �18�.j2� bj � d� 2a, 2 � 2 sueeds.Emit 0 and set M to �60 �28�. Canel a fator of 2 so that M = � 30 �14�.j2� bj � d� 2a, 2 � �2 fails.Now, we should absorb a new digit, but we only assumed the pre�x 101 to beknown. Thus, the algorithm transforms the argument pre�x 101 into the result



pre�x 100. Note that [101℄ = [ 12 ; 34 ℄ and 100 = [ 38 ; 58 ℄ � [ 38 ; 916 ℄ = M([ 12 ; 34 ℄),as it should be. In pratie, a demand for more output digits will automatiallygenerate a demand for more input digits, whih will be omputed by the proessomputing the argument.Example 6.2. Let's onsider another example whih involves something moreompliated than multipliation by 34 , namely omputing 1x+2 . In ontrast to34x, it is not immediate how a digit stream for 1x+2 an be omputed from a digitstream for x. Yet the algorithm developed above provides the answer.The funtion x 7! 1x+2 is a 1-LFT with matrix � 01 12�. The entry d = 2 ispositive, but the determinant �1 is negative. The funtion is bounded (d = 2 >jbj = 1), and re�ning ([M(1);M(�1)℄ = [ 13 ; 1℄ � I0). Thus, the algorithm an beapplied|with the emission onditions from the # row of the table for matries.Start: M = � 01 12��a � , 0 � 1 sueeds. Emit 1 and set M to ��11 02�.�a � , 1 � 0 fails, a � , �1 � 0 fails, j2+ bj � d+ 2a, 1 � 0 fails.Absorb 1 and set M to ��11 �15�.�a � , 1 � �1 fails, a � , �1 � �1 sueeds.Emit �1 and set M to ��11 35�.�a � , 1 � 3 sueeds. Emit 1 and set M to ��31 15�.�a � , 3 � 1 fails, a � , �3 � 1 fails, j2+ bj � d+ 2a, 3 � �1 fails.Absorb 0 and set M to ��31 210�.�a � , 3 � 2 fails, a � , �3 � 2 fails, j2+ bj � d+ 2a, 5 � 4 fails.Absorb 1 and set M to ��31 121�.�a � , 3 � 1 fails, a � , �3 � 1 fails, j2+ bj � d+ 2a, 3 � 15 sueeds.Emit 0 and set M to ��61 221�.j2+ bj � d+ 2a, 5 � 9 sueeds. Emit 0 and set M to ��121 421�.j2+ bj � d+ 2a, 9 � �3 fails.Thus, the algorithm maps the input pre�x 101, whih denotes the interval [ 12 ; 34 ℄,into the output pre�x 1�1100, whih denotes the interval [ 1132 ; 1332 ℄. This intervalreally ontains M([ 12 ; 34 ℄) = [ 411 ; 25 ℄ as it should be.Note that in Example 6.1, a ommon fator of 2 ould oasionally be an-elled, while in Example 6.2, no anellation was possible. We will return to thispoint in Setion 8.1. Note further the way in whih absorptions (A) and emis-sions (E) alternate. In the �rst example, the sequene is AEAAEE, and in theseond, it is EAEEAAEE. In both ases, the next would be an A. There appearsto be some randomness in these sequenes, but it is not too bad; there seem tobe no strings of 3 onseutive A's or E's.The question how many absorptions are needed to ahieve a ertain numberof emissions is important for the performane of the algorithm. We would not



like situations where a large number of absorptions is needed before the nextemission is possible. The worst possibility were a situation where the algorithmkeeps on absorbing for ever without ever being able to emit something (like inthe problem of omputing 3�0:333 � � � in ordinary deimal notation). Fortunately,we an prove that this annot happen; apart from some �nite start-up phase inthe beginning, absorptions and emissions will approximately alternate. This willbe shown in the next setion.7 Contrativity and ExpansivityOur next goal is to derive bounds for the number of absorptions that are requiredto ahieve a ertain number of emissions. Suh bounds an be obtained frombounds of the derivative(s) of the LFT. In fat, we are able to obtain theoretialbounds for an even larger lass of funtions.7.1 Funtions of One ArgumentLet I be an interval (as always losed) and F : I ! IR a C1-funtion, i.e., aontinuous funtion whih is di�erentiable with ontinuous derivative F 0. Themean value theorem of analysis states that for all x, y in I , there is some zbetween x and y (hene in I) suh that F (x) � F (y) = F 0(z) � (x � y). Thisproperty gives bounds for the length of the interval F (I). First, we have forI = [u; v℄`(F (I)) � jF (v)� F (u)j � infz2I jF 0(z)j � (v � u) = expI F � `(I) (21)where expI F = infz2I jF 0(z)j is the expansivity of F on I .Seond, we have`(F (I)) = supx;y2I jF (x)�F (y)j � supz2I jF 0(z)j � supx;y2I jx�yj = onI F �`(I) (22)where onI F = supz2I jF 0(z)j is the ontrativity of F on I . Sine F 0 : I ! IRis ontinuous, the ontrativity is always �nite, and so we have 0 � expI F �onI F < 1 :Together with Prop. 2.1, the bounds derived above will provide informationabout possible emissions. Assume F is a C1-funtion de�ned on the base intervalI0 = [�1; 1℄ with F (I0) � I0. We now look for theoretial lower and upper boundsfor the number of digits required from a digit stream � representing an argumentx if we want to ompute a ertain number n of digits of a stream representingthe result F (x). We work with a general base r � 2.If a pre�x Æ of length m of the argument stream � is known, then x is inthe interval I = [Æ℄r of length `(I) = 2r�m. Hene, F (x) is in the intervalF (I), whose length l is bounded by expI F � 2r�m � l � onI F � 2r�m. Thedependene on the atual interval I an be removed by replaing expI F byexpI0 F � expI F , and onI F by onI0 F � onI F . Dropping the index I0, we



obtain expF � 2r�m � l � onF � 2r�m. (Yet note for later that we may workwith expJ F and onJ F instead, if we are interested in arguments taken from asubinterval J � I0.)By Prop. 2.1, we know that (at least) n result digits an be emitted if l � r�n.Hene, n digits an be emitted if onF � 2r�m � r�n, or rm � 2 onF � rn,or m � logr(2 onF ) + n. Thus, to emit n output digits, we need at mostdlogr(2 onF )e+n input digits. This statement even applies to the ase onF =0, where the logarithm is �1. For, in this ase, F is onstant, and any numberof output digits an be obtained without looking at the input at all.By Prop. 2.1, we also know that l � 2r�n if (at least) n result digits an beemitted. Thus, expF � 2r�m � 2r�n, or m � logr(expF ) + n if n result digitsan be emitted. Hene, we need at least dlogr(expF )e+n input digits to obtainn result digits. In ase of expF = 0 where the logarithm is �1, this statementstill holds (trivially), but does not yield any useful information.Theorem 7.1. Let F be a C1-funtion de�ned on the base interval I0. To obtainn digits of F (x) for x in I0, one needs at least < + n and at most >+ n digitsof x, where < = dlogr(expF )e and > = dlogr(2 onF )ewhere r is the base of the number system, expF = infx2I0 jF 0(x)j and onF =supx2I0 jF 0(x)j.For funtions with onF � expF > 0, the theorem implies that asymptot-ially, the number of absorptions and emissions will be equal, i.e., on the longrun and on average, one absorption is required for every emission. Loally, wesee that for n emissions, at least < + n absorptions are needed, while for n+ 1emissions, at most > + n + 1 are required. Hene, after any emission, we needat most > � < + 1 absorptions, before the next emission is permitted. In par-tiular, it an never happen that an in�nite amount of absorptions does not leadto any emission.For aÆne F , i.e., F (x) = ax + b, F 0 is onstant and so expF and onFoinide. In this ase, the two bounds in Theorem 7.1 are lose together: Forbase 2, they always di�er by one, while for large bases, they are even identialin most ases, allowing the exat predition of the number of required argumentdigits. For non-aÆne F , expF and onF may di�er onsiderably, leading to lessaurate estimations.Let's now onsider the ase that F is a 1-LFT whih is bounded on I0, givenby a matrix M = �ab d� with non-negative d. Reall from Setion 4 that M isC1 with M 0(x) = detM(bx+d)2 . From Prop. 5.2 and its proof, we know that bx+ d ispositive for x 2 I0, with least value d� jbj. It is not hard to see that its largestvalue is d+ jbj, and thereforeonM = j detM j(d� jbj)2 and expM = j detM j(d+ jbj)2 : (23)For aÆne matries (b = 0), both expressions simplify to jadjd2 = jajd .



With these values, Theorem 7.1 not only desribes the theoretial omplexityof obtaining M(x), but also the atual omplexity of Algorithm 1. For, thealgorithm detets an opportunity for emission as soon as it arises beause itstests are logially equivalent to the emission ondition.In Example 6.1, we have M = � 30 04�, hene expM = onM = 34 , and so< = dlog2 34e = 0 and > = dlog2 32e = 1. Hene, between n and n+1 absorptionsare needed for n emissions, and the maximum number of absorptions betweenany two emissions is 1� 0 + 1 = 2.In Example 6.2, we have M = � 01 12�, hene expM = 19 and onM = 1, andso < = dlog2 19e = �3 and > = dlog2 2e = 1. Hene, between n� 3 and n+ 1absorptions are needed for n emissions, and the maximum number of absorptionsbetween any two emissions is 1� (�3) + 1 = 5.Note that for 1-LFT's M , we have expM = 0 i� onM = 0 i� detM = 0i� M is a onstant funtion. Hene, there are only two ases: if detM 6= 0, thenumber of absorptions and emissions is asymptotially equal, while for detM =0, any number of digits an be emitted without absorbing anything.7.2 Funtions of Two ArgumentsLet I and J be two intervals (as always losed) and F : I � J ! IR a C1-funtion, i.e., a ontinuous funtion whih is di�erentiable in both argumentswith ontinuous derivatives �F�x and �F�y . Thus, for �xed x in I , F jx : J ! IRwith F jx(y) = F (x; y) is a C1-funtion on J , and for �xed y in J , F jy : I ! IRwith F jy(x) = F (x; y) is a C1-funtion on I .Let's �rst derive a lower bound for `(F (I; J)). For every y in J , (21) implies`(F (I � J)) � `(F jy(I)) � expI(F jy) � `(I) � expLI;J F � `(I) (24)where expLI;J F = infy2J expI(F jy) = infx2I;y2J j�F�x (x; y)j (25)is the left expansivity of F on I � J . Dually, we have`(F (I�J)) � expRI;J F � `(J) where expRI;J F = infx2I;y2J j�F�y (x; y)j (26)is the right expansivity of F on I � J .For an upper bound, onsider x1; x2 2 I and y1; y2 2 J . With (22), we obtainjF (x1; y1)� F (x2; y2)j � jF (x1; y1)� F (x2; y1)j+ jF (x2; y1)� F (x2; y2)j� onI (F jy1) � `(I) + onJ (F jx2) � `(J)� onLI;J F � `(I) + onRI;J F � `(J) (27)where onLI;J F = supy2J onI(F jy) = supx2I;y2J j�F�x (x; y)jand onRI;J F = supx2I onJ (F jx) = supx2I;y2J j�F�y (x; y)j:



Note that these numbers are �nite beause the partial derivatives are ontinuous.Finally, Relation (27) yields `(F (I � J)) =supx1;x22I supy1;y22J jF (x1; y1)�F (x2; y2)j � onLI;J F � `(I) + onRI;J F � `(J) : (28)Assume now F is a C1-funtion de�ned on I20 = [�1; 1℄�[�1; 1℄ with F (I20 ) �I0. Assume further that F (x1; x2) is to be omputed where eah xi is given by adigit stream �i, and we want to �nd out how many argument digits are neededto obtain n digits of the result F (x1; x2).If a pre�x Æi of length mi of the argument stream �i is known, then xi is inthe interval Ii = [Æi℄r of length `(Ii) = 2r�mi . Hene, F (x1; x2) is in the intervalF (I1; I2), whose length l is bounded by l< � l � l>, wherel< = max (expLI1;I2 F � 2r�m1 ; expRI1;I2 F � 2r�m2)l> = onLI1;I2 F � 2r�m1 + onRI1;I2 F � 2r�m2Again, the dependene on the atual intervals I1 and I2 an be removed byenlarging both of them to I0. We all the resulting bounds l� and l�. For easeof notation, we drop the indies in expLI0;I0 , et.By Prop. 2.1, we know that (at least) n result digits an be emitted if l �r�n, whih is the ase if l� � r�n. Hene, n digits an be emitted if onL F �2r�m1 � 12r�n and onR F � 2r�m2 � 12r�n. The �rst ondition is equivalent torm1 � 4 onL F � rn, or m1 � logr(4 onL F ) + n. Thus, to emit n output digits,dlogr(4 onL F )e+n digits from the left argument and dlogr(4 onR F )e+n digitsfrom the right argument are suÆient.By Prop. 2.1, we also know that l � 2r�n if (at least) n result digits anbe emitted. Thus, if n digits an be emitted, then l� � 2r�n, or expL F �2r�m1 � 2r�n and expR F � 2r�m2 � 2r�n, or m1 � logr(expL F ) + n andm2 � logr(expR F ) + n. These relations indiate how many digits from the twoarguments are at least needed to obtain n result digits.Theorem 7.2. Let F be a C1-funtion with two arguments de�ned on I20 . Toobtain n digits in base r of F (x1; x2) for x1, x2 in I0, one needs at least <L + ndigits of x1 and <R + n digits of x2, where<L = dlogr(expL F )e and <R = dlogr(expR F )e :On the other hand, >L + n digits of x1 and >R + n digits of x2 are suÆient toobtain (at least) n output digits, where>L = dlogr(4 onL F )e and >R = dlogr(4 onR F )e :For funtions with expL F > 0 and expR F > 0, the theorem implies that onthe long run and on average, one absorption from eah argument is required forevery emission. Analogously to the ase of one argument, one an show that itan never happen that an in�nite amount of absorptions from both sides doesnot lead to any emission.



Unlike the ase of matries, there are no simple formulae for the left andright ontrativities and expansivities of a general tensor. The reason is that thegeneral forms of the partial derivatives are too ompliated. Yet for some speialtensors, onrete bounds an be obtained easily.The tensor for addition is not re�ning, but T = � 00 10 10 02� with T (x; y) =12 (x+ y) is re�ning. Sine �T�x (x; y) = �T�y (x; y) = 12 , we have expL T = expR T =onL T = onR T = 12 . Hene in base 2, at least n� 1 digits and at most n+ 1digits must be absorbed from both sides to obtain n output digits. (In pratie,n� 1 digits are not suÆient.)The tensor T = � 10 00 00 01� with T (x; y) = xy is re�ning. Sine �T�x (x; y) = yand �T�y (x; y) = x, we have expL T = expR T = 0 and onL T = onR T = 1.Hene in base 2, n + 2 digits from both sides are suÆient to obtain n outputdigits, but we do not get useful lower bounds. Indeed, we have (0 : �) � � =0 : (� � �), and therefore, an arbitrary number of output digits an be obtainedwithout looking at the seond argument if the �rst argument is 0!.8 The Size of the EntriesWhen a non-singular re�ning matrix is applied to a digit stream, we know fromTheorem 7.1 that between < + 2n and > + 2n transations (absorptions plusemissions) are needed to obtain n output digits. At �rst glane, these transations(and the emission tests) seem to require only onstant time (see (16) and (19)),but we need to take into aount the size of the four entries of the state matrix. InExample 6.2, the entries seem to grow during the ourse of the omputation, andthe time required by the integer operations in the transations and tests (mainlyaddition and omparison) is linear in the bit size of the involved numbers. Thus,we should try to obtain bounds for the entries of the state matrix (or tensor) inorder to obtain proper omplexity results.8.1 Common FatorsCanellation of ommon fators of the entries of the state matrix ould help tokeep the entries small. In Example 6.1, a ommon fator of 2 ould oasionallybe anelled, while there were no ommon fators at all in Example 6.2.We �rst show that the range of possible ommon fators is quite limited.Proposition 8.1. Let M be a matrix or tensor in lowest terms (i.e., no non-trivial ommon fators in the entries), and letM 0 be the result of performing onetransation in base r (absorption or emission) at M . Then any ommon fatorof M 0 divides r.Proof. LetM = �ab d� as usual. IfM 0 results from absorbing digit k, thenM 0 =�ab r+kard+kb�. Any ommon fator g of a, b, r+ ka, and rd+ kb is also a ommonfator of ra, rb, r, and rd. Sine a, b, , and d are relatively prime by assumption,g must divide r. The arguments for emission, where M 0 = � ra�kbb r�kdd �, andfor tensors are similar. ut



Even the limited amount of anellation admitted by Prop. 8.1 does not showup in most ases. Note that without anellation of ommon fators, neitherabsorption nor emission a�et the b-entry of the state matrix or tensor. If b isodd like in Example 6.2, then it remains odd for ever, and there will never be anyommon fators in base 2. If b is even and non-zero, then ommon fators mayour, but only as often as the exponent of the largest power of 2 ontained in b.After this amount of ommon fators has been anelled out, the resulting valueof b will be odd, and no further anellations will be possible. Only if b = 0, anunlimited number of anellations may our. In the following two subsetions,we study the two ases b = 0 and b 6= 0 for matries more losely.8.2 AÆne MatriesFor an aÆne matrix (b = 0), the transations simplify a bit:�a0 d� �Ark = �a0 r+ kard � Ark� � �a0 d� = �ra0 r� kdd � (29)Hene, the result of �rst absorbing k and then emitting l, or the other way round,is Arl � � �a0 d� �Ark = �ra0 r2+ rka� rldrd � (30)whih has a ommon fator of r. After anelling it, we obtain �a0 r+ka�ldd �,whih is the same as the original matrix, exept for the -entry. Similarly, weobtain a ommon fator rk after performing k absorptions and k emissions inany order, and anelling rk will produe a matrix with the same a and d entriesas the original one. The d-entry will only inrease if there is an exess of absorp-tions over emissions; this inrease onsists of a fator of r for every additionalabsorption.By Theorem 7.1, we know that at most > + n absorptions are needed for nemissions. Thus, immediately before the last of these n emissions, n�1 emissionsand at most > + n absorptions have happened; the maximal possible exess istherefore >+1. Reall > = dlogr(2 onM)e = dlogr(2 jajd )e. By Prop. 5.4, jaj �d holds, whene > � 1. Therefore, the maximal possible exess of absorptionsover emissions is 2.Theorem 8.2. Let M0 = �a00 0d0� be an aÆne re�ning matrix with d0 � 0,and (Mn)n�0 the sequene of matries whih results from Algorithm 1, with theadditional provision that after eah step, all ommon fators are anelled out.Then all entries of Mn are bounded by r2 � d0.This bound is sharp as an be seen from Example 6.1: The starting value isd0 = 4, and so the theoretial upper bound is 22 � 4 = 16, whih indeed oursafter four transations. But Theorem 8.2 ensures that it annot get worse.Beause of the onstant upper bound in Theorem 8.2, the additions andomparisons needed to exeute the algorithm take only onstant time.



Corollary 8.3. If an aÆne re�ning 1-LFT is applied to a digit stream, eahtransation (absorption or emission) takes only onstant time. Hene, n outputdigits an be omputed in time O(n).8.3 Non-AÆne MatriesRemember that b in �ab d� is invariant under absorptions and emissions. Henein ase b 6= 0, all ommon fators that may appear during the alulation arefators of b, and thus, anellation of ommon fators an only lead to a onstantsize redution. (In the speial ase jbj = 1, there will be no non-trivial ommonfators at all.)Let us onsider entry d, whih is an upper bound for all other entries byProp. 5.5. Emission does not a�et d, while absorption of Ark transforms d intod0 = rd + kb. Beause of jkj � r � 1, one obtains d0 � rd + (r � 1)jbj andd0 � rd�(r�1)jbj, whih lead to d0+jbj � r(d+jbj) and d0�jbj � r(d�jbj): Theseestimations an easily be iterated. Taking into aount possible anellations byommon fators in the lower bound, one obtains:Theorem 8.4. Let M0 = �ab d� be a re�ning matrix with d � 0 and b 6= 0,and let Mm = �ambm mdm� be a matrix whih results from M0 by m absorptions inbase r, any number of emissions, and anellation of all ommon fators. Thendm � d�jbjjbj rm + 1 and dm � (d+ jbj)rm � jbj holds (where the oeÆients of rmare positive by Prop. 5.2).For the matrix � 01 12� of Example 6.2, we obtain in base 2 the estimations 2m+1 �dm � 3 � 2m � 1. For m = 0; : : : ; 3, the lower bounds are 2, 3, 5, 9, the upperbounds 2, 5, 11, 23, and the observed values of dm are 2, 5, 10, 21, lose to theupper bounds.On the positive side, Theorem 8.4 ensures that the bit size of the d-entry(and with it all other entries by Prop. 5.5) is at most linear in the number ofabsorptions. On the negative side, it indiates that it really has linear bit size;the inrease of the size of the d-entry annot be avoided. The a- and -entriesmay grow as well, but they need not, while b is guaranteed to remain smallbeause it is invariant.Theorem 8.4 also has a negative e�et on eÆieny. Remember (Theorem 7.1)that n emissions require O(n) absorptions, and thus lead to a d-entry of bit sizeO(n). The next exeution of the loop in Algorithm 1 will thus need time O(n)beause it requires the alulation of either 2 � d (emission of 1), or 2 + d(emission of �1), or d� 2a (in the test whether 0 an be emitted). Therefore weobtain:Theorem 8.5. The alulation of the �rst n digits of the result of applying anon-aÆne re�ning 1-LFT to a digit stream needs time O(n2) if Algorithm 1 isused.



8.4 Size Bounds for TensorsFor tensors, similar results hold, but their proofs are muh more involved. Here,we present only the main results.Proposition 8.6. Let T0 = �ab d ef gh� be a re�ning tensor with h � 0, and letTm be a tensor whih results from T0 by m absorptions in base r, any number ofemissions, and anellation of all ommon fators. Then all entries of Tm arebounded by rm(h+ jf j+ jdj+ jbj).Proposition 8.7. For every re�ning tensor T0 = �ab d ef gh� with h � 0, thereis an integer m0 � 0 suh that after m � m0 absorptions, any number of emis-sions, but no anellations, the lower right entry h0 of the resulting tensor sat-is�es h0 � rm�m0 .8.5 Canellation in TensorsFrom (17), (18), and (20), it follows that the entry b in �ab d ef gh� is invariantunder emissions and absorptions. Hene, only a �nite amount of anellation ispossible if b 6= 0, and so, h will have size �(rm) after m absorptions. Only in thease b = 0, an in�nite amount of anellations is possible. The result of emittingArk from �a0 d ef gh� is�ra0 r�kdd re�kff rg�khh � :The results of left and right absorption of Ark into �a0 d ef gh� are the tensors�a0 d re+ karf rg + krh+ kd� and �a0 r + kard ef rg + kerh+ kf � :These three tensors reveal that the three entries a, d, and f either remain thesame or are multiplied by r. Hene|under the ondition b = 0|the three ondi-tions a = 0, d = 0, and f = 0 are invariant under absorptions and emissions, i.e.,zeros at these positions will stay for ever. Yet the three tensors do not exhibitany opportunity for anellation in themselves.In the ase of matries, the opportunity for anelling r appears only if anabsorption and an emission are onsidered together. Analogously, we now on-sider the ombined e�et of absorbing k1 from the left and k2 from the right,and emitting l at �ab d ef gh� (a round). The result, whih does not depend onthe temporal order of these three transations, has a ommon fator of r in its8 entries. Canelling this fator leads to�a0 r+ k2a� ldd re+ k1a� lff Grh+ k1d+ k2f � (31)



where G = r2g + rk1+ rk2e+ k1k2a� rlh� k1ld� k2lf .Thus, in eah round, a fator of r an be anelled. Yet this is not enough: sinea round ontains two absorptions, the lower right entry inreases by a fator ofapproximately r2 in eah round, i.e., with the anellation, it still inreases byapproximately r. At least, it will be only half as big (in terms of bit size) as inthe ase b 6= 0. Note also that a, d, and f attain their original values after around with anellation. On the positive side, this means that these three entriesare bounded, reduing both spae and time omplexity of the alulations. Onthe negative side, it implies that if at least one of these three values is non-zero,then only a �nite amount of further anellations is possible (none at all if atleast one of a, d, f is 1 or �1). Thus, we may only hope for a further in�niteamount of anellations if a = d = f = 0. Under this assumption, there is indeedanother ommon fator of r in Tensor (31). Its anellation leads to�00 0 e0 rg + k1+ k2e� lhh � (32)Hene, the entries , e, and h attain their original values. As h is the dominantentry, one may argue further as in the ase of matries that all entries arebounded during the alulation. Summarising, we have the following three asesfor �ab d ef gh� if all possible anellations are performed:1. If b 6= 0, then there are only �nitely many anellations possible. After mrounds, h has bit size 2m+O(1).2. If b = 0, then it stays 0 for ever, and so do eah of a, d, f in this ase. If notall of a, d, f are zero, then a fator of r an be anelled in eah round, butapart from these, there are only �nitely many anellations possible. Afterm rounds, h has bit size m+O(1).3. If b = a = d = f = 0, then this remains true for ever, and a fator of r2 anbe anelled in eah round. All entries of the tensor have size O(1).Like in the ase of matries, these results imply that a alulation with a tensorT needs quadrati time, unless b = a = d = f = 0 or expL T = 0 or expR T = 0.9 Handling Many Digits at OneThe omplexity analysis given above has shown that apart from some exeptionalases, the omputation of n output digits from M(x) or T (x; y) needs quadratitime O(n2)|if Algorithm 1 is used whih works digit by digit, handling eahindividual digit by a transation. In this setion, we show that handling manydigits at one leads to a redution in the omplexity.9.1 Multi-DigitsThe key observation is that the produt of two (and hene many) digit matriesis again a digit matrix, in a bigger base. The produt of two digit matries�10 k1r1� � �10 k2r2� = �10 k1r2 + k2r1r2 � (33)



looks like a digit matrix again; indeed, the onditions jkij � ri � 1 implyjk1r2 + k2j � (r1 � 1) r2 + (r2 � 1) = r1r2 � 1so that the result really is a digit matrix in base r1r2. Iterating (33) yieldsArk1 � : : : �Arkn = ARK where R = rn and K = nXi=1 kirn�i : (34)Thus, instead of onsidering the digit sequene k1 : : : kn, one may instead on-sider the single number K and the length n of the sequene. The number K withjKj � rn � 1 will be alled an n-multi-digit in base r.If a real number x 2 I0 is given, then we may ask for the �rst n digitsof a possible digit stream representation of x; this request is written as n?x.Aording to the onsiderations above, we may aept that the answer is notgiven as a digit stream of length n, but as an n-multi-digit K. The number Kwith jKj � rn � 1 is a orret answer to the request n?x i� x is in [K�1rn ; K+1rn ℄.We write K = n?x if K is a orret answer for n?x (but note that there areusually two di�erent orret answers, e.g., 1? 13 has the orret answers 0 and 1).9.2 Multi-Digit ComputationAssume we are given a re�ning non-singular matrix M and an argument x inI0, and we are asked for n digits of M(x) in base 2. Theorem 7.1 provides twointegers < and > suh that at least < + n and at most > + n digits from xare needed to obtain n digits of M(x). Thus we must ask for some number m ofdigits of x, but we only know < + n � m � > + n. There are two strategiesthat an be used:1. Ask for m = < + n digits from x and let K = m?x. Absorb A2mK into Mand hek whether n digits an be emitted from the resulting matrix M 0. Ifyes, then do the emission, but if not, absorb one more digit from x, hekagain, et. Alternatively, one may determine the number 0< belonging toM 0 and ask for 0<� < more digits from x, absorb these new digits intoM 0and hek again whether n digits an be emitted, et.2. Ask for m = >+n digits from x and let K = m?x. Absorb A2mK intoM andemit n digits from the resulting matrix (whih is guaranteed to be possible).Strategy (1) ensures that as few as possible digits are read from x, but it is al-gorithmially more involved than strategy (2) sine it involves heking whetherthe emission is possible, and if this fails, either degenerates to the old digit-by-digit algorithm, or involves �nding out how many more argument digits are atleast needed. Here, we shall follow strategy (2), whih is easier to desribe.Assume M = �ab d� is given where the four entries are small. We need todetermine > = dlog2(2 onM)e = dlog2( 2j detM j(d�jbj)2 )e. The rounded logarithman be obtained by ounting how often the denominator (d � jbj)2 must be



doubled until it is bigger than the numerator, or the other way round, dependingon whih is bigger in the beginning. Alternatively, the alulation may be basedon bit sizes. Clearly, it is suÆient to ompute > one for M to serve severalrequests n?M(x) with di�erent n and x.To handle a request n?M(x), we ompute m = >+n and ask for K = m?x.Then we absorb A2mK into M :M � A2mK = �ab d� ��10 K2m� = �ab 2m+Ka2md+Kb� (35)Sine the original entries are assumed to be small and 2m and K have a bit sizeof O(m) = O(n), the omputations in (35) an be done in linear time O(n). Letthe result be M 0 = �ab CD� with small a and b, and big C and D.The next step is to �nd a suitable integer L with jLj � 2n� 1 suh that A2nLan be emitted from M 0, whih is possible i� M 0(I0) � [L�12n ; L+12n ℄. If M andheneM 0 are inreasing, thenM 0(I0) = [C�aD�b ; C+aD+b ℄, and ifM is dereasing, thenM 0(I0) = [C+aD+b ; C�aD�b ℄. Anyway, we know what M 0(I0) is. In the next subsetion,we shall show how to determine a suitable L from this information.Before we ome to this, we onsider the ase of tensors. Assume we are givena re�ning tensor T and two arguments x1 and x2 in I0, and we are asked toompute the �rst n digits of a representation of the result T (x1; x2). Althoughwe did not show how to do this, it is in priniple possible to ompute the twointegers >L = dlog2(4 onL T )e and >R = dlog2(4 onR T )e from Theorem 7.2.Then we may request m1 = >L + n digits from x1 and m2 = >R + n digitsfrom x2 whih will be delivered as multi-digits K1 = m1?x1 and K2 = m2?x2.Absorbing these multi-digits into T = �ab d ef gh� yieldsT 0 = �ab CD EF GH� = T L A2m1K1 R A2m2K2where T 0 is given by�ab 2m2 +K2a2m2d +K2b 2m1e +K1a2m1f +K1b 2m1+m2g + 2m1K2e + 2m2K1 +K1K2a2m1+m2h+ 2m1K2f + 2m2K1d +K1K2b�(36)In ontrast to the matrix ase, we do not get away with a linear omputation. Theprodut K1K2 is a produt of two n-bit integers whih needs time  (n) > O(n).Currently, the best known algorithms yield  0(n) = O(n logn log logn), butmany software pakages for big integer arithmeti ome up with a multipliationwhih needs more time than  0(n), but is still more eÆient than O(n2).Apart from the produt K1K2, all other operations, inluding multipliationby the powers of 2, an be performed in linear time O(n). Thus we still havelinear time if a = b = 0; in this ase, some power of 2 may be anelled.Again, the next step is to �nd a suitable L with jLj � rn � 1 suh thatArnL an be emitted from T 0, whih is possible i� T 0(I20 ) � [L�12n ; L+12n ℄. The twoend points of T 0(I20 ) are the smallest and the largest of the four orner values



T 0(�1;�1), respetively. If the monotoniity type of T and hene of T 0 is known,then it is lear whih of the orner values are the smallest and the largest.9.3 Multi-Digit EmissionThe treatment in the previous setion has left us with the following problem:given an integer n > 0 and a rational interval [u; v℄ � I0, whih arose as M 0(I0)or T 0(I20 ), �nd an integer L suh that jLj � 2n � 1 and [u; v℄ � [L�12n ; L+12n ℄.Beause we used the upper bounds for absorption, we know that suh an Lexists, but for the sake of generality, we also derive a ondition for the existeneof L.The interval inlusion above an be written as u � L�12n and v � L+12n , whihis equivalent to 2nv� 1 � L � 2nu+1. Sine L is required to be an integer, thisin turn is equivalent to v0 � L � u0, where v0 = d2nv � 1e and u0 = b2nu+ 1.Note that v0 and u0 are integers.Thus, the following seems to be the appropriate method: Compute the inte-gers v0 and u0. If v0 > u0, then the emission of n digits is not possible. Otherwise,any integer L with v0 � L � u0 an be emitted, for instane L = v0 or L = u0.There is one remaining diÆulty though: as an n-multi-digit, the hoseninteger L should satisfy jLj � 2n � 1. Yet if u = 1, then u0 = 2n + 1, and if1 � 2�n � u < 1, then u0 = 2n; in both ases, the hoie L = u0 is forbidden.Similarly, v0 = �2n� 1 or v0 = �2n may happen if v � �1+2�n, rendering thehoie L = v0 unsuitable.These problems may be solved as follows: remember u � �1, whene u0 ��2n + 1. Hene, u0 is a suitable hoie if u0 � 2n � 1. This ondition an beexpressed in terms of u as follows:u0 = b2nu+ 1 � 2n � 1 () 2nu+ 1 < 2n () u < 1� 2�n : (37)Sine n > 0, this is ertainly the ase if u � 0. Analogously, one may show thatv0 is suitable if v � 0. Sine u � v, one of these two onditions is always satis�ed.Atually, the deision whih of u0 and v0 to take an be based on the sign of anyelement w 2 [u; v℄; for, w � 0 implies u � 0, and w � 0 implies v � 0.Algorithm 2Input: An integer n > 0 and a rational interval [u; v℄ � I0.Output: An n-multi-digit L whih an be emitted, or the information that suha digit does not exist.Method:u0 = b2nu+ 1; v0 = d2nv � 1e;if u0 < v0 then no suh digit existselse if w � 0 then L = v0 else L = u0(where w is any onvenient test value from [u; v℄).This algorithm is suÆient to deal with the various ases of LFT's whihhave been handled in the previous setion. Sine we followed strategy (2) and



absorbed suÆiently many digits to guarantee the emission, the test u0 < v0 anbe omitted.In the matrix ase, we have [u; v℄ = M 0(I0) where M 0 = �ab CD�. If M 0 isinreasing, then u = C�aD�b and v = C+aD+b . A simple test value w in-between isM 0(0) = C=D. The test C=D � 0 is equivalent to C � 0 sine D > 0 byour general assumption. Hene, we obtain the following algorithm (whih alsoinludes the absorption phase):Algorithm 3Input: A re�ning inreasing matrix M = �ab d� with >, an argument x, andthe desired number n > 0 of output digits.Output: An n-multi-digit L = n?M(x).Method:m = > + n;if m > 0 then K = m?x; C = 2m+Ka; D = 2md+Kbelse C = ; D = d;if C � 0 then L = l 2n(C+a)D+b m� 1 else L = j 2n(C�a)D�b k+ 1 .For a dereasing matrix, the algorithm has to be suitably modi�ed.The two numbers j 2n(C�a)D�b k and l2n(C+a)D+b m are obtained by integer divisionsof the 2n-bit integers 2n(C � a) by the n-bit integers D � b, resulting in n-bitintegers. The omplexity of suh a division is the same as the omplexity  (n) ofmultiplying two n-bit integers. Apart from the two divisions, all other operations,inluding multipliation by 2n, an be performed in linear time O(n). Thus, wehave managed to derease the time needed to obtain n output digits from O(n2)(for non-aÆne matries) to  (n).But what about aÆne matries (b = 0) where the single digit algorithmalready performed in time O(n)? Well, if b = 0, the frations 2n(C�a)D�b simplify to2n(C�a)2md , where a power of 2 an be anelled before the quotients are omputed.After anellation, these are divisions of an n bit integer by a small integer whihan be done in linear time O(n).For tensors of known monotoniity type, similar variants of the general Al-gorithm 2 an be developed. For general tensors, the algorithm beomes moreompliated.10 Algebrai OperationsThese are the basi arithmeti operations like addition and multipliation. Foreah operation, we shall show how exponents an be handled, and how its a-tion on mantissas an be implemented by LFT's. The general algorithm formulti-digits (Alg. 2) an be speialised to the various ases (here only shownfor addition). These speialised multi-digit operations will not depend on LFT'sany more. Later, we onsider transendental funtions like exponential and log-arithm, where LFT's will be indispensable.



10.1 Addition x1 + x2Exponents. If both arguments happen to have the same exponent, it an be takenout sine 2ex1+2ex2 = 2e(x1+x2). If the exponents are di�erent, then the smallerone an be inreased beause of [�℄2 = 2e[0e : �℄2. If the exponents have beensuessfully handled, we are left with adding the mantissas. Unfortunately, thebase interval [�1; 1℄ is not losed under addition, but writing x1+x2 as 2(x1�x2)with x1 � x2 = x1+x22 solves the problem. Hene the exponent handling an bedone as follows:(e1 jj�1)+ (e2 jj�2) = (e+1 jj (0e�e1 : �1) � (0e�e2 : �2)) where e = max(e1; e2).Single-digit algorithm. The operation `�' is a re�ning 2-LFT T = �00 10 10 02� oftype ("; "). By the analysis in Setion 8.5 we know that the zeros written as 0are persistent, and that there are suÆient opportunities for anellation so thatthe entries remain bounded. Thus, the single-digit algorithm for addition an berun with tensors of the form �00 0 e0 gh�, i.e., four parameters whih are smallintegers. Sine the entries are bounded, only �nitely many tensors may show upduring the single-digit algorithm. Hene, the algorithm an be turned into theation of a �nite state transduer operating on digits as pure symbols.Multi-digit algorithm. Algorithm 2 an be adapted to the speial ase of addition.Beause of �T�x (x; y) = �T�y (x; y) = 12 , we know onL T = onR T = 12 , whene>L = >R = 1. Thus, n+1 digits from the two arguments are suÆient to obtainn result digits. With Ki = (n+ 1)? �i for i = 1; 2, we have u = K1�12n+1 � K2�12n+1 =K1+K2�22n+2 and v = K1+K2+22n+2 . A onvenient test value w in-between is K1+K22n+2 ;the ondition w � 0 is equivalent to K1 +K2 � 0. The two integer andidatesare u0 = b2nu+1 = b(K1 +K2 +2)=4 and v0 = d(K1 +K2 � 2)=4e. Thus, thealgorithm looks as follows:For L = n? (�1 � �2) do:K1 = (n+ 1)? �1; K2 = (n+ 1)? �2; K = K1 +K2;if K � 0 then L = d(K � 2)=4e else L = b(K + 2)=4 .Subtration is very similar to addition and not inluded here.10.2 Multipliation x1 � x2Exponents: (e1 jj �1) � (e2 jj �2) = (e1 + e2 jj �1 � �2).Zero digits. Multipliation `�' is a re�ning 2-LFT T = � 10 00 00 01� whih has nomonotoniity type sine �1 � �2 is inreasing in �1 for �2 � 0, but dereasing for�2 � 0. If �2 starts with 1 or �1, we are in one of these two ases, but 0 doesnot provide the neessary information. Yet we may push out any zero digitswithout bothering about monotoniity and without hanging the state tensor:(0 : �1) � �2 = 0 : (�1 � �2); �1 � (0 : �2) = 0 : (�1 � �2):This proess requires only linear time in the number of emitted digits. It ends ifenough digits have been emitted or both arguments are normalised.



Single-digit algorithm. If there are no more zero digits to be emitted, then thesigns of the arguments an be read o� from their �rst non-zero digits. Fromthese signs, the monotoniity type to be used in the rest of the omputation anbe determined, e.g., �1 � 0 and �2 � 0 implies type (#; "). By the analysis inSetion 8.5 we know that � 10 00 00 01� has three persistent zeros and belongs tothe medium lass of tensors that permit one anellation in every round, whihdoes not suÆe to obtain bounded entries. The general form of the state tensorwill be � a0 C0 E0 GH � with small a and big C, E, G, and H . The algorithm annotbe optimised to a �nite state transduer, but some optimisations are possiblebeause of the persistent zero entries. (Koneny [39℄ haraterized the funtionsthat an be omputed by �nite state transduers. Multipliation is not amongthese funtions.)10.3 Reiproal 1=xThis operation presents the diÆulty that it is unde�ned for x = 0. To ompute1=x, we �rst need to normalise the argument x by squeezing out zeros from themantissa and reduing the exponent aordingly (see Setion 2.3). This proessdoes not terminate for x = 0 and may take very long for x � 0. A possiblesolution is to provide a lower bound for the exponent and to indiate a \potentialdivision by 0" if this bound is reahed.If normalisation terminates, we know x 6= 0 and 14 � j�j � 1 for the �nalmantissa of x. Then 1 � 1j�j � 4, whene j 14� j � 1. This shows how to proeedafter normalisation:1=(e jj �) = (�e+ 2 jj R(�)) where R(�) = 14�Funtion R is a 1-LFT, R = � 04 10�. It is dereasing, bounded and re�ning onthe two intervals [ 14 ; 1℄ and [�1;� 14 ℄. This is suÆient to use the single-digitalgorithm for omputing R(�). Pratially, this an be done by �rst absorbingthe initial two digits of �, whih are 11, 10, �10, or �1�1 beause of normalisation.Absorption of 11 leads to � 01 13� (after anellation), absorption of 10 leads to� 01 12� et. These matries are ordinary dereasing re�ning matries as requiredby the single-digit algorithm (� 01 12� is exatly the matrix used in Example 6.2).11 In�nite LFT Expressions11.1 In�nite Matrix ProdutsWe shall later see that many familiar onstants like � or e an be written as(formal) in�nite produts Q1n=0Mn of matries with integer entries. This is ageneralisation of the in�nite sequenes (or produts) of digit matries that wehave already seen. Moreover, funtions like ex an be realised as in�nite produtsof matries whose entries depend on the argument x.



Before we ontinue, we need to larify what suh an in�nite produt atuallymeans. As �nite produts of matries are again matries, one should expet thesame for an in�nite produt. The standard way to de�ne the in�nite produtQ1n=0Mn would be that it is the limit of the �nite produtsQmn=0Mn as m goesto in�nity. Yet suh a de�nition would involve a notion of limit for matries,or rather 1-LFT's. While it is not impossible to de�ne suh a limit notion, itis beyond the sope of these notes. To avoid this problem, we only de�ne theresults of applying in�nite produts to arguments (numbers or intervals); theprodut itself remains meaningless and is onsidered mainly as another way topresent a sequene of matries.Given a real number argument y0, it is straightforward to de�neQ1n=0Mn(y0)as the limit of the sequene of real numbers yn =M0 � � �Mn�1(y0), provided allthe numbers yn are well-de�ned (no division by 0) and the limit exists. Usingthis new notion, we obtain for instane the real number y = P1i=1 di2�i de-noted by the digit stream d1d2 � � � as Q1n=1Adn(0), beause Ad1 � � �Adn(0) =(Pni=1 di2n�i)=2n onverges to y. Atually, the argument 0 an be replaed byany real number y0 sine Ad1 � � �Adn(y0) = (y0+Pni=1 di2n�i)=2n also onvergesto y.Now we replae the argument y0 by an interval J0. In analogy to the numberase we onsider the intervalsJn = M0 � � �Mn�1(J0): (38)The sequene (Jn)n�0 of intervals is nested if Jn � Jn+1 for all n � 1 (thisdoes not inlude the inlusion J0 � J1 whih is disregarded deliberately). Theinlusion Jn � Jn+1 means M0 � � �Mn�1(J0) � M0 � � �Mn(J0). If the matriesM0, . . . , Mn�1 are non-singular, this is equivalent to Mn(J0) � J0. Therefore inthe non-singular ase, the sequene of intervals is nested i� all LFT's Mn withn � 1 are re�ning w.r.t. the interval J0. Note that M0 need not be re�ning,but it should be bounded on J0 so that J1 =M0(J0) and all other intervals arewell-de�ned.Following these onsiderations, an in�nite produt Q1n=0Mn(J0) is alledre�ning if M0 is bounded on J0 and all Mn for n � 1 are re�ning for J0. Thisinludes the sequenes of our signed number representation, where M0 is anexponent matrix, whih is bounded on the base interval I0, and the remainingmatries are digit matries, whih are re�ning for I0.We say that the re�ning produt Q1n=0Mn(J0) has as value the real numbery if the intersetion of the nested sequene of intervals J1 � J2 � � � � is the sin-gleton set fyg. For instane, the produt EeQ1n=1Adn(I0) orresponding to thenumber representation (e jj d1d2 : : :) has as value the real number 2e �P1i=1 di2�idenoted by the representation.Appliation of an in�nite produt to a number and to an interval are learlyrelated. If y = Q1n=0Mn(J0), then also y = Q1n=0Mn(y0) for all y0 in J0. Onthe other hand, the interval notion is more restrited and hene more powerfulthan the point notion beause it inludes the fat that the interval sequene isnested, whih provides lower and upper bounds for all sequenes (yn)n�0 omingfrom arguments y0 2 J0.



11.2 Convergene CriteriaA nested sequene of intervals Jn = [un; vn℄ onverges to some single point i�`(Jn) = vn � un ! 0 as n ! 1. This single point is then the ommon limit of(un)n�1 and (vn)n�1. Beause of this observation, a onvergene riterion maybe obtained from the notion of ontrativity. Iterating Relation (22) yields`(Jn) = `((M0 � � �Mn�1)(J0)) � onJ0 M0 � : : : � onJ0 Mn�1 � `(J0) :Thus, we obtain the following:Theorem 11.1.A re�ning in�nite produt Q1n=0Mn(J0) onverges if Q1n=0 onJ0 Mn = 0.Usually, we shall not diretly apply this riterion, but the following orollary:Corollary 11.2. If Q1n=0Mn(J0) is a re�ning in�nite produt with the propertylimn!1 onJ0 Mn < 1, then the produt onverges to a real number.11.3 Transformation of In�nite Produts(Formal) in�nite produts an be transformed by algebrai manipulation withthe hope that the result of the transformation has better onvergene propertiesthan the original produt.Given Q1n=0Mn, selet a sequene (Un)n�1 of non-singular matries. Then�nite produts an be transformed as follows:M0 � � �Mn�1Un = M0U1 U�1 M1 U2 � � �U�n�1Mn�1Un = fM0 fM1 � � �fMn�1(39)using the new matriesfM0 = M0 U1 and fMn = U�nMnUn+1 for n � 1: (40)Beause any in�nite produt Q1n=0Mn of non-singular matries an be trans-formed into any other produt Q1n=0 fMn by hoosing U1 =M�0fM0 and Un+1 =M�nUnfMn, one needs separate arguments for the onvergene of the new produtto the same value as the old one.If the original produt is applied to a real number y0, then its value is thelimit of the sequene yn = M0 � � �Mn�1(y0). If there is a real number ey0 suhthat Un(ey0) = y0 for all n � 1, then the number sequene indued by the newmatries at ey0 is the same as the sequene indued by the old matries at y0beause of fM0 � � �fMn�1(ey0) = M0 � � �Mn�1Un(ey0) = yn using (39). Henewe obtain:Proposition 11.3. IfQ1n=0 fMn results from transformingQ1n=0Mn with (Un)n�1and y0 and ey0 are two real numbers satisfying Un(ey0) = y0 for all n � 1, thenQ1n=0 fMn(ey0) =Q1n=0Mn(y0) (this means, the �rst expression onverges if andonly if the seond onverges, and if they onverge, they have the same value).



11.4 In�nite Produts from Taylor SeriesWe want to implement transendental funtions by in�nite produts, and sowe need methods to obtain suh produts from more familiar representations.One suh representation is the Taylor power series f(x) = P1n=0 anxn, e.g.,ex =P1n=0 xnn! .There are several ways to transform Taylor series into in�nite produts.Among the methods explored so far, the one desribed in the sequel turned outto be the most useful one for the intended appliations [29℄. It an be appliedwhenever an 6= 0 for n � 1 and uses the matriesM0 = �a1x0 a0 + a1x1 � and Mn = �x0 xqn� for n � 1 (41)where qn = anan+1 . To show that these matries orrespond to the Taylor series,we laim that their �nite produts have the following form (up to saling):Pn = M0 � � �Mn�1 = �anxn0 Pni=0 aixi1 � (42)This laim an be veri�ed by indution. For n = 1, we have P1 = M0, whihlearly has the laimed form. For the step from n to n+1, we ompute Pn+1 =PnMn = �anxn0 Pni=0 aixi1 ��x0 xqn� = �anxn+10 anxn+1 + qn(Pni=0 aixi)qn �Dividing all four entries by qn 6= 0 yields the required form beause of an=qn =an+1.From (42), Pn(0) =Pni=0 aixi follows. Hene, the produt Q1n=0Mn(0) on-verges if and only if the Taylor series onverges, and yields the desired valueP1i=0 aixi.Of ourse, we do not want to apply the produt to the real number 0, but tothe base interval I0 = [�1; 1℄ of our number representation. Clearly, all matriesMn are bounded (under the assumption an 6= 0 for n � 1). The matries �x0 xqn�are re�ning i� jxj + jxj � jqnj (Prop. 5.4). Hene, Q1n=0Mn(I0) is re�ning forjxj � q=2, where q = infn�1 jqnj. The ontrativity of Mn is jxj=jqnj � jxj=q,whih is at most 1=2 for jxj � q=2. Thus, for jxj � q=2,Q1n=0Mn(I0) is a re�ningonvergent produt. Sine I0 ontains 0, its value oinides with Q1n=0Mn(0) =P1n=0 anxn as desired.11.5 In�nite Produts from Continued FrationsAnother, less familiar soure of in�nite produts are ontinued fration expan-sions. A ontinued fration is an in�nite expressiona0 + b1a1 + b2::: (43)



parameterised by numbers (an)n�0 and (bn)n�1. It denotes the limit of the se-quene of partial ontinued frationsa0; a0 + b1a1 ; a0 + b1a1 + b2a2 ; : : :provided that this limit exists. For ease of notation, the in�nite expression (43)is written as ha0; b1; a1; b2; a2; : : :i.Like for Taylor series, there are several ways to turn a ontinued fration intoan in�nite produt. We use the following:M0 = �10 a01 � and Mn = �01 bnan� for n � 1: (44)Sine M0(y) = a0 + y and Mn(y) = bnan+y , the partial produts M0 � � �Mn�1(0)are exatly the partial ontinued frations so that Q1n=0Mn(0) onverges if andonly if the ontinued fration onverges, and yields the same value.In pratial appliations, this in�nite produt must usually be transformedinto a more appropriate one before the argument an suessfully be extendedto the base interval I0. Often, the transformation matries are hosen as Un =� 10 0un�. Sine 0 is a �xed point of these matries (Un(0) = 0), the transformedin�nite produt still has the value of the ontinued fration when applied to 0by Prop. 11.3. For the atual transformation, it is useful to note that�ab d��10 0un+1� = �ab  un+1d un+1� (45)�10 0un�� �ab d��10 0un+1� = �un ab un  un+1d un+1 � (46)11.6 The Evaluation of In�nite ProdutsBefore we ome to the implementation of the various transendental funtionsby in�nite produts, we give hints on how to use the produts in a pratialimplementation. For simpliity, we only onsider re�ning produts applied tothe base interval [�1; 1℄.If all the matries in Q1n=0Mn(I0) have integer entries, there is a hoie ofseveral di�erent evaluation algorithms. We only onsider single digit approahes,but orresponding multi-digit realisations do exist. Generally, one has to assumethat a matrixMn an be reated from its index n. First, the matries may be putinto a list whih initially ontains only M0. In this list, eah matrix absorbs thedigits that are emitted from its right neighbour. Whenever the rightmost matrixMn needs to absorb a digit, the next matrix Mn+1 is reated and appended tothe list.Seond, the algorithm may be run with a state matrix whih initially is M0.Whenever the state matrix annot emit a digit, it absorbs the next matrix Mn



down the list of matries whih has not been absorbed before. This next matrixis reated on the y from its index n. Thus, only one matrix must be stored (andthe index of the next one to be absorbed), while in the �rst method, a wholelist of matries must be maintained. On the other hand, the upper bounds forspae and time omplexity of the ordinary single-digit algorithm do not holdhere, sine the matries that are absorbed are usually muh more ompliatedthan the simple digit matries.Usually, the matries in the in�nite produt depend on an argument x, likein the produt derived from the Taylor series expansion. If the argument is agiven rational, the matries an be onverted into integer matries by suitablesaling, and we are bak to the previous ase. In the general ase of an arbitraryreal argument, this annot be done; instead, the matries must be onvertedinto tensors. This is always possible if their four entries depend linearly on x, byusing (6): �ax+ ebx+ f x+ gdx+ h� = �ab d ef gh�����xIf Tn is the tensor belonging to Mn, the produt f(x) =Q1n=0Mn(I0) beomesthe in�nite tensor expression f(x) = T0(x; T1(x; : : :)). Suh an expression anonly be evaluated by the �rst method indiated above: a list of tensors mustbe maintained whih initially onsists of T0 only. Eah tensor absorbs argumentdigits from the left, and from the right the digits emitted from the next tensor.If the last tensor needs a digit from its right argument, a new tensor is reatedand added to the list. This algorithm works if the tensors are suÆiently on-trative so that (almost) eah tensor needs stritly less than n digits from itsright argument to emit n digits.12 Transendental Funtions12.1 Exponential FuntionArgument redution. The in�nite produts derived below will only behave wellfor jxj � 1, whih is equivalent to the exponent of x being at most 0. Yet anarbitrary real argument an be brought into this region by exploiting the fate2x = (ex)2. Hene, an exponent n � 0 may be handled by e(njj�) = Sn(e�)where Sn means n appliations of the squaring operation S. (Admittedly, thisan beome quite ineÆient for larger exponents.) Negative exponents n < 0 anbe handled by putting the orresponding number of zero digits in front of themantissa: e(njj�) = e�0 where �0 = 0jnj : �.Taylor series realisation. The well-known Taylor series for ex is P1n=0 xnn! . AlloeÆients an = 1=n! are non-zero, so that the method of Setion 11.4 an beapplied. The quotient qn = an=an+1 is n+ 1, so that q = infn�1 jqnj = 2. Thuswe have ex = �x0 x+ 11 � 1Yn=1�x0 xn+ 1� (I0) for jxj � 1: (47)



All Mn with n � 1 have ontrativity jxjn+1 � 1n+1 .As already mentioned, a representation suh as (47) is open to two di�erentinterpretations. For rational arguments x, it is (equivalent to) an in�nite prod-ut of integer matries, e.g., e = � 10 21�Q1n=1 � 10 1n+1� (I0). For general (real)arguments however, representation (47) should be turned into the in�nite tensorexpression ex = T0(x; T1(x; T2(x; : : :))) withT0 = � 10 10 00 11� and Tn = � 10 10 00 0n+ 1�where eah tensor has 3 persistent zeros, indiated by 0 .The tensors Tn for n � 0 realise the funtions Tn(x; y) = x(y + 1)=(n + 1)whih are inreasing in x beause y + 1 � 0 for y 2 I0, but are not monotoniin y. They an be handled similar to multipliation: leading zero digits of x anbe pushed out without hanging the tensor, and then the �rst non-zero digitdeides the monotoniity behaviour.The front tensor T0(x; y) = x(y + 1) + 1 has the same monotoniity be-haviour, but annot be handled immediately in the same way; notie also thatit is bounded, but not re�ning, so that it must emit an exponent matrix �rst.{ For x 2 [0; 1℄ (leading digit 1), T0 has type ("; ") and image [1; 3℄, so thatthe appropriate exponent is 2 (and 10 an be emitted after emitting theexponent matrix).{ For x 2 [�1; 0℄ (leading digit �1), T0 has type ("; #) and image [�1; 1℄, so thatthe appropriate exponent is 0.{ For x 2 [� 12 ; 12 ℄ (leading digit 0), T0 has image [0; 2℄, so that the appropriateexponent is 1, and 1 an be emitted after the exponent matrix. The ten-sor resulting from these emissions is (up to saling) T 00 = � 10 10 00 01� withT 00(x; y) = x(y + 1). Hene, all leading zeros of x an be pushed out with-out modifying T 00, and the �rst non-zero digit deides the monotoniity be-haviour.Continued fration realisation. A ontinued fration for the exponential funtionis ex = h1; x; 1� x2 ; x216 � 12 � 4 ; 1; x216 � 22 � 4 ; 1; : : :i:It orresponds to the produt representationex = �10 11��01 x1� x=2� 1Yn=1�01 x2=(16n2 � 4)1 � (0):The produt of the �rst two matries is (up to saling) M0 = � 22 2+x2�x�. Thein�nite produt annot diretly be extended to the base interval I0 = [�1; 1℄sine the denominators of the matries Mn = � 01 x2=(16n2�4)1 � beome 0 at �1.This problem is solved by transforming the produt with the matries Un =



� 10 04(2n�1)� (n � 1), whih have the form onsidered in Setion 11.5. By (45),the new front matrix isfM0 = �22 4(2 + x)4(2� x)� �= �11 4 + 2x4� 2x�whih is bounded on I0 for jxj � 1. By (46), the other matries arefMn =  01 x2 16(2n�1)(2n+1)4(2n�1)(2n+1)4(2n+ 1) ! = �01 4x24(2n+ 1)�These matries are re�ning on I0 for jxj � 1. By (23), the ontrativity of fMn is4x2(8n+3)2 � x216n2 whih is better (i.e., smaller) than the value jxjn+1 � 1n+1 ahievedby the Taylor expansion. Therefore, Q1n=0 fMn(I0) onverges, and sine 0 2 I0,it onverges to Q1n=0 fMn(0) =Q1n=0Mn(0) = ex.Like the Taylor produt, the ontinued fration produt onsists of integermatries for rational arguments, e.g., e = � 11 62�Q1n=1 � 01 48n+4� (I0). In ontrastto the Taylor ase, these matries are not aÆne and hene more diÆult tohandle, but they have better ontrativity.For general (real) arguments, the representation must be turned into thein�nite tensor expression ex = T0 (x; T1 (x2; T2 (x2; : : :))) whih uses both xand x2. The tensors areT0 = �00 2�2 11 44� and Tn = �00 40 01 08n+ 4�where eah tensor exept T0 has 3 persistent zeros, indiated by 0 . Taking intoaount that their left argument x2 is � 0, the tensors Tn for n � 1 have type("; #). Leading zero digits of x are doubled by squaring and an be pushed outof Tn without modifying it. Moreover, eah Tn an emit 1 after reading 1 fromx2. The front tensor T0 is a bit more ompliated, but an be handled essentiallylike the front tensor of the Taylor expansion.12.2 LogarithmDe�nition. Natural logarithm lnx is the inverse of the exponential funtion.Thus it is only de�ned for arguments x > 0. To deal with negative arguments,we propose to atually ompute the funtion f(x) = ln jxj, whih is the anti-derivative (inde�nite integral) of the reiproal funtion 1=x.Argument normalisation. Like the reiproal itself, f is still unde�ned for 0. Thehandling of this speial ase is similar to the handling of 1=0 in Setion 10.3:To ompute f(x), we �rst normalise the argument x by squeezing out zerosfrom the mantissa and reduing the exponent aordingly (see Setion 2.3). Ifnormalisation terminates, we know x 6= 0 and 14 � j�j � 1 for the �nal mantissaof x. This mantissa will start with the digit 1 or �1. The following desriptiontells what to do in the positive ase; the negative ase is dual.



Argument redution. Here, we use the fat that a (positive) normalised mantissastarts with 10 or 11: ln(e jj 1 : �) = ln(2e �(�+1)=2) = (e�1)�ln 2 + ln(1+�).For the onstant ln 2 see below. The �rst digit of � is 0 or 1; hene � 2 [� 12 ; 1℄.Continued fration expansion. A ontinued fration for the funtion ln(1+x) ish0; x; 1; x=2; 1; v1; 1; w1; 1; v2; 1; w2; 1; : : :iwhere vn = nx4n+2 and wn = (n+1)x4n+2 . We now write this ontinued fration as anin�nite produt like in Setion 11.5, and immediately transform this produt byUn = � 10 04�, using (45) and (46) in the step marked by `T='. In the last step, thematries are onverted into tensors.ln(1 + x) = �10 01��01 x1��01 x=21 � 1Yn=1�01 vn1 ��01 wn1 � (0)= �x1 xx=2 + 1� 1Yn=1�vn1 vnwn + 1� (0)= �2x2 2xx+ 2� 1Yn=1� nx4n+ 2 nx(n+ 1)x+ 4n+ 2� (0)T= �2x2 2x � 4(x+ 2) � 4� 1Yn=1� 4 � nx4n+ 2 4 � nx � 4((n+ 1)x+ 4n+ 2) � 4� (0)= �x1 4x2x+ 4� 1Yn=1� 2nx2n+ 1 8nx(2n+ 2)x+ 8n+ 4� (0)= � 10 42 01 04�����x 1Yn=1 �2n0 8n2n+ 2 02n+ 1 08n+ 4�����x (0)The tensors in the last line will be alled Tn (n � 0), and the orrespondingmatries in the seond but last line Mn (n � 0). All tensors Tn exhibit onepersistent zero, in the lower left orner. They are bounded on I20 sine the rightentry in their seond line is bigger than the sum of the two middle entries. Thedeterminants of the matries are detM0 = 2x2 � 0 and detMn = 4n(n+1)x2 �0 for n � 1. Hene, all tensors are inreasing in their seond argument, for anyx. For y 2 I0, one may also verify det(Tnjy) � 0, i.e., all the tensors have type("; ") in I20 . They are not re�ning for I0, but remember that we only onsiderx 2 [� 12 ; 1℄. For suh x, the matries Mn with n � 1 are re�ning. By (23), theontrativity of these matries is4n(n+ 1)x2((2n+ 2)x+ 6n+ 3)2 n!1�! 4x2(2x+ 6)2 = � xx+ 3�2For x = � 12 ; 0; 12 ; 1, this gives 125 ; 0; 149 ; 116 , respetively.



The onstant ln 2 an be derived from the general ase asln(1 + 1) = �11 46� 1Yn=1� 2n2n+ 1 8n10n+ 6� (I0)with ontrativity 116 (in the limit). Another possibility is to exploit the fatln 2 = � ln( 12 ) = � ln(1� 12 ), whih leads to a produt with ontrativity 125 (inthe limit): ln 2 = �12 46� 1Yn=1� �n2n+ 1 �4n7n+ 3� (I0) :Part II:A Domain Framework for Computational Geometry13 IntrodutionIn Part I we presented a framework for exat real number omputation, where wedeveloped a data type for real numbers and presented algorithms for omputingelementary funtions. We now turn our attention to omputational geometry,where we are interested in omputing geometri objets, suh as lines, urves,planes, surfaes, onvex hulls and Voronoi diagrams. In a broad sense, we ansay that this represents an extension of exat arithmeti in that we now needto ompute a subset of the Eulidean spae rather than just a real number. Infat, the undeidability of omparison of real numbers in exat arithmeti hasa lose ounterpart in omputational geometry, namely the undeidability ofthe membership prediate for proper subsets of the Eulidean spae. Thus, inomputational geometry one has to deal with somewhat similar problems as inexat arithmeti. However, there are some other fundamental new issues whihare not enountered in exat arithmeti, making omputational geometry anindependent subjet of its own.Computational geometry and solid modelling, as in Computer Aided Design(CAD), are fundamental in the design and manufaturing of all physial objets.However, these disiplines su�er from the lak of a proper and sound data-type. The urrent frameworks in these subjets are based, on the one hand, ondisontinuous prediates and Boolean operations, and, on the other hand, onomparison of real numbers, whih is undeidable. These essential foundationsof the existing theory and implementations are both unjusti�ed and unrealisti;they give rise to unreliable programs in pratie.Topology and geometry, as mainstream mathematial disiplines, have beendeveloped to study ontinuous transformations on spaes. It is therefore an ironythat the main building bloks in these subjets, namely the membership pred-iate of a set, the subset inlusion prediate, and the basi operations suh asintersetion are generally not ontinuous and therefore non-omputable.



For example, in any Eulidean spae IRn the membership prediate 2S ofany subset S � IRn de�ned as2S : IRn ! ftt;�gx 7! � tt if x 2 S� if x =2 Swith the disrete topology on ftt;�g is ontinuous if and only if S is both openand losed, i.e. if S is either empty or the whole spae. In fat, the membershipprediate of any proper subset of IRn is disontinuous at the boundary of thesubset.Similarly, onsider the intersetion operator as a binary operator on the ol-letion C(IRn) of ompat subsets of IRn equipped with the Hausdor� distanedH de�ned on losed subsets bydH(C;D) = max (supd2D inf2C j� dj; sup2C infd2D j� dj);with the onvention that dH(;; ;) = 0 and for C 6= ;, dH (;; C) =1:� \ � : C(IRn)� C(IRn)! C(IRn)(A;B) 7! A \ BThen, � \ � is disontinuous whenever A and B just touh eah other.The non-ontinuity of the basi prediates and operations reates a founda-tional problem in omputation, whih has so far been essentially negleted. Infat, in order to onstrut a sound omputational model for solids and geometry,one needs a framework in whih these elementary building bloks are ontinuousand omputable.In pratie, orretness of algorithms in omputational geometry is usuallyproved using the Real RAMmahine model of omputation, in whih omparisonof real numbers is onsidered to be deidable. Sine this model is not realisti,orret algorithms, when implemented, turn into unreliable programs.A simple example is provided by omputing, in any oating point format,�rst the intersetion point x in the plane of two straight lines L1 and L2 meetingunder a small angle, and then omputing the minimum distane d(x; L1) andd(x; L2) from x to eah of the two lines. In general, d(x; L1) and d(x; L2) areboth positive and distint.A more sophistiated example is given by the implementation in oatingpoint of any algorithm to ompute the onvex hull of a �nite number of pointsin the plane. If there are three nearly ollinear points A;B;C as in the piture,then depending upon the oating point format, the program an give, insteadof the two edges AB and BC, any of the following:(i) AB only.(ii) AC only.(iii) BC only.(iv) none of them.
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Fig. 1. The onvex hull of a �nite number of points (top piture) and four possibleerrors arising from oating point implementations.



In any of the above four ases, we get a logial inonsisteny as the edgesreturned by the program do not give the orret onvex hull and in the ases (i),(iii) and (iv) do not give a losed polygon at all.In CAGD modelling operators, the e�et of rounding errors on onsistenyand robustness of atual implementations is an open question, whih is handledin industrial software by various heuristis.The solid modelling framework provided by lassial analysis, whih allowsdisontinuous behaviour and omparison of exat real numbers, is not realistias a model of our interation with the physial world in terms of measurementand manufaturing. Nor is it realisti as a basis for the design of algorithms im-plemented on realisti mahines, whih an only deal with �nite data. Industrialsolid modelling software used for CAGD (Computer Aided Geometri Design),CAM (Computer Aided Manufaturing) or robotis is therefore infeted by thedisparity between the lassial analysis paradigm and feasible omputations.This disparity, as well as the representation of unertainties in the geometry ofthe solid objets, is handled ase by ase, by various expensive and unsatisfa-tory \up to epsilon" ad-ho heuristis. It is diÆult, if at all possible, to improveand generalise these tehniques, sine their relatively poor suess depends onthe skill and experiene of software engineers rather than on a well formalisedmethodology. In pratie, the maintenane ost of some entral geometri oper-ators suh as the Boolean operations or some spei� variants of the Minkowskisum has always remained ritial.A robust algorithm is one whose orretness is proved with the assumptionof a realisti mahine model. Reursive analysis de�nes preisely what it means,in the ontext of the realisti Turing mahine model of omputation, to omputeobjets belonging to non-ountable sets suh as the set of real numbers.Here, we use a domain-theoreti approah to reursive analysis to developthe foundation of an e�etive framework for solid modelling and omputationalgeometry. It is based on the work of the seond author with Andr�e Lieutier. Infat these notes form an abridged version of two papers [14, 15℄; full details ofproofs and many other results an be obtained from these papers.We present the ontinuous domain of solid objets whih gives a onretemodel of omputation on solids lose to the atual pratie of CAD engineers.In this model, the basi prediates, suh as membership and subset inlusion,and operations, suh as union and intersetion, are ontinuous and omputable.The set-theoreti aspets of solid modelling are revisited, leading to a theoreti-ally motivated model. Within this model, some unavoidable limitations of solidmodelling omputations are shown and a sound framework to design spei�a-tions for feasible modelling operators is provided. Moreover, the model is ableto apture the unertainties of input data in atual CAD situations.We need the following requirements for the mathematial model:1. the notion of omputability of solids has to be well de�ned,2. the model has to reet the observable properties of real solids,3. it has to be losed under the Boolean operations and all basi prediates andoperations have to be omputable,



4. non-regular sets1 have to be aptured by the model as well as regular solids,5. the model has to support a design methodology for atual robust algorithms.A general methodology for the spei�ation of feasible operators and thedesign of robust algorithms should rely on a sound mathematial model. Thisis why the domain-theoreti approah is a powerful framework both to modelpartial or unertain data and to guide the design of robust software.14 The Solid DomainIn this setion, we introdue the solid domain, a mathematial model for repre-senting rigid solids. The reader should refer to the Appendix for a basi introdu-tion to the domain-theoreti notions required in the rest of this artile. We foushere on the set-theoreti aspets of solid modelling. Our model is motivated byrequirements 1 to 5 given above.We �rst reall some basi notions in topology. For any subset A of a topolog-ial spae X , the losure, A, of A is the intersetion of all losed sets ontainingA, the interior, AÆ, of A is the union of all open sets ontained in A and theboundary, �A, of A is the set of points x 2 X suh that any neighbourhood of x(i.e. any open set ontaining x) intersets both A and its omplement A. Reallthat an open set is regular if it is the interior of its losure; dually, a losed setis regular if it is the losure of its interior. The omplement of a regular openset then is a regular losed set and vie versa. A subset C � X is ompat if forevery olletion of open subsets hOiii2I with C � Si2I Oi there exists a �niteset J � I with C � Si2J Oi. A subset of IRd is ompat i� it is bounded andlosed.Given any proper subset S � IRn, the lassial membership prediate 2S :IRn ! ftt;�g is ontinuous exept on �S. Reall that a prediate is semi-deidable if there is an algorithm to on�rm in �nite time that it is true wheneverthe prediate is atually true. For example, membership of a point in an openset in IRn is semi-deidable, sine if the point is given in terms of a shrinkingsequene of rational retangles, then in �nite time one suh rational retanglewill be ompletely inside the open set. On the other hand, if S is an open orlosed set, then its boundary has empty interior and it is not semi-deidable thata point is on the boundary. For example if n = 1 and S is the set of positivenumbers, then a real number x 2 IR is on the boundary of S i� x = 0 whih is notdeidable in omputable analysis. It therefore makes sense from a omputationalviewpoint to rede�ne the membership prediate as the ontinuous funtion:20S : IRn ! ftt;�g?x 7! 8<: tt if x 2 SÆ� if x 2 SÆ? otherwise.1 An open set is regular if it is the interior of its losure.



Here, ftt;�g? is the three element poset with least element ? and two inom-parable elements tt and �. In the Sott topology fttg and f�g are open sets butf?g is not open. We all this the ontinuous membership prediate. Then, twosubsets, or two solid objets, are equivalent if and only if they have the same on-tinuous membership prediate, i.e. if they have the same interior and the sameexterior (interior of omplement). By analogy with general set theory for whiha set is ompletely de�ned by its membership prediate, we an de�ne a solidobjet in IRn to be any ontinuous map of type IRn ! ftt;�g?. The de�nitionof the solid domain is then onsistent with requirement 1 sine a omputablemembership prediate has to be ontinuous.Note that a solid objet, given by a ontinuous map f : IRn ! ftt;�g?,is determined preisely by two disjoint open sets, namely f�1(tt) and f�1(�).Moreover, the interior (f�1(tt) [ f�1(�))Æ of the omplement of the union ofthese two open sets an be non-empty. If we now onsider a seond ontinuousfuntion g : IRn ! ftt;�g? with f v g, then we have f�1(tt) � g�1(tt) andf�1(�) � g�1(�). This means that a more de�ned solid objet has a larger inte-rior and a larger exterior. We an think of the pair f�1(tt); f�1(�) as the pointsof the interior and the exterior of a solid objet as determined at some �nitestage of omputation. At a later stage, we obtain a more re�ned approximationg whih gives more information about the solid objet, i.e. more points of itsinterior and more points of its exterior.De�nition 14.1. The solid domain (SIRn;v) of IRn is the set of ordered pairs(A;B) of disjoint open subsets of IRn endowed with the information order:(A1; B1) v (A2; B2) () A1 � A2 and B1 � B2.An element (A;B) of SIRn is alled a partial solid. The sets A and B areintended to apture, respetively, the interior and the exterior (interior of theomplement) of a solid objet, possibly, at some �nite stage of omputation.Note that (SIRn;v) is a direted omplete partial order with Fi2I(Ai; Bi) =(Si2I Ai;Si2I Bi) and is isomorphi with the funtion spae IRn ! ftt;�g?. Byduality of open and losed sets, (SIRn;v) is also isomorphi with the olletionof ordered pairs (A;B) of losed subsets of IRn with A [ B = IRn with theinformation ordering: (A1; B1) v (A2; B2) () A2 � A1 and B2 � B1.Proposition 14.2. The partial solid (A;B) 2 (SIRn;v) is a maximal elementi� A = BÆ and B = AÆ.Proof. Let (A;B) be maximal. Sine A and B are disjoint open sets, it followsthat A � BÆ. Hene, (A;B) v (BÆ; B) and thus A = BÆ. Similarly, B = AÆ.This proves the \only if" part. For the \if" part, suppose that A = BÆ andB = AÆ. Then, any proper open superset of A will have non-empty intersetionwith B and any proper open superset of B will have non-empty intersetion withA. It follows that (A;B) is maximal. utCorollary 14.3. If (A;B) is a maximal element, then A and B are regularopen sets. Conversely, for any regular open set A, the partial solid (A;AÆ) ismaximal.



Proof. For the �rst part, note that A is the interior of the losed set B andis, therefore, regular; similarly B is regular. For the seond part, observe thatAÆÆ = (A)Æ = A. utWe de�ne (A;B) 2 SIRn to be a lassial solid objet if A [ B = IRn.Proposition 14.4. Any maximal element is a lassial solid objet.Proof. Suppose (A;B) is maximal. Then IRn = A [ �A [ AÆ = A [ B, sineA = A [ �A and AÆ � AÆ = B. utClassial solid objets form a larger family than the maximal elements, i.e. regu-lar solids. For example, if A = fz 2 IR2 j jzj � 1g [ f(x; 0) 2 IR2 j jxj � 2g, thenA is represented in our model by the lassial (non-regular) objet (AÆ; A).Theorem 14.5. The solid domain (SIRn;v) is a bounded omplete !-ontinuousdomain and (A1; B1) � (A2; B2) i� A1 and B1 are ompat subsets of A2 andB2 respetively.Proof. To haraterise the way-below relation, �rst assume that A1 and B1 areompat subsets of A2 and B2 respetively. If A2 � Si2I Ui and B2 � Si2I Vi,where the unions are assumed to be direted, then we get A1 � A2 � Si2I Uiand B1 � B2 � Si2I Vi. By ompatness of A1 and B1 it follows that there existsi 2 I with B1 � Ui and B2 � Vi. Conversely, assume that (A1; B1) � (A2; B2).There exist direted olletions of open sets (Ui)i2I and (Vi)i2I with union A2and B2 respetively suh that Ui and Vi are ompat subsets of A2 and B2for eah i 2 I . By the de�nition of the way-below relation, there exists i 2 Iwith A1 � Ui and B1 � Vi from whih it follows that A1 and B1 are ompatsubsets of A2 and B2 respetively. Every open subset of IRn an be obtained asthe union of an inreasing sequene of open rational polyhedra (i.e. polyhedrawhose verties have rational oordinates) way-below the open set. The olletionof all pairs of disjoint open rational polyhedra thus provides a ountable basisfor SIRn. utIn pratie, we are often interested in the subdomain SbIRn of bounded partialsolids whih is de�ned as SbIRn = f(A;B) 2 SIRn j B is boundedg [ f(;; ;)g,ordered by inlusion. It is easy to see that SbIRn is a subdpo of SIRn. Moreover,it is left as an exerise to show that:Proposition 14.6. The dpo SbIRn is !-ontinuous with the way-below relationgiven by (A1; B1)� (A2; B2) i� A1 � A2 and B2 � B1Æ.We say (A;B) 2 S[�a; a℄n is a proper element if (A;B) 6= (;; [�a; a℄n) and(A;B) 6= ([�a; a℄n; ;). Consider the olletion R([�a; a℄n) of non-empty regularlosed subsets of [�a; a℄n with the metri given by,d(A;B) = max(dH(A;B); dH (A; B);where dH is the Hausdor� metri.



Theorem 14.7. The olletion of proper maximal elements of S[�a; a℄n is theontinuous image of the spae (R([�a; a℄n); d) of the non-empty regular losedsubsets of [�a; a℄n.Proof. It is onvenient to work with the representation of S[�a; a℄n by pairs(A;B) of losed subsets of [�a; a℄n, with A [ B = [�a; a℄n, ordered by reverseinlusion. Any pair of open sets (U; V ) of [�a; a℄n provides a basi Sott open setO(U;V ) of S[�a; a℄n given by O(U;V ) = f(A;B) 2 S[�a; a℄n j A � U &B � V g.Now onsider the map � : R([�a; a℄n) ! S[�a; a℄n de�ned by � (A) = (A;A).Clearly, � is a funtion onto the set of proper maximal elements of S[�a; a℄n.To show that it is ontinuous, suppose (A;A) 2 O(U;V ), i.e. A � U and A �V . Let k = min(r(A;U ); r(A; V )) where r(Y; Z) is the minimum distanebetween ompat sets Y and Z. Then for D 2 R([�a; a℄n) with d(C;D) < k,the inequalities dH(C;D) < k and dH (C; D) < k imply D � U and D � V .This shows that � is ontinuous. utWe an de�ne a metri on the non-empty losed subsets of IRn by putting:d0H(A;B) = max(dH (A;B); 1). We leave it as an exerise for the reader to showthat the olletion of proper maximal elements of SIRn is the ontinuous imageof the spae (R(IRn); d0) of the non-empty regular losed subsets of IRn with themetri de�ned by d0(A;B) = max(d0H (A;B); d0H (A; B)): (48)15 Prediates and Operations on SolidsOur de�nition is also onsistent with requirement 2 in a losely related way.We onsider the idealisation of a mahine used to measure mehanial parts.Two parts orresponding to equivalent subsets annot be distinguished by suha mahine. Moreover, partial solids, and, more generally, domain-theoretiallyde�ned data types allow us to apture partial, or unertain input data enoun-tered in realisti CAD situations. In order to be able to ompute the ontinu-ous membership prediate, we extend it to the interval domain IIRn and de�ne� 2 � : IIRn � SIRn ! ftt;�g? with:C 2 (A;B) = 8<: tt if C � A� if C � B? otherwise(see Figure 2). Note that we use the in�x notation for prediates and Booleanoperations.We de�ne the prediate � � � : SbIRn � SIRn ! ftt;�g?, by(A;B) � (C;D) = 8<: tt if B [ C = IRn� if A \D 6= ;? otherwise
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Fig. 2. The membership prediate of a partial solid objet of the unit square.The restrition to SbIRn will ensure that � � � is ontinuous, as we will see inone of the exerises below. Starting with the ontinuous membership prediate,the natural de�nition for the omplement would be to swap the values tt and �.This means that the omplement of (A;B) is (B;A), f. requirement 3.As for requirement 4, Figure 3 represents a subset S of [0; 1℄2 that is not reg-ular. Its regularization removes both the external and internal \dangling edge".Here and in subsequent �gures, the two omponents A and B of the partial solidare, for larity, depited separately below eah piture.
(A,B)

A B

Fig. 3. Representation of a non-regular solid.Bearing in mind that for a partial solid objet (A;B), the open sets A andB respetively apture the interior and the exterior of the solid, we an dedue



the de�nition of Boolean operators on partial solids:(A1; B1) [ (A2; B2) = (A1 [ A2; B1 \ B2)(A1; B1) \ (A2; B2) = (A1 \ A2; B1 [ B2):One an likewise de�ne the m-ary union and the m-ary intersetion of partialsolids. Note that, given two partial solids representing adjaent boxes, theirunion would not represent the set-theoreti union of the boxes, as illustrated inFigure 4.
(A2,B2)

A2 B2

(A1,B1)
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(A1,B1)∪(A2,B2)

A1∪A2
B1∩B2

Fig. 4. The union operation on the solid domain.Theorem 15.1. The following maps are ontinuous:(i) The prediate � 2 � : IIRn � SIRn ! ftt;�g?.(ii) The binary union �[� : SIRn�SIRn ! SIRn and more generally the m-aryunion S : (SIRn)m ! SIRn:(iii) The binary intersetion �\� : SIRn�SIRn ! SIRn and more generally them-ary intersetion T : (SIRn)m ! SIRn.Proof. (i) A funtion of two variables on domains is ontinuous i� it is ontinuousin eah variable separately when the other variable is �xed. From this, we obtainthe required ontinuity by observing that a non-empty ompat set is ontainedin the union of an inreasing sequene of open sets i� it is ontained in one suhopen set.(ii) This follows from the distributivity of [ over \.(iii) Follows from (ii) by duality. ut



15.1 The Minkowski OperatorWe now introdue the Minkowski sum operation for partial solids of IRn. Reallthat the Minkowski sum of two subsets S1; S2 � IRn is de�ned asS1 � S2 = fx+ y j x 2 S1; y 2 S2gwhere x+ y is the vetor addition in IRn. For onveniene we will use the samenotation � for the Minkowski sum on the solid domain, whih is de�ned as afuntion ��� : (SbIRn)� (SIRn)! SIRn by:(A1; B1)� (A2; B2) = ((A1 �A2); (B1 �B2)):It an be shown that � � � : (SbIRd) � (SIRd) ! SIRd is well-de�ned andontinuous.16 Computability on the Solid DomainWe an provide an e�etive struture for SIRn as follows. Consider the olletionof all pairs of disjoint open rational polyhedra of the form K = (L1; L2). Takean e�etive enumeration (Ki)i2! with Ki = (�1(Ki); �2(Ki)) of this olletion.We say (A;B) is a omputable partial solid if there exists a total reursivefuntion � : IN! IN suh that (A;B) = (Sn2! �1(K�(n));Sn2! �2(K�(n))).One an similarly de�ne an e�etive struture on IIRn, by taking an e�etiveenumeration of rational intervals.It follows from the general domain-theoreti de�nition (see the Appendix)that a funtion F : (SIRn)2 ! SIRn is omputable if the relation f(i; j; k) j Kk �F (Ki;Kj)g is r.e.. The de�nition extends in the natural way to funtions of othertypes. A sequene ((An; Bn))n2! of partial solids is omputable if there existsa total reursive funtion � : IN � IN ! IN suh that (An; Bn) = Fi2!K�(n;i),with (K�(n;i))i2! an inreasing hain for eah n 2 !. For domains in general, itan be shown that a funtion is omputable i� it sends omputable sequenes toomputable sequenes.Proposition 16.1. The following funtions are omputable with respet to thee�etive strutures on IIRn, SIRn and S[�a; a℄n.(i) � 2 � : IIRn � SIRn ! ftt;�g?:(ii) � [ � : SIRn � SIRn ! SIRn.(iii) � \ � : SIRn � SIRn ! SIRn.(iv) � � � : S[�a; a℄n � S[�a; a℄n ! ftt;�g?.Proof. We show (ii) and leave the rest as exerise. We have to show that therelation Kk � Ki [Kj is r.e. Writing this relation in detail, it redues to(�1(Kk); �2(Kk))� (�1(Ki) [ �1(Kj); �2(Ki) \ �2(Kj));i.e. �1(Kk) � �1(Ki) [ �1(Kj) and �2(Kk) � �2(Ki) \ �2(Kj), whih are bothdeidable. ut



17 Lebesgue and Hausdor� ComputabilityOur domain-theoreti notion of omputability so far has the essential weaknessof laking a quantitative measure for the rate of onvergene of basis elementsto a omputable element. This shortoming an be redressed by enrihing thedomain-theoreti notion of omputability with an additional requirement whihallows a quantitative degree of approximation. We will see in this setion thatthis an be done in at least two di�erent ways. The reader should refer to theappendix for various notions of omputability in this setion.17.1 Lebesgue ComputabilityThe Lebesgue measure � in IRn, whih measures the volume of subsets of IRn,gives us a notion of approximation whih is stable under Boolean operations. Forsimpliity, we on�ne ourselves to the solid domain of a large ube in IRn. We saythat (A;B) 2 S[�a; a℄n is Lebesgue omputable if there exists a total reursivefuntion � : IN! IN suh that (A;B) = (Sn2! �1(K�(n));Sn2! �2(K�(n))) with�(A) � �(�1(K�(n))) < 2�n and �(B) � �(�2(K�(n))) < 2�n. The de�nitionextends naturally to omputable elements of (SX)m for any positive integer m.Proposition 17.1. If a is a omputable real number and (A;B) 2 S[�a; a℄n isa omputable maximal element with �(�A) = 0, then (A;B) is Lebesgue om-putable.The sequene ((An; Bn))n2! is said to be Lebesgue omputable if it is om-putable and if (�(An))n2! and (�(Bn))n2! are omputable sequenes of realnumbers. As for omputable elements, the de�nition extends naturally to om-putable sequenes of (SX)m for any positive integer m.A omputable funtion f : (SX)m ! SX is said to be Lebesgue omputableif it takes any Lebesgue omputable sequene of m-tuples of partial solids toa Lebesgue omputable sequene of partial solids. The main result here is thefollowing.Theorem 17.2. Boolean operations are Lebesgue omputable.17.2 Hausdor� ComputabilityAnother appropriate form for the quantitative degree of approximation of solidsis provided by the Hausdor� distane. We say (A;B) 2 S[�a; a℄n is Hausdor�omputable if there exists a total reursive funtion � : IN ! IN suh that(A;B) = (Sn2! �1(K�(n));Sn2! �2(K�(n))) with dH(�1(K�(n)); A) < 2�n anddH(�2(K�(n)); B) < 2�n.We an de�ne the notion of a Hausdor� omputable map similar to the waywe de�ned a Lebesgue omputable map. The Hausdor� distane provides a goodway of approximating solids; in fat, objets with small Hausdor� distane witheah other are visually lose. However, it an be shown by a non-trivial examplethat the binary Boolean operations do not preserve Hausdor� omputability.The main positive result is the following.



Theorem 17.3. A omputable maximal element of S[�a; a℄n is Hausdor� om-putable.18 The Convex HullWe have already seen that points of IRn an be modelled using the domain IIRnof the ompat retangles in IRn ordered by reverse inlusion. Using the domain-theoreti model, one an onstrut other basi notions in geometry, suh as linesegments, lines and hyperplanes. We demonstrate this by desribing the simplestnon-trivial geometri objet, namely a line segment.We de�ne the partial line segment map f : (IIRn)2 ! SIRn with f(x1; x2),alled the partial line segment through the partial points x1 and x2, given byf(x1; x2) = (;; E) where the exterior E is the empty set if x1 \ x2 6= ; and isotherwise the omplement of the onvex hull of the 2 � 2n verties of x1 andx2; see Figure 5. It is easy to hek that f is Sott ontinuous and omputable.Likewise, one an de�ne Sott ontinuous maps for partial lines through twopartial points, and other basi geometri objets.

Fig. 5. A partial line segmentWe will now desribe an algorithm to ompute the onvex hull of a �nitenumber of points in the plane in the ontext of the solid domain. Assume wehave m points in the plane. Eah of these points is approximated by a shrinkingnested sequene of rational retangles; at eah �nite stage of omputation wehave approximations to the m points by m rational retangles, onsidered asimpreise points, as in Figure 6.For these m rational retangles we obtain a partial solid objet with aninterior open rational polygon, whih is ontained in the interior of the onvexhull of the m points, and an exterior open rational polygon, whih is ontainedin the exterior of the onvex hull of the m points. The union of the interior(respetively, the exterior) open rational polygons obtained for all �nite stagesof omputation gives the interior (respetively, the exterior) of the onvex hullof the m points.



Fig. 6. The onvex hull problem for retangles.More formally, we de�ne a map Cm : (IIR2)m ! SIR2, where IIR2 is thedomain of the planar retangles, the olletion of all retangles of the planepartially ordered by reverse inlusion. Let C(IR2) be the olletion of non-emptyompat subsets of IR2 with the Hausdor� metri and let Hm : (IR2)m ! C(IR2)be the lassial funtion whih sends any m-tuple of planar points to its onvexhull regarded as a ompat subset of the plane.We �rst de�ne Cm on the basis (IQ2)m of (IIR2)m onsisting of m-tuplesof rational retangles. Let x = (R1; R2; � � � ; Rm) 2 (IQ2)m be an m-tuple ofrational retangles. Eah retangle Ri has four verties denoted, anti-lokwisestarting with the bottom left orner, by R1i , R2i , R3i and R4i . We de�ne Cm(x) =(Im(x); Em(x)) withEm(x) = (H4m((R1i ; R2i ; R3i ; R4i ))mi=1); Im(x) = ( \1�j�4Hm(Rji )mi=1)Æ:In words, Em(x) is the omplement of the onvex hull of the 4m verties of allretangles (Figure 7), whereas Im(x) is the interior of the intersetion of the4 onvex hulls of the bottom left, bottom right, top right and top left verties(Figure 8). Sine the intersetion of onvex sets is onvex, Im(x) as well as Em(x)are both onvex open rational polygons.With more aurate input data about the planar points, the boundaries ofthe inner and outer onvex hulls get loser to eah other as in Figure 9. In thelimit, the inner and outer onvex hulls will be simply the interior and the exteriorof the onvex hull of the planar points (Figure 10).Sine we work ompletely with rational arithmeti, we will not enounter anyround-o� errors and, as omparison of rational numbers is deidable, we will notget inonsistenies.Clearly the omplexity of these algorithms to ompute Im(x) and Em(x) isO(m logm) eah. We have therefore obtained a robust algorithm for the onvex



Fig. 7. The exterior onvex hull of retangles.

Fig. 8. The interior onvex hull of retangles.



Fig. 9. Convergene of the interior and exterior onvex hulls.

Fig. 10. Limit of interior and exterior onvex hulls.hull whih has the same omplexity as the non-robust lassial algorithm. More-over, the algorithm extends in the obvious way to IRd. In 3d, we still have theomplexity O(m logm); see [15℄ for the omplexity in higher dimension.We now de�ne Ĉm : (IIR2)m ! SIR2 on tuples of retangles y 2 (IIR2)mby putting Ĉm(y) = FfC(x) j x 2 (IQ)m with x � yg. It an be heked thatĈm(x) = Cm(x) for x 2 (IQ2)m, and that, therefore, we an simply write Ĉm asCm whih will be a ontinuous funtion between domains.The map Cm omputes the onvex hull of m planar points as follows. Notethat a maximal element x = (Ri)mi=1 of (IIR2)m onsists of an m-tuple of de-generate retangles, i.e., an m-tuple of planar points (ri)mi=1, where Rji = ri,for j = 1; 2; 3; 4. It an be shown that, for suh maximal x, we have Cm(x) =(Im(x); Em(x)) where Im(x) = (Hm((ri)mi=1))Æ and Em(x) = (Hm((ri)mi=1)).Theorem 18.1. The map Cm is Lebesgue omputable and Hausdor� omputable.



We an also study the domain-theoreti version of the following lassialquestion: Given N points x1; : : : ; xN in IR2, does xk, for 1 � k � N , lie on theboundary of the onvex hull of these N points? With impreise input, i.e. for Ninput retangles, the answer is either \surely yes", or \surely not" or \annotsay". More preisely, we de�ne the boundary retangle prediate Pk : (IIR2)N !ftt;�g?. For R = (R1; : : : ; RN) 2 (IIR2)N , let R(k) 2 (IIR2)N�1 be the orderedlist of the N � 1 dyadi interval verties: R(k) = (R1; : : : ; Rk�1; Rk+1; : : : ; RN ).We have: Pk(R) =8<: tt if Rk � E(R(k));� if Rk � I(R);? otherwise: (49)Theorem 18.2. The prediate Pk is Sott ontinuous and omputable for eahk = 1; : : : ; N .Finally, we note that domain-theoreti algorithms for Voronoi diagram and De-launay triangulation have also been developed; see [38℄.19 Historial Remarks and Pointers to Literature19.1 Real Number ComputationIn the late 1980's, two frameworks for exat real number omputation were proposed.In the approah of Boehm and Cartwright [5, 6℄, a omputable real number is approx-imated by rational numbers of the form K=rn where r is the base and K is a (usu-ally big) integer. This approah was further developed and implemented by Val�erieM�enissier-Morain [40℄. For any basi funtion in analysis a feasible algorithm has beenpresented in order to produe an approximation to the value of the funtion at a givenomputable real number up to any threshold of auray. However, the omputationis not inremental in the sense that to obtain a more aurate approximation one hasto ompute from srath. Furthermore, the algorithms are onstruted using variousad-ho tehniques and therefore, exept for the simplest arithmeti operations, it israther diÆult to verify their orretness. Atually, this method is not so di�erentfrom the multi-digit approah presented here, exept that our transendental opera-tions are based on LFT's, whih provide a general underlying framework that simpli�esthe �nding of the algorithms and makes the proofs of their orretness automati.Vuillemin [57℄ proposed a representation of omputable real numbers by ontinuedfrations and presented various inremental algorithms for basi arithmeti operationsusing the earlier work of Gosper [24℄, and for some transendental funtions. However,this representation is rather ompliated and the resulting algorithms are relativelyineÆient.Plume [42℄ studied and implemented Exat Real Arithmeti based on the numberrepresentation of Setion 2 (exponent plus a stream of signed binary digits). His di-vision algorithm employs an auxiliary representation with dyadi rationals as digits.Transendental funtions are based on an auxiliary funtion omputing the real num-ber de�ned by a (omputable) nested sequene of real intervals whose lengths tendto 0.In the early and mid 90's Di Gianantonio [12, 13℄ and Esard�o [20℄ studied exten-sions of the theoretial language PCF with a real number data type based on domain



theory. At Imperial College, a new approah was then developed whih is almost en-tirely based on LFT's and ombines domain theory and the digit approah with ontin-ued fration algorithms [45, 16, 46, 43, 44℄. Within this approah, Peter Potts derivedalgorithms for transendental funtions from ontinued fration expansions. He alsodeveloped the single-digit approah with the absorption and emission of digit matries,and made �rst steps towards a multi-digit approah. The approah was implemented infuntional languages suh as Miranda, Haskell and CAML, and in imperative languagessuh as C. The LFT framework for real number omputation has also been studied inthe ontext of extensions of PCF with a real number data type by Edalat, Esard�o,Potts and S�underhauf [47, 17℄.In ontrast to the notes at hand, Potts and Edalat used the base interval [0;1℄,and aordingly, digit matries whih were di�erent from the ones presented here. Thisapproah inludes 1 with the same rights as any �nite real number. The number1 represents both +1 and �1. Its presene makes the reiproal funtion total by10 =1 and 11 = 0. Yet on the other hand, addition and multipliation, whih are totalif 1 is exluded, beome partial with 1 sine 1+1 and 0 � 1 are not de�ned.In this approah, exponent matries annot be used. Instead, eah number rep-resentation begins with a sign matrix. There are four sign matries, for numbers inthe intervals [0;1℄, [�1; 1℄, [1; 0℄, and [1;�1℄ = fxjjxj � 1g. Edalat and Potts nametwo advantages of [0;1℄: First, the image M [0;1℄ of [0;1℄ under a non-singular LFTM = �ab d� an be easily obtained from the entries ofM :M [0;1℄ = [ d ; ab ℄ if detM > 0,and [ab ; d ℄ if detM < 0. In ontrast, the alulation ofM [�1; 1℄ requires some additions.Seond, a matrix or tensor is re�ning for [0;1℄ i� all its entries are non-negative and allits olumn sums are positive (if the matrix or tensor is weakly normalised so that thesum of its entries is non-negative). This ondition is muh simpler than the onditionswe have derived for re�nement w.r.t. [�1; 1℄ in Setion 5. The emission onditions forthe two base intervals are similar, but the atual emissions and absorptions are simplerin [�1; 1℄. A huge pratial advantage of [�1; 1℄ are the persistent zeros whih an befound in basially all the tensors for the standard operations. With [0;1℄, there areno persistent zeros at all, and no entries whih are invariant under absorption andemission.On the theoretial side as well, the base interval [�1; 1℄ has lear advantages. Itavoids the troublesome value1 that poses diÆulties in algebrai transformations andsize estimations. Furthermore, one may work with the standard metri (`([u; v℄) = v�u)and standard derivatives in [�1; 1℄, while working with [0;1℄ exludes the standardmetri. In fat, [16, 43, 28℄ use a metri on [0;1℄ that is derived from the standardmetri on [�1; 1℄. Here, working in [�1; 1℄ diretly drastially simpli�es the reasoning.Results on the growth of the entries of matries and tensors were presented in [26,27℄|for the base interval [0;1℄. With this base interval, matries �ab d� annot belassi�ed aording to b = 0 and b 6= 0 as in Setion 8; the ruial value is instead(+d)� (a+ b). Given this, it is not surprising that a omplete lassi�ation of tensorsw.r.t. the opportunities for anellations was never found under the reign of [0;1℄. Thelassi�ation presented in Setion 8.5 of these notes was reently found by ReinholdHekmann and never published before.The ontrativity was already studied by Potts, and onsidered in greater detail byHekmann in [28℄ (for [0;1℄). In [30℄, Hekmann swithed over to [�1; 1℄ and studiedontrativity there.Peter Potts was a master in the derivation of in�nite produts from ontinuedfrations (for [0;1℄). The few derivations presented here are new beause of the new



base interval. They start from the same ontinued frations, but are generally shorter.The derivation of produts from Taylor series is taken from [29℄.19.2 Computational GeometryThe quest for reliable geometri algorithms in reent years has been a most hallengingproblem. In the words of C. M. Ho�mann, a leading expert in omputational geometry:\Despite the pressing need, devising aurate and robust geometri algorithms hasproved elusive for many important siene and engineering appliations"[31℄.In the existing frameworks and implementations of geometri algorithms, greate�orts are required to use various, often ad ho, tehniques in order to avoid poten-tial inonsistenies and degeneraies. These methods inlude: (i) the so-alled exatarithmeti approah [41, 37, 51, 23, 52, 3, 61, 9, 8, 22, 11℄, ombined with lazy implemen-tation [4, 53℄ and symboli perturbation [19, 51, 60℄ in whih numerial omputationsare performed to a high degree of auray in order to ensure the orret logial andtopologial deisions; (ii) the logial and topologial oriented tehnique [52, 55, 56℄,whih seeks to plae the highest priority on the onsisteny of the logial and topologialproperties of geometri algorithms, using numerial results only when they are onsis-tent with these properties; and, (iii) the intermediate methods, suh as �-geometry [25℄,the interval arithmeti tehnique [49, 32{34℄ and the tolerane approah [50, 21, 36℄,whih determine an upper bound for the numerial error whenever a omputationtakes plae in order to deide if a omputation is reliable or not. While there are prosand ons for eah of these methods in any given ategory of algorithms [54℄; no singlemethod gives an overall satisfatory solution for geometri modelling as a whole.The traditional frameworks for geometri modelling are not founded on omputableanalysis: there is no referene to a notion of data type or omputability in the standardliterature of omputational geometry or geometri modelling. Indeed, these frameworksare all based on lassial topology and geometry in whih the basi prediates andBoolean operations are not ontinuous, and hene not omputable, the soure of non-robustness of the resulting algorithms.Brattka and Weihrauh [7℄ have studied the question of omputability of lassialsubsets of the Eulidean spae in the type two theory of omputability [59℄ but it is notat all lear how their framework an be used in any pratial geometri omputation.The domain-theoreti framework for solid modelling and omputational geometrywas �rst formulated in [14℄ and algorithms for the onvex hull and for Voronoi di-agram/Delaunay triangulation in the domain-theoreti setting were presented in [15℄and [38℄ respetively. Continuous geometri operations have also been disussed in [35℄.20 Exerises20.1 Real ArithmetiExerise 20.1. Implement addition x+y diretly on the number representationsby exponents and signed binary digit streams (f. Setion 2.4). Deal �rst withexponents and use the mean value operation x� y = x+y2 on mantissas.Exerise 20.2. Prove Prop. 3.1 (using Equation (1)).Exerise 20.3. Let M0 = � 01 13�.



a) What is the funtion represented by M0?b) Compute detM0 (Equation (2)) and dedue the monotoniity type of M0(Setion 4).) Chek that M0 is bounded (Prop. 5.2) and re�ning (Setion 5.3) on I0.d) Assuming that the digit stream � starts with 101, determine the �rst fourdigits of M0(�) as in Setion 6.5.e) Compute expM0 and onM0 (23) and derive the numbers < and > ofTheorem 7.1.f) Redo part (d) in the multi-digit approah, i.e., answer the request 4?M0(�).Run Algorithm 3, but onsider the monotoniity type of M0. Use the fatthat � begins with 101 to �nd the answer of the required request to �.g) Compare the results of parts (d) and (f), but remember that there are oftentwo possible answers to a request, di�ering by 1.Exerise 20.4. Let T = � 00 10 01 13�.a) What is the funtion represented by T ?b) Compute det(T jx) and det(T jy) (Equations (6)) and dedue the monotoni-ity type of T for arguments x; y 2 I0 (Setion 4).) Chek that T is bounded (14) and re�ning on I0. For the latter, you mayuse (15) or Cor. 4.2, taking the monotoniity type into aount.d) Determine onL T and onR T and derive the numbers >L and >R of Theo-rem 7.2.Exerise 20.5. Let T = � 00 10 11 01�. Given x � 0, solve the equation y = T (x; y)for y � 0. (Thus you see how an important funtion an be implemented. Theequation y = T (x; y) an be onsidered as an in�nite produt y = T (x; T (x; : : :)),or more eÆiently, as a feed-bak loop where everything emitted from T is fedbak into T via its right argument.)Exerise 20.6. (Taylor series)Use the method presented in Setion 11.4 to derive an in�nite produt for theosine funtion from the Taylor series osx =P1n=0 (�1)n(2n)! (x2)n. (By writing thisin terms of x2 instead of x, zero oeÆients are avoided.) Determine for whihx this produt is valid, and alulate the ontrativities of its matries.20.2 Computational Geometry and Solid ModellingExerise 20.7. Show that the map � � � : SbIRn� SIRn ! ftt;�g? is ontinu-ous.Exerise 20.8. Prove Proposition 14.6.Hint: Use the following fat for Eulidean spaes. For an open set O and adereasing sequene of ompat subsets hCiii! , the relation Ti2! Ci � O impliesthe existene of i 2 ! with Ci � O.



Exerise 20.9. Show that the olletion of proper maximal elements of SIRn isthe ontinuous image of the spae (R(IRn); d0) of the non-empty regular losedsubsets of IRn with the metri de�ned by Equation 48.Hint: Follow the steps of proof in Theorem 14.7 and note that in the represen-tation of SIRn by losed sets ordered by reverse inlusion we have: (A1; B1) �(A2; B2) i� A2 and B2 are ompat subsets of AÆ1 and BÆ1 respetively.Exerise 20.10. Draw the inner and outer onvex hulls of the following threeretangles. R1 = f(�2; 0); (�1; 0); (�1;�1); (�2;�1)gR2 = f(�1; 3); (0; 3); (0; 2); (�1; 2)gR3 = f(1; 1); (2; 1); (2; 0); (1; 0)g:Exerise 20.11. In the domain-theoreti onvex hull algorithm, ompute theboundary retangle prediate Pk for 1 � k � 11.R1 = f(�7=2;�3); (�7=2;�2); (�5=2;�2); (�5=2;�3)gR2 = f(�7=2;�1); (�7=2;�1=2); (�3;�1=2); (�3;�1)gR3 = f(�4; 4=3); (�4; 5=3); (�3; 5=3); (�3; 4=3)gR4 = f(�2;�4); (�2;�7=2); (�3=2;�7=2); (�3=2;�4)gR5 = f(�2; 3); (�2; 7=2); (�3=2; 7=2); (�3=2; 3)gR6 = f(0;�4); (0;�7=2); (1=2;�7=2); (1=2;�4)gR7 = f(0; 0); (0; 1); (1; 1); (1; 0)gR8 = f(0; 4); (0; 5); (1; 5); (1; 4)gR9 = f(4;�3); (4;�2); (5;�2); (5;�3)gR10 = f(5;�1); (5;�1=2); (27=5;�1=2); (27=5;�1)gR11 = f(5; 2); (5; 3); (6; 3); (6; 2)g:Hint: Note that a retangle is a boundary retangle if it lies ompletely insidethe exterior onvex hull of the other retangles.Appendix: Basi Domain TheoryWe give here the formal de�nitions of a number of notions in domain theoryused in these notes; see [1, 2, 18℄ for more detail. We think of a partially orderedset (poset) (P;v) as the set of output of some omputation suh that the partialorder is an order of information: in other words, a v b indiates that a hasless information than b. For example, the set f0; 1g1 of all �nite and in�nitesequenes of bits 0 and 1 with a v b if the sequene a is an initial segmentof the sequene b is a poset and a v b simply means that b has more bits ofinformation than a. A non-empty subset A � P is direted if for any pair ofelements a; b 2 A there exists  2 A suh that a v  and b v . A direted



set is therefore a onsistent set of output elements of a omputation: for everypair of output a and b, there is some output  with more information than aand b. A direted omplete partial order (dpo) or a domain is a partial order inwhih every direted subset has a least upper bound (lub). We say that a dpois pointed if it has a least element whih is denoted by ? and is alled bottom.For two elements a and b of a dpo we say a is way-below or approximates b,denoted by a� b, if for every direted subset A with b v FA there exists  2 Awith a v . The idea is that a is a �nitary approximation to b: whenever the lubof a onsistent set of output elements has more information than b, then alreadyone of the input elements in the onsistent set has more information than a. Inf0; 1g1, we have a� b i� a v b and a is a �nite sequene. The losed subsets ofthe Sott topology of a domain are those subsets C whih are downward losed(i.e. x 2 C & y v x ) y 2 C) and losed under taking lub's of direted subsets(i.e. for every direted subset A � C we have FA 2 C).A basis of a domain D is a subset B � D suh that for every element x 2 Dof the domain the set Bx = fy 2 B j y � xg of elements in the basis way-below x is direted with x = FBx. An (!)-ontinuous domain is a dpo witha (ountable) basis. In other words, every element of a ontinuous domain anbe expressed as the lub of the direted set of basis elements whih approximateit. In a ontinuous dpo D, subsets of the form ""a = fx 2 D j a � xg, fora 2 D, form a basis for the Sott topology. A domain is bounded omplete ifevery bounded subset has a lub; in suh a domain every non-empty subset hasan in�mum or greatest lower bound.It an be shown that a funtion f : D ! E between dpo's is ontinuouswith respet to the Sott topology if and only if it is monotone (i.e. a v b )f(a) v f(b)) and preserves lub's of direted sets i.e. for any direted A � D, wehave f(Fa2A a) = Fa2A f(a). Moreover, if D is an !-ontinuous dpo, then fis ontinuous i� it is monotone and preserves lub's of inreasing sequenes (i.e.f(Fi2! xi) = Fi2! f(xi), for any inreasing (xi)i2!).The olletion, D ! E, of ontinuous funtions f : D ! E between dpo's Dand E an be ordered pointwise: f v g i� 8x 2 D: f(x) v g(x). With this partialorder, D ! E beomes a dpo with Fi2I fi given by (Fi2I fi)(x) = Fi2I fi(x).Moreover, if D and E are bounded omplete !-ontinuous dpo's, so is D ! E.The interval domain I[0; 1℄n of the unit box [0; 1℄n � IRn is the set of allnon-empty n-dimensional sub-retangles in [0; 1℄n ordered by reverse inlusion.A basi Sott open set is given, for every open subset O of IRn, by the olletionof all retangles ontained in O. The map x 7! fxg : [0; 1℄n ! I[0; 1℄n is anembedding onto the set of maximal elements of I[0; 1℄n. Every maximal elementfxg an be obtained as the least upper bound (lub) of an inreasing hain ofelements, i.e. a shrinking, nested sequene of sub-retangles, eah ontaining fxgin its interior and thereby giving an approximation to fxg or equivalently to x.The set of sub-retangles with rational oordinates provides a ountable basis.One an similarly de�ne, for example, the interval domain IIRn of IRn.An important feature of domains, in the ontext of these notes, is that theyan be used to obtain omputable approximations to operations whih are las-



sially non-omputable. For example, omparison of a real number with 0 is notomputable. However, the funtion N : I[�1; 1℄! ftt;�g? withN([a; b℄) = 8<: tt if b < 0� if 0 < a? otherwiseis the omputable approximation to the omparison prediate. Here, ftt;�g? isthe lift of ftt;�g, i.e. the three element pointed domain with two inomparablemaximal elements tt and �.An !-ontinuous domain D with a least element ? is e�etively given wrtan e�etive enumeration b : IN ! B of a ountable basis B if the set fhm;ni jbm � bng is reursive, where h:; :i : IN� IN! IN is the standard pairing funtioni.e. the isomorphism (x; y) 7! (x+y)(x+y+1)2 + x. This means that for eah pairof basis elements (bm; bn), it is possible to deide in �nite time whether or notbm � bn. We say x 2 D is omputable if the set fnjbn � xg is r.e. This isequivalent to say that there is a master program whih outputs exatly this set.It is also equivalent to the existene of a reursive funtion g suh that (bg(n))n2!is an inreasing hain in D with x = Fn2! bg(n). If D is also e�etively givenwrt to another basis B0 = fb00; b01; b02; � � �g suh that the sets fhm;ni j bm � b0ngand fhm;ni j b0m � bng are both deidable, then x will be omputable wrt B i�it is omputable wrt B0. We say that B and B0 are reursively equivalent.We an de�ne an e�etive enumeration � of the set D of all omputableelements of D. Let �n, n 2 !, be the nth partial reursive funtion. It an beshown [18℄ that there exists a total reursive funtion � suh that � : IN ! Dwith �n := Fi2! b��(n)(i), with (b��(n)(i))i2! an inreasing hain for eah n 2 !, isan e�etive enumeration of D. A sequene (xi)i2! is omputable if there existsa total reursive funtion h suh that xi = �h(i) for all i 2 !.We say that a ontinuous map f : D ! E of e�etively given !-ontinuousdomains D (with basis fa0; a1 � � �g) and E (with basis fb0; b1 � � �g) is omputableif the set fhm;ni j bm � f(an)g is r.e. This is equivalent to say that f mapsomputable sequenes to omputable sequenes. Computable funtions are stableunder hange to a reursively equivalent basis. Every omputable funtion anbe shown to be a ontinuous funtion [58, Theorem 3.6.16℄. It an be shown [18℄that these notions of omputability for the domain IIR of intervals of IR induethe same lass of omputable real numbers and omputable real funtions as inthe lassial theory [48℄.We also need the following lassial de�nitions for sequenes of real numbers.A sequene (ri)i2! of rational numbers is omputable if there exist three totalreursive funtions a, b, and s suh that b(i) 6= 0 for all i 2 ! andri = (�1)s(i) a(i)b(i) :A omputable double sequene of rational numbers is de�ned in a similar way.A sequene (xi)i2! of real numbers is omputable if there exists a omputable
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