- 1 a A string $x \in \{0, 1\}^*$ is called *random* if $C(x) \ge |x|$ where C(x) is the Kolmogorov complexity of x and |x| is the length of x. Show that for all natural numbers n, there exists some x with |x| = n such that $C(x) \ge n$.
- b Consider the family of quadratic maps $F_d : \mathbb{R} \to \mathbb{R}$ given by $F_d(x) = x^2 + d$ where $d \le 1/4$. When d is just slightly less than 1/4, find the two fixed points of F_d , determine the type of each of these two fixed points and draw the phase portrait of F_d .
- c With respect to the family F_d in part b, show that as d decreases and passes through the parameter value d = -3/4 one of the fixed points of F_d changes its type. Explain how a periodic doubling bifurcation takes place at d = -3/4.
- d Explain how a family of maps like F_d in part b undergoes *periodic doubling route* to chaos and describe the main features of the family as it goes through this scenario.

The four parts carry equal marks.

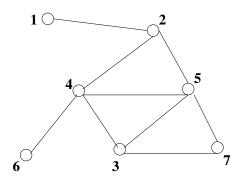
2 Consider the iterated function system (IFS) defined by the four maps $f_i : \mathbb{R}^2 \to \mathbb{R}^2$ with i = 1, 2, 3, 4 as follows

$f_1:$	(x, y)	\mapsto	$\left(\frac{x}{4},\frac{y}{4}\right)$
f_2 :	(x, y)	\mapsto	$(\frac{\dot{x}}{4},\frac{\dot{y}}{4}) + (\frac{3}{4},0)$
f_3 :	(x,y)	\mapsto	$\left(\frac{\bar{x}}{4},\frac{\bar{y}}{4}\right) + \left(\bar{0},\frac{3}{4}\right)$
f_4 :	(x,y)	\mapsto	$\left(\frac{x}{4}, \frac{y}{4}\right) + \left(\frac{3}{4}, \frac{3}{4}\right)$

Let $\Sigma = \{1, 2, 3, 4\}$ and let $\sigma : \Sigma^{\mathbb{N}} \to \Sigma^{\mathbb{N}}$ be the shift map, which takes every infinite sequence to its tail sequence.

- a Find the fixed points of these four maps and show that the unit square $S = [0, 1] \times [0, 1] \subset \mathbb{R}^2$ is a trapping region for the IFS, i.e., $f_i[S] \subset S$ for each i = 1, 2, 3, 4.
- b Using the unit square $S = [0, 1] \times [0, 1]$ as the root of the IFS tree, obtain the nodes of the first and second levels of the tree and sketch them. Describe the attractor A of the IFS and find its similarity dimension. Discuss why the attractor A is a fractal set.
- c Construct a one-to-one surjective map $h: \Sigma^{\mathbb{N}} \to A$ from the code space $\Sigma^{\mathbb{N}}$ to the IFS attractor A. Then show that we can construct a map $f: A \to A$ such that $f \circ h = h \circ \sigma$. Explain, without actually providing any definitions or giving the details of any proof, how you would show
 - that f is sensitive to initial conditions,
 - that f is topologically transitive and,
 - that f has a dense orbit.

The three parts carry, respectively, 20%, 35%, and 45% of the marks.



- 3a Consider the graph given in the diagram above.
 - i) Compute the clustering coefficient of the nodes 2, 4, 5, 7.
 - ii) Find the degree of each node and the probability distribution of the degree of the nodes.
 - b Describe a Barabási-Albert like algorithm that would start at time t = 8 with the graph above in part a and generate a growing graph by adding a single node labelled as t at each point t of discrete time such that the network would satisfy a power law distribution with exponent $\gamma = 3$ for large values of the degree.
 - c With respect to the algorithm in part b, derive for $t \ge 8$, without specifying any boundary conditions, the recursive equation for the probability p(k, s, t+1) that the node $s \le t$ has degree k at time t + 1.

The three parts carry, respectively, 45%, 25%, and 30% of the marks.

- 4a Consider a Kauffman Network with K = N where N is the size and K is the fixed connectivity of the network. Given the large connectivity, assume before the network enters into a cycle it traverses a random walk in the state space of size $\Omega = 2^N$ starting from a random $\Sigma_0 \in \{0, 1\}^N$. Let q_t be the probability that the orbit is still unclosed at time t.
 - i) Show that the probability p_{t+1} of terminating the excursion at time t + 1 is

$$p_{t+1} = \frac{t+1}{\Omega} q_t.$$

- ii) Find the probability that the closure of the excursion at time t provides a cycle of length $\ell \leq t$.
- iii) Show that the probability P(L) that a given initial state is in the basin of attraction of a cycle of length L is given by:

$$P(L) = \sum_{t=L}^{\Omega} \frac{p_t}{t}.$$

- b i) For a 2 person game, define the two notions of *Nash equilibrium* and *Pareto optimal*.
 - ii) Consider the following 2 person game.

$(1_{\downarrow}, 2 \rightarrow)$	A	В
A	(1,1)	(4,2)
В	(2,4)	(3,3)

Find any Nash equilibrium of the game and any Pareto optimal strategy profile.

The two parts carry, respectively, 70%, and 30% of the marks.