233 Computational Techniques

Problem Sheet for Tutorial 2

Problem 1

Which of the following pairs of vectors are orthogonal:
(a) $[1,2]$ and $[-1,1]$,
(b) $[2,5,1]$ and $[-3,1,1]$,
(c) $[3,5,3,-4]$ and $[4,-2,2,2]$.

Problem 2

For

$$
\mathbf{A}=\left[\begin{array}{rrr}
1 & 0 & 4 \\
-3 & 2 & 5
\end{array}\right], \quad \mathbf{u}=\left[\begin{array}{r}
1 \\
2 \\
-1
\end{array}\right], \quad \mathbf{v}=\left[\begin{array}{l}
2 \\
3
\end{array}\right]
$$

decide which of the following products are defined, and compute them:
(a) $\mathbf{A u}$, (b) $\mathbf{A} \mathbf{v}$, (c) $\mathbf{A}^{T} \mathbf{v}$, (d) $\mathbf{u}^{T} \mathbf{v}$, (e) $\mathbf{u} \mathbf{v}^{T}$.

Problem 3

From the pair of vectors in problem 1(b), construct an orthonormal set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ such that two of them are multiples of the given pair.

Problem 4

Matrix multiplication is not commutative: that is, $\mathbf{A B} \neq \mathbf{B A}$ in general. As an illustration, prove that a square 2×2 matrix \mathbf{A} satisfying $\mathbf{A X}=\mathbf{X A}$ for every 2×2 matrix \mathbf{X} must be a multiple of the unit matrix \mathbf{I}_{2}. In other words, prove the following:

$$
\mathbf{A} \in \mathbb{R}^{2 \times 2} \text { and } \mathbf{A X}=\mathbf{X A} \text { for all } \mathbf{X} \in \mathbb{R}^{2 \times 2} \Longleftrightarrow \exists \lambda \in \mathbb{R} \text { such that } \mathbf{A}=\lambda \mathbf{I}_{2} .
$$

(This is true for square matrices of any size!) Hint: Compare AX and XA for matrices X which have one entry equal to 1 and all others zero; for instance for

$$
\mathbf{E}_{12}=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] \quad \text { and } \quad \mathbf{E}_{21}=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right] .
$$

Note: The formulation was changed slightly in order to clarify the problem.

Solution

Problem 1

Two vectors are orthogonal if their dot product is zero. The dot products are $1 \times(-1)+2 \times 1=1$ for $(a), 2 \times(-3)+5 \times 1+1 \times 1=0$ for (b) and $3 \times 4+5 \times(-2)+3 \times 2+(-4) \times 2=0$ for (c); so the pairs (b) and (c) are orthogonal, the pair (a) is not.

Problem 2

(a)

$$
\mathbf{A u}=\left[\begin{array}{rrr}
1 & 0 & 4 \\
-3 & 2 & 5
\end{array}\right]\left[\begin{array}{r}
1 \\
2 \\
-1
\end{array}\right]=\left[\begin{array}{l}
-3 \\
-4
\end{array}\right]
$$

(b) $\mathbf{A v}$ is not defined: the column dimension of \mathbf{A} is 3 , while the dimension of \mathbf{v} is only 2 .
(c)

$$
\mathbf{A}^{T} \mathbf{v}=\left[\begin{array}{rr}
1 & -3 \\
0 & 2 \\
4 & 5
\end{array}\right]\left[\begin{array}{l}
2 \\
3
\end{array}\right]=\left[\begin{array}{r}
-7 \\
6 \\
23
\end{array}\right]
$$

(d) $\mathbf{u}^{T} \mathbf{v}$ is not defined: \mathbf{u} and \mathbf{v} do not have the same dimension.
(e)

$$
\mathbf{u v}^{T}=\left[\begin{array}{r}
1 \\
2 \\
-1
\end{array}\right][2,3]=\left[\begin{array}{rr}
2 & 3 \\
4 & 6 \\
-2 & -3
\end{array}\right]
$$

is the outer product of \mathbf{u} and \mathbf{v}. It can also be understood as a product of two matrices with dimensions 3×1 and 1×2 respectively.

Problem 3

$[2,5,1]=: \mathbf{u}_{1}$ and $[-3,1,1]=: \mathbf{u}_{2}$ are already orthogonal. So the easiest thing to do is to find a third vector \mathbf{u}_{3} which is orthogonal to both of them, and then to normalize each of the three vectors, i.e. to divide each of them by its Euclidean norm, resulting in a vector of norm 1. (If $\mathbf{u} \neq 0$, then its norm is nonzero, and $\mathbf{v}:=\mathbf{u} /\|\mathbf{u}\|_{2}$ has Euclidean norm $\|\mathbf{v}\|_{2}=1$.)
In three dimensions, the first step can be done by taking the vector product ${ }^{1}$ of \mathbf{u}_{1} and \mathbf{u}_{2}, since the vector product is always orthogonal to both vectors from which it is formed. So

$$
\mathbf{u}_{3}=\mathbf{u}_{1} \times \mathbf{u}_{2}=\left[\begin{array}{c}
5 \times 1-1 \times 1 \\
1 \times(-3)-2 \times 1 \\
2 \times 1-5 \times(-3))
\end{array}\right]=\left[\begin{array}{c}
4 \\
-5 \\
17
\end{array}\right]
$$

[^0]Alternatively, let $\mathbf{u}_{3}^{T}=[a, b, c]$. Then the orthogonality conditions for the set $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ are

$$
0=\mathbf{u}_{3}^{T} \mathbf{u}_{1}=2 a+5 b+c \quad \text { and } \quad 0=\mathbf{u}_{3}^{T} \mathbf{u}_{2}=-3 a+b+c
$$

We can rearrange the second equation as $c=3 a-b$ and use this to eliminate c from the first equation: $0=2 a+5 b+3 a-b=5 a-4 b$, or $b=-(5 / 4) a$. We can now express c in terms of a alone as $c=3 a+(5 / 4) a=(17 / 4) a$. So we get $\mathbf{u}_{3}^{T}=[a,-(5 / 4) a,(17 / 4) a]=a[1,-5 / 4,17 / 4]$ and we can check that this vector is really orthogonal to both \mathbf{u}_{1} and \mathbf{u}_{2} for any choice of a. For instance, for $a=4$, we obtain $\mathbf{u}_{3}^{T}=[4,-5,17]$ as before.
The norms of the three vectors are

$$
\begin{aligned}
& \left\|\mathbf{u}_{1}\right\|=\sqrt{2^{2}+5^{2}+1^{2}}=\sqrt{30}, \quad\left\|\mathbf{u}_{2}\right\|=\sqrt{(-3)^{2}+1^{2}+1^{2}}=\sqrt{11} \\
& \left\|\mathbf{u}_{3}\right\|=\sqrt{4^{2}+(-5)^{2}+17^{2}}=\sqrt{330}
\end{aligned}
$$

and so the resulting orthonormal set is

$$
\mathbf{v}_{1}^{T}=[2,5,1] / \sqrt{30}, \quad \mathbf{v}_{2}^{T}=[-3,1,1] / \sqrt{11}, \quad \mathbf{v}_{3}^{T}=[4,-5,17] / \sqrt{330}
$$

By the way, the \mathbf{v}_{i} are only determined up to sign - orthogonality is a bilinear relation, and the negative of a vector has the same norm as the original vector. (So, for instance, if your third vector is $[-4,5,-17] / \sqrt{330}$, that's also correct.)

Problem 4

Part " \Rightarrow ": Let

$$
\mathbf{A}=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

Then for $\mathbf{X}=\mathbf{E}_{12}$,

$$
\mathbf{A} \mathbf{E}_{12}=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & a \\
0 & c
\end{array}\right], \quad \mathbf{E}_{12} \mathbf{A}=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{ll}
c & d \\
0 & 0
\end{array}\right]
$$

and so $\mathbf{A E} \mathbf{E}_{12}=\mathbf{E}_{12} \mathbf{A}$ if and only if $a=d$ and $c=0$. Similarly for $\mathbf{X}=\mathbf{E}_{21}$:

$$
\mathbf{A E}_{21}=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]=\left[\begin{array}{ll}
b & 0 \\
d & 0
\end{array}\right], \quad \mathbf{E}_{21} \mathbf{A}=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
a & b
\end{array}\right],
$$

and so $\mathbf{A E} \mathbf{E}_{21}=\mathbf{E}_{21} \mathbf{A}$ if and only if $a=d$ and $b=0$. So from the hypothesis that $\mathbf{A X}=\mathbf{X A}$ for all \mathbf{X}, it follows that $a=d$ and $b=c=0$, that is, \mathbf{A} must be of the form

$$
\mathbf{A}=\left[\begin{array}{cc}
a & 0 \\
0 & a
\end{array}\right]=\lambda \mathbf{I}_{2} \quad \text { for } \lambda=a
$$

Part " \Leftarrow ": The unit matrix satisfies $\mathbf{X} \mathbf{I}_{m}=\mathbf{I}_{m} \mathbf{X}=\mathbf{X}$ for every matrix \mathbf{X} and in every dimension m; so if $\mathbf{A}=\lambda \mathbf{I}_{2}$ for $\lambda \in \mathbb{R}$, then $\mathbf{A X}=\left(\lambda \mathbf{I}_{2}\right) \mathbf{X}=\lambda\left(\mathbf{I}_{2} \mathbf{X}\right)=\lambda \mathbf{X}$ and $\mathbf{X A}=\mathbf{X}\left(\lambda \mathbf{I}_{2}\right)=(\mathbf{X} \lambda) \mathbf{I}_{2}=$ $\mathbf{X} \lambda=\lambda \mathbf{X}$.

[^0]: ${ }^{1}$ The vector product of two vectors $\mathbf{a}=\left[a_{1}, a_{2}, a_{3}\right]$ and $\mathbf{b}=\left[b_{1}, b_{2}, b_{3}\right]$ is defined as the vector $\left[a_{2} b_{3}-a_{3} b_{2}, a_{3} b_{1}-\right.$ $\left.a_{1} b_{3}, a_{1} b_{2}-a_{2} b_{1}\right]$.

