
233 Computational Techniques

Problem Sheet for Tutorial 2

Problem 1

Which of the following pairs of vectors are orthogonal:

(a) [1, 2] and [−1, 1],

(b) [2, 5, 1] and [−3, 1, 1],

(c) [3, 5, 3,−4] and [4,−2, 2, 2].

Problem 2

For

A =

[

1 0 4
−3 2 5

]

, u =





1
2

−1



 , v =

[

2
3

]

,

decide which of the following products are defined, and compute them:
(a) Au, (b) Av, (c) A

T
v, (d) u

T
v, (e) uv

T .

Problem 3

From the pair of vectors in problem 1(b), construct an orthonormal set {v1,v2,v3} such that
two of them are multiples of the given pair.

Problem 4

Matrix multiplication is not commutative: that is, AB 6= BA in general. As an illustra-
tion, prove that a square 2 × 2 matrix A satisfying AX = XA for every 2 × 2 matrix X must
be a multiple of the unit matrix I2. In other words, prove the following:

A ∈ R
2×2 and AX = XA for all X ∈ R

2×2 ⇐⇒ ∃λ ∈ R such that A = λ I2 .

(This is true for square matrices of any size!) Hint: Compare AX and XA for matrices X which
have one entry equal to 1 and all others zero; for instance for

E12 =

[

0 1
0 0

]

and E21 =

[

0 0
1 0

]

.

Note: The formulation was changed slightly in order to clarify the problem.
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Solution

Problem 1

Two vectors are orthogonal if their dot product is zero. The dot products are 1×(−1)+2×1 = 1
for (a), 2× (−3) + 5× 1 + 1× 1 = 0 for (b) and 3× 4 + 5× (−2) + 3× 2 + (−4)× 2 = 0 for (c);
so the pairs (b) and (c) are orthogonal, the pair (a) is not.

Problem 2

(a)

Au =

[

1 0 4
−3 2 5

]





1
2

−1



 =

[

−3
−4

]

.

(b) Av is not defined: the column dimension of A is 3, while the dimension of v is only 2.
(c)

A
T
v =





1 −3
0 2
4 5





[

2
3

]

=





−7
6

23



 .

(d) u
T
v is not defined: u and v do not have the same dimension.

(e)

uv
T =





1
2

−1



 [2, 3] =





2 3
4 6

−2 −3





is the outer product of u and v. It can also be understood as a product of two matrices with
dimensions 3 × 1 and 1 × 2 respectively.

Problem 3

[2, 5, 1] =: u1 and [−3, 1, 1] =: u2 are already orthogonal. So the easiest thing to do is to find
a third vector u3 which is orthogonal to both of them, and then to normalize each of the three
vectors, i.e. to divide each of them by its Euclidean norm, resulting in a vector of norm 1. (If
u 6= 0, then its norm is nonzero, and v := u/‖u‖2 has Euclidean norm ‖v‖2 = 1.)
In three dimensions, the first step can be done by taking the vector product1 of u1 and u2, since
the vector product is always orthogonal to both vectors from which it is formed. So

u3 = u1 × u2 =





5 × 1 − 1 × 1
1 × (−3) − 2 × 1
2 × 1 − 5 × (−3))



 =





4
−5
17





1The vector product of two vectors a = [a1, a2, a3] and b = [b1, b2, b3] is defined as the vector [a2b3−a3b2, a3b1−

a1b3, a1b2 − a2b1].
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Alternatively, let u
T

3
= [a, b, c]. Then the orthogonality conditions for the set {u1,u2,u3} are

0 = u
T

3 u1 = 2a + 5b + c and 0 = u
T

3 u2 = −3a + b + c .

We can rearrange the second equation as c = 3a − b and use this to eliminate c from the first
equation: 0 = 2a + 5b + 3a − b = 5a − 4b, or b = −(5/4)a. We can now express c in terms of
a alone as c = 3a + (5/4)a = (17/4)a. So we get u

T

3
= [a,−(5/4)a, (17/4)a] = a[1,−5/4, 17/4]

and we can check that this vector is really orthogonal to both u1 and u2 for any choice of a.
For instance, for a = 4, we obtain u

T

3
= [4,−5, 17] as before.

The norms of the three vectors are

‖u1‖ =
√

22 + 52 + 12 =
√

30 , ‖u2‖ =
√

(−3)2 + 12 + 12 =
√

11 ,

‖u3‖ =
√

42 + (−5)2 + 172 =
√

330 ,

and so the resulting orthonormal set is

v
T

1 = [2, 5, 1]/
√

30 , v
T

2 = [−3, 1, 1]/
√

11 , v
T

3 = [4,−5, 17]/
√

330 .

By the way, the vi are only determined up to sign – orthogonality is a bilinear relation, and the
negative of a vector has the same norm as the original vector. (So, for instance, if your third
vector is [−4, 5,−17]/

√
330, that’s also correct.)

Problem 4

Part “⇒”: Let

A =

[

a b
c d

]

.

Then for X = E12,

AE12 =

[

a b
c d

] [

0 1
0 0

]

=

[

0 a
0 c

]

, E12A =

[

0 1
0 0

] [

a b
c d

]

=

[

c d
0 0

]

,

and so AE12 = E12A if and only if a = d and c = 0. Similarly for X = E21:

AE21 =

[

a b
c d

] [

0 0
1 0

]

=

[

b 0
d 0

]

, E21A =

[

0 0
1 0

] [

a b
c d

]

=

[

0 0
a b

]

,

and so AE21 = E21A if and only if a = d and b = 0. So from the hypothesis that AX = XA

for all X, it follows that a = d and b = c = 0, that is, A must be of the form

A =

[

a 0
0 a

]

= λI2 for λ = a.

Part “⇐”: The unit matrix satisfies XIm = ImX = X for every matrix X and in every dimension
m; so if A = λI2 for λ ∈ R, then AX = (λI2)X = λ(I2X) = λX and XA = X(λI2) = (Xλ)I2 =
Xλ = λX.
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