233 Computational Techniques

Problem Sheet for Tutorial 4

Problem 1

Which of the following sets of vectors are linearly independent:
(a) [1,5], [2,3];
(b) [2,1,-3], [-1,1,-6], [1,1,-4];
(c) [1,0,3], [-1,1,2], [2,0,-5] ?

Problem 2

For

$\mathbf{A} =$	2	0	1]
	3	-1	2	,

find

- (a) the nullspace of **A**,
- (b) the nullspace of \mathbf{A}^T ,
- (c) the range of **A**,
- (d) the range of \mathbf{A}^T .

(e) Check that null \mathbf{A}^T is orthogonal to range \mathbf{A} , and that null \mathbf{A} is orthogonal to range \mathbf{A}^T . (f) For $\mathbf{x} = [1, 1, 1]^T$, find the two vectors $\mathbf{x}_R \in \text{range}\mathbf{A}^T$ and $\mathbf{x}_N \in \text{null}\mathbf{A}$ which satisfy $\mathbf{x} = \mathbf{x}_R + \mathbf{x}_N$. Check that \mathbf{x}_R and \mathbf{x}_N are orthogonal!

Problem 3

Prove:

(a) If $\mathbf{A} \in \mathbb{R}^{n \times n}$ is invertible, then its right and left inverses are equal; that is, if $\mathbf{AB} = \mathbf{I}$ and $\mathbf{CA} = \mathbf{I}$ then $\mathbf{B} = \mathbf{C}$. (Hint: Compute \mathbf{CAB} in two different ways.)

(b) If **A** has an inverse, then the columns of **A** are linearly independent.

(c) If **A** and **B** are both nonsingular, then **AB** is nonsingular, and $(\mathbf{AB})^{-1} = \mathbf{B}^{-1}\mathbf{A}^{-1}$.

(d) Suppose $\alpha \in \mathbb{R}$ and $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ such that $\alpha \mathbf{u}^T \mathbf{v} \neq 1$. Then $\mathbf{E} = \mathbf{I}_n - \alpha \mathbf{u} \mathbf{v}^T$ is nonsingular, and its inverse is $\mathbf{I}_n - \beta \mathbf{u} \mathbf{v}^T$, where

$$\beta = \frac{\alpha}{\alpha \mathbf{u}^T \mathbf{v} - 1} \; .$$

Solution

Problem 1

The sets (a) and (c) are independent, (b) is not. There are two ways of doing this: by working from the definition of linear dependence, and by using determinants.

From the definition ((a) only): A set $\{\mathbf{a}_1, \ldots, \mathbf{a}_n\}$ of vectors is linearly dependent if (i) there are real numbers x_1, \ldots, x_n , not all zero, such that $x_1\mathbf{a}_1 + \ldots + x_n\mathbf{a}_n = \mathbf{0}$,

or equivalently if

(ii) there is a real vector $\mathbf{x} = [x_1, \dots, x_n]^T \neq \mathbf{0}$ such that $\mathbf{A}\mathbf{x} = \mathbf{0}$, where $\mathbf{A} = [\mathbf{a}_1, \dots, \mathbf{a}_n]$ is the matrix which has $\mathbf{a}_1, \dots, \mathbf{a}_n$ as its columns.

If the only numbers x_i satisfying (i) are $x_1 = \ldots = x_n = 0$ (the only vector **x** satisfying (ii) is the zero vector), then the set $\{\mathbf{a}_1, \ldots, \mathbf{a}_n\}$ is linearly independent. So let x_1, x_2 be such that

$$x_1 \begin{bmatrix} 1\\5 \end{bmatrix} + x_2 \begin{bmatrix} 2\\3 \end{bmatrix} = \begin{bmatrix} 0\\0 \end{bmatrix} .$$
 (1)

From the first component one finds $x_1 = -2x_2$, and the second component gives $0 = 5x_1 + 3x_2 = -7x_2$ (substituting for x_1 according to the first equation). From the second equation, it follows that $x_2 = 0$, and from the first that $x_1 = 0$ as well. So the only pair x_1, x_2 satisfying (1) is $x_1 = x_2 = 0$. According to (i), the vectors $[1, 5]^T$ and $[2, 3]^T$ are linearly independent.

Using determinants: Recall the following facts about determinants:

- A square matrix **A** is singular if and only if its determinant is zero.
- The determinant of a 1×1 matrix (i.e. a real number) is the number itself.
- The determinant of a 2×2 matrix is

$$\det \left[\begin{array}{cc} a & b \\ c & d \end{array} \right] = ad - bc \; .$$

• The determinant of a 3×3 matrix can be computed in various ways; one of them is

$$\det \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & k \end{bmatrix} = a \cdot \det \begin{bmatrix} e & f \\ h & k \end{bmatrix} - b \cdot \det \begin{bmatrix} d & f \\ g & k \end{bmatrix} + c \cdot \det \begin{bmatrix} d & e \\ g & h \end{bmatrix} .$$

(Note the pattern: • The signs are alternating. • Each term in the sum is the product of an element * of the first row and the determinant of the 2×2 matrix which remains if the row and column of * are deleted.)

The first fact leads to the following criterion for linear dependence:

(iii) n vectors $\mathbf{a}_1, \ldots, \mathbf{a}_n$ in n-dimensional space are linearly dependent if and only if the matrix $[\mathbf{a}_1, \ldots, \mathbf{a}_n]$ has zero determinant.

(*Proof:* det[$\mathbf{a}_1, \ldots, \mathbf{a}_n$] = 0 \iff [$\mathbf{a}_1, \ldots, \mathbf{a}_n$] singular \iff (*ii*) above.) Application:

(a) The determinant of $\begin{bmatrix} 1 & 2 \\ 5 & 3 \end{bmatrix}$ is $1 \times 3 - 2 \times 5 = -7 \neq 0$, so [1, 5] and [2, 3] are linearly

independent. (So are [1, 2] and [5, 3]!) (b) The same in 3 dimensions:

$$\det \begin{bmatrix} 2 & -1 & 1 \\ 1 & 1 & 1 \\ -3 & -6 & -4 \end{bmatrix} = 2 \cdot \det \begin{bmatrix} 1 & 1 \\ -6 & -4 \end{bmatrix} - (-1) \cdot \det \begin{bmatrix} 1 & 1 \\ -3 & -4 \end{bmatrix} + 1 \cdot \det \begin{bmatrix} 1 & 1 \\ -3 & -6 \end{bmatrix}$$
$$= 2 \times 2 - (-1) \times (-1) + 1 \times (-3) = 0,$$

so [2, 1, -3], [-1, 1, -6] and [1, 1, -4] are linearly dependent. (c) Here the determinant of the resulting matrix is -11, so the vectors [1, 0, 3], [-1, 1, 2] and [2, 0, -5] are linearly independent.

Problem 2

(a) The null space of A is the set of all vectors \mathbf{x} such that $\mathbf{A}\mathbf{x} = \mathbf{0}$. If \mathbf{x} is such a vector, then

$$\mathbf{A}\mathbf{x} = \begin{bmatrix} 2 & 0 & 1 \\ 3 & -1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2x_1 + x_3 \\ 3x_1 - x_2 + 2x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix},$$

and so $x_3 = -2x_1$ and $x_2 = 3x_1 + 2x_3 = -x_1$. In vector notation, $\mathbf{x}^T = [x_1, -x_1, -2x_1] = x_1[1, -1, -2]$, that is, the null space of \mathbf{A} is the set of all scalar multiples of the vector $[1, -1, -2]^T$. A concise notation for this statement is

$$\operatorname{null} \mathbf{A} = \mathbb{R} \begin{bmatrix} 1\\ -1\\ -2 \end{bmatrix}$$

(b) If $\mathbf{y} \in \text{null}\mathbf{A}^T$, then

$$\mathbf{0} = \mathbf{A}^T \mathbf{y} = \begin{bmatrix} 2 & 3\\ 0 & -1\\ 1 & 2 \end{bmatrix} \begin{bmatrix} y_1\\ y_2 \end{bmatrix} = \begin{bmatrix} 2y_1 + 3y_2\\ -y_2\\ y_1 + 2y_2 \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 0 \end{bmatrix}$$

and so $y_2 = y_1 = 0$. It follows that null $\mathbf{A}^T = \{\mathbf{0}\}$. Another way to see this is to notice that the two columns in \mathbf{A}^T are linearly independent; therefore $\mathbf{A}^T \mathbf{y} = \mathbf{0}$ forces $\mathbf{y} = \mathbf{0}$. A third way is to do (c) first and to use the first of the dimension formulae

$$\dim(\operatorname{range} \mathbf{A}) + \dim(\operatorname{null} \mathbf{A}^T) = \# \text{ of rows of } \mathbf{A} ,$$

$$\dim(\operatorname{range} \mathbf{A}^T) + \dim(\operatorname{null} \mathbf{A}) = \# \text{ of columns of } \mathbf{A} .$$

For the range space of \mathbf{A} is two-dimensional, and so the null space of \mathbf{A}^T is zero-dimensional. The only zero-dimensional vector space is $\{\mathbf{0}\}$.

(c) The range of A consists of all vectors in \mathbb{R}^2 which can be written in the form $\mathbf{A}\mathbf{x}$ for some $\mathbf{x} \in \mathbb{R}^3$. As

$$\mathbf{A}\mathbf{x} = x_1 \begin{bmatrix} 2\\ 3 \end{bmatrix} + x_2 \begin{bmatrix} 0\\ -1 \end{bmatrix} + x_3 \begin{bmatrix} 1\\ 2 \end{bmatrix} ,$$

Solution

the range space of **A** is spanned by the three vectors $[2,3]^T$, $[0,-1]^T$, and $[1,2]^T$. Now it is easy to see that any two of these vectors are linearly independent; so their span is the entire \mathbb{R}^2 . In other words, range $\mathbf{A} = \mathbb{R}^2$, and dim(range \mathbf{A}) = 2. (d) The range of \mathbf{A}^T is

range
$$\mathbf{A}^T = \{\mathbf{A}^T \mathbf{y} : \mathbf{y} \in \mathbb{R}^2\} = \left\{ y_1 \begin{bmatrix} 2\\0\\1 \end{bmatrix} + y_2 \begin{bmatrix} 3\\-1\\2 \end{bmatrix} : y_1, y_2 \in \mathbb{R} \right\}$$
.

Its dimension is indeed two, since the two generating vectors are linearly independent. (e) null $\mathbf{A}^T = {\mathbf{0}}$, and the zero vector is orthogonal to any vector. For null \mathbf{A} and range \mathbf{A}^T , it suffices to check that the vectors which generate them are orthogonal. Indeed,

$$[1, -1, -2]\begin{bmatrix} 2\\0\\1 \end{bmatrix} = 0$$
 and $[1, -1, -2]\begin{bmatrix} 3\\-1\\2 \end{bmatrix} = 0$.

(f) One way to do this is to compute the coefficients λ_i in

$$\begin{bmatrix} 1\\1\\1 \end{bmatrix} = \underbrace{\lambda_1 \begin{bmatrix} 1\\-1\\-2 \end{bmatrix}}_{\mathbf{x}_N} + \underbrace{\lambda_2 \begin{bmatrix} 2\\0\\1 \end{bmatrix}}_{\mathbf{x}_R} + \underbrace{\lambda_3 \begin{bmatrix} 3\\-1\\2 \end{bmatrix}}_{\mathbf{x}_R};$$

 \mathbf{x}_N and \mathbf{x}_R are then given by the bracketed terms. $\mathbf{x}_N = -(1/3)[1, -1, -2] = [-1/3, 1/3, 2/3]$ and $\mathbf{x}_R = [1, 1, 1] - [-1/3, 1/3, 2/3] = [4/3, 2/3, 1/3]$. These two vectors are indeed orthogonal: $\mathbf{x}_N^T \mathbf{x}_R = -(1/3) \times 4/3 + 1/3 \times 2/3 + 2/3 \times 1/3 = 0$.

Problem 3

(a) $\mathbf{B} = \mathbf{IB} = (\mathbf{CA})\mathbf{B} = \mathbf{C}(\mathbf{AB}) = \mathbf{CI} = \mathbf{C}.$

(b) If $\mathbf{A} = [\mathbf{a}_1, \dots, \mathbf{a}_n]$ and $\mathbf{x} = [x_1, \dots, x_n]^T$, then $\mathbf{A}\mathbf{x} = x_1\mathbf{a}_1 + \dots + x_n\mathbf{a}_n$. Now suppose that the right hand side is zero. Then $\mathbf{A}\mathbf{x} = \mathbf{0}$, and by pre-multiplying with the inverse \mathbf{A}^{-1} , it follows that $\mathbf{x} = \mathbf{0}$, and so the columns $\mathbf{a}_1, \dots, \mathbf{a}_n$ are linearly independent. (c) To prove that $\mathbf{A}\mathbf{B}$ is nonsingular, we have to show $\mathbf{A}\mathbf{B}\mathbf{z} = \mathbf{0} \Rightarrow \mathbf{z} = \mathbf{0}$. So suppose that $\mathbf{A}\mathbf{B}\mathbf{z} = \mathbf{0}$. Then, as \mathbf{A} is nonsingular, it follows that $\mathbf{B}\mathbf{z} = \mathbf{0}$, and since \mathbf{B} is also

nonsingular, that $\mathbf{z} = \mathbf{0}$. For the inverse of \mathbf{AB} , it suffices to check that

$$(AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1} = AIA^{-1} = AA^{-1} = I$$

so $\mathbf{B}^{-1}\mathbf{A}^{-1}$ is indeed the inverse of \mathbf{AB} .

(d) To prove that **E** is nonsingular, we have to show that $\mathbf{E}\mathbf{z} = \mathbf{0} \Rightarrow \mathbf{z} = \mathbf{0}$. So suppose that $\mathbf{E}\mathbf{z} = \mathbf{0}$. As $\mathbf{E} = \mathbf{I} - \alpha \mathbf{u}\mathbf{v}^T$, this is equivalent to

$$\mathbf{z} = \alpha(\mathbf{v}^T \mathbf{z}) \mathbf{u} \,. \tag{2}$$

We compute $\mathbf{v}^T \mathbf{z}$ by taking the scalar product of the last equation with \mathbf{v}^T ; the result is $\mathbf{v}^T \mathbf{z} = \alpha(\mathbf{v}^T \mathbf{z})(\mathbf{v}^T \mathbf{u})$, or $\mathbf{v}^T \mathbf{z}(1 - \alpha \mathbf{u}^T \mathbf{v}) = 0$. But it was assumed that $\alpha \mathbf{u}^T \mathbf{v} \neq 1$; so it follows that $\mathbf{v}^T \mathbf{z} = 0$. By (2), this also implies $\mathbf{z} = \mathbf{0}$. Again, it remains to check that $\mathbf{I} - \beta \mathbf{u} \mathbf{v}^T$ is really the inverse of \mathbf{E} :

$$(\mathbf{I} - \alpha \mathbf{u} \mathbf{v}^{T})(\mathbf{I} - \beta \mathbf{u} \mathbf{v}^{T}) = \mathbf{I} - \beta \mathbf{u} \mathbf{v}^{T} - \alpha \mathbf{u} \mathbf{v}^{T} + \alpha \beta (\mathbf{v}^{T} \mathbf{u}) \mathbf{u} \mathbf{v}^{T}$$
$$= \mathbf{I} + \{\alpha \beta (\mathbf{u}^{T} \mathbf{v}) - \alpha - \beta \} \mathbf{u} \mathbf{v}^{T};$$

here the term in the curly bracket is

$$\beta(\alpha \mathbf{u}^T \mathbf{v} - 1) - \alpha = \alpha - \alpha = 0$$
.