233 Computational Techniques

Problem Sheet for Tutorial 4

Problem 1

Which of the following sets of vectors are linearly independent:
(a) $[1,5],[2,3]$;
(b) $[2,1,-3],[-1,1,-6],[1,1,-4]$;
(c) $[1,0,3],[-1,1,2],[2,0,-5]$?

Problem 2

For

$$
\mathbf{A}=\left[\begin{array}{rrr}
2 & 0 & 1 \\
3 & -1 & 2
\end{array}\right],
$$

find
(a) the nullspace of \mathbf{A},
(b) the nullspace of \mathbf{A}^{T},
(c) the range of \mathbf{A},
(d) the range of \mathbf{A}^{T}.
(e) Check that null ${ }^{T}$ is orthogonal to range \mathbf{A}, and that null \mathbf{A} is orthogonal to range \mathbf{A}^{T}.
(f) For $\mathbf{x}=[1,1,1]^{T}$, find the two vectors $\mathbf{x}_{R} \in \operatorname{range} \mathbf{A}^{T}$ and $\mathbf{x}_{N} \in$ null \mathbf{A} which satisfy $\mathbf{x}=\mathbf{x}_{R}+\mathbf{x}_{N}$. Check that \mathbf{x}_{R} and \mathbf{x}_{N} are orthogonal!

Problem 3

Prove:
(a) If $\mathbf{A} \in \mathbb{R}^{n \times n}$ is invertible, then its right and left inverses are equal; that is, if $\mathbf{A B}=\mathbf{I}$ and $\mathbf{C A}=\mathbf{I}$ then $\mathbf{B}=\mathbf{C}$. (Hint: Compute $\mathbf{C A B}$ in two different ways.)
(b) If \mathbf{A} has an inverse, then the columns of \mathbf{A} are linearly independent.
(c) If \mathbf{A} and \mathbf{B} are both nonsingular, then $\mathbf{A B}$ is nonsingular, and $(\mathbf{A B})^{-1}=\mathbf{B}^{-1} \mathbf{A}^{-1}$.
(d) Suppose $\alpha \in \mathbb{R}$ and $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{n}$ such that $\alpha \mathbf{u}^{T} \mathbf{v} \neq 1$. Then $\mathbf{E}=\mathbf{I}_{n}-\alpha \mathbf{u v}^{T}$ is nonsingular, and its inverse is $\mathbf{I}_{n}-\beta \mathbf{u v}^{T}$, where

$$
\beta=\frac{\alpha}{\alpha \mathbf{u}^{T} \mathbf{v}-1} .
$$

Solution

Problem 1

The sets (a) and (c) are independent, (b) is not. There are two ways of doing this: by working from the definition of linear dependence, and by using determinants.
From the definition ((a) only): A set $\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right\}$ of vectors is linearly dependent if
(i) there are real numbers x_{1}, \ldots, x_{n}, not all zero, such that $x_{1} \mathbf{a}_{1}+\ldots+x_{n} \mathbf{a}_{n}=\mathbf{0}$, or equivalently if
(ii) there is a real vector $\mathbf{x}=\left[x_{1}, \ldots, x_{n}\right]^{T} \neq \mathbf{0}$ such that $\mathbf{A x}=\mathbf{0}$, where $\mathbf{A}=\left[\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right]$ is the matrix which has $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}$ as its columns.
If the only numbers x_{i} satisfying (i) are $x_{1}=\ldots=x_{n}=0$ (the only vector \mathbf{x} satisfying (ii) is the zero vector), then the set $\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right\}$ is linearly independent.

So let x_{1}, x_{2} be such that

$$
x_{1}\left[\begin{array}{l}
1 \tag{1}\\
5
\end{array}\right]+x_{2}\left[\begin{array}{l}
2 \\
3
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] .
$$

From the first component one finds $x_{1}=-2 x_{2}$, and the second component gives $0=$ $5 x_{1}+3 x_{2}=-7 x_{2}$ (substituting for x_{1} according to the first equation). From the second equation, it follows that $x_{2}=0$, and from the first that $x_{1}=0$ as well. So the only pair x_{1}, x_{2} satisfying (1) is $x_{1}=x_{2}=0$. According to (i), the vectors $[1,5]^{T}$ and $[2,3]^{T}$ are linearly independent.
Using determinants: Recall the following facts about determinants:

- A square matrix \mathbf{A} is singular if and only if its determinant is zero.
- The determinant of a 1×1 matrix (i.e. a real number) is the number itself.
- The determinant of a 2×2 matrix is

$$
\operatorname{det}\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=a d-b c
$$

- The determinant of a 3×3 matrix can be computed in various ways; one of them is

$$
\operatorname{det}\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & k
\end{array}\right]=a \cdot \operatorname{det}\left[\begin{array}{cc}
e & f \\
h & k
\end{array}\right]-b \cdot \operatorname{det}\left[\begin{array}{ll}
d & f \\
g & k
\end{array}\right]+c \cdot \operatorname{det}\left[\begin{array}{ll}
d & e \\
g & h
\end{array}\right]
$$

(Note the pattern: - The signs are alternating. - Each term in the sum is the product of an element $*$ of the first row and the determinant of the 2×2 matrix which remains if the row and column of $*$ are deleted.)
The first fact leads to the following criterion for linear dependence:
(iii) n vectors $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}$ in n-dimensional space are linearly dependent if and only if the matrix $\left[\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right]$ has zero determinant.
(Proof: $\operatorname{det}\left[\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right]=0 \Longleftrightarrow\left[\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right]$ singular \Longleftrightarrow (ii) above.)
Application:
(a) The determinant of $\left[\begin{array}{ll}1 & 2 \\ 5 & 3\end{array}\right]$ is $1 \times 3-2 \times 5=-7 \neq 0$, so $[1,5]$ and $[2,3]$ are linearly
independent. (So are $[1,2]$ and $[5,3]$!)
(b) The same in 3 dimensions:

$$
\begin{aligned}
\operatorname{det}\left[\begin{array}{rrr}
2 & -1 & 1 \\
1 & 1 & 1 \\
-3 & -6 & -4
\end{array}\right] & =2 \cdot \operatorname{det}\left[\begin{array}{rr}
1 & 1 \\
-6 & -4
\end{array}\right]-(-1) \cdot \operatorname{det}\left[\begin{array}{rr}
1 & 1 \\
-3 & -4
\end{array}\right]+1 \cdot \operatorname{det}\left[\begin{array}{rr}
1 & 1 \\
-3 & -6
\end{array}\right] \\
& =2 \times 2-(-1) \times(-1)+1 \times(-3)=0,
\end{aligned}
$$

so $[2,1,-3],[-1,1,-6]$ and $[1,1,-4]$ are linearly dependent.
(c) Here the determinant of the resulting matrix is -11 , so the vectors $[1,0,3],[-1,1,2]$ and $[2,0,-5]$ are linearly independent.

Problem 2

(a) The null space of \mathbf{A} is the set of all vectors \mathbf{x} such that $\mathbf{A} \mathbf{x}=\mathbf{0}$. If \mathbf{x} is such a vector, then

$$
\mathbf{A} \mathbf{x}=\left[\begin{array}{rrr}
2 & 0 & 1 \\
3 & -1 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
2 x_{1}+x_{3} \\
3 x_{1}-x_{2}+2 x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

and so $x_{3}=-2 x_{1}$ and $x_{2}=3 x_{1}+2 x_{3}=-x_{1}$. In vector notation, $\mathbf{x}^{T}=\left[x_{1},-x_{1},-2 x_{1}\right]=$ $x_{1}[1,-1,-2]$, that is, the null space of \mathbf{A} is the set of all scalar multiples of the vector $[1,-1,-2]^{T}$. A concise notation for this statement is

$$
\operatorname{null} \mathbf{A}=\mathbb{R}\left[\begin{array}{r}
1 \\
-1 \\
-2
\end{array}\right]
$$

(b) If $\mathbf{y} \in \operatorname{null} \mathbf{A}^{T}$, then

$$
\mathbf{0}=\mathbf{A}^{T} \mathbf{y}=\left[\begin{array}{rr}
2 & 3 \\
0 & -1 \\
1 & 2
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\left[\begin{array}{c}
2 y_{1}+3 y_{2} \\
-y_{2} \\
y_{1}+2 y_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

and so $y_{2}=y_{1}=0$. It follows that null $\mathbf{A}^{T}=\{\mathbf{0}\}$. Another way to see this is to notice that the two columns in \mathbf{A}^{T} are linearly independent; therefore $\mathbf{A}^{T} \mathbf{y}=\mathbf{0}$ forces $\mathbf{y}=\mathbf{0}$. A third way is to do (c) first and to use the first of the dimension formulae

$$
\left.\begin{array}{rl}
\operatorname{dim}(\operatorname{range} \mathbf{A})+\operatorname{dim}(\text { null }
\end{array}{ }^{T}\right)=\# \text { of rows of } \mathbf{A}, ~(\operatorname{dim}(\text { null } \mathbf{A})=\# \text { of columns of } \mathbf{A} .
$$

For the range space of \mathbf{A} is two-dimensional, and so the null space of \mathbf{A}^{T} is zerodimensional. The only zero-dimensional vector space is $\{\mathbf{0}\}$.
(c) The range of \mathbf{A} consists of all vectors in \mathbb{R}^{2} which can be written in the form $\mathbf{A x}$ for some $\mathbf{x} \in \mathbb{R}^{3}$. As

$$
\mathbf{A} \mathbf{x}=x_{1}\left[\begin{array}{l}
2 \\
3
\end{array}\right]+x_{2}\left[\begin{array}{r}
0 \\
-1
\end{array}\right]+x_{3}\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

the range space of \mathbf{A} is spanned by the three vectors $[2,3]^{T},[0,-1]^{T}$, and $[1,2]^{T}$. Now it is easy to see that any two of these vectors are linearly independent; so their span is the entire \mathbb{R}^{2}. In other words, range $\mathbf{A}=\mathbb{R}^{2}$, and $\operatorname{dim}($ range $\mathbf{A})=2$.
(d) The range of \mathbf{A}^{T} is

$$
\operatorname{range} \mathbf{A}^{T}=\left\{\mathbf{A}^{T} \mathbf{y}: \mathbf{y} \in \mathbb{R}^{2}\right\}=\left\{y_{1}\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right]+y_{2}\left[\begin{array}{r}
3 \\
-1 \\
2
\end{array}\right]: \quad y_{1}, y_{2} \in \mathbb{R}\right\}
$$

Its dimension is indeed two, since the two generating vectors are linearly independent. (e) $\operatorname{null~}^{T}=\{\mathbf{0}\}$, and the zero vector is orthogonal to any vector. For null \mathbf{A} and range \mathbf{A}^{T}, it suffices to check that the vectors which generate them are orthogonal. Indeed,

$$
[1,-1,-2]\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right]=0 \quad \text { and } \quad[1,-1,-2]\left[\begin{array}{r}
3 \\
-1 \\
2
\end{array}\right]=0
$$

(f) One way to do this is to compute the coefficients λ_{i} in

$$
\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=\underbrace{\lambda_{1}\left[\begin{array}{r}
1 \\
-1 \\
-2
\end{array}\right]}_{\mathbf{x}_{N}}+\underbrace{\lambda_{2}\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right]+\lambda_{3}\left[\begin{array}{r}
3 \\
-1 \\
2
\end{array}\right]}_{\mathbf{x}_{R}}
$$

\mathbf{x}_{N} and \mathbf{x}_{R} are then given by the bracketed terms.
$\mathbf{x}_{N}=-(1 / 3)[1,-1,-2]=[-1 / 3,1 / 3,2 / 3]$ and $\mathbf{x}_{R}=[1,1,1]-[-1 / 3,1 / 3,2 / 3]=[4 / 3,2 / 3,1 / 3]$.
These two vectors are indeed orthogonal: $\mathbf{x}_{N}^{T} \mathbf{x}_{R}=-(1 / 3) \times 4 / 3+1 / 3 \times 2 / 3+2 / 3 \times 1 / 3=0$.

Problem 3

(a) $\mathbf{B}=\mathbf{I B}=(\mathbf{C A}) \mathbf{B}=\mathbf{C}(\mathbf{A B})=\mathbf{C I}=\mathbf{C}$.
(b) If $\mathbf{A}=\left[\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right]$ and $\mathbf{x}=\left[x_{1}, \ldots, x_{n}\right]^{T}$, then $\mathbf{A} \mathbf{x}=x_{1} \mathbf{a}_{1}+\ldots+x_{n} \mathbf{a}_{n}$. Now suppose that the right hand side is zero. Then $\mathbf{A x}=\mathbf{0}$, and by pre-multiplying with the inverse \mathbf{A}^{-1}, it follows that $\mathbf{x}=\mathbf{0}$, and so the columns $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}$ are linearly independent.
(c) To prove that $\mathbf{A B}$ is nonsingular, we have to show $\mathbf{A B z}=\mathbf{0} \Rightarrow \mathbf{z}=\mathbf{0}$. So suppose that $\mathbf{A B z}=\mathbf{0}$. Then, as \mathbf{A} is nonsingular, it follows that $\mathbf{B z}=\mathbf{0}$, and since \mathbf{B} is also nonsingular, that $\mathbf{z}=\mathbf{0}$. For the inverse of $\mathbf{A B}$, it suffices to check that

$$
(\mathbf{A B})\left(\mathbf{B}^{-1} \mathbf{A}^{-1}\right)=\mathbf{A}\left(\mathbf{B B}^{-1}\right) \mathbf{A}^{-1}=\mathbf{A I A}^{-1}=\mathbf{A A}^{-1}=\mathbf{I},
$$

so $\mathbf{B}^{-1} \mathbf{A}^{-1}$ is indeed the inverse of $\mathbf{A B}$.
(d) To prove that \mathbf{E} is nonsingular, we have to show that $\mathbf{E z}=\mathbf{0} \Rightarrow \mathbf{z}=\mathbf{0}$. So suppose that $\mathbf{E z}=\mathbf{0}$. As $\mathbf{E}=\mathbf{I}-\alpha \mathbf{u v}^{T}$, this is equivalent to

$$
\begin{equation*}
\mathbf{z}=\alpha\left(\mathbf{v}^{T} \mathbf{z}\right) \mathbf{u} \tag{2}
\end{equation*}
$$

We compute $\mathbf{v}^{T} \mathbf{z}$ by taking the scalar product of the last equation with \mathbf{v}^{T}; the result is $\mathbf{v}^{T} \mathbf{z}=\alpha\left(\mathbf{v}^{T} \mathbf{z}\right)\left(\mathbf{v}^{T} \mathbf{u}\right)$, or $\mathbf{v}^{T} \mathbf{z}\left(1-\alpha \mathbf{u}^{T} \mathbf{v}\right)=0$. But it was assumed that $\alpha \mathbf{u}^{T} \mathbf{v} \neq 1$; so it follows that $\mathbf{v}^{T} \mathbf{z}=0$. By (2), this also implies $\mathbf{z}=\mathbf{0}$.
Again, it remains to check that $\mathbf{I}-\beta \mathbf{u v}^{T}$ is really the inverse of \mathbf{E} :

$$
\begin{aligned}
\left(\mathbf{I}-\alpha \mathbf{u} \mathbf{v}^{T}\right)\left(\mathbf{I}-\beta \mathbf{u v}^{T}\right) & =\mathbf{I}-\beta \mathbf{u v}^{T}-\alpha \mathbf{u v}^{T}+\alpha \beta\left(\mathbf{v}^{T} \mathbf{u}\right) \mathbf{u v}^{T} \\
& =\mathbf{I}+\left\{\alpha \beta\left(\mathbf{u}^{T} \mathbf{v}\right)-\alpha-\beta\right\} \mathbf{u v}^{T} ;
\end{aligned}
$$

here the term in the curly bracket is

$$
\beta\left(\alpha \mathbf{u}^{T} \mathbf{v}-1\right)-\alpha=\alpha-\alpha=0 .
$$

