
233 Computational Techniques

Problem Sheet for Tutorial 5

Problem 1

The purpose of this exercise is to show you an application of eigenvalues and eigenvectors
to a topic which, at first glance, might seem totally unrelated: the Fibonacci series.
Recall (from the 1st year PPT classes) that the series is defined by x0 := 0, x1 := 1 and

xn+1 := xn + xn−1 (1)

for n ≥ 1. This formula is recursive, that is, in order to find xn for higher values of n,
you have to know (or compute) the values for smaller n.
In many situations recursive formulae are not good enough, for instance if one wants
to know how xn grows with n. In this exercise you can find a formula for xn which is
non-recursive in the sense that it gives xn as a function of the index n rather than as a
function of previously computed values. Eigenvalues and -vectors are a good tool for this.
Here is how to do it:
(a) Express (1) as a vector equation of the form

[

xn+1

xn

]

= A

[

xn

xn−1

]

(2)

for some 2×2 matrix A. This transforms the original series into a series of two-dimensional
vectors.
(b) By recursive application of (2), express [xn+1, xn]T as a power of A times the “initial”
vector (which one)?
(c) Now, find eigenvalues λi and eigenvectors ui of A. (Here the ui need not be normal-
ized.)
(d) Express the initial vector as a linear combination of the eigenvectors of A.
(e) Use the results of (b)–(d) and the relation Aui = λiui to find the vector [xn+1, xn]—
and hence xn itself—as a function of n alone.
(f) Test your formula for n = 0, . . . , 4.

Problem 2

Solve the following system of equations using Gauss-Jordan elimination. Identify basic
variables. Express all solutions in terms of non-basic variables. Determine the space of
solutions and verify the result.

2x1 + x2 − x3 + 2x4 − x5 = −2
4x1 + 2x2 + 3x4 − 2x5 = 2
x1 + x2 + x3 + x4 + x5 = 3
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Problem 3

(a) Find the Cholesky factorization of the matrix

A =





1 1 −1
1 5 −5

−1 −5 6



 .

(b) Then solve Ax = b for b = [1,−3, 6]T by forward and backward substitution, using
the triangular shape of the factorization matrices. (See the end of section 3.5.1 in the
lecture notes.)
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Solution

Problem 1

(a) The matrix in (2) is

A =

[

1 1
1 0

]

.

(b) The initial vector is [x1, x0]
T = [1, 0]T , and

[

xn+1

xn

]

= An

[

1
0

]

.

(c) The characteristic polynomial of A is

det(A − λI2) = det

[

1 − λ 1
1 −λ

]

= −λ(1 − λ) − 1 = λ2 − λ − 1 ,

with zeros λ1 = (1 +
√

5)/2 and λ2 = (1 −
√

5)/2; these are the eigenvalues of A. A
corresponding choice of eigenvectors is

u1 =

[

λ1

1

]

, u2 =

[

λ2

1

]

.

They are not normalized – this is not necessary here as we do not need the explicit
orthogonal matrix from the spectral decomposition.
(d)

[

1
0

]

=
u1 − u2√

5
.

(e) Multiplying both sides of the last equation by An gives

[

xn+1

xn

]

=
Anu1 − Anu2√

5
=

1√
5

{

λn

1

[

λ1

1

]

− λn

2

[

λ2

1

]}

.

Here the second component gives

xn =
λn

1 − λn

2√
5

=
{(1 +

√
5)/2}n − {(1 −

√
5)/2}n

√
5

. (3)
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(f) Thus:

x0 = 0 ,

x1 =
(1 +

√
5)/2 − (1 −

√
5)/2√

5
= 1 ,

x2 =
(1 + 2

√
5 + 5)/4 − (1 − 2

√
5 + 5)/4√

5
= 1 ,

x3 =
(1 + 3

√
5 + 15 + 5

√
5)/8 − (1 − 3

√
5 + 15 − 5

√
5)/8√

5
= 2 ,

x4 =
(1 + 4

√
5 + 30 + 20

√
5 + 25)/16 − (1 − 4

√
5 + 30 − 20

√
5 + 25)/16√

5
= 3

in agreement with (1).
Obviously the recursive formula is better for small values of n as it avoids the “detour”
into the real numbers. However for large n, (3) with real arithmetic can be much faster
than (1) or (2) with integer arithmetic.

Problem 2

In tableau notation, a possible sequence of steps is the following (with the third equation
as the first row; pivot elements underlined):





1 1 1 1 1 3
2 1 −1 2 −1 −2
4 2 0 3 −2 2



 −→





1 1 1 1 1 3
0 −1 −3 0 −3 −8
0 −2 −4 −1 −6 −10



 −→





1 0 −2 1 −2 5
0 1 3 0 3 8
0 0 2 −1 0 6



 −→





1 0 0 0 −2 1
0 1 0 3/2 3 −1
0 0 1 −1/2 0 3



 .

The first three columns of the final tableau contain the three unit vectors e1, e2 and e3.
(A different choice of pivot elements would have produced them in other columns.) So
x1, x2 and x3 are the basic variables, and we can read off

x1 = 1 + 2x5 , x2 = −1 − 3

2
x4 − 3x5 , x3 = 3 +

1

2
x4 ,

where the non-basic variables x4 and x5 can take arbitrary values. Hence the set of
solutions is

{

x = [1,−1, 3, 0, 0]T + x4[0,−3/2, 1/2, 1, 0]T + x5[2,−3, 0, 0, 1]T : x4, x5 ∈ R
}

.

(Note that this is not a vector space! For instance, the zero vector x = 0 is not a solution.
In general, for a given matrix A and a given vector b (with dimension equal to the row
dimension of A) the set {x : Ax = b} is a vector space if and only if b = 0.)
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Problem 3

(a) The aim is to split A in the following way:





1 1 −1
1 5 −5

−1 −5 6



 = A = LLT =





ℓ11

ℓ21 ℓ22

ℓ31 ℓ32 ℓ33









ℓ11 ℓ21 ℓ31

ℓ22 ℓ32

ℓ33



 .

With the usual sign convention ℓii > 0 for the diagonal elements of L, one obtains
• from the first column of A:

1 = ℓ2

11 ⇒ ℓ11 = 1 , 1 = ℓ21ℓ11 = ℓ21 , −1 = ℓ31ℓ11 = ℓ31 ,

• from the second column of A, starting with a22 (as A is symmetric, the equation for
a21 is the same as the one for a12, which we have just solved)

5 = ℓ2

21 + ℓ2

22 = 1 + ℓ2

22 ⇒ ℓ22 = 2 , −5 = ℓ31ℓ21 + ℓ32ℓ22 = −1 + 2ℓ32 ⇒ ℓ32 = −2 ,

• and from the third column (only the last element can give anything new),

6 = ℓ2

31 + ℓ2

32 + ℓ2

33 = 1 + 4 + ℓ2

33 ⇒ ℓ33 = 1 .

So
• the factorization was successful (which implies that A is positive definite), and
• the Cholesky factor of A is

L =





1
1 2

−1 −2 1



 . (4)

(b) The idea is to solve LLT x = Ax = b in two steps by defining y := LT x and solving
(1) Ly = b by forward substitution and (2) LT x = y by backward substitution. So:





1
−3

6



 = b = Ly =





1
1 2

−1 −2 1









y1

y2

y3



 =





y1

y1 + 2y2

−y1 − 2y2 + y3



 ⇒ y =





1
−2

3









1
−2

3



 = y = LT x =





1 1 −1
2 −2

1









x1

x2

x3



 =





x1 + x2 − x3

2x2 − 2x3

x3



 ⇒ x =





2
2
3



 .

3


