233 Computational Techniques Assessed Coursework \#1

Problem 1

For each of the following statements, indicate whether it is true or false and briefly justify your answer. If a statement is false, a counterexample is sufficient as an explanation.
(a) If $\boldsymbol{a}, \boldsymbol{b} \in \mathbb{R}^{m}$ are linearly independent vectors then their dot product is equal to zero. No. Eg: $a=(1,0)^{T}$ and $b=(1,1)^{T}$.
(b) The product $\boldsymbol{A} \boldsymbol{B}$ of two matrices is defined whenever the number of rows of \boldsymbol{A} is the same as the number of columns of \boldsymbol{B}.
No. The number of columns of \boldsymbol{A} must be the same as the number of rows of \boldsymbol{B}.
(c) The norm of the sum of two vectors is at most the sum of their norms.

Correct. It is the triangular inequality.
(d) The map $\boldsymbol{x} \mapsto \sqrt{\boldsymbol{x}^{T} \boldsymbol{x}}$ is a vector norm.

It is the ℓ_{2} norm.
(e) In \mathbb{R}^{m}, a set of less than m vectors is linearly independent.

No. Eg. $a=(0,0)^{T}$ in \mathbb{R}^{2}.
(f) If $\boldsymbol{A} \in \mathbb{R}^{m \times n}$, then range $(\boldsymbol{A}) \cap \operatorname{null}\left(\boldsymbol{A}^{T}\right)=\{\mathbf{0}\}$.

Yes. Since if $u \in \operatorname{range}(\boldsymbol{A}) \cap \operatorname{null}\left(\boldsymbol{A}^{T}\right)$, then $u \cdot u=0$, which implies $\sum_{i=1}^{m} u_{i}^{2}=0$ i.e. $u_{i}=0$ for $i=1, \cdots, m$.
(g) If, for given $\boldsymbol{A} \in \mathbb{R}^{m \times m}$ and $\boldsymbol{b} \in \mathbb{R}^{m}, \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ has no solution, then \boldsymbol{A} is singular.

Yes, since it means that $b \notin \operatorname{range}(\boldsymbol{A})$, i.e. \boldsymbol{A} is rank deficient.
(i) If \boldsymbol{A} is a square matrix and $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ has two different solutions, then \boldsymbol{A} is singular.

Yes. Since if $\boldsymbol{A x}=\boldsymbol{b}$ and $\boldsymbol{A} \boldsymbol{y}=\boldsymbol{b}$ for $\boldsymbol{x} \neq \boldsymbol{y}$, then $\boldsymbol{A}(\boldsymbol{x}-\boldsymbol{y})=0$ for $\boldsymbol{x}-\boldsymbol{y} \neq 0$.

Problem 2

For the matrix

$$
\boldsymbol{A}=\left[\begin{array}{lll}
1 & 4 & 3 \\
4 & 1 & 0 \\
3 & 0 & 1
\end{array}\right]
$$

find
(a) the eigenvalues
$1,-4,6$.
and
(b) a set of corresponding eigenvectors normalized such that their ℓ_{2} norm is 1 .
$a_{1}=\frac{1}{5}(0,-3,4)^{T}, a_{2}=\frac{1}{\sqrt{50}}(5,-4,-3)^{T}$ and $a_{3}=\frac{1}{\sqrt{50}}(5.4,3)^{T}$.
(c) Check that the eigenvectors form an orthonormal set.
(d) From (a) and (c), find the spectral decomposition $\boldsymbol{A}=\boldsymbol{Q} \boldsymbol{\Lambda} \boldsymbol{Q}^{T}$ where \boldsymbol{Q} is orthogonal and $\boldsymbol{\Lambda}$ is diagonal.
$Q=\left[a_{1}, a_{2}, a_{3}\right]$ and $\Lambda=\operatorname{diag}(1,-4,6)$. (e) Check that your decomposition really gives the matrix \boldsymbol{A}.

Problem 3

With the notations in the notes, show that for any matrix $A \in \mathbb{R}^{m \times n}$ we have:

$$
\|\boldsymbol{A}\|_{1}=\max _{\boldsymbol{x} \neq 0} \frac{\|\boldsymbol{A} \boldsymbol{x}\|_{1}}{\|\boldsymbol{x}\|_{1}}=\max _{\|\boldsymbol{x}\|_{1}=1}\|\boldsymbol{A} \boldsymbol{x}\|_{1} .
$$

1) We have for all $x \in \mathbb{R}^{n}:\|A x\|_{1}=\sum_{j=1}^{m}\left|\sum_{i=1}^{n} a_{j i} x_{i}\right| \leq \sum_{j=1}^{m} \sum_{i=1}^{n}\left|a_{j i}\right|\left|x_{i}\right|=\sum_{i=1}^{n}\left(\sum_{j=1}^{m}\left|a_{j i}\right|\right)\left|x_{i}\right|$.
2) Since $\|A\|_{1}=\max _{1 \leq j \leq m} \sum_{j=1}^{m}\left|a_{j i}\right|$, the sum between brackets in the last term in (1) is bounded by $\|A\|_{1}$ for each $i=1, \cdots, n$, so we get: for all $x \in \mathbb{R}^{n}:\|A x\|_{1} \leq$ $\|A\|_{1} \sum_{i=1}^{n}\left|x_{i}\right|=\|A\|_{1}\|x\|_{1}$.
3) Suppose k with $1 \leq k \leq n$ is such that $\|A\|_{1}=\max _{1 \leq i \leq n} \sum_{j=1}^{m}\left|a_{j i}\right|=\sum_{j=1}^{m}\left|a_{j k}\right|$.Then put $x=\left(x_{1}, x_{2}, \cdots, x_{n}\right)^{T}$ with $x_{k}=1$ and $x_{i}=0$ for $i \neq k$. Thus, the LHS can actually be equal to the RHS and the first equality is proved.
4) For the second equality, we let $y=x /\|x\|_{1}$ for $x \neq 0$.

Problems 1 and 2 carry 40% of the marks each, problem 3 carries 20\%.

