233 Computational Techniques

Assessed Coursework \#1
Handed out: 9th February 2007, Hand in: 23th February 2007, Nominal time: 1 hour

Problem 1

For each of the following statements, indicate whether it is true or false and briefly justify your answer. If a statement is false, a counterexample is sufficient as an explanation.
(a) If $\boldsymbol{a}, \boldsymbol{b} \in \mathbb{R}^{m}$ are linearly independent vectors then their dot product is equal to zero.
(b) The product $\boldsymbol{A B}$ of two matrices is defined whenever the number of rows of \boldsymbol{A} is the same as the number of columns of \boldsymbol{B}.
(c) The norm of the sum of two vectors is at most the sum of their norms.
(d) The map $\boldsymbol{x} \mapsto \sqrt{\boldsymbol{x}^{T} \boldsymbol{x}}$ is a vector norm.
(e) In \mathbb{R}^{m}, a set of less than m vectors is linearly independent.
(f) If $\boldsymbol{A} \in \mathbb{R}^{m \times n}$, then range $(\boldsymbol{A}) \cap \operatorname{null}\left(\boldsymbol{A}^{T}\right)=\{\mathbf{0}\}$.
(g) If, for given $\boldsymbol{A} \in \mathbb{R}^{m \times m}$ and $\boldsymbol{b} \in \mathbb{R}^{m}, \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ has no solution, then \boldsymbol{A} is singular.
(i) If \boldsymbol{A} is a square matrix and $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ has two different solutions, then \boldsymbol{A} is singular.

Problem 2

For the matrix

$$
\boldsymbol{A}=\left[\begin{array}{lll}
1 & 4 & 3 \\
4 & 1 & 0 \\
3 & 0 & 1
\end{array}\right]
$$

find
(a) the eigenvalues and
(b) a set of corresponding eigenvectors normalized such that their ℓ_{2} norm is 1 .
(c) Check that the eigenvectors form an orthonormal set.
(d) From (a) and (c), find the spectral decomposition $\boldsymbol{A}=\boldsymbol{Q} \boldsymbol{\Lambda} \boldsymbol{Q}^{T}$ where \boldsymbol{Q} is orthogonal and $\boldsymbol{\Lambda}$ is diagonal.
(e) Check that your decomposition really gives the matrix \boldsymbol{A}.

Problem 3
With the notations in the notes, show that for any matrix $A \in \mathbb{R}^{m \times n}$ we have:

$$
\|\boldsymbol{A}\|_{1}=\max _{\boldsymbol{x} \neq 0} \frac{\|\boldsymbol{A} \boldsymbol{x}\|_{1}}{\|\boldsymbol{x}\|_{1}}=\max _{\|\boldsymbol{x}\|_{1}=1}\|\boldsymbol{A} \boldsymbol{x}\|_{1}
$$

Hint: 1) Assume that $\boldsymbol{A}=\left(a_{j i}\right)$. Show that for all $\boldsymbol{x} \in \mathbb{R}^{n}:\|\boldsymbol{A} \boldsymbol{x}\|_{1}=\sum_{j=1}^{m}\left|\sum_{i=1}^{n} a_{j i} x_{i}\right| \leq$ $\sum_{j=1}^{m} \sum_{i=1}^{n}\left|a_{j i}\right|\left|x_{i}\right|=\sum_{i=1}^{n}\left(\sum_{j=1}^{m}\left|a_{j i}\right|\right)\left|x_{i}\right|$.
2) Deduce that $\|\boldsymbol{A} \boldsymbol{x}\|_{1} \leq\|\boldsymbol{A}\|_{1}\|\boldsymbol{x}\|_{1}$ for all $\boldsymbol{x} \in \mathbb{R}^{n}$ and that $\frac{\|\boldsymbol{A}\|_{1}}{\|\boldsymbol{x}\|_{1}} \leq\|\boldsymbol{A}\|_{1}$ for all nonzero vectors $\boldsymbol{x} \in \mathbb{R}^{n}$.
3) Find some nonzero vector $\boldsymbol{x} \in \mathbb{R}^{n}$ such that $\frac{\|\boldsymbol{A}\|_{1}}{\|\boldsymbol{x}\|_{1}}=\|\boldsymbol{A}\|_{1}$ and deduce the first equality in the problem.
4) For the second equality, let $\boldsymbol{y}=\boldsymbol{x} /\|\boldsymbol{x}\|_{1}$ for $x \neq 0$.

Problems 1 and 2 carry 40% of the marks each, problem 3 carries 20\%.

