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Abstract

We show that the Scott topology induces a topology for
real-valued Lipschitz maps on Banach spaces which we call
the L-topology. It is the weakest topology with respect to
which the L-derivative operator, as a second order func-
tional which maps the space of Lipschitz functions into the
function space of non-empty weak* compact and convex
valued maps equipped with the Scott topology, is contin-
uous. For finite dimensional Euclidean spaces, where the
L-derivative and the Clarke gradient coincide, we provide a
simple characterisation of the basic open subsets of the L-
topology in terms of ties or primitive maps of functions. We
use this to verify that the L-topology is strictly coarser than
the well-known Lipschitz norm topology. We then develop
a fundamental theorem of calculus of second order in finite
dimensions showing that the continuous integral operator
from the continuous Scott domain of non-empty convex and
compact valued functions to the continuous Scott domain
of ties is inverse to the continuous operator induced by the
L-derivative.

Key Words: Domain theory, Clarke gradient, Weakest
topology, Second order functionals, Hausdorff metric, Fun-
damental Theorem of Calculus.

1. The case for Lipschitz maps in computation

Real-valued Lipschitz maps on Euclidean spaces have a
number of fundamental properties that make them into a
suitable class of functions in a variety of contexts with wide
applications in pure and applied mathematics. For these,
they are the appropriate choice of functions in many differ-
ent areas of computation.

Closed under composition and sitting between the class
of continuous functions and those of continuously differ-
entiable functions, Lipschitz maps contain the important
class of piecewise polynomial functions, which are widely
used in geometric modelling, approximation and interpo-
lation and are supported in MatLab [8]. Lipschitz maps

are uniformly continuous and have much better invariant
properties than differentiable maps as they are closed under
the fundamental min and max operations, and closed un-
der convergence with respect to the sup norm. In the theory
and application of ordinary differential equations, Lipschitz
maps represent the most fundamental class of maps in view
of their basic and essentially unrivalled property that a Lip-
schitz vector field in R

n has a unique solution in the initial
value problem [7].

In a more theoretical direction, Lipschitz maps are, by
Rademacher’s theorem, differentiable almost everywhere
on finite dimensional Euclidean spaces [6, page 148], and
by Kirszbraun theorem [24, page 202], enjoy the desirable
property that they can be extended from any subset of a
Hilbert space to the whole space with the same Lipschitz
constant. Lipschitz maps are at the very foundation of non-
linear functional analysis [2] and have been the subject of a
hugely growing research in the theory of manifolds includ-
ing Riemannian surfaces at the forefront of development of
mathematics in relation to theoretical physics [3].

In recent years a new notion of derivative for Lips-
chitz maps has emerged that extends the classical (Fréchet)
derivative for continuously differentiable functions and is
moreover always defined and continuous with respect to
what is in fact the Scott topology on a domain. The Scott
topology [1, 25], which has proved to be an essential tool
in the theory of computation, has now found a new area of
application in mathematical analysis.

In 1980’s, motivated by applications in non-smooth anal-
ysis, optimisation and control theory, Frank Clarke devel-
oped a set-valued derivative for real-valued Lipschitz maps
on Euclidean spaces, which is now called the Clarke gradi-
ent [5]. On finite dimensional Euclidean spaces, the Clarke
gradient has non-empty compact and convex subsets of the
Euclidean space as its values. For example, the absolute
value function, which is not classically differentiable at
zero, is a Lipschitz map that has Clarke gradient [−1, 1] at
zero.

It is of great interest to computer science that the Clarke
gradient of a Lipschitz map is upper semi-continuous as
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a function, i.e., it is continuous with respect to the upper
topology on the hyperspace of the non-empty compact and
convex subsets of the Euclidean space. In finite dimensions,
the upper topology coincides with the Scott topology on
the hyperspace when it is ordered by reverse inclusion (i.e.,
its specialisation order). It is however unknown if on infi-
nite dimensional Banach spaces the Clarke gradient, which
takes non-empty weak* compact and convex subsets of the
dual of the Banach space as its values, remains Scott con-
tinuous.

Despite the central place Lipschitz maps occupy in many
branches of computation as well as in pure and applied
mathematics, they have not been a subject of study in com-
putable analysis to the extent that no mention of Lipschitz
maps can be found in the standard texts in computable anal-
ysis [30, 34].

In [16], a domain-theoretic derivative was introduced
for real-valued functions of the real line, which was later
extended to higher dimensions [17, 12] and shown to be
mathematically equivalent to the Clarke gradient in finite
dimensional spaces [12]. The L-derivative, as the domain-
theoretic derivative is now called, has a number of distinct
features compared with the Clarke gradient:

(i) The L-derivative Lf of a Lipschitz map f is con-
structed using finitary differential properties of f that
allow a natural way of approximating the L-derivative
using domain theory.

(ii) The domain-theoretic setting provides a fundamental
theorem of calculus for Lipschitz maps, a duality be-
tween primitive maps and their L-derivatives, that ex-
tends the classical theorem in calculus for continu-
ously differentiable functions to Lipschitz maps.

(iii) The L-derivative gives rise to a continuous Scott do-
main with an effective structure for real-valued Lips-
chitz maps on finite dimensional Euclidean spaces.

(iv) For Lipschitz maps on infinite dimensional Banach
spaces, the L-derivative remains Scott continuous, a
result not known to hold for the Clarke derivative.

This work has led to a domain-theoretic framework for
solving initial value problems [15, 22, 18, 20] including the
use of the “rectangular” L-derivative in the second order
Euler method [17], a domain-theoretic framework of the
implicit and inverse function theorem for Lipschitz func-
tions [19] and a denotational semantics for hybrid sys-
tems [21]. A different notion of generalised derivative,
called strong derivative, has been recently introduced in [4],
which has been employed in a domain-theoretic context for
Lipschitz maps to obtain connections with viscosity solu-
tions of Hamiltonian equations.

Two fundamental and related questions arise:

(1) What is the appropriate topology on the space of Lips-
chitz maps in computation?

(2) Can we obtain a second order typed Fundamental The-
orem of Calculus with a continuous derivative operator
and a corresponding continuous integral operator as in-
verses of each other?

We use two different methods, one classical and one
domain-theoretic, to tackle and answer the first question:

(i) We obtain the weakest (i.e., the initial) topology on
the space of Lipschitz functions that makes the L-
derivative operator, which maps the space of Lips-
chitz functions into the function space of non-empty
compact and convex valued maps equipped with its
Scott topology, a continuous functional. This is sim-
ilar to characterising the C1 topology on continuously
differentiable real-valued maps as the weakest topol-
ogy that makes the classical Fréchet derivative opera-
tor continuous as a second order functional. It is also
in tune with the way some of the fundamental topolo-
gies, such as the subspace topology, the weak topology
of a normed vector space and the weak* topology on
its dual are defined.

(ii) We obtain the topology on the space of Lipschitz maps
that makes the insertion of these maps onto the set of
maximal elements of the domain for Lipschitz maps a
topological embedding. This is in line with construct-
ing computational models for classical spaces in math-
ematics [11, 27] by embedding them into the set of
maximal elements of suitable domains.

These two approaches lead to an identical result: the
Scott topology, both on the hyperspace in (i) and on the
domain of Lipschitz maps in (ii) above, induces a topology
for maps, called the D-topology, whose intersection with
the C0 norm topology provides a new topology, called the
L-topology, for Lipschitz maps. We show that for Lips-
chitz maps on finite dimensional Euclidean spaces, the L-
topology is strictly coarser than the well-known Lipschitz
norm topology for real-valued Lipschitz maps, which we
now describe. Given any metric space (X, d), the collec-
tion Lip(X, d) of bounded real-valued Lipschitz functions
on X is equipped with its Lipschitz norm ‖ · ‖Lip defined as

‖f‖Lip = ‖f‖ + ‖f‖d (1)

where ‖f‖ = sup{|f(x)| : x ∈ X} is the sup norm and
‖f‖d = sup{|f(x) − f(y)|/d(x, y) : x, y ∈ X, x �= y}. If
(X, d) is complete then so is the Lipschitz norm [32].

The relationship between these topologies is depicted in
the diagram below:
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C1 topology

Lipschitz norm topology

��

L-topology

��

C0 topology

����������������
D-topology

����������������

In the finite dimensional case, the set of Lipschitz maps
equipped with the L-topology is a Polish space and we de-
rive an elementary characterisation of the basic open subsets
of the L-topology in terms of ties or primitive maps. In the
one dimensional case, we are able to prove a density lemma
for Lipschitz maps which we use to show that the basic open
subsets of the L-topology are regular.

Finally, we prove that the domain-theoretic structure of
the space of non-empty compact and convex valued maps
is preserved after identifying maps that are almost every
where the same. This enables us to derive, for the first time
using domain theory, a second order typed fundamental the-
orem of calculus showing that the integral operation and the
induced L-derivative operation are continuous inverses of
each other.

Due to space limitation, a few proofs including that of
Density Lemma 6.2, are skipped here and are given in the
full version of the paper [13].

2. Domain of ties of functions

In this section we establish our notation, review the ele-
ments of the domain-theoretic differential calculus that we
need here and extend a number of key results previously
only known in dimension one to higher dimensions that will
be required in this paper.

We consider continuous maps of type f : U → R where
U ⊂ R

n is an open subset. The set of all such functions is
denoted by (U → R). The choice of U as an open subset
makes the extension of our results to infinite dimensional
Banach spaces smooth and uniform. But for finite dimen-
sional spaces, we can also choose U to be a regular compact
subset such as [0, 1]n.

By a domain we mean a directed complete partial order
(dcpo). We assume the reader is familiar with the elements
of domain theory, in particular the way-below relation, con-
tinuous Scott domains, as well as the Scott and Lawson
topologies [1, 33, 25]. In any continuous domain D with

a basis B ⊂ D, subsets of the form ↑↑x, where x ∈ B form
a collection of basic Scott open sets.

Let (C(Rn),�) denote the domain of all non-empty
convex and compact subsets of R

n, augmented with a least
element denoted by ⊥, ordered by reverse inclusion. The
maximal elements are singleton sets {x} for x ∈ R

n; for
convenience we write any maximal element {x} simply as
x. The dcpo (C(Rn),�) is a continuous Scott domain as
it is a continuous retract [1] of the upper space U(Rn), the
set of non-empty compact subsets of R

n ordered by reverse
inclusion, which is a continuous Scott domain [10]. In fact,
the convex hull map H : U(Rn) → U(Rn) that takes any
non-empty compact subset to its convex hull is a Scott con-
tinuous map with C(Rn) as its image. When n = 1, the
dcpo C(R) is simply the domain IR of the non-empty com-
pact intervals of R ordered by reverse inclusion.

The left and right end points of any non-empty bounded
interval c ⊂ R is denoted by c− and c+ respectively. Thus,
a non-empty compact interval c ⊂ R is written in terms of
its ends points as c = [c−, c+]. For any topological space Y ,
a Scott continuous function f : Y → IR is characterized by
a lower and an upper semi-continuous functions, f−, f+ :
Y → R respectively, with f(x) = [f−(x), f+(x)]; we
write f = [f−, f+]. The scalar product of vectors in R

n,
i.e., the map −·− : R

n×R
n → R with x·y =

∑n
i=1 xnyn,

is extended to a map − · − : C(Rn) × R
n → IR with

b · r = {z · r|z ∈ b}. The Euclidean norm ‖z‖ of z ∈ R
n

is given by ‖z‖ =
√

z · z. For a subset A of a topological
space, Cl(A), A◦, Ac denote the closure, interior and com-
plement of A respectively. If A is a subset of a metric space
(Y, d) then for any t > 0 we denote the t-neighbourhood of
A by At = {x ∈ Y : ∃y ∈ A. d(x, y) < t}.

For a topological space Y and a dcpo D with bottom
⊥, the single-step function bχa : Y → D, where a ⊂ Y
is an open set and b ∈ D, is defined as bχa(x) = b
if x ∈ a and ⊥ otherwise. The domain, dom(f), of
a Scott continuous function f : Y → D is given by
dom(f) = {x ∈ Y : f(x) �= ⊥}. Since U with its
Euclidean topology is a locally compact Hausdorff space,
its lattice of open subsets is continuous. It follows by [25,
Proposition II-420(iv)] that the space (U → C(Rn)) of all
Scott continuous functions ordered pointwise is a contin-
uous Scott domain and any g ∈ (U → C(Rn)) can be
expressed as the supremum of single-step functions way-
below it: g = sup{bχa : bχa � g}. Lubs of finite and
consistent sets of such single-step functions form a basis
for (U → C(Rn)). Note that we will use the standard no-
tation for step functions in terms of characteristic functions
as in [25].

Any single step function of type U → C(Rn) defines a
family of maps of type U → R as follows [12]. We say f ∈
(U → R) has an interval Lipschitz constant b ∈ C(Rn) in
a convex relatively compact open subset a with a ⊂ U if
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for all x, y ∈ a we have: b · (x − y) � f(x) − f(y), i.e.,
f(x) − f(y) ∈ b · (x − y). The single tie of bχa, denoted
by δ(bχa), is the collection of all real-valued continuous
functions f on U that have an interval Lipschitz constant
b in a. Note that in our previous work the notation δ(a, b)
was used instead of δ(bχa). The new notation stresses the
connection between a single-tie and its associated single-
step function more explicitly, which is more convenient for
expressing the results of this paper. If f ∈ δ(bχa) then f
is Lipschitz in a with Lipschitz constant sup{‖z‖ : z ∈ b}
and the same is true for the extension of f by continuity to
Cl(a).

A tie is any intersection of single-ties. For any index-
ing set I , the family of single-step functions (biχai)i∈I

is bounded in (U → C(Rn)) if
⋂

i∈I δ(biχai) �=
∅ [12, Proposition 3.9]. Moreover, if supi∈I biχai �
supi∈J biχai , then

⋂
i∈I δ(biχai) ⊇ ⋂

i∈J δ(biχai) [12,
Corollary 3.12]. It follows that any non-empty tie Δ =⋂

i∈I δ(biχai) is uniquely associated with a Scott contin-
uous function g =

⊔
i∈I biχai and we write Δ = δ(g).

Therefore, δ(g) is a family of Lipschitz functions whose
local Lipschitz properties are expressible by single-ties pro-
vided by the single-step functions below g. We note that
δ(g) is always non-empty for n = 1 but can be the empty
set in higher dimensions n > 1. In [17, Section 6], an ex-
ample of a step function g for dimension n = 2 is given
with δ(g) the empty set. A function g ∈ (U → C(Rn)) is
called integrable if δ(g) �= ∅.

Let (T(U),⊇) be the partial order of ties of continu-
ous functions of type U → X ordered by reverse inclusion.
The set of L-primitives of a Scott continuous function is
precisely the tie associated with it. The L-primitive map is
defined by

∫
: (U → C(Rn)) → T(U)

f �→ δ(f).

The set
∫

f is the collection of the L-primitives of f and the
map

∫
is continuous with respect to the Scott topologies on

(U → C(Rn)) and T(U). In this paper, it is convenient to
use δ(g), which we need to do very often, whenever g is a
step function, i.e. the lub of a finite bounded set of single-
step functions, and use

∫
g for a general Scott continuous

function.
The interval Lipschitz constants for a map provide us

with its local differential properties, which can be collected
to define its global derivative. The L-derivative of a con-
tinuous function f : U → R is accordingly defined as the
Scott continuous map

Lf : U → C(Rn), (2)

given by
Lf = sup{bχa : f ∈ δ(bχa)}. (3)

It is shown in [12] that, in finite dimensional Euclidean
spaces, the L-derivative coincides with the Clarke gradi-
ent [5]. It is however not known if they do coincide for
infinite dimensional Banach spaces; see Section 2.2 below.

Example 2.1 The b-cone. Let v ∈ a ⊂ U , r ∈ R

and let b be any non-empty convex and compact subset of
R

n. We construct two functions fu, f l : a → R with
fu(v) = f l(v) = r and Lfu(v) = Lf l(v) = b. The graphs
of fu and f l are respectively the upper and lower parts of
a cone in R

n+1 , called the b-cone with vertex at (v, r), de-
noted by Kb(v, r). Let Pn

u be the hyperplane in R
n+1 that

is perpendicular to R
n, passes through (v, r) and contains

the unit vector u ∈ R
n. Then Pn

u intersects Kb(v, r) in the
hyper-line that stands at angle arctan((b ·u)+) with the R

n

hyperplane. For example, when n = 1, b = [−1, 1] and
x = r = 0, then the b-cone is given by the two lines with
slopes −1 and 1 through the origin corresponding to the two
functions fu = λx.|x| and f l = λx. − |x|.

The first order typed Fundamental Theorem of Calculus
(FTC) between the L-derivative and primitives gives us the
relation [12]:

f ∈
∫

g ⇐⇒ g � Lf. (4)

It is an extension of the classical version of the FTC. In fact,
for a continuous real-valued function g, we have f ∈ ∫

g iff
f is C1 with f ′ = g where f ′ is the classical (Fréchet)
derivative of f .

The following notions and results generalise those for
dimension one in [16]. We define the function

r : (U → C(Rn)) → (U2 → IR) (5)

with the lower and upper parts of r(g) : U2 → IR for
g ∈ (U → C(Rn)) given by

(r(g))± : (x, y) �→
{ ∫

[x,y](g · v)±dμ [x, y] ⊂ dom(g)
⊥ otherwise

where v = y−x
‖y−x‖ for x �= y and μ is the one dimensional

Lebesgue measure on the line segment

[x, y] = {tx + (1 − t)y : 0 ≤ t ≤ 1}. (6)

Note that, by the monotone convergence theorem, the map
r is Scott continuous.

Lemma 2.2 Suppose h : U → R and h′(x) exists for some
x ∈ U , then h′(x) ∈ L(h)(x).

Proof We have L(h)(x) =
⊔{b : f ∈ δ(bχa)& x ∈ a}.

But h ∈ δ(bχa) and x ∈ a imply h′(x) ∈ b, and the result
follows. �
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Lemma 2.3 Let a be a convex open subset of U and b ∈
C(Rn). If for almost all x ∈ a we have h′(x) ∈ b, then
L(h) � bχa.

Proof By Rademacher’s theorem [6, page 148], for any
path connecting x and y we have:

∫ x

y

h′(z) · d z = h(x) − h(y).

In particular, for the path z : [0, 1] → [y, x] with z(t) =
y + t(x − y) we have:

h(x)−h(y) =
∫ 1

0

h′(y+t(x−y)) ·(x−y) dt ∈ b ·(x−y).

Hence, h ∈ δ(bχa) and the result follows. �

Corollary 2.4 Suppose g ∈ (U → C(Rn)) and h ∈ (U →
R). If for almost all x ∈ dom(g) we have h′(x) ∈ g(x),
then Lh � g.

Proposition 2.5 (i) h ∈ ∫
g iff

∀x, y ∈ U. (r(g))−(x, y) ≤ h(y)−h(x) ≤ (r(g))+(x, y)

(ii) If g is an integrable map, then the two functions
λy.(r(g))−(x, y) and λy.(r(g))+(x, y) are respec-
tively the least and greatest functions h ∈ ∫

g with
h(x) = 0.

(iii) The following two conditions are equivalent:

(a) g1 � g2 a.e., i.e., g1(x) � g2(x) for almost
all x ∈ U with respect to the n-dimensional
Lebesgue measure on U .

(b) r(g1) � r(g2).

(iv) The equivalent conditions (a) and (b) in (iii) imply:

(c)
∫

g1 ⊇ ∫
g2.

(v) If g2 is integrable then (c) in (iv) above implies (a) and
(b) in (iii).

Proof (i) Suppose h ∈ ∫
g. Then Lh � g and h′(x) ∈

(Lh)(x) for a.e. x ∈ dom(g). By Rademacher’s theorem,
integrating along the line segment [x, y] (defined in Equa-
tion 6), we get:∫

[x,y]

(v · g)− dμ ≤ h(y) − h(x) ≤
∫

[x,y]

(v · g)+ dμ,

as required. On the other hand, suppose the above two
inequalities hold. For x �= y, let y = x + tv with
v = (y − x)/(‖y − x‖) and t = ‖y − x‖. Then∫

[x,y]
(v · g)− dμ

t
≤ h(x + tv) − h(x)

t
≤

∫
[x,y]

(v · g)+ dμ

t
.

By Rademacher’s theorem again, h has Fréchet derivative
almost everywhere. Therefore, taking the limit y → x we
obtain for almost all x ∈ U :

(v · g)−(x) ≤ v · h′(x) ≤ (v · g)+(x).

Since v is an arbitrary unit vector, it follows that for almost
all x ∈ U we have: h′(x) ∈ g(x). By corollary 2.4, we get
Lh � g as required.
(ii) This follows directly from (i).
(iii) (a)⇒(b). This follows from monotonicity of r.
(b)⇒(a). From r(g1)(x, y) � r(g2)(x, y) we obtain:

∫
[x,y]

(g1 · v)− dμ ≤
∫

[x,y]

(g2 · v)− dμ

∫
[x,y]

(g1 · v)+ dμ ≥
∫

[x,y]

(g2 · v)+ dμ.

Thus, for almost all z ∈ [x, y] with respect to the one-
dimensional Lebesgue measure on the line segment [x, y]
we have the two inequalities: (g1 · v)−(z) ≤ (g2 · v)−(z)
and (g1 · v)+(z) ≥ (g2 · v)+(z). Fix the unit vector v.
Then by Frobenius theorem (g1 · v)−(z) ≤ (g2 · v)−(z)
and (g1 · v)+(z) ≥ (g2 · v)+(z) for almost all z ∈ U with
respect to the n-dimensional Lebesgue measure. Finally,
by using Frobenius theorem with spherical integration we
obtain g1(z) � g2(z) for almost all z ∈ U .
(iv) (a)⇒(c). From g1 � g2 a.e. we obtain r(g1) � r(g2).
Thus by (i) we obtain h ∈ ∫

g1 if h ∈ ∫
g2.

(v) This follows from (i). �

2.1 Lipschitz Domain and computability

In [11], a domain-theoretic computational model for a
classical space X is defined to be a domain D with a
topological embedding of X into a subset of maximal el-
ements of D equipped with its relative Scott topology. For
a countably based locally compact Hausdorff space, the up-
per space (the collection of the non-empty compact subsets
of the space ordered by reverse inclusion) was proposed as a
proto-type model. In this case, as in the case of the domain
of formal balls [14] for a complete separable metric space
(Polish space), the computational model is an ω-continuous
domain. Lawson later showed that an ω-continuous domain
is a computational model for a Polish space iff the relative
Scott topology and the relative Lawson topology coincide
on its the set of maximal elements. [27, 28].

The Scott continuous domain Dn(U) for real-valued
Lipschitz maps on an open subset U ⊂ R

n is the set of
pairs (f, g) ∈ (U → IR) × (U → C(Rn)) that are consis-
tent, i.e., for which there exists a Lipschitz map h : U → R

with f � h and g � Lh; see [12]. For n = 1, it was
shown in [16] that consistency on the basis consisting of
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step functions given by rational numbers is decidable, im-
plying that Dn(U) can be given an effective structure. A
similar result was given in [17] for n > 1 in the case of the
“rectangular” L-derivative of a function h : U → R, whose
values, for a fixed coordinate system, at each point x0 ∈ U
is the smallest hyper-rectangle in R

n that contains the non-
empty compact and convex set (Lh)(x0). The proofs for
the special case of “rectangular” L-derivative in [17] can be
extended to show that consistency is decidable for n > 1,
which gives an effective structure for Dn(U) in the finite
dimensional case. Equipped with an effective structure, the
domain Dn(U) provides an enumeration of the computable
pairs (f,Lf) ∈ Dn(U). Thus, the notions of a computable
map and a computable L-derivative are inseparable and are
built within the domain of Lipschitz maps.

2.2 Infinite dimensional case

The L-derivative can be extended to real-valued func-
tions on any Banach space X [12]; we will only very briefly
sketch the way this is done here. Let U ⊂ X be any open
subset of X . We consider the differential properties of con-
tinuous maps f : U → R with respect to the norm topology
on X . The L-derivative of f at any point in U where the
function is locally Lipschitz will be a non-empty convex and
weak* compact subset of the dual space X∗. Let C(X∗) de-
note the dcpo of such subsets ordered by reverse inclusion.
Then the notion of tie of a function, which we have seen in
the finite dimensional case R

n, can be extended to any Scott
continuous function g : U → C(X∗) that is expressible
as the lub of step functions. These functions form a sub-
dcpo (U →s C(X∗)) of (U → C(X∗)) which includes all
classical functions that map any point of U to a singleton
point, i.e. a maximal point, of C(X∗). Ties of functions are
then used to define the L-derivative of any continuous map
f : U → R as

Lf : U → C(X∗)

with its values given as in Equation 3. It is shown in [12]
that Lf is Scott continuous. It is not known if the L-
derivative in the infinite dimensional case coincides with the
Clarke gradient or if the Clarke gradient is Scott continuous
in the infinite dimensional case.

Note that since the L-derivative can be extended to infi-
nite dimensional Banach spaces, it can be applied to func-
tionals of higher order type such as (U → R) → R. In fact,
if U ⊂ X is an open subset of a finite or infinite dimen-
sional Banach space X , then the function space (U → R)
of continuous functions of type U → R with the opera-
tor norm forms an infinite dimensional Banach space and
therefore the L-derivative is well-defined and Scott contin-
uous on functionals of type (U → R) → R or, inductively,
of higher types.

3 Weak Topology for Lipschitz maps

In this section we derive a new topology for Lips-
chitz maps as the weakest topology that makes the the L-
derivative operator continuous.

We note that the C1 topology on the space of contin-
uously differentiable functions can be characterised as the
weakest topology that makes the classical Fréchet deriva-
tive operation continuous. In fact, let C0(U) and C1(U)
be, respectively, the Banach spaces of continuous functions
and continuously differentiable functions on an open subset
U ⊂ R

n. Consider the pairing map

(Id,
d

dx
) : C1(U) → C0(U) × (U → R

n)

where Id is the identity function and d
dx is the Fréchet

derivative operation, i.e. (Id, d
dx)(f) = (f, f ′). The C1

norm topology on C1(U) is precisely the weakest topology
such that the above pairing function is continuous.

The above observations lead us naturally to a concrete
scheme how to define the weak topology for Lipschitz
maps. Instead of the classical Fréchet derivative, we will
use the L-derivative. We therefore define the L-topology on
the collection (U → R), of real-valued continuous func-
tions on U , to be the weakest topology on (U → R) such
that the pairing map

(Id,L) : (U → R) → (U → R) × (U → C(X∗))

with f �→ (f,Lf) is continuous, where the function space
(U → R) in the range of the pairing function above is
equipped with its C0 norm topology and (U → C(X∗))
is equipped with its Scott topology.

Let the D-topology on (U → R) be the weakest topology
such that

L : (U → R) → (U → C(X∗))

is continuous. Note that the D-topology, like the ‖ ·‖d norm
topology in the definition of the Lipschitz norm topology
‖ ·‖L in Equation 1, is not T0 as any two functions differing
by a constant always belong to the same D-open sets. The
L-topology is the intersection (i.e. join) of the C0 topology
and the D-topology on (U → R) and is Hausdorff.

Since the L-derivative of a C1 function coincides with
its Fréchet derivative, it follows that the C1 topology on
C1(U) is precisely the relative L-topology for the subspace
C1(U).

The L-topology has also a domain-theoretic characteri-
zation as follows. The domain D(U) for real-valued Lips-
chitz maps is the subdomain of the consistent pairs of ele-
ments in (U →s R)× (U →s C(X∗)), where U ⊂ X is an
open subset and X is R

n or an infinite dimensional Banach
space.
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Proposition 3.1 The L-topology on (U → R) is precisely
the topology that makes the insertion map

f �→ (f,Lf) : (U → R) → D(U)

a topological embedding with respect to the Scott topology
on D(U), i.e., the L-topology is the topology that makes
D(U) a computational model.

Proof We first note that for each f ∈ (U → R), the pair
(f,Lf) ∈ D(U) is maximal [12, Proposition 5.8] and that
the insertion map is one to one. Next we note that the
function space (U → R), equipped with its sup norm,
is homeomorphic with the subset of maximal elements of
(U → IR), equipped with its relative Scott topology, un-
der the correspondence f �→ λx.{f(x)}; see [16, Theo-
rem 2.2]. The statement that the L-topology is the weakest
topology that makes the L-derivative L : f �→ (f,Lf) :
(U → R) × (U → C(X∗)) continuous is equivalent to the
assertion that the insertion map is continuous and that it is
an open map. �

4. L-topology in finite dimensions

When X = R
n, the pairing map reduces to:

(Id,L) : (U → R) → Dn(U)

where Dn(U) ⊂ (U → R) × (U → C(Rn)) is a con-
tinuous Scott domain. Since the space of Lipschitz maps
equipped with the L-topology is precisely the set of maxi-
mal elements of Dn(U), it follows that this space is a Polish
space, i.e., a separable completely metrizable topological
space [25, chapter V-6].

Furthermore, the L-topology will have an elementary
characterisation in terms of ties of functions: the D-
topology has a basis consisting of subsets of the form
δ̆(g) := L−1(↑↑g) for any step function g ∈ (U → R

n)
with ↑↑g �= ∅.

We note that if g = supi∈I biχai , for a finite indexing set
I , then ↑↑g =

⋂
i∈I

↑↑(biχai). Since, by FTC (Equation 4),

δ(bχa) = L−1(↑(bχa)), it follows that δ̆(bχa) ⊂ δ(bχa)
and more generally for any step function g ∈ (U → R

n):

δ̆(g) ⊂ δ(g). (7)

The countable collection of step functions of the form⋃
1≤i≤m(biχai) where, for 1 ≤ i ≤ m, the subset ai is

the interior of a convex rational polyhedron whereas the
subset bi is the closed hull of a rational convex polyhe-
dron, provides a countable basis of the Scott topology on
(U → C(Rn)). Since the C0 norm topology is second
countable, it follows that the D-topology and thus its inter-
section with the C0 norm topology are both second count-
able.

In this section and in Section 6, closure and interior of
subsets are meant to be with respect to the L-topology.

Proposition 4.1 Any tie is closed in the L-topology.

Proof Since a tie is an intersection of single-ties, it is suf-
ficient to show the statement for a single-tie δ(bχa). Since
the L-topology is second countable, it suffices to prove the
closure property for sequences. Let (fi)i≥0 be a sequence
in δ(bχa) which converges to a function f : U → R in the
L-topology and thus in particular in the C0 norm topology.
Then, for each i ≥ 0, we have: b · (x− y) � fi(x)− fi(y).
From the compactness of b · (x − y), we conclude by tak-
ing the limit that for all x, y ∈ a we have: b · (x − y) �
f(x) − f(y) as required. �

From Equation 7, we conclude:

Corollary 4.2 If g is a step function, then: Cl(ğ) ⊂ δ(g).

Corollary 4.3 The L-topology is the weakest topology on
(U → R) such that the pairing map

(Id,L) : (U → R) → (U → R) × (U → C(Rn))

is continuous, where the function space (U → R) in the
range of the pairing function above is equipped with its C0

norm topology and (U → C(Rn)) is equipped with its Law-
son topology.

Proof The Scott topology on (U → C(Rn)) is refined by
the Lawson topology by taking ↑g as sub-basic closed sub-
sets for all step functions g. But L−1(↑bχa) = δ(bχa) is
closed in the L-topology by Corollary 6.4. �

We say that the way-below relation in a continuous do-
main is meet-stable if x � y and x � z imply x � y � z
for all x, y and z in the domain. Recall that a space is called
coherent if its lattice of open sets is continuous with a meet-
stable way-below relation [1, 25].

Lemma 4.4 Let D be a continuous Scott domain with a
meet-stable way-below relation and Y a coherent topologi-
cal space. Then for any open set a ⊂ Y and s ∈ D we have
↑↑(sχa) =

⋃{↑(tχb) : a � b & s � t} =
⋃{↑↑(tχb) : a �

b & s � t}.

Proof We show the first equality from which the second
follows easily. Since Y is a coherent space and D is a con-
tinuous Scott domain, we have the following relation [23]:

sχa � f ⇐⇒ a � f−1(↑↑s) (8)

Thus, a � b & s � t implies ↑(tχb) ⊂ ↑↑(sχa). It re-
mains to show the reverse inclusion. Let (sχa) � f . Then,
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since D is a continuous domain, there exists a step function⊔
i∈I siχai , where I is a finite indexing set, with

sχa �
⊔
i∈I

siχai � f.

From sχa � ⊔{siχai : 1 ≤ i ≤ m}, by Equation 8,
we get a � ⋃

J⊂I{
⋂

j∈J aj : s � ⊔
j∈J sj}. Since

the way-below relation in D is meet-stable, we have s ��J⊂I{
⊔

j∈J sj : s � ⊔
j∈J bj}. Let s′ ∈ D be such that

s � s′ � �J⊂I{
⊔

j∈J sj : s � ⊔
j∈J bj}. Also let a′ be

an open subset of Y with

a � a′ �
⋃
J⊂I

{
⋂
j∈J

aj : s �
⊔
j∈J

sj}.

Then we have sχa � s′χa′ � f , which completes the
proof. �

Since finite intersection distributes over arbitrary union,
we can conclude with the same assumptions on Y and D:

Corollary 4.5 For any step function g ∈ (Y → D) we
have:

↑↑g =
⋃

{↑h : g � h step function }

=
⋃

{↑↑h : g � h step function }.
These results now translate to basic L-open subsets.

Corollary 4.6 We have for any step function g:

(i) δ̆(g) =
⋃{δ(h) : g � h step function }.

(ii) δ̆(g) =
⋃{δ̆(h) : g � h step function }.

5 L-topology and Lipschitz norm

Recall the definition of the Lipschitz norm in Section 1.
In finite dimensions we can show the following:

Theorem 5.1 The L-topology is coarser than the Lipschitz
norm topology in finite dimensions.

Proof Let f ∈ δ̆(bχa) for some single-step function bχa ∈
(U → C(Rn)). We will find a neighbourhood of f in the
Lipschitz norm topology that is contained in δ̆(bχa). We
have f ∈ δ(dχc) for some a � c and b � d. Let e be
such that b � e � d. Then there exists t > 0 such that
dt ⊂ e. (Recall that At is the t-neighbourhood of a set
A.) It follows that for all x, y ∈ c with x �= y we have
(d · (x − y))t‖x−y‖ ⊂ e · (x − y). We have f(x) − f(y) ∈
d · (x− y) for all x, y ∈ Cl(c). Consider any Lipschitz map
h with ‖f − h‖L < t. Then, |(h(x) − h(y)) − (f(x) −
f(y))| = |(h(x)− f(x))− (h(y)− f(y)| ≤ t|x− y| for all
x, y ∈ Cl(c). It follows that h(x) − h(y) ∈ e · (x − y) and
thus h ∈ δ(eχc) ⊂ δ̆(bχa). �

Next, we show that the L-topology is strictly coarser than
the Lipschitz norm topology in finite dimensions. To do
this, we need to construct a counter-example for the asser-
tion that the L-topology is finer than the Lipschitz norm
topology in the neighbourhood of a Lipschitz function.

Our construction is non-trivial. We use a one-
dimensional map that has a non-trivial interval as its L-
derivative, equivalently Clarke’s gradient, at all points of
an interval. The existence of such a map is proved in [29,
Proposition 1.9]. For our counter-example, however, we
construct below a one-parameter family of Lipschitz maps
fk : [0, 1] → R for k ∈ [0, 2] such that Lfk(x) = [0, 1]
for all x ∈ [0, 1] with the property that, as k ↗ 1, we have
fk → f1 in the L-topology but not in the Lipschitz norm
topology.

For k ∈ [0, 2], we let fk = λx.
∫ x

0
χAk

dμ where μ is the
Lebesgue measure and the measurable set Ak satisfies:

(i) for any interval I ⊂ [0, 1] of length �(I) > 0 we have:
0 < μ(Ak ∩ I) < �(I), and,

(ii) μ(Ak) = k/2.

Property (i) above says that Ak splits all non-trivial inter-
vals; see [26] for the existence of such sets in a general set-
ting.

The set Ak can be constructed as the countable union of a
double family of Cantor sets that are obtained in a sequence
of stages. When k > 0, these Cantor sets will have positive
Lebesgue measure.

We first adopt the following uniform scheme, similar to
the construction of the standard Cantor set, to construct a
Cantor set of Lebesgue measure s ≥ 0 in a compact interval
of length r > 0 with r ≥ s. In the first stage the symmet-
rically placed middle open interval of length (r − s)/3 is
removed, then in the remaining left and right closed inter-
vals, the two middle open intervals each of length (r−s)/9,
and so on. The total Lebesgue measure of the countable set
of removed intervals is thus r−s

3 (1 + 2
3 + 4

9 + · · · ) = r− s.
Thus the Cantor set has Lebesgue measure r− (r− s) = s.

Now we use our uniform scheme to construct Ak. In the
first stage, a Cantor set of measure k/4 is constructed on
[0, 1]. Therefore, the first middle interval, denoted by C,
to be removed has length (1 − k

4 )/3, the next two middle
intervals to be removed, denoted by LC and RC, are in
the remaining two intervals L and R on the left and right
respectively and have each length (1 − k

4 )/9, and so on.
Then in each previously removed interval a new Cantor

set is constructed so that the total measure of the count-
able union of the new Cantor sets is k/8. This is done by
constructing a Cantor set of measure k/16 in C, then con-
structing two Cantor sets each of measure k/(4 × 16) (i.e.
with total measure k/32) in the left and the right middle in-
tervals, namely LC and RC, then constructing four Cantor
sets each of measure k/(4 × 64) (i.e, with total measure
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k/64) in the middle intervals LLC, LRC, RLC, RRC of
LL, LR, RL, RR respectively, and so on.

The procedure is then repeated ad infinitum so that a
Cantor set is constructed in any previously removed inter-
val. The set Ak will be the countable union of the countable
unions of Cantor sets constructed at each stage. These Can-
tor sets are dense in [0, 1]: any subinterval of [0, 1] con-
tains one of these Cantor sets. We also have μ(Ak) =
k
4 + k

8 + k
16 · · · = k

2 , so that 0 < μ(Ak) < 1 for k ∈ (0, 2).

  

   

   L C                   R

  LR       CR  CC  CL        RL     RC      RRLL       LC
ω

 RRL  k  (1−  /4)/3

Our labelling scheme for the intervals in the above con-
struction is an instance of a general method in symbolic
dynamics [9]. For a given k ∈ [0, 2], we represent each
point of [0, 1] by an infinite sequence of L, C, R, denoting
the position of the the point on the Left, Center or Right
interval at each stage of construction process, i.e., putting
Σ = {L, C, R}, we have a surjection Pk : Σω → [0, 1]
that takes any sequence to a point in [0, 1]. As each new
interval is a contracting affine image of a previous interval,
it follows that for s ∈ Σω, we have Pk(s) = A(s) + B(s)k
where A, B : Σω → [0, 1].

Furthermore, by construction, fk(x) =
∫ x

0 χAk
dμ is the

sum of the Lebesgue measure of the Cantor sets constructed
in [0, x). Since the Lebesgue measure of each such Cantor
set is a multiple of k, we have: fk(Pk(s)) = D(s)k where
D : Σω → [0, 1]. Note that for all x ∈ [0, 1], we have:
f0(x) = 0 (each Cantor set that is constructed has Lebesgue
measure zero) whereas f2(x) = x (the sum of the Lebesgue
measures of all constructed Cantor sets in [0, 1] is 1).

Lemma 5.2 For all k ∈ (0, 2) and x ∈ [0, 1], we have:
L(fk)(x) = [0, 1].

Proof This is an instance of [29, Proposition 1.9]. �

It follows that for each k ∈ [0.2], the map fk is Lipschitz
with Lipschitz constant 1.

Lemma 5.3 We have fk → fk0 in the L-topology as k ↗
k0, for any k0 ∈ (0, 2].

Proof Since Lfk = [0, 1] for any k ∈ (0, 2), it follows that
Lfk → Lfk0 as k ↗ k0. Thus it remains to show that
fk → fk0 in the sup norm as k ↗ k0. We will show that
for any fixed x ∈ [0, 1], the function k �→ fk(x) is strictly
increasing with k and that fk(x) → fk0(x) pointwise as
k ↗ k0. Since fk is continuous for all k ∈ [0, 2], the

result will then follow a well known result in analysis [31,
see 7.13]. Since fk, being Lipschitz, is continuous for each
k ∈ [0, 2], it suffices to show the above two properties for
a dense subset of [0, 1]. To show that fk(x) < fk0(x) for
k < k0, we consider the dense subset {xt : t ∈ Σ∗}, where
xt := Pk(tRLω). Since for each fixed k ∈ [0, 1], the map
fk is increasing and for k < k0 by construction we have
Pk0(tRLω) < Pk(tRLω), we obtain:

fk(xt) = fk(Pk(tRLω)) = D(tRLω)k < D(tRLω)k0

= fk0(Pk0(tRLω)) < fk0(Pk(tRLω)) = fk0(xt),

which proves the first assertion. For the second asser-
tion, we consider the dense subset {yt : t ∈ Σ∗}, where
yt := Pk0 (tLRω). Since for k ≤ k0 we have Pk(tLRω) ≤
Pk0(tLRω), we obtain:

D(tLRω)k ≤ fk(yt) ≤ fk0(yt) = D(tLRω)k0,

and it follows that fk(yt) → fk0(yt) as k ↗ k0, which
proves the second assertion, completing the proof. �

Using the family (fk)0≤k≤2 we can prove:

Proposition 5.4 There exists no open set of the L-topology
around the map f1, as constructed above, that is contained
in the open ball {f : ‖|f − f1‖Lip < 1} of unit radius with
respect to the Lipschitz norm around f1, i.e., the L-topology
is strictly coarser than the Lipschitz norm topology.

6. L-topology in dimension one

In dimension one (n = 1), we assume, for convenience,
that U ⊂ R, the domain of our continuous functions in
(U → R), is a compact interval. We are able to show
here that a basic L-open subset δ̆(g) is the interior (with
respect to the L-topology) of the associated tie δ(g). Re-
call that in dimension one, any Scott continuous function
g ∈ (U → IR) is integrable, i.e., there exists h ∈ ∫

g with
g � Lh. In fact, it is shown in [16, section 6] that given any
lower semi-continuous function u : U → R there exists a
least function s(u, g) : dom(g) → R such that u ≤ s(u, g)
and g � Ls(u, g). Furthermore, if g : U → IR is a step
function and u is the lower part of a step function of type
U → IR, then s(u, g) is a piecewise linear map in each
connected component of g; see [15, Section 3]. In the fol-
lowing we deduce that when u is fixed, the least function
s(u, g) will depend continuously on g with respect to the
metric induced on step functions by the Hausdorff metric.

Recall that our basis elements for the L-topology are
given in terms of step functions g with ↑↑g �= ∅. This means
that if two adjacent intervals in dom(g), each with a con-
stant value for g, are just touching then their correspond-
ing values will have non-empty intersection. Thus, the
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connected components of Cl(dom(g)) have disjoint open
neighbourhoods. Dealing with these connected components
separately, let (U →u IR) be the collection of step func-
tions g ∈ (U → IR) with ↑↑g �= ∅ such that Cl(dom(g)) has
a single connected component and dom(g) ∩ dom(u) �= ∅.
For g = [g−, g+] ∈ (U →u IR), let

S(u, g) : U × U → R

(x, y) �→
{

u(y) +
∫ x

y
g−(t) dt x ≥ y

u(y) − ∫ y

x g+(t) dt x < y

Let Pg be the partition of the interval dom(g) ∪ dom(u)
obtained as the common refinement of the partition induced
by the step function g and that by the piecewise constant
map u such that in each interval in P the values of g and
u are constant (note that for g these values are non-empty
compact intervals and for u they are real numbers). Then,
as in [15], we have:

s(u, g) = λx.

max{u(x)} ∪ {lim sup
y→z

S(u, g)(x, y) : z ∈ Pg ∩ dom(u)}.

Consider (U →u IR) with the partial distance func-
tion induced from the Hausdorff metric on IR, namely:
d(g1, g2) = sup{dH(g1(x), g2(x)) : x ∈ dom(g1) ∩
dom(g2)} and consider the partial maps in U2 → R with
their partial sup norm: ‖f1 − f2‖ = sup{|f1(x) − f2(x)| :
x ∈ dom(f1) ∩ dom(f2)}. We then have:

Lemma 6.1 The functions

(i) g �→ S(u,g) : (U →u IR) → (U2 → R)

(ii) g �→ s(u,g) : (U →u IR) → (U → R)

are continuous with respect to partial distance on (U →u

IR) and the partial sup norm on (U2 → R).

Proof Note that is g− is lower semi-continuous and the
Lebesgue integrals in the definition of S(u, g) depend con-
tinuously on g−. Also, the finite set Pg changes contin-
uously with respect to the Hausdorff metric as g changes
continuously with respect to the partial distance on (U →u

IR). The result follows as s(u, g) is the minimum of a finite
number of functions that vary continuously with g. �

In order to obtain the regularity results of this section,
we need the following density lemma.

Lemma 6.2 (Density Lemma) Let f ∈ δ(g), with step
function g ∈ (U → IR) and let ε > 0 be given. Then
there exists a step function h and a function k with g � h
and k ∈ δ(h) such that ‖f − k‖ < ε.

Proposition 6.3 For any step function g ∈ (U → IR) we
have: δ(g) ⊂ Cl(δ̆(g)).

Proof Suppose f ∈ δ(g). We show that any basic L-open
set containing f will intersect δ̆(g). Let f ∈ δ̆(g0) for some
step function g0 and consider any open ball Oε(f) of radius
ε > 0, around f in the sup norm in (U → R). Then, f ∈
δ(g1) for some g1 with g0 � g1. Thus, Lf � g0 and Lf �
g1. Put g2 := g�g1. Then f ∈ δ(g2). By Lemma 6.2, there
exists a step function h with g2 � h and k ∈ (U → R)
with ‖f − k‖ < ε and k ∈ δ(h). Thus, g0 � h and g � h

and we have: δ̆(g) ∩ δ̆(g0) ∩ Oε(f) �= ∅ as required. �

Recalling Corollary 4.2, we have now all together proved.

Corollary 6.4 For any step function g ∈ (U → IR) we
have: δ(g) = Cl(δ̆(g)).

Proposition 6.5 For any step function g ∈ (U → IR) we
have: δ◦(g) = δ̆(g).

Proof Since δ(g) = Cl(δ̆(g)), we already know that
δ◦(g) ⊃ δ̆(g). To show the converse, let f ∈ δ◦(g), i.e.,
there exists a step function h such that f ∈ δ̆(h) ⊂ δ(g).
The latter relation implies, by Corollary 4.6(i), that for any
k with h � k we have δ(k) ⊂ δ(g). It follows that
h � g. On the other hand f ∈ δ̆(h) implies there ex-
ists a step function k with h � k and f ∈ δ(k). Thus,
f ∈ δ(k) ⊂ δ̆(h) ⊂ δ̆(g), where the latter relation follows
from Corollary 4.6(ii). �

Corollary 6.6 The basic open and closed subsets δ̆(g) and
δ(g) are regular open and closed sets respectively.

To extend the results of this section to higher dimensions,
one has to generalise the Density lemma for n > 1.

7 Fundamental Theorem of Calculus

Recall the Fundamental Theorem of Calculus of the first
order in Equation 4. In this section we develop the FTC
of second order in finite dimensional Euclidean spaces by
constructing continuous second order typed integration and
differential operators that are inverses of each other.

Throughout this section, we consider (U → C(Rn))
with its Scott topology. Since we will be dealing with the
primitive maps of functions in (U → C(Rn)), we will iden-
tify maps that are almost everywhere equal in this function
space. We say f, g ∈ (U → C(Rn)) are equivalent and
write f ≡ g if f = g a.e., i.e. if f(x) = g(x) for al-
most all x ∈ U with respect to the n-dimensional Lebesgue
measure on U . We denote the equivalence class of f by
E(f). The set of equivalence classes is partially ordered by
defining E(f) � E(g) if f � g a.e. It is easy to check
that this partial order of equivalence classes, which we de-
note by (U →c C(Rn)), is directed complete and the map
E : (U → C(Rn)) → (U →c C(Rn)), which takes a map
to its equivalence class is Scott continuous.
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Proposition 7.1 Any equivalence class of maps has a lub
in (U → C(Rn)) which is in the same class.

Proof Consider an equivalence class E(f). We claim that
it has a lub. Since (U → C(Rn)) is a continuous Scott do-
main, it is sufficient to show that E(f) is a bounded set; this
follows if we prove that any finite set of maps in E(f) has a
lub. In fact, we show that any two members of E(f) have a
lub in E(f), from which the claim follows. Let g ≡ f and
for the sake of a contradiction, suppose f(x)∩g(x) = ∅ for
some x ∈ U . Then, by the Scott continuity of f and g, there
would exist an open neighbourhood of x that is mapped by
f and g to two disjoint open subsets containing f(x) and
g(x) respectively. But this contradicts the assumption that
f = g a.e. It remains to show that

⊔
E(f) ∈ E(f). Since

E(f) is a directed set, by the Scott continuity of the map r
of Equation 5, we have r(

⊔
E(f)) = r(f). From proposi-

tion 2.5(iii), we obtain:
⊔

E(f) = f a.e. �

Let F : (U →c C(Rn)) → (U → C(Rn)) be the
map which takes any equivalence class E(f) to its lub, i.e.
F (E(f)) =

⊔
E(f). We have the following.

Proposition 7.2 The pair (F, E) is a continuous section-
retraction pair, with F ◦ E � Id, i.e., it is a continuous
insertion-closure operation.

Corollary 7.3 The dcpo (U →c C(Rn)) is a continuous
Scott domain and E preserves the way-below relation.

Proof By [1, Theorem 3.14 and Proposition 3.1.14]. �

Thus, (U →c C(Rn)) is, by identifying it with its image
under the map F , in effect a continuous Scott sub-domain
of (U → C(Rn)). We know that f = g a.e. implies that∫

f =
∫

g, therefore elements of the same class have the
same primitive maps. We conclude that taking quotients un-
der the equivalence relation of equality almost everywhere
preserves the domain-theoretic structure. Therefore, we
adapt the same convention as in classical measure theory
where maps that are almost everywhere equal are identi-
fied. This means that from now on we implicitly consider
g ∈ (U → C(Rn)) as an equivalence class of maps and
all relations between maps are assumed to be between their
equivalence classes. Therefore f = g means that f and g
are in the same equivalence class. i.e., f = g a.e.

To deal with the primitive maps of (U → C(Rn)), we
still need to restrict to a smaller subdomain, namely that
of the integrable maps, i.e. f ∈ (U → C(Rn)) with∫

f �= ∅. The integrable maps of (U → C(Rn)) form
a Scott closed subset, and thus a continuous Scott subdo-
main of (U → C(Rn)) [17]. By taking retraction under
the restrictions of E and F , we obtain the Scott continuous
domain of equivalence classes of integrable maps which we
denote by (U →i C(Rn)).

Let T ∗(U) be the dcpo of non-empty ties. Define

L̂ : T ∗(U) → (U →i C(Rn))

by L̂(Δ) = �{Lh : h ∈ Δ}.

Proposition 7.4 The integral map
∫

: (U →i C(Rn)) →
T ∗(U) and L̂ are inverses of each other.

Let C0
i (U) denote the set of integrable C0 real-valued

vector fields of type U → R
n on the open subset U ⊂ R

n

equipped with the subspace C0 topology. Let {C1(U)} be
the equivalence classes of real-valued C1 maps on U under
the equivalence relation f � g if f − g is a constant real
number. Then, {C1(U)} inherits the C1 norm topology.
Let I1 and I0 be respectively the insertion of {C1(U)} and
C0

i (U) into the maximal elements of the continuous Scott
domains T ∗(U) and (U →i C(Rn)). These insertions are
topological embeddings with respect to the Scott topology
on the two continuous Scott domains.

{C1(U)}
L̂�{C1(U)}

��

I1

��

C0
i (U)

R
�C0

i
(U)

��

I0

��
T ∗(U)

L̂ ��
(U →i C(Rn))

R
��

Corollary 7.5 Second order typed FTC The Scott contin-
uous maps L̂ and

∫
furnish an isomorphism between the

Scott continuous domains for ties and L-derivatives, extend-
ing the Fundamental Theorem of Calculus of second order
via the topological embeddingsI1 and I0 to Lipschitz maps.

8. Further work and open problems

It can be shown that in finite dimensions the L-derivative
operator L : (U → R) → (U → C(Rn)) is onto. It
then follows that ((U → R) → (U → C(Rn))), where
(U → R) is equipped with the L-topology, is a continuous
Scott domain. This function space can then be given an
effective structure and L becomes a computable operator.

We list here three open questions: (i) Can the specific
results for dimension one in Section 6, i.e. regularity of the
basic open subsets, be extended to any finite dimension?
(ii) How can the Scott topology on (U → C(X∗)) and
thus the L-topology be characterised for Lipschitz maps on
an infinite dimensional Banach space X? Can any of the
results in finite dimension be extended to infinite dimen-
sions? (iii) Can one construct a simple complete metric for

11



the L-topology by using the Hausdorff metric to compare
L-derivatives?

Finally, a comparison of the notions of L-derivative and
strong derivative as in [4] is in order.
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