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Abstract

Facial emotion recognition from images has been a field of intense research for decades.
The difficulty of the problem lies in its interdisciplinary nature. Psychology, neuroscience and
machine learning concern themselves with how we can teach computers to detect emotions
in humans. Emotion recognition can be divided in two main tasks: feature extraction and
emotion classification. We tackle the problem by using deep belief networks, a type of neural
network that allows both feature detection and classification. In our quest towards a machine
capable of recognizing human feelings, we define a probabilistic model that can learn if two
human subjects display the same emotion and compare its performance against a model
capable of distinguishing between subjects. We discuss and evaluate numerous techniques
associated with deep belief nets, providing a comprehensive account of the literature. We
add to our theoretical work a modular, fast, open source GPU implementation of all models
used. The implementation is used to perform empirical evaluation on multiple datasets, with
different subjects of different races, under different illuminations and different poses. We
measure robustness by testing the network with images with patches of missing data. The
results obtained on our experiments are positive: a classification accuracy of 99.3% on the
Multi-PIE dataset makes our results comparable with the state of the art.
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1 INTRODUCTION

1 | Introduction

In the last decade the progress made by machine learning has been astounding, allowing it to grow
in popularity both as a research field and as a basis for commercial applications.

Hard coded rules and rigid behaviour have been replaced with algorithms capable of generalization,
leading to recent developments in speech recognition, computer vision, natural language processing
as well as computational finance and medical diagnosis.

The present work focuses on a specific domain of machine learning, namely artificial neural
networks. Since Geoffrey Hinton introduced deep belief nets (DBNs) in 2006, neural networks
have become a popular tool for vision and speech tasks, breaking record after record in known
benchmarks (such as TIMIT [1]).

Deep neural nets have been around for more than 30 years, but standard training methods have
serious limitations when used on architectures of more than 2 layers. DBNs solve some of the
problems associated with deep networks through pre-training: learning hierarchical features from
data in an unsupervised fashion by stacking together multiple Restricted Boltzmann machines.

The main application of deep belief networks presented in this thesis is emotion recognition from
images of faces. We use unsupervised training to learn facial features and supervised training to
associate these features with emotions.

Classifying emotions straight from raw pixels is infeasible. Defining a direct mapping between a
high dimensional image and a class label is prevented by the little individual influence of each of
the pixels on the label. In order to learn how to classify emotions, higher level facial features need
to be extracted from the raw input images. These features can then be associated with emotions.
It is argued [2] that in order to overcome the current problems of emotion detection algorithms
scientists should focus on accurate feature extraction, rather than on the classification process.
This justifies our choice of model inside the neural network family: unsupervised pre-training in
deep belief networks achieves accurate feature extraction in the face space, before performing any
classification task. Unsupervised feature learning comes in handy especially when labelled data is
scarce.

The features of our model are constructed through DBN training. Another type of features, action
units, express the position and movement of facial muscles [3]. Automatic detection of action
units can be done from sequences of images by tracking muscle movements in time [4] or from
still images, in which case deep belief nets can be used [5]. Local binary patterns are yet another
type of features which are used in emotion recognition [6]. It could be argued that we could
use action units or local binary patterns as inputs to DBNs, instead of raw images. However,
deep belief nets thrive by detecting the natural structure high dimensional data, so presenting
unstructured, low dimensional features (such as AUs) we would lead to a decrease in classification
performance. Moreover, the network will be merely used as a classifier, thus not making use of its
feature learning capabilities. While most methods for emotion recognition require two pipelines,
one for feature extraction and one for classification, the advantage of deep belief networks is that
they learn how to perform both tasks during training.
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1.1 Motivation

The human ability of detecting emotions evolves in infancy and is associated with what is known as
“emotional intelligence”. When trying to explain how humans perceive and detect emotions, two
main models have been proposed by neuroscientists: the continuous and the categorical model [2].
In the continuous model each emotion is a feature vector in the face space, while in the categorical
model each discrete emotion has a classifier associated with it. Both models have advantages and
disadvantages: the continuous model accounts for the different intensities of emotions while the
categorical model explains why a morphing sequence between two emotions is perceived to be
one of the two emotions, not something in between. In machine learning the categorical model
predominates emotion recognition. We believe this to be the case due to the compatibility of the
categorical framework with standard classification techniques present in the field.

Apart from the theoretical interests which arise from the subject of emotion recognition, there are
numerous applications which make this field an active research topic.

Autistic children do not have the ability of recognizing emotions (or their ability to do so is
diminished, depending on the severity of the condition). However, the children can be taught how
to detect an emotion, by presenting them sequences of images of faces with their corresponding
emotions attached. While this can be done with a standard labelled dataset, that dataset is finite
and probably does not contain the family and friends of the child, hence becoming less familiar
and motivating. A system that identifies emotions on previously unseen faces can be given to
classify pictures or videos of loved ones, gradually helping the child develop a association between
facial expressions and emotions.

A similar system can be used in a judicial setting to detect if a suspect is displaying genuine feelings
or just pretending. The aim would be to exceed the human capability of detecting emotions, by
spotting brief moments of weakness in which the individual is not maintaining its false, pretended
pose.

Emotion recognition has multiple applications in entertainment. Gaming experiences can be
enhanced if the action increases pace when the player is bored and slows down when the player
is overwhelmed. A music phone application which shuffles songs according to the listener’s
face expression would provide a more personalized experience. In the context of social media,
automatic emotion detection from images can be used for targeted advertisement or tagging of
images, as well as status updates: the user can upload an image of themselves, and their status
can change to reflect their emotional state.

Finally, we mention that any true artificial intelligent system that interacts with humans should
detect our emotions (think of an intelligent operating system or a robot).
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1.2 Contributions

The key contributions of this thesis are:

• Evaluating deep belief nets on emotion recognition by using three different labelled datasets
of different sizes, depicting people from different angles and under various illumination
conditions,

• Defining a new model to test the capacity of Restricted Boltzmann machines of learning
similarities between emotions,

• Introducing a theoretical extension of two types of sparsity constraints for rectified linear
units,

• Producing a complete survey on the literature on neural networks (with special focus on
Restricted Boltmzann machines and deep belief nets) providing a comprehensive account of
recently introduced techniques such as dropout, rectified linear units and rmsprop,

• Providing a first assessment on the performance in emotion recognition of a recently intro-
duced type of network: maxout nets [7],

• Analysing the methods available for facial emotion recognition from still images,

• Defining a heuristic for setting the learning rate for the first Restricted Boltzmann machine
that is stacked to form a deep belief network,

• Implementing a modular, high performance, open source Python library that runs on the
GPU for deep belief nets and Restricted Boltzmann machines

Deep belief nets can be used to simulate the brain on a metaphorical level, enabling researchers to
emulate physiological experiments. The results obtained on emotion recognition in this thesis will
be used in other projects to create a model for psychotherapy and modelling attachment types.

Appendix A introduces the reader to the notations and the abbreviations used in this thesis.
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2 BACKGROUND

2 | Background

Artificial neural networks (ANNs) are machine learning models inspired by the animal brain in the
hope that they can be used to reverse engineer how animals learn to perform certain tasks.

Even though ANNs are inspired by biological neural networks, they are far from being biologically
realistic, as both the structure and the building blocks of ANNs are oversimplifications of their
counterparts found in nature.

In the following, when we refer to a neural network we will mean artificial neural network.

2.1 Short history of neural networks

Neural networks were first introduced in 1943 by Warren McCulloch and Walter Pitts, who were
aiming to create a mathematical model of a brain [8]. In 1949 Donald Hebb introduced what is
now known as Hebbian learning, usually summed up under the slogan “Neurons that fire together
wire together”.

An increased interest in the field was observed after Frank Rosenblatt introduced the perceptron in
1958, showing how a simple mathematical algorithm can be used to train a two layer network
[9]. However, Seymour Papert and Marvin Minsky exposed some limitations of neural networks,
proving that the exclusive-or function cannot be learned by a perceptron, as well as demonstrating
that at the time it was simply infeasible to train a large neural net, due to the restricted amount of
computer power resources [10].

After this drawback in neural network research, interest increased again in the late 70s and
beginning of the 80s due to the discovery of backpropagation (which solved the exclusive-or
problem) and the advances in computing architectures.

In the 90s other machine learning methods such as support vector machines [11] became popular.
They had a clear theoretical explanation and solved a multitude of problems better than neural
nets. This is now thought to be due to the usage of small datasets, not enough CPU resources and
very little use of backpropagation.

Since the 2000s, neural networks have risen increasing interest due to the advances in convolutional
neural nets (known as CNNs, or LeNet after Yan LeCun [12], who has improved the initial design
made by Kunihiko Fukushima), and deep belief nets (proposed by Geoffery Hinton in 2006 [13]).

2.2 What are neural networks?

The structure of a neural network can be seen as a graph. In this context the vertices are called
nodes or neurons and edges are called synaptic connections. An important characteristic of ANNs is
that the synaptic connections have strengths (called weights) which adapt in the learning process
(similarly with what happens in the brain of an animal, especially in the early stages of life).
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Figure 2.1: Representation of a feed forward neural network with 2 hidden layers.

The networks are structured in layers, according to the connections between nodes. Generally, the
nodes inside a layer are not connected with each other, but are connected to all the nodes in the
following layer.

The layers can be grouped as follows:

• The input layer storing the given data

• The hidden layers used to define a better representation of the data than the one given by
the input

• The output layer contains the output, after a pass through the network. Only required for
nets used for discrimination.

The input data is transformed into a vector of real numbers and presented to the network. A pass
is performed and the neurons get activated, taking values (binary -on/off - or real numbers) also
called states or activations. The output layer can be missing, depending on the task performed by
the neural network.

The state (or activation of a neuron) is typically a real value that depends on the activities in the
previous layer and the weights, as follows:

y(l+1)
i = σ







∑

j

wi j y(l)j + bi






(2.1)

Here, bi is the bias associated with the unit and σ is referred to as the activation function. Figure
A.1 exemplifies the notation we will use when referring to different layers in a neural net.
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The activation function plays an important role in the network, as it is used to restrict the range of
values the activity of a neuron can have. Frequently activation functions come from the sigmoid
family (such as the logistic sigmoid and tanh). The range of the logistic sigmoid σ(x) = 1

1+e−x

is (0,1), making the function particularly suitable when the activations of the neurons represent
probabilities. Recent developments have shown that rectifier functions such as max(0, x) perform
better for certain kind of tasks [14].

Neural networks can be split in different categories, according to the connections between layers:

• In feed forward nets the connections between units do not form a directed cycle.

• Recurrent neural nets are characterized by forming a cycle in the connections between
neurons. This allows them to process sequences of inputs, by using their internal state, which
can be viewed as form of memory.

2.3 Types of learning

Discriminative learning
The aim of discriminative learning is to find a map from the input data to labels. The labels
can be discrete (classification) or continuous (regression).

When solving a discrimination problem, the neural network is given a labelled dataset, of the
form (x , y), where x is the data instance (represented as a vector of real numbers) and y is
the label. The aim of the neural network is to learn a target function f such that f (x) = y
and be able to predict the value of the function for unseen data.

Example 2.1.
Given data: ((1,4),5), ((4,5),9), ((20,11), 31), ((100,19), 119) the network tries to learn a
function for which

f (1, 4) = 5

f (4, 5) = 9

f (20, 11) = 31

f (100, 19) = 119

There is no guarantee that the network learns a function that will fit the input data perfectly. In
fact, this is highly improbable for a big dataset. Moreover, it is undesirable for generalization
(see section 2.6 on overfitting).

After learning we can give the network the input (34, 56) and see what output it produces. If it
has learned the function f (x) = x + y then the output should be 90.

In a more general setting, discriminative models aim to compute the conditional probability
of a label (y) given a data instance (x): p(y|x).
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Generative learning
The aim of generative learning is to compute a probability distribution that is very likely
to have generated the data. Unlike discriminative models, generative models can also be
used in a unsupervised setting, in which there are no labels given for the data, making
them suitable for applications like clustering and density estimation (chapters 9 and 2 from
[15]). Generative models can be applied for classification and regression, as they can model
the joint probabilities between the data x and the labels y, p(x , y), by first computing the
marginal probability of the data given a label: p(x |y) (done via Bayes’ rule).

Traditionally, neural networks have been used as discriminative models. However, the discovery
of Restricted Boltzmann Machines and later on, Deep belief nets has shown that ANNs can be
successfully used as generative models.

For a detailed description of generative and discriminative models, as well as a detailed account of
their advantages and disadvantages, refer to chapter 1.5.3 in [15]

2.4 Discriminative learning in neural networks

This section will describe how neural networks can be trained for discrimination, by describing
backpropagation, a powerful algorithm that has been used successfully for more than 30 years and
is applicable to deep belief networks.

2.4.1 The error function

An important step in the learning process is correcting the network when it makes mistakes. We
need to be able to show the network what it needs to learn and by how much it is mistaken, so that
it can adjust its current beliefs of the target function. For that a measure of the error is required.
The choice of error function is application dependent, and has many consequences in the learning
process. When presenting a data instance to the network, we can compare the output it produces
(y) with the target output (t). A common choice is to use the square of the L2 norm between the
two vectors:

E(t,y) = ||y− t||2 (2.2)

When computing the error on the entire dataset it is customary to use the mean square error, which
is the average the error on each individual training cases:

MSE =
1

N

N
∑

i=1

||yi− ti||2 (2.3)
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The unit of the mean squared error is not the same as the data, but square unit, and in order to
moderate that it is common to also use the root mean square error:

RMSE =
p

MSE (2.4)

2.4.2 The backpropagation algorithm

The backpropagation algorithm uses the derivatives of the error function with respect to the weight
matrix and the bias term to find a set of parameters that minimizes the value of the error function.
As the name suggests, the algorithm backpropagates the derivatives from the output layer to the
layers below, one layer at a time. After computing the partial derivatives, a first order or second
order optimization method is employed to find values of the parameters that minimize the error
function. The most common optimization technique used is gradient descent, but other algorithms
such as conjugate gradienthave been proven successful [16].

Algorithm 1 Backpropagation learning algorithm

Initialize the weights with random values between 0 and 1
while not done training do

for d in data do
FORWARDS PASS

Starting from the input layer, use eq. 2.1 to do a forward pass through the network,
computing the activities of the neurons at each layer.

BACKWARDS PASS

Compute the gradient of the error with respect to the output layer activities
for layer in layers do

Compute the gradient w.r.t. the linear input of the neurons in the layer above
Compute the gradient w.r.t. the parameters of the current layer
Compute the gradient w.r.t. the activities of the neurons in the current layer

Update the parameters.

Historically, backpropagation was not used successfully on deep nets, due a problem called
vanishing gradient. What generally tends to happen is that the propagated gradient is smaller
than the gradient in the layer above, and by the time the gradient of the first layer is computed,
it is so small that the change of the parameters is not significant. This problem especially affects
recurrent neural networks, which can be seen as feed forward networks with infinitely many layers.
Backpropagation does not guarantee to return the parameters that define a global minimum of
the error function, but just a local minimum. It could easily be that there is a set of parameters
that perform better but they are in a different “valley” of the function, and the optimization
algorithm did not find them (this limitation comes from the optimization algorithm, not from the
backpropagation itself).

For a more comprehensive insight on backpropagation see [16].
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2.4.3 Computing the derivatives in backpropagation

We will now describe the mathematical derivation behind the backpropagation algorithm. This is
to give an insight to the reader as well as to define a framework used to justify later decisions.

We want to be able to compute the derivatives of the error function with respect to the parameters:
the weights and biases of the network. We will use an induction-like argument to prove that we
can backpropagate the derivatives of the error function from the output layer to the first layer. The
derivatives needed in order to perform the recursion argument are the derivatives with respect to
the activation of the neurons of the network (y). The argument will go as follows:

If we assume that we know the derivatives of the error function with respect to the activation of the
units in the layer above, we can compute the derivatives of the error function with respect to the
parameters and with respect to the activations of the current layer. Since we know the derivatives of
the error function with respect to the activations in the output layer, we can backpropgate them until
we reach the first layer.

We have to prove that if we know the derivatives for a layer, l + 1, we can compute them for the
layer below, l. Denote by w the weight matrix between the two layers, and by b the bias vector for
the units at layer l + 1 and assume that the forward pass through the network has been performed,
so we know the linear input of each neuron, as well as the activation. We used superscripts to
denote the layer a unit belongs to and subscripts to specify the unit inside a layer. Figure A.1 shows
the notation used.

Assumption: ∂ E
∂ y(l+1)

j

is known.

Let the linear input of a neuron to be z:

z(l+1)
i =

∑

j

wi j y(l)j + bi (2.5)

y(l+1)
i = σ

�

z(l+1)
i

�

(2.6)

By the chain rule we can compute the error derivatives with respect to the weight and the biases
in between the two layers.

For the weights:

∂ E

∂ wi j
=

∂ E

∂ z(l+1)
i

·
∂ z(l+1)

i

∂ wi j
=

∂ E

∂ z(l+1)
i

· y(l)j (2.7)

For the bias term:
∂ E

∂ bi
=

∂ E

∂ z(l+1)
i

·
∂ zi

∂ bi
=

∂ E

∂ z(l+1)
i

(2.8)
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Notice that in order to compute the derivatives with respect to the parameters, we need the
derivative with respect to the linear input z of the neurons in the layer above. Again applying the
chain rule:

∂ E

∂ z(l+1)
i

=
∂ E

∂ y(l+1)
i

·
∂ y(l+1)

i

∂ z(l+1)
i

=
∂ E

∂ y(l+1)
i

·
∂ σ
�

z(l+1)
i

�

∂ z(l+1)
i

(2.9)

We know the first term, by the assumption we made. The second term in equation 2.9 can be easily
calculated by using the derivative of the activation function.

The only step left is to compute the derivative of the error function with respect to the activations
of the neurons at layer l, y(l)j (so that it can be used for the layer below). With the chain rule (the
sum is required because each of the linear inputs at layer l + 1 depends on the state of neuron j in
the previous layer, y(l)j , as shown by equation 2.10):

∂ E

∂ y(l)j

=
K
∑

i=1

∂ E

∂ z(l+1)
i

·
∂ z(l+1)

i

∂ y(l)j

=
K
∑

i=1

∂ E

∂ z(l+1)
i

·wi j (2.10)

This completes the proof. Our derivations show that we need to be know how to compute the
derivative of the activations with respect to the linear input of the neuron and the derivatives of
the error function with respect to the activations of the neurons in the output layer.

Example 2.2 (Sigmoid: computing
∂ σ
�

z(l+1)
i

�

∂ z(l+1)
i

).

If the activation function used is the logistic sigmoid:

σ(x) =
1

1+ e−x (2.11)

∂ σ
�

z(l+1)
i

�

∂ z(l+1)
i

= σ
�

z(l+1)
i

��

1−σ
�

z(l+1)
i

��

(2.12)

Example 2.3 (The mean square norm: computing the error for the last layer).

In order to be able to start backpropagation we have to compute the derivative of the error function
with respect to the activations of last layer of neurons. If the error function used is the square of the
mean square error between the output layer activities and the vector label:

∂ E

∂ y j
=−

2

N

∑

d∈data

(td
j − y(d)j ) (2.13)
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2.4.4 Using the error derivative

Once we know how to compute the error derivatives with respect to the weights of the network,
multiple issues arise:

a When should we update the weights

b How and by how much should we update the weights

a. When should we update the weights: types of learning

When training a neural network, multiple passes through the data are required. Each pass is called
a training epoch. Inside an epoch, the parameters can be updated at different frequencies:

Online
Correct the model after each training case. As the error function changes according to each
data instance, the gradients with respect to the parameters can highly fluctuate between
updates. Overall, this can result in less stable learning.

Full-batch
Use the entire dataset to compute the error and then perform the weight updates by using
the sum of the gradients obtained from the individual cases. This method is wasteful, as
when we start we have bad parameters and to improve them we have to go through the
entire dataset multiple times.

Mini-batch
A better way is combine the above two approaches and to run only a part of the training
cases, making the parameters reasonable before continuing with more data. As the updates
are averaged over multiple cases, the parameters oscillate less than they would do with
online learning. When using mini batch learning it is important to ensure that a mini batch
has an equal number of instances of each class the model is trying to learn. This is to avoid
high fluctuations between updates in different mini-batches: these updates will end up
cancelling each other without any benefit for the training process.

b. How to update the weights: optimisation algorithms
The backpropagation algorithm describes a way to compute the derivatives of the error function
with respect to the weights of the network. These derivatives can then be used in conjunction with
various optimization algorithms.

It is common to use the gradient descent algorithm, that updates the weights in the direction of the
negative of the gradient.

ε is called the learning rate.
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Algorithm 2 Gradient descent(ε, threshold)

while |xn− xn−1|< threshold do
xn+1 = xn− ε · ∇ f (xn)

2.4.5 Parameters and techniques: how to use the gradients

Learning rate
Various experiments [17] have shown that the learning rate is a crucial parameter that
influences the convergence of training.

Setting the learning rate of the model can be done in multiple ways:

• Try out values in the set 10−1, 10−2, ...10−5 and perform cross validation. Choose the
value that yields best results and keep it constant throughout training.

• During learning, monitor the error on a validation set. If the error is steadily decreasing,
then increase the learning rate by a constant factor. If the error is increasing, then
decrease the learning rate. Towards the end of training, it is best to decrease the
learning rate. You can do that once the error stops decreasing steadily. This removes
the fluctuations in the values of the weights between mini-batches, and helps towards
keeping a steady set of weights for the final ones. In this model, it is also possible to
keep a different learning rate for each of the weights, and adjust it during training.

Momentum
The momentum method is a widely used technique that can improve the speed of learning.
It is fairly general and can be used with mini-batch and full batch learning, and combined
with some of the techniques explained later on, such as Rprop and Rmsprop.

The idea behind the momentum method is to take into account the previous values of the
weight gradients when computing the current update. This ensures that the gradient keeps
going into the direction it was going previously, speeding up learning. If the current gradient
and the previous gradient agree on the direction the weight should move to, a bigger step is
performed in that direction. In order to avoid huge weights, it is generally a good practice to
decrease the learning rate when using momentum.

∇(θ , t + 1) = µ · ∇(θ , t)− ε ·
∂ E

∂ θ
(2.14)

Equation 2.14 describes the parameter updates defined by this method, where ε is the
learning rate and µ is a new parameter, called momentum.

At the beginning of learning, the parameters (θ) are quite bad so it is obvious how to change
them, hence the gradients will be quite big. This is why it is best to start with a low value for
momentum (about 0.5). After a short amount of time, the parameters become sensible and
smaller changes are required, in order to settle on the local minimum for the “valley” the
weights are already in. That is why it is best to increase momentum (to values up to 0.99) in
order to keep going in the right direction.
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It is also common to multiply the learning rate by (1−momentum) to achieve the effect of a
decreasing learning rate, due to the fact that momentum gets increased during training:

∇(θ , t + 1) = µ · ∇(θ , t)− (1−µ) · ε ·
∂ E

∂ θ
(2.15)

θt

θt+1

µ∇θt

−ε ∂ E
∂ θ

∇θt+1

Figure 2.2: Parameter updates according to classical momentum.

Nesterov method for momentum
In the momentum method, we compute the gradient of the error function by doing a forward
pass and then doing the cumulative parameter update (formed from the old update and
the new gradient). In the Nesterov momentum method we first update the parameters
according to the direction of the old update, after which we do a forward and a backward
pass to compute the gradients, and then update (again) the parameters using the new
computed gradients. It has been shown [18] that the Nesterov momentum can increase the
performance of neural networks and tends to perform better than classic momentum. The
parameter updates can be described as in equation 2.16.

∇(θ , t + 1) = µ · ∇(θ , t)− ε ·
∂ E

∂ (θ +µ · ∇(θ , t))
(2.16)

Rprop
Due to variance in the magnitudes of the gradients for different layers and different weights,
it is hard to chose one global learning rate that can adapt to all the possible values of the
gradients. An idea is to not use a global learning rate, but one for each weight, without
taking into account the gradient of the error, but just the sign. The idea is simple:

• If the signs of the last 2 gradients for the weight update agree, then multiply the
learning rate for this weight by a constant factor (around 1.2)

• Otherwise decrease the learning rate for the weights by a factor. (around 0.5). It is
best to keep this factor further away from 1 than the increasing factor, to ensure that
the weights do not grow too much.
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θt

θt+1

µ∇θt
−ε ∂ E

∂ (θ+µ·∇θt )

∇θt+1

Figure 2.3: Parameter updates according to Nesterov momentum.

• Set the delta for each connection by multiplying the obtained learning rate with the
respective gradient. When using Rprop it is useful to set upper and lower limits for
the learning rates: too low learning rates do not improve the weights, and too high
learning rates can lead to very big weights.

Rmsprop
Rmsprop is similar to Rprop, but for mini-batch learning. Rprop does not work well with
mini-batches, and it is inherently a full batch learning method. The idea behind mini-batches
is that the weight updates that come from mini-batches get combined in time leading to
a suitable average learning updates. Consider for example a set of 10 mini-batches such
that the gradients for a particular connections are 9 mini-batches give a gradient for a
particular connection to be 0.2 and one mini-batch with gradient -1.8. We would expect
that after learning the 10 batches the weights are pretty much unchanged. However, when
we use Rprop this is not what happens: in this example, the weights explode, as we have 8
consecutive updates where the gradient keeps the same sign, so we multiply them 8 times by
a factor bigger than 1. Hence, the new weights are (1.2)8 times bigger than when we started.
When we apply the negative gradient, the weights decrease by a factor of 0.5, making them
(1.2)8 · 0.5= 2.15 bigger than they initially were.

Rprop is equivalent to making an update using the gradient divided by its magnitude, so we
divide by a different number for each mini-batch (namely, the gradient). In order to fix this,
we ensure that we divide by similar numbers in adjacent mini-batches, by keeping a moving
average of the square gradient:

MeanSquare(w, t + 1) = 0.9 ·MeanSquare(w, t) + 0.1
�

∂ E

∂ w

�2

(2.17)

∇(w, t + 1) =
∂ E

∂ w
·

1
p

MeanSquare(w, t + 1)
(2.18)
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Rmsprop can be used using both momentum and Nesterov momentum, even though simple
momentum does not help as much as it usually does [19].

For momentum the equations for the updates become as follows1:

MeanSquare(w, t + 1) = 0.9 ·MeanSquare(w, t) + 0.1
�

∂ E

∂ w

�2

(2.19)

∇(w, t + 1) = µ · ∇(w, t)− ε ·
∂ E

∂ w
·

1
p

MeanSquare(w, t + 1)
(2.20)

For Nesterov momentum it has been shown that it is best to use the root of the mean square
error to divide the correction made to the previous direction (using the gradient) rather than
dividing the previous direction itself [19], leading to the following updates:

∇(w, t +
1

2
) = µ · ∇(w, t) (2.21)

MeanSquare(w, t + 1) = 0.9 ·MeanSquare(w, t) + 0.1
�

∂ E

∂ w

�2

(2.22)

∇(w, t + 1) =−ε ·
∂ E

∂ w
·

1
p

MeanSquare(w, t + 1)
(2.23)

The basic version of Rmsprop does not require adaptive learning rates, but adaptive rates
can be used with it. A second order method similar to Rmsprop that is hyperparameter free
is described in [20].

2.5 Softmax groups

Minimizing the mean square error of a dataset is equivalent to minimizing ε under the assumption
that each of labels was drawn from a Gaussian distribution with mean at the true value function
for the data point and variance ε (i.e. y ∼ N( f (x),ε). While this can be a suitable assumption for
regression, for classification the output labels are discrete, so they are far from being Gaussian.
This makes the mean square error function less suitable for classification problems.

Often when having to solve a classification task, it is common to have the network output class
probabilities, instead of a concrete label. For learning, the labels are transformed into the basis
unit vectors that span RK , where K is the total number of classes.

Example 2.4 (Why you should not use logistic units with the L2 norm measure for classification).

Consider the case when a logistic neuron assigns to the correct label the probability 0.000001 (when it

1As before, ε denotes the learning rate and µ the momentum.
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should actually attribute 1). The neuron is very far off from the correct result, but as we will show
now, there is almost no gradient to allow the logistic unit to change in the use of backpropagation.

Let E be defined as in equation 2.2.

We now compute the error derivative with respect to the last layer of the network:

∂ E

∂ wi, j
=
∂ E

∂ z j

∂ z j

∂ wi, j
=
∂ E

∂ z j
yi (2.24)

Using the logistic function derivative:

∂ σ(x)
∂ x

= σ(x)(1−σ(x)) (2.25)

∂ E

∂ z j
=
∂ E

∂ y j

∂ y j

∂ z j
=
∂ E

∂ y j
y j(1− y j) (2.26)

Since E is the square of the L2 norm:

∂ E

∂ y j
=−2(t j − y j) (2.27)

∂ E

∂ z j
=−2(t j − y j)y j(1− y j) (2.28)

When t j = 1 and y j = 0.000001 then:

∂ E

dz j
=−2(1− 0.000001) · 0.000001 · (1− 0.000001) = 1.999996 · 10−6 (2.29)

Hence, when we want to propagate the error at the layer below, we get (by using 2.24):

∂ E

∂ wi, j
= 1.999996 · 10−6 · yi (2.30)

Considering that to obtain the weight update the derivative has to be multiplied with the learning rate
(which is usually between 10−1 and 10−2), the impact on the weights will be negligible, which is the
opposite of what should happen, given that the network is completely wrong in its prediction.

We want the output layer to represent a probability distribution. Forcing the activities in the output
layer to be between (0,1) can be done using the logistic function, but there is no guarantee that
the probabilities add up to 1. The simple and elegant way to solve the above problems is by using
a softmax group. In order to ensure that the sum of the output of the unit is 1, the output of a unit
does not only depend solely on its input but also on the input of the other elements of the unit.

In the following, the input of one of the units (also called “the logit”) is denoted by zi and the
output of the unit is denoted by yi .
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Definition 2.1 (Softmax function).

yi =
ezi

n
∑

j=1
ez j

(2.31)

The derivative of the softmax function is very similar to the one for the logistic function:

∂ yi

∂ z j
=

(

yi(1− yi) i = j

−y j
2 i 6= j

(2.32)

The best error function to use for a softmax unit is the cross entropy cost function [21]:

Definition 2.2 (Cross entropy).

C =−
∑

j

t j log y j (2.33)

where t j is the target value of the unit.

Minimizing the entropy is equivalent to maximizing the log probability of the right answer, since
for the labelled data t j will be 1 only for the class corresponding to the training instance (we
assume non-overlapping classes).

A softmax function has multiple properties which make it suitable for its use in machine learning:

• The units of a softmax group always form a discrete probability distribution

• A softmax groip can be used to model the posterior probability distributions, thus making it
suitable as a classification tool

• Any discrete probability distribution can be represented using a softmax unit.

• Used in conjunction with the cross entropy error function, has the property that it propagates
big gradients when the correct answer is 1 and the network outputs a very small value (close
to lower bound 0), making it is suitable for backpropagation.

We now revisit example 2.4 on a network with a softmax group and a cross entropy error function.
Let t i = 1 (hence t j = 0, ∀ j 6= i ) and yi = 0.000001

C =−
∑

j

t j log y j (2.34)

∂ C

∂ y j
=−t j

1

y j
(2.35)
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Using the multi variate chain rule:

∂ C

∂ zk
=
∑

j

∂ C

∂ y j

∂ y j

∂ zk
=−

∑

j

t j

y j

∂ y j

∂ zk
=−

1

yi

∂ yi

∂ zk
(2.36)

By using the derivative of the softmax unit (equation 2.32):

∂ C

∂ zk
=











−
1

yi
yi(1− yi) k = i

−
1

yi
(−y2

i ) k 6= i

=

(

yi − 1 k = i

yi k 6= i

(2.37)

The weights corresponding to the unit which made the error will get penalized with the difference
between the exact output and the target value. In this example the propagated error is 0.000001−
1 = −0.999999, which will have considerably more impact than 1.999996 · 10−6, obtained in
example 2.4 which used the squared L2 norm on the same numbers.

2.6 Overfitting

The aim of a discriminative neural network is to learn regularities in the mapping from input
to output. In the limited amount of data the network sees during training, there will also be
accidental regularities, arising from sampling error. These accidental regularities can potentially
make the network not generalize well to unseen testing data. It is impossible for a network to
distinguish between real regularities that we aim to learn and the accidental regularities occurring
in the data it sees. This important issue that arises when using machine learning techniques, and it
is generally referred to as overfitting.

Example 2.5 (Simple overfitting example).
Assume that we want to teach children by example what a reptile is, and we show them only a lot of
snakes, of different sizes and colours. If we then show them a turtle, they will probably not recognize it
as a reptile, even though it is one. The children have learned that reptiles are much much longer than
wide, and that they have no carapace. They have learned what a snake is, but have associated with it
the label “reptile.”

For improving generalization it is best to not try to fit the training set perfectly, as that will
guarantee that the model has learned the accidental regularities in the data. Methods that aim
to avoid overfitting by imposing a complexity penalty to the model are commonly referred to as
regularization techniques.
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Weight decay
It has been observed [22] that extreme values (very small or very big) for the parameters of
a machine learning model are a symptom of overfitting: the model is trying to perfectly learn
the regularities of the data. In order to avoid weights increasing too much, a weight penalty
is imposed. This can be done by either subtracting a fraction of the weights at each update,
or by imposing a size constraint on the L2 norm of the incoming weights of a neuron (this
is often called max-norm regularizaion). When the L2 norm exceeds the allowed constant,
the weight vector is scaled down such that the norm is in range. This type of constraint is
particularly useful in conjunction with dropout [23].

Early stopping
The idea behind early stopping is to prevent the network from overfitting by halting training
before convergence is achieved. This is done by keeping a validation set on which the error
is computed during learning. Once the error stops decreasing on the validation set, stop the
training, as the network has started to learn the regularities in the training set. This method
is highly used to determine when to stop training a model.

Model averaging
Averaging the prediction of multiple models is better than using one single model. Even
though for each individual test case one of the models will perform best, if we have varied
models their performance will fluctuate from test case to test case, hence the combining
them will be better on average. The trick is to find good models that err on different test
cases2.

We now prove that on average combining multiple models will result in a better performance
than randomly chosen model (out of a set of N available different models), under the
assumption that the error function used is the mean square error. Denote by yi the value
obtained using model i with i ∈ {1,2, ..N} and t the correct target value. We use 〈 x〉i to
denote sample mean of x over a population indexed by i.

y =
1

N

N
∑

i=1

yi (2.38)

¬

�

t − yi
�2¶

i
=
¬

��

t − y
�

+
�

y − yi
��2¶
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=
¬

�
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�2¶
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+
¬

�
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�2¶

i
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t − y
�

·
�
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t − y
�2+
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�2¶

i
+ 2 ·
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�
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y − yi
�

i

=
�

t − y
�2+

¬

�

y − yi
�2¶

i

≥
�

t − y
�2

(2.39)

2The idea behind model averaging might remind the reader of a similar concept from finance: portfolio optimization.
Instead of investing the entire principal in one asset, it is best spread our investment across multiple assets, to minimize
risk and without decreasing the expected return.
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Model averaging is also a good choice when using probabilistic models which try to increase
the log likelihood of the probability for the correct class label (such as softmax groups in
conjunction with the cross entropy error), due to the concavity of log:

log
�

p1+ p2+ ...+ pn

n

�

≥
log(p1) + log(p2) + ...+ log(pn)

n
(2.40)

Model averaging can be done by combining different types of machine learning techniques
(neural nets, Bayesian nets, decision trees) or by combining neural networks with different
characteristics:

• different architecture (number of layers and/or neurons per layer)

• different regularization constraints

• different activation functions

The reader might be familiar with the concept of model averaging from Bayesian inference
(chapter 2 in [15]) in the form of the posterior predictive distribution. In a Bayesian setting,
we can compute the posterior distribution of seeing a new data point x̃ by marginalizing
over all the parameters of the model:

p( x̃ |X ,α) =

∫ ∞

−∞
p( x̃ |θ) · p(θ |X ,α)dθ (2.41)

Here θ denotes the parameters of the model, α the hyper parameters and X the training
dataset.

This means that the posterior of the probability of the new data point, x̃ , is the expected value
of the probability of seeing x̃ given a set of parameters θ under the posterior distribution of
θ given the entire dataset and the hyper parameters:

p( x̃ |X ,α) = Ep(θ |X ,α)p( x̃ |θ) (2.42)

Hence the prediction is the result of a weighted average of an infinite(!) number of models,
one for each possible value of the parameters θ .

Bagging and boosting
Bagging uses multiple bootstrap datasets to train different classifiers, and at test time
averages them in order to obtain a classification result. A bootstrap dataset is obtained by
uniformly sampling with repetition from the original dataset.

Boosting is a similar technique in which the bootstrap sets are not obtained by uniform
sampling, but rather by increasing the probability of obtaining a sample misclassified by the
models trained with the previous bootstrap sets.

A comprehensive comparison between boosting, bagging and Bayesian model averaging is
offered in [24], showing that model averaging can substantially outperform bagging and
boosting in problems with where data has substantial amount of noise or in multi-class
problems.
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Generative pre-training
There are multiple advantages to generative pre-training, including reduction of overfitting.
Generative pre-training will be discussed at length in this report, as it is one of they key
advantages of deep belief networks. The core idea is to learn the structure of the data,
without supervision, and then apply discriminative learning algorithms.

2.7 Dropout

Dropout is a technique which limits co-adaptations between neurons to increase the generalization
capability of a network. It was introduced by Hinton [25] and has been successfully applied in
both vision and speech tasks [14, 25]3.

The aim of dropout is to create features that do not rely on each other for producing a useful
output. We want neurons to be effective on their own, each representing a feature in the data
space without requiring coalitions with other neurons. This is achieved by randomly dropping
out a percentage of the units in a layer and using only the remaining ones as input for the next
layer. The percentage of (kept) active units is denoted by p and is called dropout. The dropout
probability p can be made a hyperparameter of the model, found with cross validation. Dropping
units from the visible layers significantly improves the performance of a network that uses dropout
of hidden units [25]. Most experiments to date show best results when p is set to 0.5 for hidden
layers and 0.8 for visible layers, and these values have been widely adopted.

Empirical results show dropout improves considerably when imposing a constraint on the L2 norm
of the incoming weights vector for each neuron [23].

As dropout is a technique used to mainly avoid overfitting, its effects can be seen especially on
deep networks. This might make you think that the method is not applicable to simpler models
(such as shallow networks) that tend to overfit less. There is a simple counter argument to that:
dropout allows you to move from a simple model to a deeper, more powerful one that will better
capture the features of the data without overfitting.

The mathematical explanations behind dropout are explained in detail in [26].

2.7.1 Dropout as model averaging

Averaging different machine learning models gives better results than just using one model (see
subsection 2.6)4. Dropout can be seen as a form of model averaging: during training we define a
new neural network for each data instance in the training set by omitting certain features in each
of the hidden layers. During test time we combine all the learned networks, as the no units are
dropped and all parameters are used.

Applying dropout in a network with one hidden layer and a softmax output unit is equivalent to
averaging 2H models [25], where H is the number of hidden units of the net. Each of the 2H

3See [23] for comparison in error rates with and without dropout for various known benchmarks.
4The winners of the Netflix challenge averaged different models for their success in 2010 [27]
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models can be obtained by probabilistically excluding units from the hidden layer. The geometric
mean is used to average the outputs of the softmax group in order to provide a final result.

2.7.2 Biological intuition

Dropout also has a biological explanation and can be viewed from an evolutionary perspective: in
order for an individual to be fit, its genes have to be well co-adapted together. Under a coarse view
one of the outcomes of reproduction involves losing half of the genes of each parent. This means
the offspring does not fully benefit from the co-adapted genes of its ancestors. Until recently it was
not understood why this process can have a desired outcome in the evolution of species. Recent
papers [28] show that in the long term this process leads to individuals that are more robust to
change, as their genes learn to be more independent and form smaller co-adaptations that can
perform different vital functions.

2.7.3 Forward pass in dropout nets

Given that we have to drop some of the units when we do a forward pass to the network, the
mathematical equations have to change to reflect that. A comparison between a forward network
pass with and without dropout can be seen in figure 2.4.

zi =
∑

j
wi j y j + bi

yi = σ(zi)

r j ∼ Bernoull i(p)
zi =

∑

j
wi j(y j r j) + bi

yi = σ(zi)

Figure 2.4: Comparison between a forward pass without dropout (left) and with dropout p (right).

At test time, the classification weights need to be scaled by the dropout constant p. This is due to
the fact that approximately p percent of the weights will not be active during training (as their
corresponding input will be dropped out during learning, but not during test time). Multiplying
the final weights by the dropout factor of the incoming layer ensures that the expected activation
of a unit is the same during testing and training time.

r j ∼ Bernoull i(p)
zi =

∑

j
wi j(y j r j) + bi

E(zi) =
∑

j
(pwi j)y j + bi

zi =
∑

j
(pwi j)y j + bi

E(zi) =
∑

j
(pwi j)y j + bi

Figure 2.5: Activation of a unit in a network trained with dropout during training (left) and
testing (right).
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3 | Deep belief nets

Neural nets have thrived since Hinton has shown [13] that Restricted Boltzmann Machines can
be stacked together to form deep belief nets, a generative probabilistic model that can also be
used for classification. The aim of this section is to provide an overview of models, techniques and
algorithms that are used in the deep belief setting.

3.1 Restricted Boltzmann machines

3.1.1 Getting there: Hopfield networks and Boltzmann machines

A Hopfield net is a recurrent neural network, created from a complete and undirected graph built
from binary neurons5.

Definition 3.1 (Activation function in a Hopfield net).

σ(x) =

(

0 x < 0

1 x ≥ 0
(3.1)

This makes the updates of the Hopfield net have the following form:

yi =











1
N
∑

j=1
wi j y j + bi ≥ 0

0
N
∑

j=1
wi j y j + bi < 0

(3.2)

Because the network does not have a layered structure, the role of the input layer is taken by the
entire network: presenting an instance to the network entails setting the state of the network to
that particular input pattern.

When we want to update the network, a random neuron is chosen, and its new value is computed
from the states of all the other neurons according to equation 3.2. Updates can be done both
synchronously and asynchronously.

The Hopfield network has an energy function associated with it, shown in definition 3.2. The form
of the energy function guarantees that at each synchronous update the value of the energy function
will decrease or stay the same. Moreover, under repeated updates the network will converge to a
local minimum of the energy function. This point is called an attractor: upon further updates, the
state of the network will not change.

5Neural activations of 1 and −1 are also common, as they simplify the learning rule.
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Figure 3.1: Hopfield network with 8 nodes.

Definition 3.2 (Energy of a Hopfield network 6).

E =−
N
∑

i=1

N
∑

j<i

wi j yi y j −
N
∑

i=1

bi yi (3.3)

Learning in Hopfield nets is done using a Hebbian rule:

∇wi j = 4
�

yi −
1

2

��

y j −
1

2

�

(3.4)

Hopfield nets can be understood as a probabilistic storage device: during training, the input data
instances become local minima in the energy landscape, making the network likely to converge to
one of them. This property can be used to recover a partially known pattern. This property has
made them suitable for modelling associative memory [29].

However, during learning spurious minima occur: any linear combination of odd size between
input patterns also becomes a local minimum. This is an issue with Hopfield networks, because it
imposes a limit on the number of patterns that can be stored in a network of fixed size.

Example 3.1 (Spurious attractors in Hopfield nets).
Assume that we train a Hopfield net of size 5 with the patterns p1 = (0, 1, 0, 1, 1), p2 = (0, 0, 0, 0,
1), p3 = (1, 0, 1, 0, 0). Then p1 - p2 + p3 = (1, 1, 1, 1, 0) also becomes an attractor.

Hopfield nets can be generalized, by making their units stochastic and removing the constraint that
the network graph has to be complete. In this form Hopfield networks are known as Boltzmann
machines. The idea behind stochastic binary units is avoiding being stuck in a valley produced
by spurious attractors. The valleys in the energy landscape created by false attractors are not as
deep as the ones produced by real attractors (the training instances), so they are easier to escape,

6This type of energy functions is borrowed from physics and is generally known as the Ising model.
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making it more probable for the network to settle to a real attractor. Due the probabilistic nature
of Boltzmann machines, the notion of attractor changes, because updates are non-deterministic.
The notion of thermal equilibrium replaces the simple notion of attractor. Thermal equilibrium is
reached when the probability distribution over the set of states converges and the log probability of
each state is linear w.r.t. to its energy. As for Hopfield nets, the energy of the Boltzmann machine
can be described using the Ising ferro magnetism model, one in which the energy function is linear
in the free variables (in this case the nodes of the network). This makes Boltzmann machines a
particular case of Markov Random Fields (chapter 8.3 in [15]).

Definition 3.3 (Stochastic binary units).
A stochastic binary unit is activated (takes value 1) with probability:

p(yi = 1) = σ







N
∑

j=1

wi j y j + bi






(3.5)

3.1.2 Restricted Boltzmann machines

Algorithms for training a general Boltzmann machine exist, but they have serious practical limi-
tations, especially due to the fact that reaching thermal equilibrium for a network with multiple
layers takes a large amount of time. The good news is, by restricting the number of layers and the
connectivity in a Boltzmann machine we obtain a version easy to train, called Restricted Boltzmann
machine (RBM).

Definition 3.4 (Restricted Boltzmann machines).
A Restricted Boltzmann machine is a neural network with 2 layers of stochastic binary units, with
their connections forming an undirected bipartite graph. The layers of the network are called visible
and hidden.

Visible layer

Hidden layer

Figure 3.2: Restricted Boltzmann with 5 visible units and 4 hidden units.

RBMs are generative models: the hidden units are latent variables that generate the observable
data (the visible units), thus defining a posterior probability distribution on the states of the visible
units.

The energy function is the same as the one for a Boltzmann machine, but it is written in a different
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form, to emphasise the structure of the network:

E(v, h) =−
∑

i∈visibile

ai vi −
∑

i∈hidden

bihi −
∑

i∈visibile

∑

j∈hidden

wi j vih j (3.6)

=−aT v− bT h− vT Wh (3.7)

At equilibrium the network assigns a probability to each possible state of the network, depending
on the energy:

p(v, h) =
1

Z
e−E(v,h) (3.8)

Definition 3.5 (Partition function).
In equation 3.8 Z is the normalizing constant, called the partition function:

Z =
∑

v,h

e−E(v,h) (3.9)

The marginal probability of a visible vector is given by:

p(v) =
∑

h

p(v, h) =
1

Z

∑

h

e−E(v,h) (3.10)

As RBMs are generative models, learning should increase the posterior probability of obtaining the
given dataset by sampling the model. The aim of training is to decrease the energy of the data
and increase the energy of other configurations of visible units, like in Hopfield nets. By looking
at equation 3.10 we notice that increasing the energy of non-data configurations decreases the
partition function (the denominator), and decreasing the energy of the data instances increases
the nominator, having an overall effect of increasing the likelihood of the training set.

The derivative of the log probability of a data instance can be computed as follows:7

∂ log p(v)
∂ wi j

=
¬

vih j

¶

data
−
¬

vih j

¶

model
(3.11)

Equation 3.11 gives an idea for a learning algorithm: using gradient ascent with the following
weight updates:

∇wi j = ε
�

¬

vih j

¶

data
−
¬

vih j

¶

model

�

(3.12)

7For a simple explanation of why the gradient takes this form, see [30]. For a more complete, but also complicated
one, see [31, 32]
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In order to be able to use equation 3.12 as part of a training algorithm we need:

• An unbiased sample of
¬

vih j

¶

data

• An unbiased sample of
¬

vih j

¶

model

Due to the structure of an RBM, the hidden units are conditionally independent given the value of the
of the visible units. This property makes it simple to get an unbiased sample from the

¬

vih j

¶

data
distribution, as the hidden units to do not depend on each other given the visible unit (since there
are no connection between them):

p(h j = 1|v) = σ







N
∑

j=1

wi j vi + bi






(3.13)

Similarly, the visible units are conditionally independent given the hidden units:

p(vi = 1|h) = σ

 

N
∑

i=1

w jih j + ai

!

(3.14)

The proof of the above equations can be found in appendix B. It shows the tight connection
between the activation function (in this case the logistic sigmoid - σ) and the energy function of
the network.

This solves the problem of getting an unbiased sample of
¬

vih j

¶

data
. How about

¬

vih j

¶

model
? In

theory, this can be obtained by starting with a random data vector and alternating steps of Gibbs
sampling between layers until we have attained thermal equilibrium. However, practical issues
arise: it is hard to know when thermal equilibrium is reached and to get to it a substantial amount
of training time is needed.

Definition 3.6 (Positive phase).
Calculating the unbiased sample of

¬

vih j

¶

data
is called the positive phase of a algorithm that trains

an RBM.

Definition 3.7 (Negative phase).
Calculating an approximation of the unbiased sample of

¬

vih j

¶

model
is called the negative phase of a

algorithm that trains an RBM.

3.1.3 Training an RBM: Contrastive divergence

Contrastive divergence (CD) [32] is a training algorithm for RBMs that uses a simple approximation
of
¬

vih j

¶

model
. Contrastive divergence is time efficient and gives good results in practice. It starts

with a data vector from the training set and uses a step of Gibbs sampling8 to obtain the states of

8Gibbs sampling is a Markov Chain Monte Carlo algorithm for obtaining samples from a multi variate probability
distribution. Details and a mathematical derivation can be obtained from [33].
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the hidden units. From the states of the hidden units, visible units are sampled. The process is
repeated multiple times, obtaining reconstructions for both the visible and hidden units.

An approximation to the unbiased sample of
¬

vih j

¶

model
is obtained by using the values of the

reconstructions:
∇wi j = ε

�

¬

vih j

¶

data
−
¬

vih j

¶

reconst ruct ion

�

(3.15)

∇ai = ε
�


vi
�

data−



vi
�

reconst ruct ion
�

(3.16)

∇b j = ε
�¬

h j

¶

data−
¬

h j

¶

reconst ruct ion
�

(3.17)

Positive phase in CD
Fix the data vector on the visible units and sample from the hidden units. Use vih j as an
unbiased sample of

¬

vih j

¶

data
.

Negative phase in CD
Starting with the data vector on the visible units, perform alternating steps of Gibbs sampling.
Use the reconstruction of visible and hidden states as an approximation for the unbiased
sample of

¬

vih j

¶

reconst ruct ion
.

For mini-batch learning, the samples obtained in the positive and negative phase above are
averaged on the entire mini-batch before updating parameters.

C Dk denotes the contrastive divergence algorithm with k alternating Gibbs sampling steps per-
formed to obtain the reconstructions. C D1, is most commonly used, as it is the most time efficient
and gives good enough results.

3.1.4 Persistent Contrastive Divergence

Persistent contrastive divergence [34] is another algorithm used to train an RBM, introduced in
2008 by Tieleman.

Positive phase in PCD
Same as CD.

Negative phase in PCD
Keep a global set of fantasy particles - states of the network (pairs of visible and hidden
units). For each parameter update, also update the particles by performing multiple steps
of Gibbs sampling. Average out vih j over the set of particles to get an approximation for
¬

vih j

¶

model
9.

9We can notice here the difference that for the negative phase PCD has one single Markov chain that is ran throughout
training, but CD starts a new chain for each data instance.
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Persistent contrastive divergence relies on small weight changes at each update, such that fantasy
particles can be considered to reach thermal equilibrium, as they are the result of repeated sampling
since the start of training. This has a direct implication: the learning rate used in PCD has to be
smaller than when using CD.

PCD tends to give better density models than CD [34], but has the disadvantage of requiring more
time for training. It is also more sensitive to the value of the learning rate, hence it involves more
tuning to obtain accurate results.

3.1.5 Initialization of parameters

At the beginning of learning, the weights are initialized to values sampled from a Gaussian
distribution with mean 0 and standard deviation of about 0.01. The visible biases are initialized
to log pi

1−pi
, where pi is the percentage of training points that have the visible unit i on. The bias

vector for the hidden units is initialized to 0 [35].

3.1.6 Monitoring learning: Free energy, reconstruction error and AIS

It is important to be able to monitor the error of an RBM on a validation set. The error can then be
used to stop overfitting and increase the generalization of the model.

Reconstruction error
Computing the mean square error between the dataset and the visible reconstructions can
give a rough idea on the progress of learning: it typically decreases rapidly at the beginning
of learning and then steadily decreases (with minor fluctuations between mini-batches).
Even though the reconstruction error might seem advantageous to use, it is a poor measure
of the function CD is approximately optimizing, and should not be trusted [35].

Annealed Importance Sampling (AIS)
The main problem of optimizing the log likelihood of the training data for an RBM is
computing the partition function (see definition 3.5). Consider a network binary units
with 1000 visible neurons and 500 hidden neurons. The sum in definition 3.5 requires
computing the energy for all possible configurations of visible and hidden units, in this
case 21000× 2500 = 21500. Moreover, Z would need to be computed for every update of the
parameters. This is simply infeasible.

AIS [36] combines simulated annealing [37] and importance sampling [38] to approximate
properties of a desired intractable distribution by using a chain of intermediate distributions.

Applied to RBMs, AIS is used to approximate the value of the partition function (Z) by
introducing a chain of distributions with known likelihoods (denoted here by p∗k) but
unknown partition constant (Zk).

We define the chain of probability distributions as follows: let p0, p1, ..., pN such that pk is

very close to pk+1, and pk =
p∗k
Zk

,∀k ∈ {0, ..N}.
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By setting p0 = pA to the distribution modelled by an RBM and pN = pB to a distribution for
which the partition function can be calculated, ZB/ZA can be computed as follows:

ZB

ZA
=

ZN

ZN−1

ZN−1

ZN−2
...

Z1

Z0
(3.18)

Each Zk/Zk−1 is computed using:

Zk

Zk−1
=

∫

p∗K(v)dv

Zk−1
=

∫

p∗k(v)

p∗k−1(v)
pk−1(v)dv =

®

p∗k(v)

p∗k−1(v)

¸

pk−1

(3.19)



p∗k(v)
p∗k−1(v)

·

pk−1

can be approximated for very close distributions by using Markov Chain Monte

Carlo methods [17].

AIS also has problems, as it only gives a good approximation of ZB/ZA if pA and pB are
close distributions. However, [17] shows that with AIS you can obtain a reasonably good
approximation of the likelihood of the training data on multiple tasks, including the MNIST
handwritten digit benchmark [39].

After having an estimate for the partition function, the probability of each network con-
figuration can be easily approximated using equation 3.8, and from there the marginal
probability of a data vector can be obtained. Displaying the approximate log probabilities
during learning obtained from AIS can be a good indicator of what progress the network
is making during learning, but it is considerably more computationally expensive than the
reconstruction error, making it less used in practice.

Free energy
A simple and efficient way to check if the network is overfitting is by comparing the free
energies of vectors from the training and validation set [35]. If the gap between the two
energies is growing (the ratio between the free energy of the validation data and the free
energy on the training set is significantly grater than 1), then the model is likely to have
started overfitting. Note that the magnitudes of the free energies do not have any meaning,
but only the ratio between them (in which the partition function cancels out).

Definition 3.8 (Free energy).
The free energy of a visible vector v is the energy required for a vector in order to have the same
probability as all the (visible, hidden) configurations that contain v:

e−F(v) =
∑

h

e−E(v,h) (3.20)

A simple way to compute F(v) [35] is:

F(v) =−vT a−
∑

j∈hidden

log

 

1+ b j +
∑

i∈visible

viwi j

!

(3.21)
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3.1.7 Convergence of training

Since RBMs have become popular tools for learning features of data, interest has risen in training
them and in the theoretical guarantees that contrastive divergence can give. CD is a poor
approximation of the gradient of the log likelihood of the data, and in fact it has been shown that
it does not follow the gradient of any function [40].

Maximizing the log likelihood of the data (equation 3.11) is equivalent to minimizing the Kullback-
Lieber divergence between the distribution of the data, P0, and the equilibrium distribution
defined by the model, Pθ∞, where θ are the parameters of the model: K L(P0||Pθ∞). The Kullback-
Lieber divergence gives a quantitative way to measure of the difference between two probability
distributions:

K L(P||Q) =
∫ ∞

−∞
ln

P(x)
Q(x)

P(x)d x (3.22)

Computing Pθ∞ is computationally expensive (it is intractable for real world problems), so what
C Dn does instead is minimizing the difference between two divergence measures:

K L(P0||Pθn )− K L(Pθn ||P
θ
∞) (3.23)

The updates for the RBM parameters (equations 3.15, 3.16 and 3.17) can be derived from equation
3.23 10.

Notice that Pθn depends on the current parameters of the model (the weights), and that the weights
change at each iteration, hence changing Pθn , but contrastive divergence ignores that.

Both of the RBM training algorithms described for (CD and PCD) can diverge from maximizing
the log likelihood of the data, with the point of divergence being particularly dependent on the
learning rate [17].

3.1.8 Real valued units

When using binary units, the input data has to be scaled to have values in between 0 and 1. This
is not a problem for simple dataset, but imposes serious limitations when trying to represent
properties present in real valued input. For example, it is hard to represent with binary units that
the integer value of a pixel is very close to the average of the 8 pixels around it.

Using real valued visible units can solve this problem, and they can be achieved in multiple ways:

10The derivations can be found in [32]. The proof relies on that RBMs being at the intersection of 2 classes of
probabilistic generative models: Products of Experts [41] and Boltzmann machines.

31



3.1 Restricted Boltzmann machines 3 DEEP BELIEF NETS

Gaussian visible units
A solution to replacing stochastic binary units for the visible layer is to use linear units with
independent Gaussian noise. The energy function then becomes:

E(v, h) =
∑

i∈visible

(vi − ai)2

2σ2
i

−
∑

j∈hidden

b jh j −
∑

i∈visible

∑

j∈hidden

vi

σi
h jwi j (3.24)

where σi is the standard deviation of the Gaussian visible unit i.

Learning σi is possible, but it is difficult using CD. A common approach is to normalize the
training data to have zero mean and unit variance on each dimension, and set the variances
to 1 in equation 3.24.

When using Gaussian units, the learning rate has to be set smaller than with binary units
[35], as there is no upper or lower bound on the values that the units can take, and no
bounds on the update at each step in CD / PCD namely:

¬

vih j

¶

data
−
¬

vih j

¶

model
11.

Given that the input data has been normalized to have zero mean and unit variance, the
reconstruction value of a Gaussian visible unit is given by the input from the hidden units
plus its bias (i.e. its activation function is the identity function).

Gaussian visible and hidden units
The hidden units can be made Gaussian in the same way as the visible units. This makes
learning substantially more unstable. The energy function adapts and becomes:

E(v, h) =
∑

i∈visible

(vi − ai)2

2σ2
vis,i

−
∑

j∈hidden

(b j − h j)2

2σ2
hid, j

−
∑

i∈visible

∑

j∈hidden

vi

σvis,i

h j

σhid, j
wi j (3.25)

RBMs that have Gaussian visible and hidden units are very hard to train and unstable [35].

Rectified linear units
Requiring the values of the visible units to be roughly integers can be very useful (think
of pixel values). Binomial units can be used to model noisy integer values [42], but more
recently it has been shown that rectified linear units (ReLu) perform better at the same task
[14, 43].

Definition 3.9 (Gaussian rectified linear units).
Noisy rectified linear units are neurons that use activation function:

max (0, x +N (0,σ(x))) (3.26)

Training an RBM with rectified linear units does not impose any of the difficulties that using
Gaussian units does. For computational reasons, it is common to replace the variance σ(x)
by a constant 1 [35]. Rectified linear units can also be used for training a neural network
in a supervised fashion with backpropagation. This requires a deterministic version of the
function, that can also be used for classification [43].

11In the case of binary units, it is bound between -1 and 1.
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Definition 3.10 (Deterministic rectified linear units).
Rectified linear units are neurons that use activation function:

max(0, x) (3.27)

When used with backpropagation the discontinuity at 0 is being ignored, so the derivative is
taken to be:

f (x) =

(

0 x ≤ 0

1 x > 0
(3.28)

It is suggested in [35] that if for an RBM both hidden and visible units are rectified linear
units then the learning rate required for training might be smaller than the one used for
binary stochastic units in order to avoid unstable weight updates (which can be caused by
the now unbounded activation of the neurons). In [43] the authors report positive results
by using Gaussian visible units and noisy rectified hidden units in when training Restricted
Boltzmann machines.

3.1.9 Sparse hidden units

Forcing hidden units to be sparse can improve learning and helps with interpreting what features
the hidden units have detected, by ensuring that the network does not learn trivial features (such
as a unit learning exactly one pixel) [35]. The hidden units are forced to be sparse by adding
a penalty that ensures that the actual probability that a unit is active (q) is close to the sparsity
target p:

Penalty= BinaryCrossEntropy(p, q) =−p log q− (1− p) log(1− q) (3.29)

The probability of being active is computed using a decaying average:

qnew = λqold + (1−λ)qcur rent (3.30)

where qcur rent is the mean activation probability on the current mini-batch and λ is a regularization
parameters (usually around 0.9). Apart from the usual update of the parameters required by the
training algorithm, the gradient of the penalty term is also used to update the parameters.

Sparse hidden activations can also be achieved using dropout when training a Restricted Boltzmann
machine according to the experimental results reported in [23].

3.1.10 Other methods

Weight decay, momentum and Rmsprop apply to Restricted Boltzmann Machines as usual.

In the case of dropout the model changes to also include a binary vector of independent random
variables r. The length of r is equal to the length of the vector of hidden units, and the value of the
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random variable r j determines if the hidden unit h j is dropped out from the model: if r j = 1 then
h j is kept in the model, otherwise it is dropped out.

The joint distribution of the RBM then becomes (p is the dropout parameter for the hidden layer,
θ the other parameters of the RBM):

P(r,v,h|p,θ) = P(r|p) · P(v,h|r,θ) (3.31)

P(r|p) =
∏

j

pr j · (1− p)r j (3.32)

P(v,h|r,θ) =
1

Z ′(θ , r)
e−E(v,h)

∏

j

δ(h j , r j) (3.33)

δ(h j , r j) =

(

0 r j = 0

h j r j = 1
(3.34)

As usual, Z ′(θ , r) denotes the partition function required for P(v,h|r,θ) to be a probability
distribution.

We can extend this and define the joint distribution to also include a dropout parameter for the
visible layer (Z ′ and σ are defined as before):

P(r1, r2,v,h|p,θ) = P(r1|p1) · P(r2|p2) · P(v,h|r1, r2,θ) (3.35)

P(v,h|r1, r2,θ) =
1

Z ′(θ , r1, r2)
e−E(v,h)

∏

i

δ(vi , r1,i)
∏

j

δ(h j , r2, j) (3.36)

3.2 Deep belief networks

Discovered by Geoffrey Hinton in 2006 [13], deep belief networks use the principle of greedy
layer-wise training to initialise parameters before performing any discriminative or generative
fine-tuning.

Like Restricted Boltzmann machines, deep belief networks are probabilistic generative models
that use latent variables to learn features from the data. Unlike RBMs, they use multiple layers of
hidden units, giving them a more hierarchical structure and allowing them to learn higher level
representations (features of features). Hierarchical representations of objects are natural and
reflect how humans perceive the world (example 3.2).

Deep belief nets were initially introduced using stochastic binary units, but the extensions of RBMs
discussed in section 3.1.8 can be used stacked together to form DBNs.
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Example 3.2 (Levels of representation in objects).
Looking at an image we distinguish multiple hierarchical levels:

1) the pixel level

2) the stroke level

3) the edge level

4) the object level

3.2.1 Greedy pre-training

We have seen how a Restricted Boltzmann Machine can learn features. In a hierarchical model,
we now want to learn the features of these features. We can do this by creating another RBM, for
which the input are the first set of learned features of the data (the state of the hidden units of the
first RBM, when the input is a data vector). This process can be repeated multiple times, allowing
learning of higher and higher layer of features. It can be proved that every time we add another
layer, we improve the variational lower bound on the log probability of generating the data [13].

After creating these RBMs, we have to combine them together. The way the RBMs are combined
together is not completely obvious: for the top layer RBM, we keep the undirected connections
(such that they form an associative memory), but for the lower level ones, we only keep the
top-down generative weights. We still keep the down-up recognition weights, but they are not
part of the model. The recognition weights are the transpose of the generative weights, and will
be used for inference. Figure 3.5 exemplifies the difference between recognition and generative
weights.

Visible layer

Hidden layer

Hidden layer

Hidden layer

Figure 3.3: A deep belief network as a top down generative model.
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The resulting model is a generative one, so we have to ask the question: what distribution is it
modelling and how do we generate data from it?

DBNs model the joint distribution between the observable data (v) and the latent hidden variables
(feature vectors hk):

p(v,h1,h2, ...hn) = p(hn,hn−1) ·
n−2
∏

k=0

p(hk|hk+1) (3.37)

As an interesting observation, we note that DBNs are recursive: removing the visible layer of a
deep belief net with more than 3 layers will result in another deep belief network, with one layer
less.

Improving greedy pre-training for some network architectures

In order to be able to stack 2 RBMs on top of each other, the number of hidden units of the first
RBM has to be equal to the number of visible units of the second RBM. This is required in order to
be able to propagate the hidden activations of the first RBM as training data for the second RBM.
What if we also know that the number of visible units of the first RBM is equal to the number
of hidden units of the second RBM? Figure 3.4 shows such an example. If the RBM model is
symmetric and the hidden activations of the first RBM are the input for the second one, the two
networks are trying to model similar correlations, so the weights learned by the first one can be
used to initialize the weights of the second RBM. This type of initialization also has a theoretical
justification (see appendix C for the details).

W

W T

Figure 3.4: Required network architecture for initializing the weighs of a network to the transpose
of the weights of the network trained before it. The weights in black are the ones after training of

the corresponding RBM, and the ones in red are before training the RBM.

As stated above, this initialization only if the RBMs are symmetric. In their initial formulation,
RBMs are symmetric because both hidden and visible units used the same activation function,
namely the logistic sigmoid. However, recent work [43] has shown that using Gaussian visible
units and noisy rectified linear units can improve performance of RBMs. This type of RBM is not
symmetric, due to the different activations functions. Moreover, it is common to scale the input
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data to an RBM with Gaussian visible units to have zero mean and unit variance in order to not
learn the variance of the visible units using CD. In that case, the input data for the second RBM is
not given by the hidden activations of the first RBM, but by scaled hidden activations. Hence the
second RBM models different correlations, meaning that we should not initialize the weighs of the
second RBM to the ones resulted from training the first network, even though the shapes of the
two networks permits it.

Generating data from a DBN

Because DBNs are generative models, we would like to be able to sample from the distribution
they define. This is done as follows:

1) Get an equilibrium sample from the top level RBM (by performing alternated Gibbs sampling
between the two layers)

2) Starting from the hidden nets of the top layer RBM, use the top down generative weights to
perform a pass through the network

Visible layer

Hidden layer

Hidden layer

Hidden layer

Figure 3.5: Generative versus recognition weights in a DBN. The recognition weights are depicted
in red.

3.2.2 Theoretical justification of the greedy learning

We will now give some mathematical intuition behind layer-wise pre-training12.

Consider a DBN built from 2 stacked Restricted Boltzmann machines. We denote by v the input
dataset, and by h1 and h2 the activities of the hidden layers which the network produces on a
bottom-up pass through the network, when the visible layer of the bottom RBM is set to v.

12A more detailed explanation in appendix C. The explanation here is based on [44].
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Q(h1|v) represents the conditional distribution imposed by the data onto the hidden units of the
first RBM only. p(h1|v) denotes the conditional probability between h1 and v when the entire
model is considered. HP is the entropy of a distribution P with probability density function p:

HP =−
∫ ∞

−∞
p(x) log p(x)d x (3.38)

It can be shown that:

p(v) = K L
�

Q(h1|v)||p(h1|v)
�

+HQ(h1|v)+
∑

h

Q
�

h1|v
��

log p(h1) + log(v|h1)
�

(3.39)

The probability distributions Q(h1|v) and p(h1|v) are different in general, but it can be shown
that they are equal if we initialize the weight matrix of the second RBM to be the transpose of the
weight matrix of the first RBM: W2 =W T

1 .

W2 =W T
1 =⇒Q(h1|v) = p(h1|v)=⇒K L

�

Q(h1|v)||p(h1|v)
�

= 0 (3.40)

Under this assumption, the aim of training the second RBM is to minimize:

HQ(h1|v)+
∑

h

Q(h1|v)
�

log p(h1) + log p(v|h1)
�

(3.41)

When isolating the terms that depend only on W2 we obtain:
∑

h

Q(h1|v) log p(h1) (3.42)

This is equivalent to maximizing the log likelihood of the distribution modelled by the second
RBM, given that its input is given by the output of Q(h1|v). But this is exactly what training an
RBM does when its input is the output of the first already trained RBM!

3.2.3 Classification using deep belief nets

So far we have discussed deep belief nets as generative models. They can be adapted and used
for classification and regression. In order to use deep nets for classification, another layer has to
be added on top of the network. Usually this layer is with a softmax (subsection 2.5). Another
option is to feed the last layer values as input into another classifier, such as a Support Vector
Machine[11].

To train the network, we firstly perform the greedy pre-training, learning one layer of features
at a time. Afterwards, we apply backpropagation to the entire network, in order to learn how to
discriminate between class labels.

This approach eliminates a lot of the problems usually encountered with backpropagation:
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• Backpropagation does not have to learn the features of the data. The task has been taken
over by the greedy pre-training. This solves the problem of the vanishing gradient: the
main aim of backpropagation is to learn the weights of the top (discriminative) layer, as the
weights of the first layers already have sensitive values. If the gradient is too small to affect
the first layers, the impact on learning is not as drastic.

• The algorithm is less likely to get stuck in a bad local minimum of the energy function,
due to the sensible initialization of weights.

• Less labelled data is needed. The greedy pre-training does not require labelled data, as
it is inherently unsupervised. Labelled data is a scarce resource, as obtaining it involves
manual work. Requiring less labelled data is a plus for any algorithm, as it can be given as
input bigger datasets.

• Greedy pre-training causes less overfitting than just using standard backpropagation, as
a lot more information is obtained from the input data (namely the higher level features
which are learned in the first phase of training).

3.2.4 Better generative models: Contrastive wake sleep

The wake-sleep algorithm described by Hinton in [45] can be adapted to DBN, allowing layers to
influence each other, after greedy pre-training. The aim of this is to make the network better at
data generation.

For this algorithm we start differentiating between the generative and recognition weights of the
network.

The main steps of the algorithm are:

1. Use the recognition weights to do a stochastic bottom-up pass. From the layer activities
obtained, adjust the generative weights.

2. Do a few iterations of sampling in the top level RBM and adjust its weights using contrastive
divergence.

3. Use the generative weights to do a top-down pass and use the activities to adjust the
reconstruction weights.

The updates in step 2) are done as explained in subsection 3.1.3.

For steps 1) and 3), the weights between any two layers are adjusted as in the standard wake sleep
algorithm:

∇wi j = εsi(s j − p j) (3.43)

where by s we denote the state of a neuron, and p is the activation probability of a neuron.

39



3.2 Deep belief networks 3 DEEP BELIEF NETS

3.2.5 Improving training in deep belief nets

The methods discussed in section 2 also apply to deep belief nets. Most of them remain unchanged,
as in the case of Restricted Boltzmann machines. However, when dropout is applied to pre-trained
networks, the initialization of the weights of a layer in the DBN changes: instead of taking the
exact value of the weights of the corresponding RBM (as usual with pre-training), it divides the
weights by the dropout constant that will be used when fine-tuning this layer. This is to counter
balance the fact that for testing the weights are multiplied by the dropout: the initial value of the
weights should be of the same scale as the test weights [23].
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4 | Putting it all together: our model

One of the aims of this project is to provide a comprehensive, modular and up to date implementa-
tion of Restricted Boltzmann Machines and Deep Belief Nets. This section describes the model we
used.

We employed the techniques discussed in sections 2 and 3 and were able to compare their
performance.

4.1 Restricted Boltzmann Machine

The training algorithm used for RBMs is Contrastive Divergence. We did implement Persistent
Contrastive divergence but our results confirm that it less stable, as it is more sensitive to the
parameters used for training.

4.1.1 Techniques

The implementation of Restricted Boltzmann machine applies the following methods:

• Mini batch learning

• Momentum / Nesterov momentum

• Dropout

• Rmsprop

• Weight decay

• Sparsity constraints

The training of an RBM is monitored using the reconstruction error on each batch. Despite the
problems described in subsection 3.1.6, it is a useful guideline that can show when training goes
wrong.

4.1.2 Sparsity constraints

Binary cross entropy and activation probability

Our model of Restricted Boltzmann machines allows setting a sparsity constraint, as described in
subsection 3.1.9. In order to be able to use the sparsity cost, we need to calculate the activation
probability of a unit. For binary hidden units it is simple (they are binomial random variables).
Rectified units have been shown to be naturally sparse [43], but their sparsity could be improved
and ensured via a sparsity penalty during training.
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We have defined the sparsity penalty using the binary cross entropy cost (p is the desired activation
probability and q is the running mean average of the activation probability for the neuron) :

q = λqold + (1−λ)qcur rent (4.1)

Cost =−p log q− (1− p) log(1− q) (4.2)

qcur rent is computed by averaging the probability of a hidden unit to be strictly active over a
mini-batch.

In order to apply this penalty for an RBM with rectified noisy hidden units, we have to define the
probability of a rectified linear unit to be active. We choose this to be the probability that the
rectified linear unit is strictly positive:

P(max(0,N(x ,σ(x)))> 0) = P(N(x ,σ(x))> 0) = 1−GaussCDF (0|x ,σ (x)) (4.3)

Mean square error and the expected value

Another alternative for a sparsity cost is similar to the one defined in [46]: the square error between
the desired activation and the expected value of the activation, averaged over the instances in the
mini batch. We extended it to use the running average over multiple mini-batches 13.

q = λqold + (1−λ)
1

m

m
∑

l=1

E(hl
j|v

l) (4.4)

Cost = (p− q)2 (4.5)

Using this cost requires knowing the expected value of the hidden unit given the input from the
visible layer. Appendix D shows the mathematical derivations for computing the expected value of
a hidden unit given the value of the visible unit

E(h j|v) =

p

σ(x)
p

2π
e−

x2

2σ(x) + x GaussCDF





x
p

σ (x)

�

�

�

�

�

0,1



 (4.6)

where x is the linear input received by unit h j from the layer of visible units v:
N
∑

i=1
wi j vi + b j .

The expected value of a rectified linear unit has been helpful also when stacking RBMs for creating
deep belief nets. After training the first RBM, the activations of the hidden units are fed as input
into the next RBM. In theory, the sampled activations should be set as input. However, practical
experiments have shown that it is better to use a deterministic propagation (expected activations)

13This also allows us to apply the gradient to the weights of the RBM, not only to the hidden bias, as described in
[46].
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from the previous RBMs14. Defining the expected value for noisy rectified linear units allows us to
use this heuristic when initializing a DBN after the RBMs have been trained with this type of unit.

Recipe for using sparsity constraints

We have mathematically defined how to use sparsity constraints for rectified linear units. But
how to use them in practice? Our recipe comes from monitoring learning: start with no sparsity
constraints. Monitor the average sparsity after training (or during each mini batch). If it is bigger
than the desired sparsity, use the constraint. When using RBMs for creating a deep belief net,
monitor the sparsity for each of them, and make an individual decision for each of the RBMs,
depending on the average obtained sparsity.

4.2 Deep belief nets

Pre-training in deep belief networks is performed as explained in subsection 3.2.1: RBMs are
trained sequentially, and if we use stochastic binary RBMs and their shapes permit it, the weights
of the RBMs on top are initialized to the transpose of the learned weights of the RBM below. The
number of unsupervised training epochs changes from experiment to experiment, but it is mainly
set to 1.

4.2.1 Techniques

Supervised training is performed using backpropagation with gradient descent. The weight updates
in backpropagation are modulated using:

• Mini batch learning

• Momentum / Nesterov momentum

• Dropout

• Rmsprop

• Weight decay

4.2.2 Pre-training heuristic

During the pre-training of a DBN, we use the same learning rate for each stacked RBM. This is the
norm in the literature, mainly due to the computational demand of discovering the best learning
rate for each RBM. However, we noticed that the optimal learning rate needed for the first RBM to
provide a good reconstruction of the training data was about 10 times higher than the one that we
obtained with cross validation for the unsupervised learning rate of the DBN. We tried to employ a

14See what Yoshua Bengio says here: https://groups.google.com/forum/#!topic/pylearn-dev/cBNms1QEmXc.
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heuristic, in which after cross validation the learning rate of the first RBM is set to be 10 times
bigger than the one cross validation suggested. This heuristic improved accuracy in some of our
experiments, but not all. We found that it did not work well for the MNIST digits (subsection 5)
but improved performance for emotion recognition (subsection 6).

4.2.3 Norm constraints

We did not use an L2 norm constraint on the incoming weights of a hidden units when training
deep belief nets. Rescaling the weights at each step would not allow the network to benefit from
the features that it has learned during pre-training. We performed experiments to see how rescaling
the weights during RBM training with Contrastive Divergence would affect the reconstruction
error and the final classification results. The classification error obtained by training a DBN with
MNIST data by imposing L2 norm constraints during both unsupervised learning and supervised
fine-tuning was 21% with a squared norm constraint of 8 (found out via cross validation)15. This
shows that imposing norm constraints using CD training substantially affects the features learned.
We believe that there are multiple reasons why norm constraints are not a good idea for RBMs
but they work well for other nets with dropout: firstly, CD is a poor approximation of the log
likelihood gradient on which we would like to perform gradient descent (this is not a problem
when using backpropagation, as the exact gradient of the error function is used). Secondly, the
features learned by each RBM are quite different (belonging to different abstraction levels), so it is
possible that each of them requires a different norm constraint. This requires more investigation.

4.2.4 Momentum

We found that momentum plays a crucial role in determining classification performance. Momen-
tum is increased linearly, from a rate of 0.5 to the maximum momentum, determined by cross
validation. The rate of increase of momentum can also have a high impact on the performance of
the network. It is important to try multiple values before settling on a value. Changing the linear
step from 0.1 to 0.01 can boost classification rates by as much as 10%.

4.3 Types of units

Depending on the task, we employed either sigmoid neurons or deterministic rectified linear
neurons for discriminative fine tuning. For training the Restricted Boltzmann machines we used
both stochastic binary units (for the visible and hidden layer)or noisy rectified linear hidden units
and Gaussian visible units for the visible layer. In the case where Gaussian units are used, the data
is preprocessed to have zero mean and unit variance.

15Apart from the L2 norm constraint, the experiment setting were the same as described in subsection 5. It is
suggested in [25] that a decaying learning rate would be beneficial when using L2 norm constraints as we can have a
high learning rate at the beginning of learning without making the weights too big. Decaying learning rates showed an
improvement, but not a substantial one in our case.
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4.4 Practical considerations

So far we have discussed the theoretical considerations and insights behind the techniques used. It
is however useful to discuss some practical details as well, for completeness.

Dropout
When training a Restricted Boltzmann machine, for each data instance two dropout masks
are created: one for the visible units and one for the hidden units. These masks are applied
to the activations of the visible and hidden units and stay the same during contrastive
divergence, thus ensuring that for this data instance only the selected units get updated. The
update equations of the parameters (equations 3.15, 3.16 and 3.17) use the expected values
of activations of units. These expected values have to be 0 for units that have been inactive
for this data instance (as they have been dropped out).

After training, RBMs are used to obtain hidden activations for a specific input (as part of
DBN pre-training) or for reconstructions. The visible pattern or the hidden activations are
not dropped out during reconstruction, so on average the input of a neuron will be higher
by a scale equal to the dropout factor than the input received during training. In order to
balance that, we need to use a new set of weights, that have to take into account that the
network was trained with dropout, so a percentage of the weights were not active when the
features were learned. This is why for RBMs trained with dropout we have 2 reconstruction
weights: one for the hidden units and one for the visible units. Usually, the weight matrix
for the visible vector is just the transpose of the weight matrix for the hidden units. With
dropout, the two weight matrices will differ because the incoming weights to a hidden unit
have to be multiplied by the visible dropout factor, while the incoming weights to a visible
unit have to be multiplied by the hidden dropout factor. These two factors usually differ, as
the hidden dropout is usually set to 0.5 while the visible one is set to a higher value (0.8), in
order to preserve more of the input features.

A similar method has to be applied to the weights of a deep belief net when used for
classification. In order to benefit from the input image, dropout is not used at test time.
Hence weights have to be scaled by the dropout factor corresponding to their input layer:
the weights incoming of the first hidden layer have to be multiplied by the visible dropout,
while the rest have to be multiplied by the hidden dropout factor.

Rmsprop
The learning rate used with Rmsprop has to be one order of magnitude smaller than the
one without using Rmsprop. Training time can be substantially decreased by using Rmsprop
when updating the network parameters. Comparing figures 4.1 and 4.2 we can see how
using Rmsprop helps in speeding up training: without Rmsprop, the network converges in
about 5000 epochs, with Rmsprop, less than 1000 epochs are required.

Softmax
Softmax units are often numerically unstable, especially on float32 architectures, used
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for GPU code. The mathematically equivalent but numerically stable implementation of a
softmax is given by:

m=max
i

x i (4.7)

yi =
ex i−m

n
∑

j=1
ex j−m

(4.8)

Hyper parameters
The hyper parameters were obtained using cross validation. When searched tried learning
rates we tried from the range 10−1 to 10−5. After finding a good interval for the learning
rate of the form (10−k−1, 10−k), we also tried 510−k−1. For maximum momentum, we tried
0.9, 0.95, 0.99. With mini-batches, we tried sizes of 10, 20, 50 and 100.

Early stopping
The idea behind early stopping is elegant and simple: use a validation set to check when the
model is overfitting and when it stops training.

However, this is not easy to check in practice. Our initial implementation stopped training
when the validation error increased 5 consecutive epochs. This technique resulted in the
training ending too soon. We exemplify this using a deep net with 5 layers, trained on
the Cropped Kanade data (as described in subsection 6). The network was trained with
an unsupervised dataset of size 1429 and a supervised set of size 406. Our early stopping
criteria suggested using 618 epochs, but further experiments (shown in table 4.1) suggest
that training more is better. Figure 4.1 shows the validation error displayed by the network
on a validation set16 after each epoch of training when training for 10000 epochs. You can
notice how the in the first 200 epochs the error is decreasing steadily after which it fluctuates
considerably.

It has been suggested [25] that dropout removes the need of early stopping, as it stops
overfitting. It is true that the stopping of learning is no longer “early”, but a stopping criterion
is required. Our experiments find that even though dropout allows the network to be trained
more without overfitting happening, training for too many epochs can still cause overfitting
(this can be seen in table 4.1, where the network has been trained with a hidden dropout of
0.5 and a visible dropout of 0.8).

The problem is usually dealt with by trial and error and plotting the training versus validation
error. However, due to the multiple configurations that one can try when optimizing a deep
belief net, we wanted to avoid having to manually oversee and check the number of training
epochs required for supervised fine tuning. For this we tried multiple approaches. The first
one was to train the network for a fixed number of epochs and record the best weights on
the validation set, and at the end of training keep these weights as the network weights.
This very greedy approach did not perform as well as expected. We found that in this case

16The training set size to validation set size ratio is 9:1
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the network overfits to the validation set, without maximizing performance on the test set.
Another method we could have tried is to increase the number of consecutive epochs on
which the validation set error is increasing. We decided to not do this for 2 reasons: firstly,
we needed to decide on a number of consecutive epochs of increased validation error after
which to stop training. Making this choice had the same disadvantages as choosing the
number of epochs to train the network for, and seemed arbitrary. Secondly, as figure 4.1
shows, the validation error can fluctuate considerably. The fact that it did not decrease
for a given number of consecutive epochs does not mean that we should not stop training,
because on average the prediction accuracy is getting worse.

We also tried the technique based on [44] which doubles the maximum number of iterations
performed during training every time the validation score improves the best validation score
found so far. We found that this works best out of all the heuristics that we tried. However,
this technique has a significant downsize: it requires checking the validation error after each
mini batch, not only after each epoch. This increases the computational demand significantly,
adding an overhead to the training time. Moreover, any technique that requires a validation
set in order to decide when to stop training decreases the size of the training set, hence
affecting accuracy by using less training data.

In the end we settled for a hybrid approach: we used the validation technique that doubles
the training epochs when the accuracy on the validation set is the biggest obtained so far
to give us an idea of when training could be stopped. We record the number of epochs
the validation technique suggests for training, we double it and train the network for that
number of epochs. If the test accuracy decreases, we stop. If not, we double the number of
epochs again and repeat the procedure.

Figure 4.1: Validation error on 10000 epochs on a network trained without Rmsprop.
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Figure 4.2: Validation error on 1000 epochs on a network trained with Rmsprop.

Number epochs Test accuracy

618 40.2 %
1000 54.9 %
2000 62.2 %
5000 65.8 %
10000 63.4 %

Table 4.1: Relation between test accuracy and number of training epochs when not using Rmsprop
on a network built to classify emotions.
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5 | A standard benchmark: recognizing hand-
written digits

We will now verify our model through a standard benchmark for machine learning algorithms: the
MNIST dataset of handwritten digits17. This allowed us to make graduate improvements to our
model and compare to well known results. The input images are given in a 28 × 28 resolution.
The dataset is quite big, with 60000 training and 10000 testing cases, permitting us to focus on
the core algorithms developed without having to worry about the quality and the size of the data
given.

Figure 5.118 shows examples from the dataset, in order from 0 to 9. Looking at the digits it
becomes clear that classification is non trivial, as the digit 5 could easily pass as a 3.

Figure 5.1: Digit examples from the MNIST dataset.

5.1 Learning features

Figure 5.3 exhibits 100 of the weights that are learned by a RBM when trained with 2s in the
MNIST dataset. All units learn the general figure of a 2, but each unit is specialized for a specific
feature that can be seen in the slight differences between the intensities of the weights for different
features. For example looking at the first weight vector we can observe that the hidden unit is more
likely to be active when the lower stroke of the 2 is curly and has a specific shape (determined by
the high intensity white pixels). Figure 5.2 exemplifies how the incoming weight vector is used to
determine the probability of a hidden unit being active. The black pixels correspond to an input of
magnitude 0 and the white pixels corresponding to a magnitude of 1. The dot product in equation
3.13 can be seen as an element-wise product (Hadamard product) between the weight vector and
the input, followed by a sum. Only the non-zero elements of the input contribute to the sum that
will be the input of the sigmoid function. The overlap between these non-zero elements and the
strong incoming weights (corresponding to the feature the neuron has learned) determine if the
unit will be active or not, as a high value of the weight will have a large effect on the sum. Hence
if the input vector contains the feature the hidden unit has learned during training then there is a
higher probability of the unit to get active when creating the hidden representation of the input.
This is why the units of RBMs are often called “feature detectors”.

While figures 5.3 and 5.4 show the weights learned by an RBM trained with CD, figures 5.5 and
5.6 show the weights learned by an RBM trained with Persistent contrastive divergence. We note

17The dataset can be found here [39] together with the results obtained by various techniques.
18All the figures presented in this section have been smoothed using interpolation for presentation purposes.
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Figure 5.2: Pictorial representation of how to obtain the activation of a hidden unit in a RBM.
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denotes the Hadamard (elementwise) product between two matrices.
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that since weights can have negative entries, the pixel intensity is not a direct representation of
the magnitude of the weight, as the weight sign influences the pixel as well.

Figure 5.3: The incoming weights of 100 of the 500 hidden units of an RBM trained using
Contrastive Divergence with instances of the digit 2 from the MNIST dataset. Weights are

reshaped to have the same shape as the image inputs for visualisation purposes.

Figure 5.4: The incoming weight vectors of 100 of the 500 hidden units of an RBM trained using
Contrastive Divergence with instances of all 10 digits in the MNIST dataset. Weights are reshaped

to have the same shape as the image inputs for visualisation purposes.
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Figure 5.5: The incoming weight vectors of 100 of the 500 hidden units of an RBM trained using
Persistent Contrastive Divergence with instances of the digit 2 from the MNIST dataset. Weights

are reshaped to have the same shape as the image inputs for visualisation purposes.

Figure 5.6: The incoming weight vectors of 100 of the 500 hidden units of an RBM trained using
Persistent Contrastive Divergence with instances of all 10 digits. Weights are reshaped to have the

same shape as the image inputs for visualisation purposes.
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As RBMs are generative models, we can use them to sample from the distributions they model.
After training, we can start with a random pattern and let a Markov Chain run through the network.
We first show the results obtained after training only with only digit the 2, and then we exemplify
the same results when training the RBM with all 10 digits.

Figure 5.7 shows how a Restricted Boltzmann Machine trained only with 2s will reproduce the
only digit it has been exposed to during learning even from a random pattern. This reconstructed
digit is very similar to the average (or even close to ideal) representation of a 2. Figure 5.8 exhibits
what happens when a random pattern is fed as input to an RBM that was trained with all digits.
The reconstructed image seems to be a fuzzy overlap between the digits the network has been
exposed to.

Reconstructions of digits appear to be very accurate: from figure 5.9 we see that the original shape
of the digit persists but its prominent features are “softened”, because this particular instance of
the digit 7 is slightly different than the average one the model has learned when trained with
images of the 10 digits in the dataset. We note that the input fed to the network (displayed in
the left subfigure of figure 5.9) was not part of the training set of the RBM. Figure 5.10 shows
how the 7 gets distorted into a 2 when fed as input to a network trained only with the 2s in the
dataset. The network has never been exposed to a 7 before, and it thinks that the “world” is only
made of 2s, because that is what it has learned. It then tried to fit the input to what it knows,
so the reconstruction has the shape of an incomplete 2. This is similar to a human experience
during learning: when humans have to deal with something unknown to them, they try to find
similarities with what they have seen before in order to understand what they could do with the
new encountered object, problem, situation.

5.2 Learning labels

For the discriminative task on MNIST we used a network with 5 layers, the last one being the
softmax classification layer. The dimensions of the layers were as follows: 784 (dictated by the
size of the input images), 1000, 1000, 1000 and 10 (required by the number of classes).

Table 5.1 shows classification results obtained on MNIST. The experiment setting was as follows:
Nesterov momentum was used for all experiments. Momentum always starts at 0.5 and increases
in steps of 0.01 until it reaches 0.95 (both for pre-training and fine tuning). The mini batch
size is 2019. The learning rate was multiplied by (1.0−momentum). All networks were trained
using Rmsprop, to increase the speed of learning. Dropout was supervised fine tuning, but not
for pre-training. For supervised training we used a dropout of 0.8 for the visible units and 0.5
for the hidden units. No weight decay was used in any of the experiments. When the units of
the RBM were stochastic binary, the activation function used was sigmoid, both for RBM training
and for supervised training. When Gaussian units were used for the visible units of RBMs, we
scaled the data to have zero mean and unit variance and used the identity activation function. For
the noisy rectified linear units we used the activation function described in definition 3.9. When

19The mini-batch size is an important parameter that can highly influence classification accuracy.
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Input pattern. Visible reconstruction.

Figure 5.7: The visible reconstruction of a random pattern using an RBM trained using Contrastive
Divergence with 2s from the MNIST dataset.

Input pattern. Visible reconstruction.

Figure 5.8: The reconstruction of a random pattern using an RBM trained using Contrastive
Divergence with samples from all 10 digits.

Input pattern. Visible reconstruction.

Figure 5.9: The reconstruction of an instance of the digits 7 using an RBM trained using
Contrastive Divergence with instances of all digits.

Input pattern. Visible reconstruction.

Figure 5.10: The reconstruction of an instance of the digits 7 using an RBM trained using
Contrastive Divergence with only instances of the digits 2.
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noisy rectified linear units are used for training an RBM, the deterministic version is used in the
supervised training (see definition 3.10).

Figure 5.11 shows 10 digits which were misclassified by our model, together with the predicted
and correct labels. While some of the digits can be easily classified by a human (for example, the
first digit is clearly a 9 20), some of them are hard to label. It is unclear what the third and fourth
digits should be, and the guess of the network is not far from the guess of a human.

Our results are comparable with similar results obtained when performing classification on MNIST.
We note that convolutional networks perform better on this task, but convolutional nets directly
encode information about the image topology in their architecture.

We conclude by saying that these results could be improved by spending more time tuning the
parameters via cross validation (learning rates, momentum, mini batch size and training epochs),
but due to the limited time we decided to focus on emotion recognition, described in next section.

Unsupervised
learning rate

Supervised
learning rate

RBM
unit types

Supervised
epochs

Unsupervised
epochs Error

0.01 0.05 Stochastic binary 100 1 1.4%
0.01 0.05 Stochastic binary 100 10 1.3%
0.01 0.05 Stochastic binary 500 1 1.2%

0.005 0.005 ReLu 100 1 1.55%
0.005 0.005 ReLu 200 1 1.15%
0.005 0.005 ReLu 300 10 1.1%

Table 5.1: Classification results obtained on MNIST. Details about the experiments are found in
text.

Actual label 9 4 2 5 3 6 2 8 8 1
Predicted label 8 2 7 3 7 0 1 2 2 8

Figure 5.11: Examples of misclassified digits from MNIST.

20The network probably sees it as an 8 due to the little gap between the bottom left curl of the 9 and the circle on top.
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6 | Emotion recognition

We move on to discuss the application of deep belief networks for emotion recognition in images
of humans21.

We performed the emotion recognition experiment with various settings. We first tried to combine
multiple databases together in order to achieve a substantially large dataset (subsection 6.2) . We
then focused on one bigger and more comprehensive database, namely Multi PIE. We used it to
perform emotion classification in various settings, described in detail in subsection 6.3.

6.1 Data preprocessing

Due to the various origins of the databases, creating one single dataset required preprocessing,
including face detection and histogram equalization. For face detection we used the method
known as the Viola Jones classifier [47]. We used the implementation found in the OpenCV library
[48]. The algorithm not only allows you to see if a face is present in the picture, but also detects a
rectangle where it thinks the face might be (according to the facial features in the area). We used
this rectangle to crop the images in certain datasets, to remove the noisy background information,
which is irrelevant for emotion classification. Another preprocessing technique used ensures that
the histogram of pixels is spread instead of very skewed, hence improving the image contrast 22. We
found that equalization substantially improves results (table 6.2). An overview of the equalization
methods that we used in this project can be found in [49]: depending on the dataset, we used
either global equalization or Contrast Limited Adaptive Histogram Equalization (CLAHE). Figure
6.1 displays sample faces from the used datasets before and after histogram equalization together
with an example of a face detected by the Viola Jones classifier. An important preprocessing step
in facial emotion recognition alignment. For the network to easily learn what features correspond
to different emotions, it is best to ensure that different facial parts are aligned, and present in the
same area of each image. A way to visualise this is by thinking of overlapping all the images in
the dataset and ensuring that the nose, eyes, mouth will also overlap between all posing subjects.
We did not perform face alignment ourselves, but the faces in the Multi PIE dataset and Cropped
Kanade dataset were already aligned before we used them for our experiments.

6.2 Cohn-Kanade, Jaffe and other databases

The Cropped Cohn-Kanade database contains 407 images labelled with 7 basic emotions: anger,
disgust, fear, happiness, sadness, surprise and neutral. All subjects are depicted from frontal pose.
We used a 40 × 30 resolution of the data, which is small enough in order to make training feasible

21Emotion recognition can also be done from sound, and that in itself is an interesting topic but not in the scope of
this paper.

22The idea of histogram equalization came from the problem face detection. It is recommended that images are
equalized before given as input to the Viola Jones classifier.
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Face detection using the Viola Jones classifier. Histogram equalization of pixels. The original image
is presented on top of the equalized image. The

images are taken from the following datasets(left to
right): Multi-PIE, Cropped Kanade, Jaffe and YaleB.

Figure 6.1: Visualization of image preprocessing techniques used before training a classifier to
label emotions.

(in terms of computational capacity) but big enough for the network to be able to extract features
form it. We used it in conjunction with other unlabelled datasets. An overview of the datasets is
provided in table 6.1.

The Cohn Kanade database can be used to exemplify the power of image reconstruction by RBMs
(figure 6.3). It is interesting to notice that some particular features of the face are ignored: it is
uncommon for a person to have hair on their forehead (fringe), so most of the training data did
not have that feature. As a consequence, in the reconstruction the fringe does not appear and the
forehead is empty. Figure 6.4 emphasises the effects of Rmsprop on feature learning: features are
substantially more prominent when using this technique. As a consequence we employed Rmsprop
for both supervised and unsupervised learning in the experiments below.

Table 6.2 determines the classification accuracies obtained when training a deep belief net with
the labelled Cropped Cohn Kanade dataset. The network is capable of classifying emotions at an
accuracy of 80% given a dataset of size of only 407 images. The experiments were performed
on a deep belief net with 3 hidden layers of 1500 hidden units and a softmax layer of 7 units.
The dropout rates were 0.8 and 0.5 for the visible and hidden layer, respectively23. Rmsprop and
Nesterov momentum were used both for RBM and DBN training. The learning rate is multiplied by
1−momentum, thus achieving an effect similar to a decaying learning rate, because momentum
grows linearly before achieving a maximum of 0.95. Rectified linear units were used for all
reported experiments. The number of pre-training epochs is 20 and the number of supervised
epochs is 2000. We used the heuristic described in 4.2.2 for this set of experiments, thus the
learning rate of the first RBM is set to be 10 times bigger than the one of the other RBMs, but
capped to 1.0. When we used only the Cohn-Kanade dataset the supervised learning rate was 0.01

23Without dropout the accuracy drops by 20%.
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and the unsupervised learning rate was set to 0.05. For the Cohn-Kanade + Jaffe experiments
we used different unsupervised learning rate: 0.01 and we used the mean square error sparsity
constraints we introduced in 4.1.2 with a desired sparsity of 0.01 and a regularization parameter
of 0.001. We note that the Viola Jones classifier did not detect all faces from the Jaffe dataset,
so we were able to use only 200 of them when we trained the classifier with the images cropped
around the face. We did not use the labels from the Jaffe dataset, we used it only for unsupervised
training. Adding the Nottingham and YaleB datasets for unsupervised pre-training gave similar
results as Jaffe together with Att, so we do not report them here.

Database Labelled Sexes Reference

Cropped Cohn-Kanade 3 Both [50]
Jaffe 3 Female [51]

Cropped Yale 7 Both [52]
Nottingham 7 Both [53]

Att 7 Both [54]

Table 6.1: Databases used for emotion recognition.

Figure 6.2: Images from the Cropped Kanade database. Emotions displayed (left to right): anger,
disgust, fear, happiness, sadness, surprise and neutral.

Face from Cropped Kanade database. Visible reconstruction.

Figure 6.3: Reconstruction of a face from the Cropped Kanade database, using a Restricted
Boltzmann machine.
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RBM weights without Rmsprop. RBM weights with Rmsprop.

Figure 6.4: Visual comparison of weights of an RBM trained with and without Rmsprop.

Databases for unsupervised training Preprocessing Accuracy

Kanade None 72.0 %
Kanade Equalization 81.3 %

Kanade, Jaffe, None 70.8%
Kanade, Jaffe Face detection 76.8 %
Kanade, Jaffe, Equalization, Face detection 81.7 %

Kanade, Jaffe, Att Equalization, Face detection 81.7 %

Table 6.2: Accuracy obtained when training a deep belief net with various unlabelled datasets.
The only labelled dataset is the Cropped Kanade dataset. Details found in text.

6.3 Multi PIE

We will now move to describing another set of experiments, involving the Multi PIE database. The
database comes with 22050 images, labelled with 6 emotions: neutral, surprise, squint, smile,
disgust and scream. Moreover, the database has labelled the subjects (147 in total), the pose (5
in total) and the illumination conditions (5 in total) in which the images were taken. Figure 6.5
displays 3 different subjects, displaying each of the labelled emotions. In order to make it clear
how emotions are depicted, we kept the same pose and illumination condition within subjects, but
changed them in between different subjects.
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Figure 6.5: Images of subjects from the Multi PIE database. Emotions (from left to right): neutral,
surprise, squint, smile, disgust, scream. Each subject is shown in a different pose and different

illumination.

We performed emotion classification using the Multi Pie database in different settings:

• Random data split: training and test data contain all subjects, poses and illuminations

• Different subjects: test the network with subjects that were not in the training set

• Different illuminations: train the network with 4 of the 5 illumination conditions, test with
the 5th

• Different poses: train the network with 4 of the 5 poses, test with the 5th

• Missing data: test the network with images containing contiguous patches of missing data.

The network architecture for these experiments had 3 hidden layers of 1500, 1500 and 1500 units
and a softmax layer of 6 units. The unsupervised learning rate was 0.005 and the supervised
one was 0.00124. Dropout was used, with 0.5 in the hidden layers and 0.8 in the visible layers25.
Rectified linear units were used for the hidden units. During pre-training Gaussian visible units
were used, with the data being scaled to have zero mean and unit variance. Unless specified in
the description of a particular experiment, equalization was not used. Rmsprop was used both for
RBM and DBN training. Nesterov momentum was used, with momentum increasing linearly after

24We tried different learning rates for each experiment, but these ones performed best in all of them. We noticed a
high sensitivity of the network to the learning rate.

25For this problem, hidden dropout did not perform well when using sigmoid units instead of rectified linear units.
However, adding hidden dropout to rectified linear units improved performance
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HHH
HHHT

P
neutral surprise squint smile disgust scream

neutral 728 1 4 0 0 0
surprise 1 729 0 1 0 2
squint 1 0 729 2 0 0
smile 0 0 1 728 4 0

disgust 0 0 0 3 729 0
scream 0 0 0 0 2 732

Table 6.3: Average confusion matrix obtained by training splitting data in folds with a ratio 4 to 1
(train to test). Average classification rate: 99.3%.

each epoch of training until it reaches 0.95, after which it is kept constant. Both L1 and L2 weight
decay regularization were used, with a penalty hyper parameter of 0.001 in both cases.

6.3.1 Random data splits

This experiment randomly partitions the dataset into the training and testing data such that the
ratio between the number of instances in the two sets is 4 to 1. The confusion matrix is displayed
in table 6.3. The classification accuracy obtained was 99.3%. The only preprocessing technique
used was global histogram equalization.

6.3.2 Different subjects

To test the prediction accuracy of the network on a subject it has never seen before, we performed
an experiment which ensures that the subjects which appear on the training data will not be in the
testing data. With no preprocessing on the input, the classification accuracy for this experiment
was 91.3%. Doing the same experiment with global histogram equalization on the input images,
the accuracy increased, but not substantially, reaching 91.7%.

6.3.3 Different illuminations

We tested the network with instances under a different illumination setting than the ones it was
exposed during training. We did this for each of the 5 illuminations and averaged the results: the
classification rate was 89%. Most folds gave very good performance (such as 94%), apart from
one (corresponding to illumination setting number 3, which gave an accuracy of 60%). Table 6.4
shows the confusion matrix obtained by averaging out the 5 confusion matrices obtained for each
test-train illumination pair. Table 6.5 shows the confusion matrix obtained when training with
illumination settings 1, 2, 4 and 5 and testing with illumination setting 3. When equalizing input
images the different illuminations play less of a role, resulting in a substantial increase in accuracy:
from 89% with no equalization to 94.8% with global equalization performed on the input data.
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The average confusion matrix obtained is shown in table 6.6. We note that even with equalization,
the performance obtained by illumination condition 3 is decreased compared to others, giving a
classification score of 88%.

HH
HHHHT

P
neutral surprise squint smile disgust scream

neutral 671.8 5.2 49.2 2.6 6.2 0
surprise 34.8 651.0 23.6 5.8 13.2 6.6
squint 12.4 1.6 708.0 4.4 8.4 0.2
smile 30.6 1.4 84.2 587.2 30.8 0.8

disgust 22.2 3.8 55.6 8.2 642.2 3.0
scream 20.2 13.0 26.8 6.2 17.2 651.6

Table 6.4: The classification accuracies obtained when testing with an illumination to which the
network was not exposed to during training. Average classification rate: 89%.

HH
HHHHT

P
neutral surprise squint smile disgust scream

neutral 642 1 92 0 0 0
surprise 171 432 105 9 6 12
squint 35 0 700 0 0 0
smile 151 2 404 126 49 3

disgust 109 9 265 6 339 7
scream 101 52 134 30 51 367

Table 6.5: Confusion matrix obtained when testing with illumination type 3 and training with
illuminations 1, 2, 4, 5. Experiment classification accuracy: 59.8%.
H
HHH

HHT
P

neutral surprise squint smile disgust scream

neutral 702.0 7.0 23.8 1.0 1.2 0.0
surprise 4.0 716.8 4.2 1.0 5.4 3.6
squint 14.8 7.0 701.2 6.0 5.2 0.8
smile 5.8 10.0 19.8 665.0 34.0 0.4

disgust 10.4 13.6 4.4 22.6 679.8 4.2
scream 1.6 5.4 1.6 0.2 8.6 717.6

Table 6.6: Average confusion matrix obtained when equalizing the input. Average obtained
accuracy is 94.8%.

6.3.4 Different poses

Another robustness test involves testing the network with a pose it has not been presented during
training. Figure 6.6 displays the 5 different poses we used from the MultiPie dataset. Table 6.7
gives the classification results for each of the 5 folds, in 2 different experiments: in the first one,
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unsupervised pre-training is done as usual, with only the training data but in the second one
we used the testing data in the unsupervised pre-training. This increased the accuracy of our
classifiers.

Pre-training with train data Pre-training with train and test data

Pose 0 16.8% 47.9%
Pose 1 56.3% 44.2%
Pose 2 45.7% 46.2%
Pose 3 47.3% 43.6%
Pose 4 16.8% 32.7%

Average 36.5% 42.9 %

Table 6.7: The classification accuracies obtained when testing with a pose to which the network
was not exposed to during training.

Figure 6.6: The 5 different poses displayed in the Multi PIE database.

6.3.5 Missing data

In order to assess the robustness of our emotion recognition network we tested it with images in
which we added 5 × 5 squares of black pixels at random positions in the image. The training was
performed with images from the original Multi PIE dataset. The train to test ratio was set to 3:1.
No hidden dropout was used for this experiment. With unsupervised training for 20 epochs and
supervised 2000 epochs, we obtained an accuracy of 91.5%. When we used 10 × 10 the accuracy
dropped to 65%. This is expected giving that we are depriving the network of 1/12 of the input
image during test time. Figure 6.7 shows example test images used. We note that there was no
specific trend in the error performed by the network, the errors were equally distributed to all the
labels.

Figure 6.7: Test images from the missing data experiment.
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Figure 6.8: Facial areas according to contribution to the classification error in the missing data
experiments. A stronger colour indicates a higher error when the network was deprived of the
image pixels in the corresponding area (by making the pixels black). We notice that the most

important area is around the mouth, followed by the region between the eyes (which is helpful to
distinguish frowning and screaming).

Figure 6.8 visually illustrates the results from another set of experiments. Instead of randomly
choosing a 10 × 10 square from which to omit the data, we chose one of the 12 squares for which
both coordinates are multiples of 10, thus forming a partition of a 40 × 30 image. We tested the
network with these images and created a heat map according to the average classification error
obtained when that particular area was omitted from the input pixels (by setting the pixel value to
0). This allows us to see the areas which contribute most to the emotion recognition process. As
expected, the mouth contains the most information used in the classification process. Figure 6.8
shows that the area between the eyes also exhibits features required for classification and so do
the cheekbones.

6.4 A wild dataset

The labelled datasets we have used so far (Cropped Cohn Kanade and Multi PIE) depict humans in
highly confined environments and are aligned. We wanted to assess our method on another type
of dataset. For this we used one available on a website which hosts machine learning competitions,
Kaggle 26. The dataset used 27 had input of size 48 × 48 with a training set of size (details about

26http://www.kaggle.com/
27https://inclass.kaggle.com/c/facial-keypoints-detector/data
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Experiment Equalization Accuracy

Random data splits 3 99.3 %
Different subjects 7 91.3 %
Different subjects 3 91.7 %

Different illuminations 7 89.0 %
Different illuminations 3 94.8 %

Different poses 3 36.5 %
Different poses, unsupervised pre-training with test data 3 46.3 %

Missing data 5 × 5 7 91.5%
Missing data 10 × 10 7 65 %

Table 6.8: Comparison of experiments performed on the Multi PIE database.

the dataset can be found in [55]. The training instances are labelled with one of 7 emotions: angry,
disgust, fear, happy, sad, surprise, neutral. This dataset is substantially harder to classify than the
ones we have used before, as it is not aligned, and sometimes the images do not contain the entire
face of the subject. Moreover, some of the input images do not contain a face at all or contain a
distorted face. We cannot compare directly with the results reported, as we do not have access
to the labels of the testing set provided for the competition (they were not made public by the
organizers)28. However, we used the training data that is publicly available for both training and
testing by partitioning it such that the train to test ratio is 4. We obtained an accuracy of 69.6%,
by training a deep belief net of 3 hidden layers each of size 1500 (the visible layer had an input
size of 2304), with a supervised learning rate of 0.01. We used rectified linear units, rmsprop and
Nesterov momentum (increased linearly up to 0.95). The percentage of hidden units dropped
out was 50%, and the percentage of visible units dropped was out 20%. For pre-training we used
Nesterov momentum, Gaussian visible units and Noisy rectified linear units, with a learning rate
of 0.05, for only 1 epoch. The mini-batch size used was 20. When we equalized the images, the
accuracy increased to 79.3%.

We note that while training with this dataset leads in a decrease in performance accuracy it is more
suitable to use for a real life application (such as detecting emotions from faces presented in a web
cam).

6.5 Emotion similarity

This section describes the experiments we have performed in order to find out if we can train a
network to distinguish between emotions without having to label them. It was shown in [43] that
Restricted Boltzmann machines can detect features of faces in images and that a twin network
architecture can be used to determine if the two images represent the same person. We will use
a similar architecture for our emotion experiments. Firstly we replicate their experiment on the

28https://inclass.kaggle.com/c/facial-keypoints-detector/forums/t/4053/test-set-labels
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Figure 6.9: Images from the dataset used in the Kaggle competition for emotion recognition.

aligned Multi-PIE database and then describe the emotion experiments that we have performed.
To our knowledge no one else has performed such an experiment before.

When computing data features with the RBM for the cosine distance, we used the activations of the
hidden units not the sampled values, to avoid sampling error. As the network is made of rectified
linear hidden units, we used the expected value we defined in appendix D.

The network architecture we used is similar to the one described in [43]: we train a Restricted
Boltzmann Machine with the dataset of faces. We then replicate the Restricted Boltzmann machine
and use it in order to find the hidden representations (features) of both our inputs. The cosine
similarity between the two vectors is used to decide if they represent features of the same face by
creating a simple learning unit that we can train via backpropagation. This learning unit has one
input x , a weight w and one bias b and its output is 1

1+ewx+b .

The entire architecture is shown in figure 6.10. The RBM used has 1000 hidden units (noisy
rectified or sigmoid) and 1200 visible units (Gaussian or sigmoid). We tried 500, 700 and 1000
and 2000 hidden units, but using 1000 units gave the best results. We trained the network using
Nesterov momentum and Rmsprop. When we performed the discriminative fine tuning with
backpropagation, we set the parameters of our model to be both w and b 29 and the parameters
of the RBM that affect the error (the weights and hidden bias vector). We then used stochastic
gradient descent with classical momentum to update them. We found that Rmsprop does not
increase performance for this type network, so we did not employ this technique during training.
The error used to compute the gradients with respect to the parameters was the square of the
difference between the predicted output and the true label (namely 0 if the two depicted people
are different, 1 otherwise). As an error measure we used binary cross entropy, as it performed
slightly better than the square difference between the correct labels and the output probability. No
dropout was used in the RBM training30.

We used trained the RBM for 50 epoch and the supervised network for 500 epochs (we also tried
1000 epochs, but the precision did not increase substantially as to justify the extra computational
power used). Maximum momentum was set to 0.95. It is interesting to notice that in some cases
noisy rectified linear hidden units were outperformed by sigmoid units (table 6.9). For networks

29At the beginning of training, w and b are initialized to 0.
30We experimented with using dropout in this setting, but it decreased performance.
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with sigmoid units the supervised learning rate was 0.001 and the unsupervised learning rate was
0.005. For networks with noisy rectified linear units the rates were 0.005 and 0.0005, respectively.

First image Second image

Features Features

x Cosine similarity

p Output probability

RBM RBM

1
1+ewx+b

Figure 6.10: Network architecture used for similarity detection.

6.5.1 Same person

As a first step into our experiments, we made a model capable of distinguishing between subjects
depicted in images. The applications of such a model vary from judicial systems to social networks:
it can be used for automatic subject matching in criminal databases, as well as face tagging in a
social network (some social sites provide this functionality today via suggestions, but the accuracy
can be improved).

In order to determine if two faces are the same of not, we decided to use the threshold of 0.5:
hence if the probability outputted by the network is bigger than 0.5, we classify the two faces as
the same, if not as different. By looking at the confusion matrices we saw that the this threshold is
the correct one to take, as the network does not tend to err in one particular direction (ie. the
number of faces wrongly classified is the same for both labels - different or same).

Experiment a
The Multi PIE dataset comes as a set of pictures, without them being split into pairs, which is
what we required for these experiments. When we performed the splitting, we decided to do
it such that each image from Multi PIE is part of exactly 2 pairs in our constructed dataset.
Before constructing the pairs, we randomly shuffled the data, as to avoid more similarity in
the images caused by how the Multi PIE dataset is structured (the images of subjects in the
same poses and illuminations are grouped together). We trained the network by splitting
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the data into training and testing making a 4 to 1 ratio. When constructing the training
and testing sets we ensured that the network is exposed to the same number of instances in
which the subjects are same person and in which they are not. This ensures that the network
is not biased towards any of the classes due to increased exposure during training. There
were no other special arrangements made, and the network sees all the subjects at least once.
When training the RBM, we used the concatenation of training pairs from the constructed
dataset.

Experiment b
In this experiment we ensured that the testing set did not contain any image of a subject
that was in the training set. For that we split the images according to subjects they depict,
and define the two sets such that no subject appears in both. We partitioned the training
data as in the first experiment, to ensure that half of the training and testing sets contained
positive examples (of pairs of pictures which represent the same person) and half of the
images represented negative examples (of pictures which represent different individuals).
The train to test ratio was kept to 4, in order to be able to make a fair comparison between
experiments. As before, a particular image was part of two image pairs as part of either a
training pair instance or a test pair instance.

Experiment c
In this experiment we compared the networks test ability when the test subjects are not part
of the same database as the database the network was trained with. In order to do so we
trained the network as before with the Multi PIE database, but tested it with subjects from
the Cropped Yale database [52].

Table 6.9 shows the classification results of the experiments described.

Experiment Train Database TestDatabase Hidden Units Accuracy

Experiment a Multi PIE Multi Pie ReLu 86.0 %
Experiment b Multi PIE Multi Pie Sigmoid 82.5 %
Experiment c Multi PIE Cropped Yale ReLu 65.0 %

Table 6.9: Results from the classification task of determining if the people displayed in 2 images
are the same or not.

6.5.2 Same emotion

Taking the experiments one step further we decided to train the network to detect if two emotions
are the same. The network we have built is able to determine with high accuracy if 2 people are
displaying the same emotion.

A legitimate question to ask would be: why do this? We already have a good classifier that is able
to detect emotions. In order to see if two people display the same emotion we could train the
classifier, classify both images and see if the predicted labels are the same. There are multiple
reasons for which we decided to build this model and construct this experiment:
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• Robustness: in the model specially designed to differentiate emotions adding another
emotion does not require changing the network architecture, while doing so in the DBN
recognition network would require changing the last softmax layer by increasing the number
of units by 1. This requires reassessing the number of hidden layers and the number of
hidden units in each layer. Changing the learning rates and momentum would require cross
validation.

• The model we employ is probabilistic, it gives a meaningful probability that reflects its belief
that the two displayed emotions are the same. Just checking if a classifier predicts the same
label for both images does not define a confidence measure in the result. However, if the
classifier used is probabilistic (such as DBN with a softmax layer), we can give a confidence
score. Assuming that the events of the network making a mistake on two different images
are independent, the confidence score can be defined as the product of the two classification
probabilities given by the emotion recognition network. Nonetheless, the resulting accuracy
will not be meaningful, because a deep belief net with high prediction accuracy (like the one
described in subsection 6) tends to be very confident with in the results it gives, even if it
makes a mistake. The product of such two numbers will always be very close to 1, providing
almost no information.

• Train / test time is substantially decreased for this smaller network.

• As we used the same model to distinguish between subjects (subsection 6.5.1) we can
compare the performance on the two tasks.

Experiment a
This experiment tests the ability of the network to distinguish between emotions if the input
images represent the same subject.

Experiment b
No constraints on the subjects identity was set in this experiment. Example input images are
shown in figure 6.11. It is interesting to note that the accuracy did not decrease substantially
in this experiment.

The classification results obtain in these experiments can be seen in table 6.10. All reported results
use rectified linear hidden units.

Experiment Accuracy

Experiment a 92.6 %
Experiment b 90.5%

Table 6.10: Results from the classification task of determining if the people displayed in 2 images
are the same or not.
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Figure 6.11: Example of inputs presented when detecting if the emotions are the same. 7 pairs are
shown, aligned vertically.

6.5.3 Same subjects, different emotions

A new experiment shows how the accuracy of the network we defined in subsection 6.5.1 depends
on the emotions depicted by the subjects. We trained the network to differentiate between subjects,
as before. However, now we are interested to see how different emotions affect the network’s
ability to determine if the two presented subjects are the same. So we test the network by giving it
two images of the same subject but we vary the emotions, and record how the output probabilities
change. As expected, when the two images presented to the network display the same emotion, the
accuracy of the network increased. The predicted probability is also determined by how much an
emotion requires change of the facial features. We notice this by looking at the average predicted
probability when the two presented images depict a person in neutral expression and the average
predicted probability when the two presented images depict a person who screams. This gives
us a key insight to how to perform subject detection. If we have only two images and we want
to determine if the subjects in the images are the same, we have to account for bias in case both
subjects are widely smiling.

Table 6.11 provides numerical results obtained by training a network for 300 epochs, with 5 epochs
for RBM training. We used sparsity constraints as we have defined them in 4.1.2, with the cost
used being binary cross entropy. Both learning rates were 0.005. We see that the network is a lot
less secure when the subject depicts different emotions (regardless of which pair of emotions, the
probability is below 0.7) and more confident when there are the emotions are the same (always
above 0.8).
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First emotion Second emotion Average predicted probability

Neutral Neutral 0.80
Neutral Smile 0.68
Neutral Scream 0.66
Smile Smile 0.84
Smile Scream 0.61

Scream Scream 0.83

Table 6.11: Average predicted probabilities by a similarity network when it is presented with two
instances of the same subject, but under different emotions.
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7 | Implementation

As part of this project we provide a high performance open source library for deep belief networks31.

The code was implemented in the Python programming language. There were multiple factors
taken into account when making this important decision:

• It has an excellent computations library, Numpy [56], that provides not only vast functionality,
but also speed, as the Python code is translated and runs in C.

• It is highly used in the scientific community, making the project easily accessible for other
researchers upon completion.

• Code is easy to write, read and understand.

• The Theano library [57] designed for machine learning allows you to write Python and
compiles part of the code to CUDA, allowing increased speeds by using the GPU. Theano
integrates tightly with Numpy, as its core data structure are Numpys ndarrays.

7.1 Setup

The experiments described have been performed with the following set up:

• Python version 2.7

• Numpy version 1.8

• OpenBlas [58], a numerical library which allows multi-threaded matrix operations

• Theano version 0.6 [57]

• Sklearn version 0.14.1 [59] a machine learning library used for cross validation.

• OpenCV version 3.0.0-dev [48], for face detection

• Matplotlib version 1.2.1 [60], for creating some of the plots presented in the report.

• Scitkit-image version 0.9.3 [61], for image processing.

31You can find it at https://github.com/mihaelacr/pydeeplearn
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7.2 Runtime speed concerns

The initial experiments were performed using Python and Numpy, on a CPU. However, due to the
computational demand required by training deep belief nets, the time spent on one experiment
was becoming a problem. For example, training a 4 layered deep belief net with the MNIST dataset
for 100 epochs of backpropagation took approximatively 15 hours.

The initial guess was that the issue is Python, which tends to be substantially slower that statically
typed languages that compile to native code. A profiler analysis revealed that most of the time was
not spent on Python code, but on matrix operations, which are defined using Numpy and hence
are translated to C.

Options considered for speeding up the code were Cython [62], an extension of Python with
embedded types which translates the code to C, and Theano, which lets you run code on a graphics
card via CUDA. Due to the output of the profiler and the comparisons between the two shown
in [57], we opted for Theano. The disadvantage of this choice was the time spent learning the
tool: while Cython is easy to master for someone who has knowledge of Python and C, Theano
has a much steeper learning curve, due to the need to define expression graphs which assemble
program trees at run-time. Figures 7.1 and 7.2 show the difference between writing Python code
with Numpy and Theano for matrix multiplication and raising a matrix to a given power.

Another measure taken to obtain speed up was a change in the underlying matrix operations
library that Numpy and Theano are linked with. By default, they are linked against ATLAS [63],
but other libraries such that MKL and GotoBlas2 have shown to perform better [64]. OpenBlas is a
library built on top of GotoBlas2, giving a considerable speed up over ATLAS. OpenBlas allows
multi-threaded operations, while ATLAS does not.

7.2.1 Theano

Theano is a library designed for fast mathematical computation, built by the Lisa lab at the
University of Montreal 32. The aim of the library is to provide a clear way of defining expression
graphs that can be then translated into CUDA code. Theano combines aspects from an optimizing
compiler and an computational algebra library.

As a computational library, Theano has multiple benefits. One that was particularly appealing
for this project was the support for symbolic variables (which are required for creating expression
graphs) and symbolic differentiation. Symbolic differentiation comes in handy when implementing
backpropagation. Our initial CPU implementation required hard coding of the derivatives for
each function. This has the obvious disadvantage of lack of flexibility: when the cost function
of the network is changed, a new derivative has to be manually computed and coded. Symbolic
differentiation also increased code clarity and removed clutter: the same functionality (the
updating of the parameters) becomes clear, delegating to the library code. Moreover, symbolic
differentiation is more numerically stable: finding out the error derivative at the first layer is just
a matter of replacing the layer activations in the mathematical formula for the derivative of the

32http://lisa.iro.umontreal.ca/index_en.html
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error with respect to the layer weights and biases (the parameters of the model for that layer),
instead of using the numerical propagated error from the layer above. This avoids propagation of
floating point errors from the higher layers to the lower ones.

One of the key advantages of our implementation is the clean transparent interface that it provides
to the user. Due to the learning overhead that Theano has, we have decided to not impose it on the
user of our library. Hence the interface to the deep belief network that we provide is Theano-free.
The input and output are required and given using Numpy arrays, and the user does not have to
know or understand how to code on the graphics card.

import theano . tensor as T
from theano import func t ion
from numpy . random import rand in t

x = T . matr ix ( ' x ' )
y = T . matr ix ( ' y ' )

sc = T . dot (x , y )
mydot = func t ion ([x , y ] , s c )

a = rand in t (0 , 100 , (1000 , 1000))
b = rand in t (0 , 100 , (1000 , 1000))
print mydot(a , b)

import numpy as np
from numpy . random import rand in t

a = rand in t (0 , 100 , (1000 , 1000))
b = rand in t (0 , 100 , (1000 , 1000))
print np . dot (a , b)

Figure 7.1: Comparison between Theano (left) and Numpy (right) code for matrix multiplication.

7.2.2 OpenBlas

We decided to link our Numpy and Theano implementation against OpenBlas, in order to be able
to benefit from the multi threaded implementation. As expected, we found that this helps most
when using the CPU code. When using Theano for the GPU, very little flow occurs on the processor
(for example, a loop which delegates work to the GPU), so multi threading is of little help in that
case.

Table 7.1 shows the speed improvements obtained by using the GPU graphics card Quadro 6000,
and using Open Blas. Further experiments performed on a Titan Black graphics card showed
another factor 3 improvement in speed.

74



7 IMPLEMENTATION 7.2 Runtime speed concerns

k = T . i s c a l a r ( " k " )
A = T . vec to r ( "A" )

def accummulate ( p r i o r _ r e s u l t , A ) :
return p r i o r _ r e s u l t * A

# S y m b o l i c a l l y d e s c r i b e the r e s u l t
r e s u l t , updates = theano . scan (

fn=accummulate ,
ou tpu t s_ in fo=T . ones_ l i ke (A) ,
non_sequences=A,
n_s teps=k)

f i n a l _ r e s u l t = r e s u l t [−1]

# Compiled f u n c t i o n r e t u r n i n g Ak

power = theano . func t ion (
input s=[A, k ] ,
outputs=f i n a l _ r e s u l t ,
updates=updates )

r e s u l t = 1
for i in xrange (k ) :

r e s u l t *= A

Figure 7.2: Comparison between Theano (left) and Numpy (right) raising to matrix power.
Adapted from [65].

Figure 7.3: A part of the Theano expression graph of the training function used for the deep belief
network implementation in this project.
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Atlas Open Blas Open Blas threads Theano Time (hours:mins: seconds)

3 7 7 7 2:36:31
7 3 4 7 2:11:02
3 7 7 7 8:53
7 3 1 3 8:14
7 3 2 3 7:56
7 3 3 3 8:09
7 3 4 3 11:34

Table 7.1: Speed comparison between multiple libraries when training a deep belief net with 5
layers with MNIST data. Training set size 10000. Testing set size 10. Experiments run on a GPU
used a Quadro 6000 graphics card, and the ones on an Intel Core i7-2600 CPU with 3.40GHz, 8

cores and 8GB RAM. The experiments were performed by fixing the seed of the random
generators, in order to accurately compare results. Due to the limited computation performed on

the CPU, adding too many threads decreases performance, due to context switch overhead.
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8 | Evaluation

We are now ready to analyse our work, having in mind other techniques, results and available
resources.

Due to the relative novelty of the field and the rapid discovery of new methods, there are few
complete references on deep learning. This report provides a vast description of techniques from
the area, with particular aim in covering deep belief nets. Learning deep architectures for AI
(2009, [31]) provides an excellent overview of the methods available, including auto encoders
and convolutional networks, which are not touched upon here. However, since its publication
multiple approaches have been proven to improve classification accuracy and speed of training,
including dropout, rectified linear units and Rmsprop (which can also be applied when training
convolutional neural nets). We have covered them here combining both mathematical intuition
and implementation pragmatism.

8.1 Handwritten digits

Section 5 described the experiments we have performed for hand written digit classification on the
MNIST dataset. This is the standard benchmark used for testing and comparing machine learning
algorithms, so numerous results are available. Table 8.1 provides a summary of techniques used
for this task and the results that were obtained.

Technique Error

Linear classifier (1-layer NN) 12.0 %
40 PCA + quadratic classifier 3.3 %

K-nearest-neighbours, L3 norm distance 2.83 %
Estimated human performance 2%

Our best performance 1.1%
NN, 784-500-500-2000-30 + nearest neighbour, RBM + NCA training 1.0 %

Maxout nets 0.94 %
Deep convex net, unsup pre-training 0.83 %

Virtual SVM, deg-9 poly, 1-pixel jittzered 0.68 %
Large convolutional net, unsup pre-training 0.53 %

Convolutional maxout, dropout 0.45 %

Table 8.1: Classification results obtained on the MNIST dataset by various techniques. Results
which involve no preprocessing, in order to be able compare with our results. The values were

obtained from the MNIST official page and [7]. The estimated human accuracy is obtained from
[66].
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8.2 Emotion recognition

One of the main goals of this thesis was to perform emotion recognition from images. We have
achieved a performance of 99.3% on the Multi PIE dataset, with 91.7% when the sets of training
and testing subjects are disjoint. We will now evaluate other techniques used for facial emotion
recognition and report their performance.

Support Vector Machines can be successfully used for discrimination after features have been
learned with convolutional neural nets [67]. This method was used to win a Kaggle competition 33

on emotion recognition from images. Details about the dataset used in the competition can be
found in [55]. The authors describe how back propagating the error with respect to the cost of a
L2 Linear SVM can outperform using a softmax layer as a discriminative method.

Local binary patterns have been used for feature extraction from faces of images, in conjunction
with support vector machines for discrimination [6]. This model was trained and tested on the
Multi Pie dataset. The images in the reported experiments are not aligned and the face is detected
using the Viola Jones classifier. The training and test sets were divided in a 4 to 1 ratio and testing
data is taken from subjects that were not present in the training data. For our experiments, the
Multi PIE images were aligned before used for feature extraction and classification. We obtained
an accuracy of 91.7%. Moreover, the dataset we used only has 5 poses, instead of 7 (we did not
use the 75% and 90% rotation angles). The emotion recognition accuracy for each of the 7 poses
is reported in the paper, with the best one being 87.5%, for the 15% angle pose.

A new method is proposed in [68]: a deep network that uses a convolutional layer and a max
pooling layer to detect over complete representations from which they defined receptive fields.
The receptive fields are filtered in order to minimize the common information between them. The
remaining receptive fields are fed into a stack of RBMs, and the resulting features are classified
using linear SVMs. The reported accuracy on the extended Cohn Kanade database 34 (CK+) is 92%.
While this method does not directly use FACS action units, the authors claim that the receptive
fields in their model is consistent with the interpretation of FACS.

A method based on head-pose optimisation has been evaluated on the Multi-PIE dataset [69].
The technique used requires multiple steps: first, linear discriminant analysis (LDA -subsection
4.1.4 in [15]) and mixture of Gaussians (GMM)probabilistically determine the pose in the image.
Then, Coupled Scaled Gaussian Process Regression (CSGPR) [69] is used to map angled poses to
the frontal pose. From the frontal pose the 39 facial features are manually extracted and set as
input to a support vector machine that classifies emotions. The results reported on the Multi PIE
dataset use 50 subjects and 4 poses and detect only 4 emotions (surprise, disgust joy and neutral).
We used 147 subjects, 5 poses and 6 emotions. This method has the advantage of being able to
detect emotions from poses it was not exposed during training, highly improving generalization in
unconstrained environments.

Table 8.2 gives an overview of the methods described for emotion recognition, together with the
obtained classification results.

33http://www.kaggle.com/c/challenges-in-representation-learning-facial-expression-recognition-challenge/
34This dataset is a superset of the one we used in subsection 6.2.
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Dataset
Feature extraction

technique
Classification

technique
Nr.

emotions Ref. Accuracy

Kaggle Convolutional NNs SVM 7 [67] 71.2 %
Multi PIE Local binary patterns SVM 6 [6] 80.17%

Multi PIE

LDA, GMM,
Gaussian Process Regression,

Manual point extraction SVM 4 [69] 94.8%
Cohn Kanade+ AU-aware deep networks SVM 7 [68] 92.05%

Table 8.2: Overview of techniques for emotion recognition from images and their results on
different datasets. Details about each method found in text.

8.2.1 Maxout nets

In order to compare our results we decided to employ a new technique in the field of neural
networks and compare it with our results. This technique is described in detail in [7], and has
been show to give good results in different well known tasks (including 0.94% error on the MNIST
permutation invariant task). Maxout nets are designed to be used with dropout, as it ensures that
dropout acts as model averaging. This new type of neural net introduces a new activation function,
which can be seen as the extension of rectified linear units: each hidden unit h is taken to be as
the maximum of a set of multiple intermediate units (denoted here by z) (which is the same for
each hidden unit).

hi = max
j∈[1,k]

zi j (8.1)

zi j =
∑

m
xmWmi j + bi j = xW...i j + bi j (8.2)

where by W...i j we mean the vector of size of the input obtained by accessing the matrix W ∈
Rm×n×k at the second coordinate i and third coordinate j. The number of intermediate units (k) is
called the number of pieces used by the maxout net. A pictorial representation of a maxout layer is
denoted in figure 8.1. Maxout nets also use a softmax layer on top for classification. As described
in subsection 2.6, a weight constraint can be imposed on the L2 norm of the incoming weight
vector of a hidden unit, for regularization. This technique is also often used with maxout nets, as
described in [7]. A heuristic for setting the norm constraint is to monitor the average norm during
training (without constraint) and then set the constrained norm to be 80% of that average.

The authors of maxout nets maintain the library pylearn2 [70] and have open sourced their code.
We used it to build and train maxout nets for emotion recognition. As far as we know this is the
first application of maxout nets for facial emotion recognition from images. Table 8.3 describes the
results we obtained together with the architectures used. All the experiments used a learning rate
of 0.1 and trained the network with mini-batch gradient descent with mini-batches of size 100.
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z11 z12 z21 z22 z31 z32

h1 h3h2

Visible layer

Hidden layer

Figure 8.1: A maxout net with 5 visible units and 3 hidden units and 2 pieces for each hidden unit.

Architecture Number of pieces Momentum Max norm constraint Accuracy

400, 400, 400 3 7 7 94.1%
500, 500, 500 3 7 7 95.4%
700, 700, 700 3 7 7 94.6%
500, 500, 500 3 7 1.0 94.1%
500, 500, 500 3 3 7 89.0%

Table 8.3: Accuracy of maxout nets when classifying the emotions in the Multi Pie dataset.

8.2.2 Commercial applications

Due to the high applicability of emotion recognition, new technology companies have been built
around the concept of providing clients with the ability of detecting emotions from video. We
are aware of Emotient (US)35 and Realeyes (UK)36. Emotient focuses on detecting a wide range
of emotions, from basic ones to more advanced (such as frustration and confusion) as well as
combinations of emotions. Realeyes uses action units [3] to determine the emotions from live web
cam recordings.

8.3 Similarities

8.3.1 Same subjects

The experiments detailed in subsection 6.5.1 are performed in the spirit of the ones described in
[43]. Their best reported classification results achieve a performance of 81% with unsupervised pre-
training and rectified linear units. There are some substantial differences in how our experiments
are performed and we would like to clarify them here. We compare our results obtained with

35http://www.emotient.com/products
36http://www.realeyesit.com/emotions
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experiment b, in which the network does not see a subject used for testing during training, as in
[43]. Table 8.4 summarises these differences and compares accuracies.

The input data
The database used in out experiments is Multi PIE. In their experiments they used Labelled
Faces in the Wild, a database of 13233 images of 5749 people. Exposure to a substantially
bigger number of subjects (5749 vs 147) can increase performance, because the network
has more instances of different subjects from which to learn. Our experiments present the
network with 147 subjects in different poses, rather then different subjects. Our input data
are black and white 40 × 30 images, while their data is coloured, and has dimension: 32 ×
32 × 3.

Hidden units
The best values report in their experiments use 4000 rectified linear units. We used 1000
sigmoid units.

Preprocessing
Our inputs are aligned, but the faces used in the experiments in [43] are not pre aligned.

Data splits
The data splits we used are random in order to keep a train to test ratio 4:1. The splits used
in the experiments described by [43] are predefined by the designers of the dataset, into 10
splits of 5400 training pairs and 600 test pairs.

Ours Theirs

Data size 40 × 30 32 × 32 × 3
Nr. hidden units 1000 4000

Hidden units Sigmoid ReLu
Aligned faces 3 7

Train to test ratio 4 9
Total nr. subjects 147 5749

Number of pre-training epochs 50 300
Accuracy 82.5% 81%

Table 8.4: Comparison of experiments performed for detecting if two images represent the same
person.
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8.4 Implementation

As part of this project, a Python library with focus on deep belief nets was created. We named it
pydeeplearn. We have to assess it against other available Python libraries, such as:

• Sklearn [59]

• Theano [57]

• Pylearn2 [70]

• Nolearn [71]

Sklearn
One of the most popular python machine learning libraries available, Sklearn offers a variety
of algorithms, as well as useful utilities such as cross validation, confusion matrices and
precision tables. While Sklearn has an implementation of RBMs, is not a complete or up to
date one: it does not have support for real valued units, dropout or Rmsprop.

Theano
Theano is a machine learning library with GPU support (discussed at length in subsection
7). While there are available tutorials of how to build a DBN with it, there is no modular
support in the library for higher level models. Theano can be seen as a building block for
other libraries and implementations (such as the one presented here and Pylearn2).

Pylearn2
Pylearn2 is a library made by researchers, for researchers. While it does not offer an imple-
mentation of a Deep belief net (but contains up to date implementations of convolutional
nets, multi-layer perceptrons and maxout neural nets [7]), one can be constructed from
the functionality it provides. Using Pylearn2 requires knowledge of Theano and extensive
knowledge of Pylearn2 itself. This contrasts to one of our goals: build an easy to use interface
to DBNs and RBMs, that does not ask the user to know GPU programming via Theano .

Nolearn
Nolearn provides an easy to use and simple interface to a deep belief network that runs
fast on the GPU. However, it does not provide numerous features our implementation
(pydeeplearn) does. Nolearn does not allow specifying unlabelled data that can be used
for pre-training, hence depriving the user of one of the main benefits of deep belief nets:
increased performance with pre-training on a bigger dataset than the available labelled
instances. Since Nolearn does not depend on Theano, it does not benefit from some of its
key resources, such as symbolic differentiation. Symbolic differentiation allows us to have
flexible arguments to both RBMs and DBNs: we can specify any activation function, without
having to manually compute any derivatives. That is why instead of hardcoding the types of
units with binary flags (such as having a flag that determines if rectified linear units should
be used), we have arguments that specify the activation functions. This feature has helped us
experiment with new activations functions for discriminative training, such as the expected

82



8 EVALUATION 8.4 Implementation

value of a noisy rectified linear unit (as described in appendix D). Our library also provides
interruptible training: a keyboard interrupt will stop training at the current stage and start
testing 37. This feature came in handy during the experiments described in this paper. A
comprehensive comparison is reported in table 8.5.

Library feature pydeeplearn nolearn

Allow unlabelled data for unsupervised training 3

RBM module 3

Rmsprop 3

L1 weight decay 3

Early stopping options 3

Activation functions as arguments 3

Sparsity regularization for pre-training 3

Dropout for pre-training 3

Nesterov momentum for pre-training 3

Different momentum update functions 3

Flexible arguments 3

Interruptible training 3

Dropout for fine tuning 3 3

Momentum 3 3

Rectified linear units 3 3

Fast computation via GPU usage 3 3

L2 weight decay training 3 3

L2 weight decay pre-training 3 3

API compatibility with sklearn 3 3

Different learning rates for different layers 3

Decaying learning rate 3

Supervised weights scale 3

Pre train call back 3

Train call back 3

Table 8.5: Comparison between the library presented in this paper (pydeeplearn) and nolearn.
Details found in text.

37If the user wants to abort the program completely, they can do so with another keyboard interrupt
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9 | Future work

Our investigation into emotion recognition using deep learning is far from being over. We need
to be able to create models that work better in the “wild”, giving a high accuracy on any image
depicting a human face, without confining the subject into an artificial setting (like the images
which come from most databases). Our model performs best when the input faces are aligned.
This limitation can be solved by using convolutional neural networks, which achieve translational
invariance.

The field of deep learning is advancing fast, creating more accurate and robust models that can
be adapted and enhanced to our problem statement. Keeping this in mind, we propose various
directions in which the work presented here can be expanded and improved.

9.1 Improving the current model

In this paper we have focused on a special technique from the deep learning family: deep belief
networks and we have presented an up to date implementation of this model. However, there are
further improvements that can be .brought to our current implementation. These would be useful
mainly for automating some of the tedious tasks that come with training a neural network, namely
finding the right parameters:

• Adaptive learning rates (using methods such as Yan LeCun’s recipe in [20].)

• Better methods for early stopping evaluation.

• Use second order methods for optimization, instead of plain gradient descent.

• Model averaging on different architecture of the current model (different number of layers,
number of units per layer, etc.)

9.2 Data preprocessing

One of the lessons we have learned with this paper is the importance of data preprocessing before
classification. Further preprocessing could be helpful, under the constraint that it can be done
online (as opposed to requiring all available data at once) and in reasonable speeds (having in
mind a real time application). We have seen that equalization performs an important role in
determining the accuracy of our classifiers. One of the methods used is Contrast Limited Adaptive
Histogram Equalization (CLAHE), has multiple parameters that need can be changed to improve
performance. Due to time constraints, we did not pursue that further, but used the default options
coming with the computer vision library used. Another option for preprocessing could be extracting
action units from the images (using the method described in [5]). We could then append the
action units at the end of the image vector, allowing the network to benefit from the information
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of the localized features as well. Similar techniques to the Viola Jones classifier can be used to
detect eyes and mouths, allowing the network to benefit from more specialized information.

9.3 Different models for unsupervised pre-training

We propose trying two other models for emotion recognition: convolutional deep belief nets and
deep Boltzmann machines. We chose these models as they both allow learning features from data
in an unsupervised fashion.

Convolutional RBMs and Convolutional deep belief nets
Convolutional RBMs [72] are an extension of RBMs that rely on convolution and weight
sharing, as they are inspired by convolutional neural networks. Convolutional RBMs can
also be stacked together in order to from a deeper model, called Convolutional Deep belief
nets. Unlike deep belief nets, Convolutional DBNs cannot be trained using backpropagation,
as they are solely a generative model. The usual classification method feeds the input image
into the network and the last learned layers of features into a support vector machine (SVM).
An advantage of using this method comes from the flexibility of the input shape: they
allow the network visible layer to be a matrix, instead of a flattened vector. This enables
the network to learn from the spacial proximity of pixels, improving performance. Using
convolutional RBMs also give the benefit from more robust feature learning: the performance
of the network will be less affected if the input images are not aligned.

Deep Boltzmann machines
Deep Boltzmann machines [73] are a very similar model to deep belief nets: they also work
by greedy layer-wise pre-training using Restricted Boltzmann machines, with modifications
on how the pre-training is performed for the top an bottom layers. Unlike DBNs, they are
undirected probabilistic models. A softmax layer can be added on top of the Deep Botlzmann
machine and then discriminative fine tuning can be performed as usual 38.

9.4 Emotion recognition from video

We are interested in improving our model to work in real life conditions and also be competitive
against other implementations. We plan on entering the Facial expression in the wild challenge
39 to compare how our model does in an unconstrained environment. In order to do so we need
an end to end robust pipeline of preprocessing and classification, that needs to be designed for
coping with noise. Part of the challenge is also to do emotion recognition from videos. Recently
it has been shown [74] that deep belief nets can be successfully used to detect emotions from
multi-modal data. We plan on augmenting our model to cope with audio and image sequences as
input data.

38The authors of the papers describe a model in which the last layer of features are augmented to the visible layer in
order to improve classification performance.

39For details of the challenge see: http://cs.anu.edu.au/few/ChallengeDetails.html
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10 | Conclusion

The presented work proves that deep belief nets are a good model for performing facial emotion
recognition. We have shown that unsupervised pre-training in generative neural networks provides
an excellent framework for feature extraction from images of faces. We assessed classification
performance on three different labelled datasets. The first dataset, Cropped Cohn-Kanade, contains
a small number of images which depict people from frontal position. The MultiPIE dataset contains
a large number of images of subjects captured in different poses and illumination conditions.
Finally, we used a medium sized dataset of unaligned images from a Kaggle competition. We
obtained state of the art results on all three datasets. Part of our success is due to new techniques
such as dropout and rectified linear units.

Through a novel experiment, we created a probabilistic model that is able to distinguish if two
people are displaying the same emotion, without requiring emotion classification. This work has
shown that emotion plays an important role in recognizing if two images depict the same person,
giving new insight of how face matching should be performed.

Our empirical results show that input preprocessing (face alignment, face detection and histogram
equalization) still have a crucial role in emotion recognition. Machine learning algorithms need
to become more robust to noise and perform better in an unconstrained environment, either by
incorporating these preprocessing techniques or by creating more powerful models.

On the theoretical side, we have extended two types of sparsity constraints for Restricted Boltzmann
machines to work with noisy rectified linear units, and have provided guidelines for when and
how to use them.

Through our high performance open source implementation, we fill a gap in the community for an
accessible and complete software library for deep belief nets and Restricted Boltzmann machines.
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A | Notation

When a variable is written with bold face (x), it is to represent that it is a vector.

Standard notation
We adopt the standard conventions and notations as follows:

• Throughout the report, we use the names gradient and derivative interchangeably.

• Unless otherwise stated, σ(x) represents the standard logistic function.

• ||x || denotes the L2 norm of x.

• N(µ,σ2) is Gaussian distribution with mean µ and variance σ2.

• GaussCDF
�

x
�

�µ,σ2
�

is the cumulative distribution function at value x for the Gaussian
random variable with mean µ and variance σ2.

• K L stands for the Kullback-Lieber divergence between two distributions.

• HP denotes the entropy of a probability distribution P.

Neural networks specifics
In the discussion about neural networks, activations and structure we use:

• N denotes the size of the training set.

• x denotes a input data vector

• y denotes the activity of a neuron

• z denotes the total linear input of a neuron receives.

• t denotes the target vector associated with an instance.

Abbreviations
Throughout this report we use various abbreviations, summed up in the table below.
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y(l)1

y(l)2

y(l)3

y(l)4

y(l+1)
1

y(l+1)
2

W

b2

b1

(l) (l + 1)

Figure A.1: A layer in a neural network. Used to exemplify the notation in this thesis.

Abbreviation Meaning

NN Neural Network
ANN Artificial Neural Network
MSE Mean square error
DBN Deep Belief Network
RBM Restricted Boltzmann Machine
CD Contrastive Divergence
LDA Linear Discriminant Analysis

GMM Gaussian Mixture Models
PCD Persistent Contrastive Divergence
AIS Annealed Importance Sampling
SVM Support Vector Machine
ReLu Rectified Linear unit

Table A.1: Abbreviations used in this thesis.
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B | Deriving the activations of a unit in a RBM

This section does the derivations which lead to the activation probabilities defined in equations
3.13 and 3.14, based on [75].

We will do the derivation for a visible unit, but since the Restricted Boltzmann machine is a
symmetric network, a similar proof can be done for a hidden unit.

Consider a Restricted Boltzmann Machine with m visible units and n hidden units. Take unit vl .

E(v, h) =−
∑

i

ai vi −
∑

i

bihi −
∑

i

∑

j

wi j vih j

=−al vl −
∑

j

wl j vlh j −
∑

i 6=l

ai vi −
∑

i

bihi −
∑

i 6=l

∑

j

wi j vih j

=− vl






al +

∑

j

wl jh j







︸ ︷︷ ︸

zl

−
∑

i 6=l

ai vi −
∑

i

bihi −
∑

i 6=l

∑

j

wi j vih j
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αl

=−vl zl +αl

Denote the set of visible units without unit vl by v−l . By using the conditional independence of
visible units:

p
�

vl = 1|h
�

= p
�

vl = 1|v−l , h
�

=
p
�

vl = 1, v−l , h
�

p
�

v−l , h
�

=
p
�

vl = 1, v−l , h
�

p
�

vl = 0, v−l , h
�

+ p
�

vl = 1, v−l , h
� =

e−E(vl=1,v−l ,h)

e−E(vl=1,v−l ,h) + e−E(vl=0,v−l ,h)

=
e−(−1 zl+αl)

e−(−0 zl+αl) + e−(−1 zl+αl)
=

e−αl e1 zl

e−αl e0 zl + e−αl e1 zl

=
ezl

1+ ezl
=

1

1+ e−zl
= σ

�

zl
�

This justifies the usage of the logistic sigmoid function as the activation function used in stochastic
binary RBMs.

The same approach can be taken when using Gaussian units, by changing the energy function to
the one in equation 3.25.

89



C WHY GREEDY LEARNING WORKS: DETAILED MATHEMATICAL EXPLANATION

C | Why greedy learning works: detailed math-
ematical explanation

We will now give a more detailed explanation of the mathematical intuition behind the greedy
pre-training in DBNs. DBNs are generative models that try to increase the likelihood of obtaining
the observed data, P (x).

We can rewrite the log probability of the data as follows:

log P(x)

=







∑

h1

Q
�

h1|x
�






log P(x)

=
∑

h1

Q(h1|x) log
P(x , h1)
P(h1|x)

=
∑

h1

Q(h1|x) log
P(x , h1)
P(h1|x)

Q(h1|x)
Q(h1|x)

=
∑

h1

Q(h1|x) logQ(h1|x) +
∑

h1

Q(h1|x) log P(x , h1) +
∑

h1

Q(h1|x) log
Q(h1|x)
P(h1|x)

= HQ(h1|x) + K L
�

Q
�

h1|x
�

||P(h1|x
�

+
∑
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Q
�

h1|x
�

log P
�

x , h1
�
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�

Q
�
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+ log P
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h1
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By network construction, Q
�

x |h1
�

= P
�

x |h1
�

(when the model is given h1 it only uses the first
RBM to generate v). Another way of observing this is by looking at the distribution modelled by a
DBN given in equation 3.37.

It is important to note that Q
�

h1|x
�

and P
�

h1|x
�

are generally different distributions, because
the upper layers of the DBN impose a different prior on h1, affecting P

�

h1|x
�

. However, Q
�

h1|x
�

is only affected by the parameters of the first layer RBM. However, under certain circumstances
the two distributions are equal, making the K L term null.

We will now illustrate that if the second RBM is initialized such that its weights are the transposed
of the weights of the second RBM (ie. W2 = W T

1 )40, and if the biases of the hidden units are
initialized to the biases of the visible units (and conversely for the visible units) for the first RBMs
then the two distributions are the same. This easily follows from the symmetry of a Restricted
Boltzmann Machine: the probability of the second RBM to generate the values for h1. Under this

40This also adds the constraint that the number of hidden units of the second RBM has to be equal to the number of
visible units of the first RBM
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initialization, the RBMs model the same distributions (because an RBM does not care what we call
the visible and hidden layers).

Under the assumption, when using the second RBM, we want to optimize:

HQ(h1|x) +
∑

h1

Q
�

h1|x
��

log
�

P(x |h1
�

+ log P
�

h1
��

(C.1)

HQ(h1|x) +
∑

h1

Q
�

h1|x
�

log
�

P
�

x |h1
��

do not depend on the second RBM, but only on the first one:

the first term is the entropy of the conditional distribution modelled by the first RBM of the hidden
units given the visible units, and the second term can be written as

∑

h1

Q
�

h1|x
�

logQ
�

x |h1
�

, by

using Q
�

x |h1
�

= P
�

x |h1
�

.

Hence, when we want to optimize with respect to the second RBM, we only use:
∑

h1

Q
�

h1|x
�

log P
�

h1
�

(C.2)

This is equivalent to training the second RBM, using as input the hidden activations of the observed
data produced by the first level RBM.

Since the K L divergence measure is always positive and we started with it at 0, during training
of the second RBM it can only increase. At the same, HQ(h1|x) +

∑

h1

Q(h1|x) log P(x |h1) will not

change, as it does not depend on the second RBM, so we can only improve on our maximum
likelihood estimation during training.
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D | Expected value of a noisy rectified unit

We remind the reader that the noisy rectified linear units have the following activation function:

f (x) =max (0, x +N (0,σ (x))) =max (0,N (x ,σ (x))) (D.1)

Where σ is the logistic sigmoid.

Looking at the cost of sparsity, we see that we have to be able to compute E
�

h j
l
�

�v l
�

.

E
�

f (x)
�

= E (max (0,N (x ,σ (x)))) (D.2)

Let’s compute the E (max (0,N (a, b))), for any real numbers a and b with b > 0.

E (max (0,N (a, b))) =
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0
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Now we do a change of variable so that we move into using the standard normal:
x → (x − a)/

p
b

∫ ∞

0

xN(x |a, b) d x = (D.4)

∫ ∞

0

x
1

p
2πb

e−
(x−a)2

2b d x = (D.5)

∫ ∞

0

�

p

b y + a
� 1
p

2πb
e−

y2

2 d x = (D.6)

∫ ∞

0

�

p

b y + a
� 1
p

2π
e−

y2

2
1
p

b
d x = (D.7)

∫ ∞

0

�

p

b y + a
� 1
p

2π
e−

y2

2
d y

d x
d x = (D.8)

∫ ∞

− ap
b

�

p

b y + a
� 1
p

2π
e−

y2

2 d y = (D.9)

p
b

p
2π

∫ ∞

− ap
b

ye−
y2

2 d y +
a
p

2π

∫ ∞

− ap
b

e−
y2

2 = (D.10)

92



D EXPECTED VALUE OF A NOISY RECTIFIED UNIT

p
b

p
2π

∫ ∞

− ap
b

ye−
y2

2 d y + a

�

1−GaussCDF
�

−
a
p

b

�

�

�

�

0,1
�

�

= (D.11)

p
b

p
2π

∫ ∞

− ap
b

−
�

−
y2

2

�′

e−
y2

2 d y + a GaussCDF
�

a
p

b

�

�

�

�

0,1
�

= (D.12)

−
p

b
p

2π

∫ ∞

− ap
b

�

e−
y2

2

�′
d y + a GaussCDF

�

a
p

b

�

�

�

�

0, 1
�

= (D.13)

−
p

b
p

2π

�

e−
y2

2

�

|∞− ap
b
+ a GaussCDF

�

a
p

b

�

�

�

�

0, 1
�

= (D.14)

−
p

b
p

2π






−e−

�

− ap
b

�2

2






+ a GaussCDF

�

a
p

b

�

�

�

�

0, 1
�

= (D.15)

p
b

p
2π

e−
a2

2b + a GaussCDF
�

a
p

b

�

�

�

�

0,1
�

(D.16)

p
b

p
2π

e−
a2

2b + a GaussCDF
�

a
p

b

�

�

�

�

0,1
�

(D.17)

Going back to our original problem, we replace a by x and b by σ(x), where x is the linear input

received by unit h j from the layer of visible units v:
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