Restricted Boltzmann Machines

Boltzmann Machine(BM)

- A Boltzmann machine extends a stochastic Hopfield network to include hidden units. It has binary (0 or 1) visible vector unit x and hidden (latent) vector unit h that detects features in the visible vector x.
- The model is parametrised in matrix form by U, V, W, b, c, where the visible-visible weights are U, the hidden-hidden weights are V, and W are the visible-hidden weights, all symmetric without self-connections. The visible units have biases b, and the hidden units have biases c.
- Each joint configuration of the visible and hidden units has an associated energy, defined in matrix form by:

$$E(\mathbf{v},h) = -\frac{1}{2}\mathbf{v}^{\top}U\mathbf{v} - \frac{1}{2}h^{\top}Vh - \mathbf{v}^{\top}Wh - \mathbf{c}^{\top}\mathbf{v} - b^{\top}h$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

- ▶ Without hidden units, *E* is as in a Hopfield network.
- Learning with BM is extremely difficult and impractical.

Restricted Boltzmann Machines (RBM)

- An RBM is a BM with a bi-partite graph of *m* visible and *n* hidden units, i.e., no connections between visible units or between hidden units. What are the maximal cliques?
- The energy has, by Hammersley-Clifford theorem, parameters θ ∈ Θ := {w_{ij}, b_j, c_i : 1 ≤ j ≤ m, 1 ≤ i ≤ n}:

$$E(v,h) = -\sum_{i=1}^{n} \sum_{j=1}^{m} w_{ij}h_iv_j - \sum_{j=1}^{m} b_jv_j - \sum_{i=1}^{n} c_ih_i$$

- ► Assume each training item x_k ∈ D, (k = 1,..., ℓ), gives a B/W pixel image and items are i.i.d random variables drawn from a distribution q on m nodes.
- ▶ **Unsupervised learning:** An RBM can learn a distribution p to approximate q on $D \subset S = \{0, 1\}^m$.

Maximising log likelihood

An asymmetric measure of difference between q and p is given by Kullback-Leiber divergence or the relative entropy of q wrt p given for a finite state space S by:

$$\mathsf{KL}(q\|p) = \sum_{x \in S} q(x) \ln \frac{q(x)}{p(x)} = \sum_{x \in S} q(x) \ln q(x) - \sum_{x \in S} q(x) \ln p(x)$$

- KL(q||p) is non-negative and is zero iff p = q.
- Only the last term depends on p, thus on the parameters.
- Therefore, minimising KL(q||p) corresponds to maximising the likelihood of p for training items.
- ► Thus, learning aims to determine all parameters θ ∈ Θ to maximise the likelihood wrt D defined by:

 $L(\theta|D) = \prod_{k=1}^{\ell} p(x_k|\theta)$, or maximising its log likelihood:

$$\ln L(\theta|D) = \ln \prod_{k=1}^{\ell} p(x_k|\theta) = \sum_{k=1}^{\ell} \ln p(x_k|\theta)$$

Gradient Ascent

- Since we cannot analytically solve the maximisation for an RBM, we use the method of gradient ascent.
- ▶ **Idea.** Find $(\theta_1, \ldots, \theta_p)$ for the maximum value of $f : \mathbb{R}^p \to \mathbb{R} : (\theta_1, \ldots, \theta_p) \mapsto f(\theta_1, \ldots, \theta_p)$, as follows:
- Start with some θ_i⁽⁰⁾ and for each *i* obtain increasingly better approximations to the θ_i value for the maximum of *f*:

$$\theta_i^{(t+1)} = \theta_i^{(t)} + \alpha \frac{\partial f}{\partial \theta_i}(\theta_i^{(t)}), \quad \text{ with } \alpha > 0 \text{ a constant}$$

► For RBM, start from an initial value $\theta^{(0)}$ for $\theta \in \Theta$. Let

$$\theta^{(t+1)} = \theta^{(t)} + \alpha \frac{\partial}{\partial \theta} \left(\sum_{k=1}^{\ell} \ln p(x_k | \theta^{(t)}) \right) - \lambda \theta^{(t)} + \nu \Delta \theta^{(t-1)}$$
(1)

< ⊒ ► ≣ • • • • •

where $\Delta \theta^{(t)} = \theta^{(t+1)} - \theta^{(t)}$ and $\alpha > 0$ is the learning rate.

- The last two terms are added to optimise the algorithm:
- $-\lambda \theta^{(t)}$ is the decay weight, with $\lambda > 0$ a constant.
- $\nu \Delta \theta^{(t-1)}$ is the **momentum**, with $\nu > 0$ a constant.

RBM probability distribution

- ► To use gradient ascent, we need to compute p(v) and $\partial \ln p(v) / \partial \theta$, where v is any state of the visible units.
- As in any energy based model, the joint distribution of visible and hidden units (v, h) is given by

$$p(v,h) = \frac{e^{-E(v,h)}}{Z}$$
, with $Z = \sum_{v \in \{0,1\}^m} \sum_{h \in \{0,1\}^n} e^{-E(v,h)}$

Since the only connections are between a visible and a hidden unit, the conditional probability distributions are:

$$p(h|v) = \prod_{i=1}^n p(h_i|v), \qquad p(v|h) = \prod_{j=1}^m p(v_j|h).$$

The marginal distribution of visible units is given by

$$p(v) = \sum_{h} p(v,h) = \frac{1}{Z} \sum_{h} e^{-E(v,h)}$$

This distribution can be computed as product of factors. one

Computation of log-likelihood

Therefore, the log-likelihood is computed as:

$$\ln p(x|\theta) = \ln \frac{1}{Z} \sum_{h} e^{-E(x,h)}$$

= $\ln \sum_{h} e^{-E(x,h)} - \ln \sum_{x,h} e^{-E(x,h)}$, (2)

where θ is assumed to be one of the parameters, i.e., w_{ij} , b_i , c_i , of the model.

To compute the derivative of log likelihood we need the following:

$$p(h|v) = \frac{p(v,h)}{p(v)} = \frac{\frac{1}{Z}e^{-E(v,h)}}{\frac{1}{Z}\sum_{h}e^{-E(v,h)}} = \frac{e^{-E(v,h)}}{\sum_{h}e^{-E(v,h)}}$$

We can now proceed as follows.

Computation of log-likelihood gradient (I)

$$\frac{\partial}{\partial \theta} \left(\ln p(\mathbf{v}|\theta) \right) = \frac{\partial}{\partial \theta} \left(\ln \sum_{h} e^{-E(\mathbf{v},h)} \right) - \frac{\partial}{\partial \theta} \left(\ln \sum_{v,h} e^{-E(v,h)} \right) \\
= -\frac{1}{\sum_{h} e^{-E(v,h)}} \sum_{h} e^{-E(v,h)} \frac{\partial E(v,h)}{\partial \theta} + \frac{1}{\sum_{v,h} e^{-E(v,h)}} \sum_{v,h} e^{-E(v,h)} \frac{\partial E(v,h)}{\partial \theta} \\
= -\sum_{h} p(h|v) \frac{\partial E(v,h)}{\partial \theta} + \sum_{v,h} p(v,h) \frac{\partial E(v,h)}{\partial \theta},$$
(3)

where in deriving the first term in (3) we have used Equation (2).

- ► By $E(v, h) = -\sum_{i=1}^{n} \sum_{j=1}^{m} w_{ij}h_iv_j \sum_{j=1}^{m} b_jv_j \sum_{i=1}^{n} c_ih_i$, the partial derivatives $\partial E(v, h)/\partial \theta$ can be easily computed for each $\theta = w_{ij}, b_j, c_i$.
- Let $\theta = w_{ij}$, thus $\partial E(v, h) / \partial w_{ij} = -h_i v_j$ for computation.
- ► The cases of $\theta = b_j$, c_i are entirely similar.

Average log-likelihood gradient

► Taking average of the log-likelihood gradient of all training vectors for $\theta = w_{ij}$ we have:

$$\frac{1}{\ell} \sum_{v \in D} \frac{\partial \ln p(v|w_{ij})}{\partial w_{ij}} \\
= \frac{1}{\ell} \sum_{v \in D} \left[-\sum_{h} p(h|v) \frac{\partial E(v,h)}{\partial w_{ij}} + \sum_{v,h} p(v,h) \frac{\partial E(v,h)}{\partial w_{ij}} \right] \\
= \frac{1}{\ell} \sum_{v \in D} \left[\sum_{h} p(h|v) h_{i}v_{j} - \sum_{h} p(v,h) h_{i}v_{j} \right] \\
= \frac{1}{\ell} \sum_{v \in D} \left[\mathbb{E}_{p(h|v)}(h_{i}v_{j}) - \mathbb{E}_{p(v,h)}(h_{i}v_{j}) \right] \\
= \langle h_{i}v_{j} \rangle_{p(h|v)q(v)} - \langle h_{i}v_{j} \rangle_{p(v,h)} = \langle h_{i}v_{j} \rangle_{data} - \langle h_{i}v_{j} \rangle_{model} \quad (4)$$

where *q* denotes the distribution of the data set and \mathbb{E}_p denotes expectation value wrt the probability distribution *p*.

Need to compute the averages in (4). The first term, called the **positive phase**, is easy to deal with by computing *p*(*h*|*v*) (similar to *p*(*v*|*h*)). The second one, called the **negative phase**, can only be approximated. Logistic transition probability $\sigma(x) = 1/(1 + e^{-x})$

► To compute p(v_k = 1|h) let v_{-k} denote the state of all visible units other than the kth visible unit V_k.

• Put
$$\eta_k(h) := -\sum_{i=1}^n w_{ij}h_i - b_k$$
, and

$$\gamma(\mathbf{v}_{-k},h) := -\sum_{i} \sum_{j \neq k} w_{ij} h_i \mathbf{v}_j - \sum_{j \neq k} b_j \mathbf{v}_j - \sum_{i} c_i h_i.$$

► Then $E(v, h) = E(v_k, v_{-k}, h) = \gamma(v_{-k}, h) + v_k \eta_k(h)$. Thus, by independence of visible units:

$$p(v_k = 1|h) = p(v_k = 1|v_{-k}, h) = \frac{p(v_k = 1, v_{-k}, h)}{p(v_{-k}, h)}$$

$$= \frac{e^{-E(v_{k}=1,v_{-k},h)}}{e^{-E(v_{k}=1,v_{-k},h)} + e^{-E(v_{k}=0,v_{-k},h)}}$$

=
$$\frac{e^{-\gamma(v_{-k},h)-1\cdot\eta_{k}(h)}}{e^{-\gamma(v_{-k},h)-1\cdot\eta_{k}(h)} + e^{-\gamma(v_{-k},h)-0\cdot\eta_{k}(h)}} PTO$$

Logistic transition probability & Block Gibbs sampling

$$=\frac{e^{-\gamma(\boldsymbol{v}_{-k},h)}\cdot e^{-\eta_k(h)}}{e^{-\gamma(\boldsymbol{v}_{-k},h)}\cdot e^{-\eta_k(h)}+e^{-\gamma(\boldsymbol{v}_{-k},h)}}=\frac{e^{-\gamma(\boldsymbol{v}_{-k},h)}\cdot e^{-\eta_k(h)}}{e^{-\gamma(\boldsymbol{v}_{-k},h)}\cdot (e^{-\eta_k(h)}+1)}$$

$$= \frac{e^{-\eta_k(h)}}{e^{-\eta_k(h)} + 1} = \frac{1}{1 + e^{\eta_k(h)}} = \sigma(-\eta_k(h)) = \sigma\left(\sum_{i=1}^n w_{ik}h_i + b_k\right)$$

Similarly, by symmetry, we have:

$$p(h_k = 1 | v) = \sigma \left(\sum_{j=1}^m w_{kj} v_j + c_k \right)$$

Since on each level the variables are independent, we can do Block Gibbs sampling in two steps in each stage:
 (i) sample *h* based on p(h|v) = ∏ⁿ_{i=1} p(h_i|v), and,
 (ii) sample v based on p(v|h) = ∏^m_{j=1} p(v_j|h).

Computation of log-likelihood gradient (II)

The first term in Equation (3), for θ = w_{ij}, can now be calculated as follows. Recall that h_{-i} denotes the values of all hidden units except *i*.

$$-\sum_{h} p(h|v) \frac{\partial E(v,h)}{\partial \theta} = \sum_{h} p(h|v) h_{i} v_{j}$$

$$= \sum_{h_i} \sum_{h_{-i}} p(h_i | v) p(h_{-i} | v) h_i v_j = \sum_{h_{-i}} p(h_{-i} | v) \sum_{h_i} p(h_i | v) h_i v_j$$

$$= 1 \cdot \sum_{h_i} p(h_i | v) h_i v_j = p(h_i = 1 | v) v_j = \sigma(\sum_{\ell=1}^m w_{i\ell} v_\ell + c_i) v_j$$

since $\sum_{h_{-i}} p(h_{-i}|v) = 1$.

This can thus be easily computed for any given state v of the visible vector, including training vectors.

Computation of log-likelihood gradient (III)

For the second term in Equation (3) with θ = w_{ij}, use p(v, h) = p(v)p(h|v) and the result in the derivation of the first term to get:

$$\sum_{v,h} p(v,h) \frac{\partial E(v,h)}{\partial w_{ij}} = \sum_{v,h} p(v) p(h|v) \frac{\partial E(v,h)}{\partial w_{ij}}$$
$$= \sum_{v} p(v) \sum_{h} p(h|v) \frac{\partial E(v,h)}{\partial w_{ij}} = -\sum_{v} p(v) \sum_{h} p(h|v) h_{i} v_{j}$$
$$= -\sum_{v} p(v) p(h_{i} = 1|v) v_{j}$$
(5)

This has to be summed over all possible visible vectors, with an exponential complexity of 2^m.

v

- Instead, we can run MCMC by approximating this average using samples from model distribution as we computed averages for the stochastic Hopfield network.
- Unfortunately, this has to be done until the stationary distribution is reached and is itself intractable.

Block Gibbs Sampling and MCMC for RBM

Exercise.

$$p(H_i = h_i | v) = \frac{e^{\sum_{j=1}^m w_{ij} v_j h_i + c_i h_i}}{1 + e^{\sum_{j=1}^m w_{ij} v_j + c_i}}$$
$$p(V_j = v_j | h) = \frac{e^{\sum_{i=1}^n w_{ij} v_j h_i + b_j v_j}}{1 + e^{\sum_{i=1}^n w_{ij} h_i + b_j}}$$

Obtain transitional probabilities for block Gibbs sampling:

$$p(h|v)$$
 and $p(v|h)$

We can then show that

$$p(v,h) = rac{e^{-E(v,h)}}{Z}$$
, where $Z = \sum_{v \in \{0,1\}^m, h \in \{0,1\}^n} e^{-E(v,h)}$

satisfies the detailed balance condition and is thus the stationary distribution of the RBM.

Thus we can use MCMC to find averages wrt the stationary distribution.

Contrastive divergence CD-k

- **CD-k** is an algorithm to approximate MCMC for an RBM.
- We simply run Gibbs block sampling for only k steps:
- Start with a training vector $v^{(0)}$ and at step $0 \le s \le k 1$:
- Sample $h^{(s)} \sim p(h|v^{(s)});$
- ► Sample v^(s+1) ~ p(v|h^(s)).
- Replace each term in (5) with $-p(h_i = 1 | v^{(k)}) v_i^{(k)}$.
- We usually take k = 1.

Overall algorithm for unsupervised training of RBM

- 1: init $\Delta w'_{ij} = \Delta b'_i = \Delta c'_i = 0$ for $i = 1, \dots, n, j = 1, \dots, m$
- 2: for all training mini-batches $T \subset D$ do
- 3: init $\Delta w_{ij} = \Delta b_j = \Delta c_i = 0$ for i = 1, ..., n, j = 1, ..., m
- 4: for all $v \in T$ do
- 5: $v^{(0)} \leftarrow v$
- 6: $v^{(k)} \leftarrow$ generate k-steps Gibbs sampling from $v^{(0)}$

7:
$$\Delta w_{ij} \Leftarrow \Delta w_{ij} + p(h_i = 1 | v^{(0)}) \cdot v_j^{(0)} - p(h_i = 1 | v^{(k)}) \cdot v_j^{(k)}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

8:
$$\Delta b_j \Leftarrow \Delta b_j + v_j^{(0)} - v_j^{(k)}$$

9:
$$\Delta c_i \leftarrow \Delta c_i + p(h_i = 1 | v^{(0)}) - p(h_i = 1 | v^{(k)})$$

10: end for

11:
$$\mathbf{w}_{ij} \leftarrow \mathbf{w}_{ij} + \frac{\alpha}{|\mathcal{T}|} \cdot \Delta \mathbf{w}_{ij} + \nu \Delta \mathbf{w}'_{ij} - \lambda \mathbf{w}_{ij}$$

12: $b_j \leftarrow b_j + \frac{\alpha}{|\mathcal{T}|} \cdot \Delta b_j + \nu \Delta b'_j - \lambda b_j$

13:
$$\mathbf{c}_{i} \leftarrow \mathbf{c}_{i} + \frac{\alpha}{|\mathcal{T}|} \cdot \Delta \mathbf{c}_{i} + \nu \Delta \mathbf{c}_{i}^{\prime} - \lambda \mathbf{c}_{i}$$

14:
$$\Delta W'_{ij} \leftarrow \Delta W_{ij}$$

15: $\Delta b'_j \leftarrow \Delta b_j$

16:
$$\Delta c'_i \leftarrow \Delta c_i$$

17: end for

Some comments about the overall algorithm

- We usually use k = 1, i.e., we implement CD-1.
- In terms of the gradient ascent algorithm described in the recursive Equation (1), the overall algorithm uses θ = w_{ij}, b_j, c_i.
- The explicit time dependence θ^(t) has been suppressed to avoid cluttering the formulas.
- ▶ In fact, w_{ij} , b_j and c_i stand for $w_{ij}^{(t)}$, $b_j^{(t)}$ and $c_i^{(t)}$, while w'_{ij} , b'_j and c'_i stand for $w_{ij}^{(t-1)}$, $b_j^{(t-1)}$ and $c_i^{(t-1)}$.
- The overall algorithm thus includes one loop of Equation (1) for updating values of w^(t)_{ii}, b^(t)_i and c^(t)_i.
- For practical information on how to choose the parameters such α, λ, ν, batch size, or the initial values of weights and biases, see G. Hinton's: A practical guide to training restricted Boltzmann machines.

RBM as a Generative Model

- An RBM can be used to generate new data similar to those it has been trained with.
- Suppose we have a labelled data set, e.g., the MNIST handwritten digits with ten classes, one for each digit.
- There are in general a number of classes or labels and each item in the data set has a unique label.
- For each class include a visible unit, which would be turned on when the RBM is trained for any item in that class.
- After training, if we clamp the unit for a given class to "on" and the rest of class units to "off", the RBM generates patterns that it classifies in the given class.

Softmax function

For a single binary node with value v = 0 or v = 1, the energy is E = −bv and thus the probability of v = 1 is given by the Logistic sigmoid function:

$$\frac{e^{-E(1)}}{e^{-E(1)} + e^{-E(0)}} = \frac{e^{-E(1)}}{e^{-E(1)} + e^{-E(0)}} = \frac{1}{1 + e^{E(1)}}$$

- Suppose we have *L* labels or classes, each having a weight *z_k* ∈ ℝ for 1 ≤ *k* ≤ *L*. Then we can generalise the Logistic sigmoid map to *L* states.
- ► The softmax function takes a vector in z ∈ ℝ^L of L real numbers and provides a probability vector with L components:

$$\frac{e^{z_k}}{\sum_{l=1}^L e^{z_l}}$$

From this probability vector, we can sample a value of k with 1 ≤ k ≤ L.

RBM as a Discriminative Model

- We include a softmax unit which finds the probability of the labels, given the number of times each label unit is activated during a specific period provides.
- We train the RBM as in the generative model.
- For classification, we clamp the visible units to the values for the pattern we like to classify.
- We run Gibbs sampling for a specified number of times and each time one label becomes activated by the softmax unit.
- The active label will become stable at the end of Gibbs sampling, thus classifying our pattern.

Basic properties of RBM

- Given a probability distribution q on our data set, the RBM marginal probability distribution p for visible units can actually coincide with q if enough hidden units are used: In fact, if k + 1 hidden units are used where k is the number of different configurations in {0,1}^m with non-zero q value.
- In general though the marginal distribution p is only an approximation to q.
- An upper bound for the average error in k-step contrastive divergence (CD-k) is given by

$$\frac{1}{2}\|q-p\|\left(1-e^{-(m+n)\Delta}\right)^k$$

where *m* and *n* are the number of visible and hidden units, and Δ is a positive number which can be obtained from the final values of w_{ij} , b_j and c_i .

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

• Therefore as $k \to \infty$ the average error converges to zero.

Averaging and Sampling: Justifying CD-k

- For an irreducible and aperiodic transition matrix *P* on a finite state space *S* with stationary distribution π, recall that *qPⁿ* → π for any initial probability vector *q* and also that lim_{n→∞} E_{*qPⁿ*}(*f*) = E_π(*f*) for any function *f* : *S* → ℝ.
- Now, if x⁽⁰⁾ ∈ S is any sample x⁽⁰⁾ ~ q, and we recursively construct a sequence of samples x^(k+1) ~ P(x|x^(k)), i.e., x^(k+1) ~ x^(k)P, then for large k we have: x^(k) ~ π
- If x_j⁽⁰⁾ ~ q, with 1 ≤ j ≤ ℓ for large ℓ, is a set of initial samples, by Central Limit Theorem, we have for large k:

$$\frac{1}{\ell}\sum_{j=1}^{\ell}f(x_j^{(k)})\approx \mathbb{E}_{\pi}(f).$$

which justifies CD-k, with *q* as the probability distribution over the data set *D* and $\pi(v, h) = \Pr(v, h) = e^{-E(v,h)}/Z$.