Restricted Boltzmann Machines
Boltzmann Machine (BM)

- A Boltzmann machine extends a stochastic Hopfield network to include hidden units. It has binary (0 or 1) visible vector unit x and hidden (latent) vector unit h that detects features in the visible vector x.

- The model is parametrised in matrix form by U, V, W, b, c, where the visible-visible weights are U, the hidden-hidden weights are V, and W are the visible-hidden weights, all symmetric without self-connections. The visible units have biases b, and the hidden units have biases c.

- Each joint configuration of the visible and hidden units has an associated energy, defined in matrix form by:

$$E(v, h) = -\frac{1}{2}v^\top Uv - \frac{1}{2}h^\top Vh - v^\top Wh - c^\top v - b^\top h$$

- Without hidden units, E is as in a Hopfield network.

- Learning with BM is extremely difficult and impractical.
An RBM is a BM with a bi-partite graph of m visible and n hidden units, i.e., no connections between visible units or between hidden units. What are the maximal cliques?

The energy has, by Hammersley-Clifford theorem, parameters $\theta \in \Theta := \{w_{ij}, b_j, c_i : 1 \leq j \leq m, 1 \leq i \leq n\}$:

$$E(v, h) = -\sum_{i=1}^{n} \sum_{j=1}^{m} w_{ij} h_i v_j - \sum_{j=1}^{m} b_j v_j - \sum_{i=1}^{n} c_i h_i$$

Assume each training item $x_k \in D, (k = 1, \ldots, \ell)$, gives a B/W pixel image and items are i.i.d random variables drawn from a distribution q on m nodes.

Unsupervised learning: An RBM can learn a distribution p to approximate q on $D \subset S = \{0, 1\}^m$.

\[\text{n hidden units} \quad \text{m visible units}\]
Maximising log likelihood

- An asymmetric measure of difference between q and p is given by Kullback-Leibler divergence or the relative entropy of q wrt p given for a finite state space S by:

$$KL(q ∥ p) = \sum_{x \in S} q(x) \ln \frac{q(x)}{p(x)} = \sum_{x \in S} q(x) \ln q(x) - \sum_{x \in S} q(x) \ln p(x)$$

- $KL(q ∥ p)$ is non-negative and is zero iff $p = q$.
- Only the last term depends on p, thus on the parameters.
- Therefore, minimising $KL(q ∥ p)$ corresponds to maximising the likelihood of p for training items.
- Thus, learning aims to determine all parameters $\theta \in \Theta$ to maximise the likelihood wrt D defined by:

$$L(\theta | D) = \prod_{k=1}^{\ell} p(x_k | \theta),$$

or maximising its log likelihood:

$$\ln L(\theta | D) = \ln \prod_{k=1}^{\ell} p(x_k | \theta) = \sum_{k=1}^{\ell} \ln p(x_k | \theta)$$
Gradient Ascent

- Since we cannot analytically solve the maximisation for an RBM, we use the method of gradient ascent.
- **Idea.** Find \((\theta_1, \ldots, \theta_p)\) for the maximum value of \(f : \mathbb{R}^p \rightarrow \mathbb{R} : (\theta_1, \ldots, \theta_p) \mapsto f(\theta_1, \ldots, \theta_p)\), as follows:
 - Start with some \(\theta_i^{(0)}\) and for each \(i\) obtain increasingly better approximations to the \(\theta_i\) value for the maximum of \(f\):
 \[
 \theta_i^{(t+1)} = \theta_i^{(t)} + \alpha \frac{\partial f}{\partial \theta_i}(\theta_i^{(t)}), \quad \text{with } \alpha > 0 \text{ a constant}
 \]
 - For RBM, start from an initial value \(\theta^{(0)}\) for \(\theta \in \Theta\). Let
 \[
 \theta^{(t+1)} = \theta^{(t)} + \alpha \frac{\partial}{\partial \theta} \left(\sum_{k=1}^\ell \ln p(x_k|\theta^{(t)}) \right) - \lambda \theta^{(t)} + \nu \Delta \theta^{(t-1)} \tag{1}
 \]
 where \(\Delta \theta^{(t)} = \theta^{(t+1)} - \theta^{(t)}\) and \(\alpha > 0\) is the learning rate.
 - The last two terms are added to optimise the algorithm:
 - \(- \lambda \theta^{(t)}\) is the decay weight, with \(\lambda > 0\) a constant.
 - \(\nu \Delta \theta^{(t-1)}\) is the momentum, with \(\nu > 0\) a constant.
RBM probability distribution

- To use gradient ascent, we need to compute $p(v)$ and $\partial \ln p(v) / \partial \theta$, where v is any state of the visible units.
- As in any energy based model, the joint distribution of visible and hidden units (v, h) is given by

$$p(v, h) = \frac{e^{-E(v, h)}}{Z}, \quad \text{with} \quad Z = \sum_{v \in \{0,1\}^m} \sum_{h \in \{0,1\}^n} e^{-E(v, h)}$$

- Since the only connections are between a visible and a hidden unit, the conditional probability distributions are:

$$p(h|v) = \prod_{i=1}^n p(h_i|v), \quad p(v|h) = \prod_{j=1}^m p(v_j|h).$$

- The marginal distribution of visible units is given by

$$p(v) = \sum_h p(v, h) = \frac{1}{Z} \sum_h e^{-E(v,h)}$$

- This distribution can be computed as product of factors.
Computation of log-likelihood

Therefore, the log-likelihood is computed as:

\[
\ln p(x|\theta) = \ln \frac{1}{Z} \sum_h e^{-E(x,h)} = \ln \sum_h e^{-E(x,h)} - \ln \sum_{x,h} e^{-E(x,h)},
\]

where \(\theta \) is assumed to be one of the parameters, i.e., \(w_{ij}, b_j, c_i \), of the model.

To compute the derivative of log likelihood we need the following:

\[
p(h|v) = \frac{p(v, h)}{p(v)} = \frac{1}{Z} e^{-E(v,h)} = \frac{e^{-E(v,h)}}{\sum_h e^{-E(v,h)}},
\]

We can now proceed as follows.
Computation of log-likelihood gradient (I)

\[
\frac{\partial}{\partial \theta} \left(\ln p(v|\theta) \right)
= \frac{\partial}{\partial \theta} \left(\ln \sum_h e^{-E(v,h)} \right) - \frac{\partial}{\partial \theta} \left(\ln \sum_{v,h} e^{-E(v,h)} \right)
= -\frac{1}{\sum_h e^{-E(v,h)}} \sum_h e^{-E(v,h)} \frac{\partial E(v,h)}{\partial \theta} + \frac{1}{\sum_{v,h} e^{-E(v,h)}} \sum_{v,h} e^{-E(v,h)} \frac{\partial E(v,h)}{\partial \theta}
= -\sum_h p(h|v) \frac{\partial E(v, h)}{\partial \theta} + \sum_{v,h} p(v, h) \frac{\partial E(v, h)}{\partial \theta},
\]

where in deriving the first term in (3) we have used Equation (2).

- By \(E(v, h) = -\sum_{i=1}^n \sum_{j=1}^m w_{ij} h_i v_j - \sum_{j=1}^m b_j v_j - \sum_{i=1}^n c_i h_i\),
 the partial derivatives \(\frac{\partial E(v, h)}{\partial \theta}\) can be easily computed for each \(\theta = w_{ij}, b_j, c_i\).
- Let \(\theta = w_{ij}\), thus \(\frac{\partial E(v, h)}{\partial w_{ij}} = -h_i v_j\) for computation.
- The cases of \(\theta = b_j, c_i\) are entirely similar.
Average log-likelihood gradient

Taking average of the log-likelihood gradient of all training vectors for \(\theta = w_{ij} \) we have:

\[
\frac{1}{\ell} \sum_{v \in D} \frac{\partial \ln p(v|w_{ij})}{\partial w_{ij}}
\]

\[
= \frac{1}{\ell} \sum_{v \in D} \left[-\sum_h p(h|v) \frac{\partial E(v,h)}{\partial w_{ij}} + \sum_v, h p(v, h) \frac{\partial E(v,h)}{\partial w_{ij}} \right]
\]

\[
= \frac{1}{\ell} \sum_{v \in D} \left[\sum_h p(h|v) h_i v_j - \sum_h p(v, h) h_i v_j \right]
\]

\[
= \frac{1}{\ell} \sum_{v \in D} \left[\mathbb{E}_p(h|v)(h_i v_j) - \mathbb{E}_p(v,h)(h_i v_j) \right]
\]

\[
= \langle h_i v_j \rangle_{p(h|v)q(v)} - \langle h_i v_j \rangle_{p(v,h)} = \langle h_i v_j \rangle_{\text{data}} - \langle h_i v_j \rangle_{\text{model}} \quad (4)
\]

where \(q \) denotes the distribution of the data set and \(\mathbb{E}_p \) denotes expectation value wrt the probability distribution \(p \).

Need to compute the averages in (4). The first term, called the **positive phase**, is easy to deal with by computing \(p(h|v) \) (similar to \(p(v|h) \)). The second one, called the **negative phase**, can only be approximated.
Logistic transition probability $\sigma(x) = 1/(1 + e^{-x})$

- To compute $p(v_k = 1|h)$ let v_{-k} denote the state of all visible units other than the kth visible unit V_k.
- Put $\eta_k(h) := -\sum_{i=1}^n w_{ij} h_i - b_k$, and

$$
\gamma(v_{-k}, h) := -\sum_{i} \sum_{j \neq k} w_{ij} h_i v_j - \sum_{j \neq k} b_j v_j - \sum_{i} c_i h_i.
$$

- Then $E(v, h) = E(v_k, v_{-k}, h) = \gamma(v_{-k}, h) + v_k \eta_k(h)$. Thus, by independence of visible units:

$$
p(v_k = 1|h) = p(v_k = 1|v_{-k}, h) = \frac{p(v_k = 1, v_{-k}, h)}{p(v_{-k}, h)}
$$

$$
= \frac{e^{-E(v_k=1,v_{-k},h)}}{e^{-E(v_k=1,v_{-k},h)} + e^{-E(v_k=0,v_{-k},h)}}
$$

$$
= \frac{e^{-\gamma(v_{-k},h) - 1 \cdot \eta_k(h)}}{e^{-\gamma(v_{-k},h) - 1 \cdot \eta_k(h)} + e^{-\gamma(v_{-k},h) - 0 \cdot \eta_k(h)}}
$$

PTO
Logistic transition probability & Block Gibbs sampling

\[
\begin{align*}
&= \frac{e^{-\gamma(v_k, h)} \cdot e^{-\eta_k(h)}}{e^{-\gamma(v_k, h)} \cdot e^{-\eta_k(h)} + e^{-\gamma(v_k, h)}} = \frac{e^{-\gamma(v_k, h)} \cdot e^{-\eta_k(h)}}{e^{-\gamma(v_k, h)} \cdot (e^{-\eta_k(h)} + 1)} \\
&= \frac{e^{-\eta_k(h)}}{e^{-\eta_k(h)} + 1} = \frac{1}{1 + e^{\eta_k(h)}} = \sigma(-\eta_k(h)) = \sigma \left(\sum_{i=1}^{n} w_{ik} h_i + b_k \right)
\end{align*}
\]

- Similarly, by symmetry, we have:

\[
p(h_k = 1|v) = \sigma \left(\sum_{j=1}^{m} w_{kj} v_j + c_k \right)
\]

- Since on each level the variables are independent, we can do **Block Gibbs sampling** in two steps in each stage:
 (i) sample \(h \) based on \(p(h|v) = \prod_{i=1}^{n} p(h_i|v) \), and,
 (ii) sample \(v \) based on \(p(v|h) = \prod_{j=1}^{m} p(v_j|h) \).
The first term in Equation (3), for $\theta = w_{ij}$, can now be calculated as follows. Recall that h_{-i} denotes the values of all hidden units except i.

$$- \sum_h p(h|v) \frac{\partial E(v, h)}{\partial \theta} = \sum_h p(h|v) h_i v_j$$

$$= \sum_{h_i} \sum_{h_{-i}} p(h_i|v)p(h_{-i}|v)h_i v_j = \sum_{h_{-i}} p(h_{-i}|v) \sum_{h_i} p(h_i|v) h_i v_j$$

$$= 1 \cdot \sum_{h_i} p(h_i|v) h_i v_j = p(h_i = 1|v)v_j = \sigma(\sum_{\ell=1}^m w_{i\ell} v_\ell + c_i)v_j$$

since $\sum_{h_{-i}} p(h_{-i}|v) = 1$.

This can thus be easily computed for any given state v of the visible vector, including training vectors.
Computation of log-likelihood gradient (III)

- For the second term in Equation (3) with $\theta = w_{ij}$, use $p(v, h) = p(v)p(h|v)$ and the result in the derivation of the first term to get:

$$
\sum_{v, h} p(v, h) \frac{\partial E(v, h)}{\partial w_{ij}} = \sum_{v, h} p(v)p(h|v) \frac{\partial E(v, h)}{\partial w_{ij}}
$$

$$
= \sum_{v} p(v) \sum_{h} p(h|v) \frac{\partial E(v, h)}{\partial w_{ij}} = - \sum_{v} p(v) \sum_{h} p(h|v) h_i v_j
$$

$$
= - \sum_{v} p(v) p(h_i = 1|v) v_j
$$

- This has to be summed over all possible visible vectors, with an exponential complexity of 2^m.

- Instead, we can run MCMC by approximating this average using samples from model distribution as we computed averages for the stochastic Hopfield network.

- Unfortunately, this has to be done until the stationary distribution is reached and is itself intractable.
Block Gibbs Sampling and MCMC for RBM

Exercise.

\[
p(H_i = h_i | v) = \frac{e^{\sum_{j=1}^{m} w_{ij} v_j h_i + c_i h_i}}{1 + e^{\sum_{j=1}^{m} w_{ij} v_j + c_i}}
\]

\[
p(V_j = v_j | h) = \frac{e^{\sum_{i=1}^{n} w_{ij} v_j h_i + b_j v_j}}{1 + e^{\sum_{i=1}^{n} w_{ij} h_i + b_j}}
\]

Obtain transitional probabilities for block Gibbs sampling:

\[
p(h | v) \quad \text{and} \quad p(v | h)
\]

We can then show that

\[
p(v, h) = \frac{e^{-E(v, h)}}{Z}, \quad \text{where} \quad Z = \sum_{v \in \{0,1\}^m, h \in \{0,1\}^n} e^{-E(v, h)}
\]

satisfies the detailed balance condition and is thus the stationary distribution of the RBM.

Thus we can use MCMC to find averages wrt the stationary distribution.
Contrastive divergence CD-k

- **CD-k** is an algorithm to approximate MCMC for an RBM.
- We simply run Gibbs block sampling for only k steps:
 - Start with a training vector $v^{(0)}$ and at step $0 \leq s \leq k - 1$:
 - Sample $h^{(s)} \sim p(h|v^{(s)})$;
 - Sample $v^{(s+1)} \sim p(v|h^{(s)})$.
 - Replace each term in (5) with $-p(h_i = 1|v^{(k)})v_j^{(k)}$.
 - We usually take $k = 1$.

![Diagram of CD-k algorithm]

$v \in D$

$v^{(0)} \sim p(h|v^{(0)})$

$h^{(0)} \sim p(v|h^{(0)})$

$v^{(1)}$

$...$

$v^{(k)}$

$h^{(k)}$

$v^{(k)}$
Overall algorithm for unsupervised training of RBM

1: init \(\Delta w_{ij}' = \Delta b_j' = \Delta c_i' = 0 \) for \(i = 1, \ldots, n, j = 1, \ldots, m \)
2: for all training mini-batches \(T \subset D \) do
3: init \(\Delta w_{ij} = \Delta b_j = \Delta c_i = 0 \) for \(i = 1, \ldots, n, j = 1, \ldots, m \)
4: for all \(v \in T \) do
5: \(v^{(0)} \leftarrow v \)
6: \(v^{(k)} \leftarrow \) generate k-steps Gibbs sampling from \(v^{(0)} \)
7: \(\Delta w_{ij} \leftarrow \Delta w_{ij} + p(h_i = 1|v^{(0)}) \cdot v_j^{(0)} - p(h_i = 1|v^{(k)}) \cdot v_j^{(k)} \)
8: \(\Delta b_j \leftarrow \Delta b_j + v_j^{(0)} - v_j^{(k)} \)
9: \(\Delta c_i \leftarrow \Delta c_i + p(h_i = 1|v^{(0)}) - p(h_i = 1|v^{(k)}) \)
10: end for
11: \(w_{ij} \leftarrow w_{ij} + \frac{\alpha}{|T|} \cdot \Delta w_{ij} + \nu \Delta w_{ij}' - \lambda w_{ij} \)
12: \(b_j \leftarrow b_j + \frac{\alpha}{|T|} \cdot \Delta b_j + \nu \Delta b_j' - \lambda b_j \)
13: \(c_i \leftarrow c_i + \frac{\alpha}{|T|} \cdot \Delta c_i + \nu \Delta c_i' - \lambda c_i \)
14: \(\Delta w_{ij}' \leftarrow \Delta w_{ij} \)
15: \(\Delta b_j' \leftarrow \Delta b_j \)
16: \(\Delta c_i' \leftarrow \Delta c_i \)
17: end for
Some comments about the overall algorithm

- We usually use $k = 1$, i.e., we implement CD-1.
- In terms of the gradient ascent algorithm described in the recursive Equation (1), the overall algorithm uses $\theta = w_{ij}, b_j, c_i$.
- The explicit time dependence $\theta(t)$ has been suppressed to avoid cluttering the formulas.
- In fact, w_{ij}, b_j and c_i stand for $w_{ij}^{(t)}, b_j^{(t)}$ and $c_i^{(t)}$, while w'_{ij}, b'_j and c'_i stand for $w_{ij}^{(t-1)}, b_j^{(t-1)}$ and $c_i^{(t-1)}$.
- The overall algorithm thus includes one loop of Equation (1) for updating values of $w_{ij}^{(t)}, b_j^{(t)}$ and $c_i^{(t)}$.
- For practical information on how to choose the parameters such as α, λ, ν, batch size, or the initial values of weights and biases, see G. Hinton’s: A practical guide to training restricted Boltzmann machines.
RBM as a Generative Model

- An RBM can be used to generate new data similar to those it has been trained with.
- Suppose we have a labelled data set, e.g., the MNIST handwritten digits with ten classes, one for each digit.
- There are in general a number of classes or labels and each item in the data set has a unique label.
- For each class include a visible unit, which would be turned on when the RBM is trained for any item in that class.
- After training, if we clamp the unit for a given class to “on” and the rest of class units to “off”, the RBM generates patterns that it classifies in the given class.
Softmax function

For a single binary node with value $v = 0$ or $v = 1$, the energy is $E = -bv$ and thus the probability of $v = 1$ is given by the Logistic sigmoid function:

$$
\frac{e^{-E(1)}}{e^{-E(1)} + e^{-E(0)}} = \frac{e^{-E(1)}}{e^{-E(1)} + e^{-E(0)}} = \frac{1}{1 + e^{E(1)}}
$$

Suppose we have L labels or classes, each having a weight $z_k \in \mathbb{R}$ for $1 \leq k \leq L$. Then we can generalise the Logistic sigmoid map to L states.

The **softmax** function takes a vector in $z \in \mathbb{R}^L$ of L real numbers and provides a probability vector with L components:

$$
\frac{e^{z_k}}{\sum_{l=1}^{L} e^{z_l}}
$$

From this probability vector, we can sample a value of k with $1 \leq k \leq L$.

RBM as a Discriminative Model

- We include a softmax unit which finds the probability of the labels, given the number of times each label unit is activated during a specific period provides.
- We train the RBM as in the generative model.
- For classification, we clamp the visible units to the values for the pattern we like to classify.
- We run Gibbs sampling for a specified number of times and each time one label becomes activated by the softmax unit.
- The active label will become stable at the end of Gibbs sampling, thus classifying our pattern.
Basic properties of RBM

- Given a probability distribution q on our data set, the RBM marginal probability distribution p for visible units can actually coincide with q if enough hidden units are used: In fact, if $k + 1$ hidden units are used where k is the number of different configurations in $\{0, 1\}^m$ with non-zero q value.

- In general though the marginal distribution p is only an approximation to q.

- An upper bound for the average error in k-step contrastive divergence (CD-k) is given by

$$\frac{1}{2}\|q - p\| \left(1 - e^{-(m+n)\Delta}\right)^k$$

where m and n are the number of visible and hidden units, and Δ is a positive number which can be obtained from the final values of w_{ij}, b_j and c_i.

- Therefore as $k \rightarrow \infty$ the average error converges to zero.
Averaging and Sampling: Justifying CD-k

For an irreducible and aperiodic transition matrix P on a finite state space S with stationary distribution π, recall that $qP^n \to \pi$ for any initial probability vector q and also that

$$\lim_{n \to \infty} \mathbb{E}_{qP^n}(f) = \mathbb{E}_{\pi}(f)$$

for any function $f : S \to \mathbb{R}$.

Now, if $x^{(0)} \in S$ is any sample $x^{(0)} \sim q$, and we recursively construct a sequence of samples $x^{(k+1)} \sim P(x|x^{(k)})$, i.e., $x^{(k+1)} \sim x^{(k)}P$, then for large k we have: $x^{(k)} \sim \pi$

If $x^{(0)}_j \sim q$, with $1 \leq j \leq \ell$ for large ℓ, is a set of initial samples, by Central Limit Theorem, we have for large k:

$$\frac{1}{\ell} \sum_{j=1}^{\ell} f(x^{(k)}_j) \approx \mathbb{E}_{\pi}(f).$$

which justifies CD-k, with q as the probability distribution over the data set D and $\pi(v, h) = \Pr(v, h) = e^{-E(v,h)}/Z$.