
Restricted Boltzmann Machines



Boltzmann Machine(BM)
I A Boltzmann machine extends a stochastic Hopfield

network to include hidden units. It has binary (0 or 1)
visible vector unit x and hidden (latent) vector unit h that
detects features in the visible vector x .

I The model is parametrised in matrix form by U,V ,W ,b, c,
where the visible-visible weights are U, the hidden-hidden
weights are V , and W are the visible-hidden weights, all
symmetric without self-connections. The visible units have
biases b, and the hidden units have biases c.

I Each joint configuration of the visible and hidden units has
an associated energy, defined in matrix form by:

E(v ,h) = −1
2

v>Uv − 1
2

h>Vh − v>Wh − c>v − b>h

I Without hidden units, E is as in a Hopfield network.
I Learning with BM is extremely difficult and impractical.



Restricted Boltzmann Machines (RBM)
I An RBM is a BM with a bi-partite graph of m visible and n

hidden units, i.e., no connections between visible units or
between hidden units. What are the maximal cliques?

I The energy has, by Hammersley-Clifford theorem,
parameters θ ∈ Θ := {wij ,bj , ci : 1 ≤ j ≤ m,1 ≤ i ≤ n}:

E(v ,h) = −
n∑

i=1

m∑
j=1

wijhivj −
m∑

j=1

bjvj −
n∑

i=1

cihi

I Assume each training item xk ∈ D, (k = 1, . . . , `), gives a
B/W pixel image and items are i.i.d random variables
drawn from a distribution q on m nodes.

I Unsupervised learning: An RBM can learn a distribution
p to approximate q on D ⊂ S = {0,1}m.

n hidden units

m visible units



Maximising log likelihood
I An asymmetric measure of difference between q and p is

given by Kullback-Leiber divergence or the relative
entropy of q wrt p given for a finite state space S by:

KL(q‖p) =
∑
x∈S

q(x) ln
q(x)

p(x)
=
∑
x∈S

q(x) ln q(x)−
∑
x∈S

q(x) ln p(x)

I KL(q‖p) is non-negative and is zero iff p = q.
I Only the last term depends on p, thus on the parameters.
I Therefore, minimising KL(q‖p) corresponds to maximising

the likelihood of p for training items.
I Thus, learning aims to determine all parameters θ ∈ Θ to

maximise the likelihood wrt D defined by:

L(θ|D) =
∏̀
k=1

p(xk |θ), or maximising its log likelihood:

ln L(θ|D) = ln
∏̀
k=1

p(xk |θ) =
∑̀
k=1

ln p(xk |θ)



Gradient Ascent
I Since we cannot analytically solve the maximisation for an

RBM, we use the method of gradient ascent.
I Idea. Find (θ1, . . . , θp) for the maximum value of

f : Rp → R : (θ1, . . . , θp) 7→ f (θ1, . . . , θp), as follows:
I Start with some θ(0)

i and for each i obtain increasingly
better approximations to the θi value for the maximum of f :

θ
(t+1)
i = θ

(t)
i + α

∂f
∂θi

(θ
(t)
i ), with α > 0 a constant

I For RBM, start from an initial value θ(0) for θ ∈ Θ. Let

θ(t+1) = θ(t)+α
∂

∂θ

(∑̀
k=1

ln p(xk |θ(t))

)
−λθ(t)+ν∆θ(t−1) (1)

where ∆θ(t) = θ(t+1) − θ(t) and α > 0 is the learning rate.
I The last two terms are added to optimise the algorithm:
I −λθ(t) is the decay weight, with λ > 0 a constant.
I ν∆θ(t−1) is the momentum, with ν > 0 a constant.



RBM probability distribution
I To use gradient ascent, we need to compute p(v) and
∂ ln p(v)/∂θ, where v is any state of the visible units.

I As in any energy based model, the joint distribution of
visible and hidden units (v ,h) is given by

p(v ,h) =
e−E(v ,h)

Z
, with Z =

∑
v∈{0,1}m

∑
h∈{0,1}n

e−E(v ,h)

I Since the only connections are between a visible and a
hidden unit, the conditional probability distributions are:

p(h|v) =
n∏

i=1

p(hi |v), p(v |h) =
m∏

j=1

p(vj |h).

I The marginal distribution of visible units is given by

p(v) =
∑

h

p(v ,h) =
1
Z

∑
h

e−E(v ,h)

I This distribution can be computed as product of factors.



Computation of log-likelihood

I Therefore, the log-likelihood is computed as:

ln p(x |θ) = ln
1
Z

∑
h

e−E(x ,h)

= ln
∑

h

e−E(x ,h) − ln
∑
x ,h

e−E(x ,h),
(2)

where θ is assumed to be one of the parameters, i.e., wij ,
bj , ci , of the model.

I To compute the derivative of log likelihood we need the
following:

I

p(h|v) =
p(v ,h)

p(v)
=

1
Z e−E(v ,h)

1
Z
∑

h e−E(v ,h)
=

e−E(v ,h)∑
h e−E(v ,h)

I We can now proceed as follows.



Computation of log-likelihood gradient (I)

∂
∂θ (ln p(v |θ))

= ∂
∂θ

(
ln
∑

h e−E(v ,h)
)
− ∂

∂θ

(
ln
∑

v ,h e−E(v ,h)
)

= − 1∑
h e−E(v,h)

∑
h e−E(v ,h) ∂E(v ,h)

∂θ + 1∑
v,h e−E(v,h)

∑
v ,h e−E(v ,h) ∂E(v ,h)

∂θ

= −
∑

h

p(h|v)
∂E(v ,h)

∂θ
+
∑
v ,h

p(v ,h)
∂E(v ,h)

∂θ
, (3)

where in deriving the first term in (3) we have used
Equation (2).

I By E(v ,h) = −∑n
i=1
∑m

j=1 wijhivj −
∑m

j=1 bjvj −
∑n

i=1 cihi ,
the partial derivatives ∂E(v ,h)/∂θ can be easily computed
for each θ = wij ,bj , ci .

I Let θ = wij , thus ∂E(v ,h)/∂wij = −hivj for computation.
I The cases of θ = bj , ci are entirely similar.



Average log-likelihood gradient
I Taking average of the log-likelihood gradient of all training

vectors for θ = wij we have:

1
`

∑
v∈D

∂ ln p(v |wij )
∂wij

= 1
`

∑
v∈D

[
−∑h p(h|v)∂E(v ,h)

∂wij
+
∑

v ,h p(v ,h)∂E(v ,h)
∂wij

]
= 1

`

∑
v∈D

[∑
h p(h|v)hivj −

∑
h p(v ,h)hivj

]
= 1

`

∑
v∈D

[
Ep(h|v)(hivj)− Ep(v ,h)(hivj)

]
= 〈hivj〉p(h|v)q(v) − 〈hivj〉p(v ,h) = 〈hivj〉data − 〈hivj〉model (4)

where q denotes the distribution of the data set and Ep
denotes expectation value wrt the probability distribution p.

I Need to compute the averages in (4). The first term, called
the positive phase, is easy to deal with by computing
p(h|v) (similar to p(v |h)). The second one, called the
negative phase, can only be approximated.



Logistic transition probability σ(x) = 1/(1 + e−x)

I To compute p(vk = 1|h) let v−k denote the state of all
visible units other than the k th visible unit Vk .

I Put ηk (h) := −∑n
i=1 wijhi − bk , and

γ(v−k ,h) := −
∑

i

∑
j 6=k

wijhivj −
∑
j 6=k

bjvj −
∑

i

cihi .

I Then E(v ,h) = E(vk , v−k ,h) = γ(v−k ,h) + vkηk (h). Thus,
by independence of visible units:

p(vk = 1|h) = p(vk = 1|v−k ,h) =
p(vk = 1, v−k ,h)

p(v−k ,h)

=
e−E(vk =1,v−k ,h)

e−E(vk =1,v−k ,h) + e−E(vk =0,v−k ,h)

=
e−γ(v−k ,h)−1·ηk (h)

e−γ(v−k ,h)−1·ηk (h) + e−γ(v−k ,h)−0·ηk (h)
PTO



Logistic transition probability & Block Gibbs sampling

=
e−γ(v−k ,h) · e−ηk (h)

e−γ(v−k ,h) · e−ηk (h) + e−γ(v−k ,h)
=

e−γ(v−k ,h) · e−ηk (h)

e−γ(v−k ,h) · (e−ηk (h) + 1)

=
e−ηk (h)

e−ηk (h) + 1
=

1
1 + eηk (h)

= σ(−ηk (h)) = σ

(
n∑

i=1

wikhi + bk

)

I Similarly, by symmetry, we have:

p(hk = 1|v) = σ

 m∑
j=1

wkjvj + ck


I Since on each level the variables are independent, we can

do Block Gibbs sampling in two steps in each stage:
(i) sample h based on p(h|v) =

∏n
i=1 p(hi |v), and,

(ii) sample v based on p(v |h) =
∏m

j=1 p(vj |h).



Computation of log-likelihood gradient (II)

I The first term in Equation ( 3), for θ = wij , can now be
calculated as follows. Recall that h−i denotes the values of
all hidden units except i .

−
∑

h

p(h|v)
∂E(v ,h)

∂θ
=
∑

h

p(h|v)hivj

=
∑

hi

∑
h−i

p(hi |v)p(h−i |v)hivj =
∑
h−i

p(h−i |v)
∑

hi

p(hi |v)hivj

= 1 ·
∑

hi

p(hi |v)hivj = p(hi = 1|v)vj = σ(
m∑
`=1

wi`v` + ci)vj

since
∑

h−i
p(h−i |v) = 1.

I This can thus be easily computed for any given state v of
the visible vector, including training vectors.



Computation of log-likelihood gradient (III)
I For the second term in Equation (3) with θ = wij , use

p(v ,h) = p(v)p(h|v) and the result in the derivation of the
first term to get:∑

v ,h p(v ,h)∂E(v ,h)
∂wij

=
∑

v ,h p(v)p(h|v)∂E(v ,h)
∂wij

=
∑

v p(v)
∑

h p(h|v)∂E(v ,h)
∂wij

= −∑v p(v)
∑

h p(h|v)hivj

= −
∑

v

p(v)p(hi = 1|v)vj (5)

I This has to be summed over all possible visible vectors,
with an exponential complexity of 2m.

I Instead, we can run MCMC by approximating this average
using samples from model distribution as we computed
averages for the stochastic Hopfield network.

I Unfortunately, this has to be done until the stationary
distribution is reached and is itself intractable.



Block Gibbs Sampling and MCMC for RBM
I Exercise.

p(Hi = hi |v) =
e
∑m

j=1 wij vj hi +ci hi

1 + e
∑m

j=1 wij vj +ci

p(Vj = vj |h) =
e
∑n

i=1 wij vj hi +bj vj

1 + e
∑n

i=1 wij hi +bj

I Obtain transitional probabilities for block Gibbs sampling:

p(h|v) and p(v |h)

I We can then show that

p(v ,h) =
e−E(v ,h)

Z
, where Z =

∑
v∈{0,1}m,h∈{0,1}n

e−E(v ,h)

satisfies the detailed balance condition and is thus the
stationary distribution of the RBM.

I Thus we can use MCMC to find averages wrt the
stationary distribution.



Contrastive divergence CD-k
I CD-k is an algorithm to approximate MCMC for an RBM.

I We simply run Gibbs block sampling for only k steps:

I Start with a training vector v (0) and at step 0 ≤ s ≤ k − 1:

I Sample h(s) ∼ p(h|v (s));

I Sample v (s+1) ∼ p(v |h(s)).

I Replace each term in (5) with −p(hi = 1|v (k))v (k)
j .

I We usually take k = 1.

h(0) ... h(k)

v(0) v(1) v(k)

v ∈ D v(k)

∼ p(h|v(0)) ∼ p(v|h(0))

1



Overall algorithm for unsupervised training of RBM
1: init ∆w ′ij = ∆b′j = ∆c′i = 0 for i = 1, . . . ,n, j = 1, . . . ,m
2: for all training mini-batches T ⊂ D do
3: init ∆wij = ∆bj = ∆ci = 0 for i = 1, . . . ,n, j = 1, . . . ,m
4: for all v ∈ T do
5: v (0) ← v
6: v (k) ← generate k-steps Gibbs sampling from v (0)

7: ∆wij ⇐ ∆wij + p(hi = 1|v (0)) · v (0)
j −p(hi = 1|v (k)) · v (k)

j

8: ∆bj ⇐ ∆bj + v (0)
j − v (k)

j

9: ∆ci ⇐ ∆ci + p(hi = 1|v (0))− p(hi = 1|v (k))
10: end for
11: wij ← wij + α

|T | ·∆wij + ν∆w ′ij − λwij

12: bj ← bj + α
|T | ·∆bj + ν∆b′j − λbj

13: ci ← ci + α
|T | ·∆ci + ν∆c′i − λci

14: ∆w ′ij ← ∆wij

15: ∆b′j ← ∆bj

16: ∆c′i ← ∆ci
17: end for



Some comments about the overall algorithm

I We usually use k = 1, i.e., we implement CD-1.
I In terms of the gradient ascent algorithm described in the

recursive Equation (1), the overall algorithm uses
θ = wij ,bj , ci .

I The explicit time dependence θ(t) has been suppressed to
avoid cluttering the formulas.

I In fact, wij , bj and ci stand for w (t)
ij , b(t)

j and c(t)
i , while w ′ij ,

b′j and c′i stand for w (t−1)
ij , b(t−1)

j and c(t−1)
i .

I The overall algorithm thus includes one loop of
Equation (1) for updating values of w (t)

ij , b(t)
j and c(t)

i .
I For practical information on how to choose the parameters

such α, λ, ν, batch size, or the initial values of weights and
biases, see G. Hinton’s: A practical guide to training
restricted Boltzmann machines.



RBM as a Generative Model
I An RBM can be used to generate new data similar to those

it has been trained with.
I Suppose we have a labelled data set, e.g., the MNIST

handwritten digits with ten classes, one for each digit.
I There are in general a number of classes or labels and

each item in the data set has a unique label.
I For each class include a visible unit, which would be turned

on when the RBM is trained for any item in that class.
I After training, if we clamp the unit for a given class to “on”

and the rest of class units to “off”, the RBM generates
patterns that it classifies in the given class.

label units visible units

hidden units



Softmax function
I For a single binary node with value v = 0 or v = 1, the

energy is E = −bv and thus the probability of v = 1 is
given by the Logistic sigmoid function:

e−E(1)

e−E(1) + e−E(0)
=

e−E(1)

e−E(1) + e−E(0)
=

1
1 + eE(1)

I Suppose we have L labels or classes, each having a
weight zk ∈ R for 1 ≤ k ≤ L. Then we can generalise the
Logistic sigmoid map to L states.

I The softmax function takes a vector in z ∈ RL of L real
numbers and provides a probability vector with L
components:

ezk∑L
l=1 ezl

I From this probability vector, we can sample a value of k
with 1 ≤ k ≤ L.



RBM as a Discriminative Model
I We include a softmax unit which finds the probability of the

labels, given the number of times each label unit is
activated during a specific period provides.

I We train the RBM as in the generative model.
I For classification, we clamp the visible units to the values

for the pattern we like to classify.
I We run Gibbs sampling for a specified number of times and

each time one label becomes activated by the softmax unit.
I The active label will become stable at the end of Gibbs

sampling, thus classifying our pattern.

label units visible units

hidden units
softmax



Basic properties of RBM
I Given a probability distribution q on our data set, the RBM

marginal probability distribution p for visible units can
actually coincide with q if enough hidden units are used: In
fact, if k + 1 hidden units are used where k is the number
of different configurations in {0,1}m with non-zero q value.

I In general though the marginal distribution p is only an
approximation to q.

I An upper bound for the average error in k-step contrastive
divergence (CD-k) is given by

1
2
‖q − p‖

(
1− e−(m+n)∆

)k

where m and n are the number of visible and hidden units,
and ∆ is a positive number which can be obtained from the
final values of wij , bj and ci .

I Therefore as k →∞ the average error converges to zero.



Averaging and Sampling: Justifying CD-k

I For an irreducible and aperiodic transition matrix P on a
finite state space S with stationary distribution π, recall that
qPn → π for any initial probability vector q and also that
limn→∞ EqPn (f ) = Eπ(f ) for any function f : S → R.

I Now, if x (0) ∈ S is any sample x (0) ∼ q, and we recursively
construct a sequence of samples x (k+1) ∼ P(x |x (k)), i.e.,
x (k+1) ∼ x (k)P, then for large k we have: x (k) ∼ π

I If x (0)
j ∼ q, with 1 ≤ j ≤ ` for large `, is a set of initial

samples, by Central Limit Theorem, we have for large k :

1
`

∑̀
j=1

f (x (k)
j ) ≈ Eπ(f ).

which justifies CD-k, with q as the probability distribution
over the data set D and π(v ,h) = Pr(v ,h) = e−E(v ,h)/Z .


