
Neural Networks and their applications

The Hebbian rule in the brain

I Donald Hebb hypothesised in 1949 how neurons are
connected with each other in the brain:

I “When an axon of cell A is near enough to excite a cell B
and repeatedly or persistently takes part in firing it, some
growth process or metabolic change takes place in one or
both cells such that A’s efficiency, as one of the cells firing
B, is increased.”

The Hebbian rule in the brain

I Long Term Potentiation (LTP) was established as a main
paradigm in neuroscience, confirming Hebb’s insight.

I The simple slogan to describe LTP is:

I “Neurons that fire together, wire together. Neurons that fire
out of sync, fail to link.”

I The neural network stores and retrieves associations,
which are learned as synaptic connection.

Human learning

I Learning is to associate two events with each other.
I The main brain organ for learning/explicit memory is the

hippocampus (of the limbic system) using Hebbian type.

Explicit learning

I Consider two events “Dark Cloud” and “Rain”, represented
for simplicity by two groups of 7 neurons below.

I Each is represented by the firing of particular neurons:

Dark Cloud:

Rain:

[0 1 0 1 1 0 1]

][1 0 1 1 0 0 1

I Every (solid or dashed) line represents a synaptic
connection from the terminal of a neuron in the first group
to the dendrite of a neuron in the second.

I In Hebbian learning, synaptic modification only occurs
between two firing neurons. In this case, these learning
synaptic connections are given by the solid lines.

Human memory

I Human memory thus works in an associative or
content-addressable way.

I The memory of the individual is retrieved by a string of
associations about the physical features, personality
characteristics and social relations of that individual, which
are dealt with by different parts of the brain.

I Human beings are also able to fully recall a memory by
first remembering only particular aspects or features of that
memory.

Unsupervised learning: The Hopfield network I

I In 1982, John Hopfield introduced an artificial neural
network to store and retrieve memory like the human brain.

I Here, a neuron either is on (+1) or is off (-1), a vast
simplification of the real situation.

I The state of a neuron (+1 or -1) will be renewed depending
on the input it receives from other neurons.

I A Hopfield network is initially trained to store a number of
patterns or memories.

I It is then able to recognise any of the learned patterns by
exposure to only partial or even some corrupted
information about that pattern, i.e., it eventually settles
down and returns the closest pattern or the best guess.

The Hopfield network II
I A Hopfield network is single-layered and recurrent

network: the neurons are fully connected, i.e., every
neuron is connected to every other neuron.

I Given two neurons i and j there is a connectivity weight wij
between them which is symmetric wij = wji with zero
self-connectivity wii = 0.

I Three neurons i = 1,2,3 with values ±1, connectivity wij :

Updating rule

I Assume N neurons = 1, · · · ,N with values xi = ±1
I The update rule is:

If hi ≥ 0 then 1← xi otherwise − 1← xi

where hi =
∑N

j=1 wijxj .
I There are now two ways to update the nodes:
I Asynchronously: At each point in time, update one node

chosen randomly or according to some rule.
I Synchronously: Every time, update all nodes together.
I Asynchronous updating, focused on here, is more

biologically realistic.

A simple example

I Suppose we only have two neurons: N = 2.
I Then there are essentially two non-trivial choices for

connectivities (i) w12 = w21 = 1 or (ii) w12 = w21 = −1.
I Asynchronous updating:
I In the case of (i) there are two attracting fixed points

namely [1,1] and [−1,−1]. All orbits converge to one of
these.

I For (ii), the attracting fixed points are [−1,1] and [1,−1]
and all orbits converge to one of these.

Energy function

I Hopfield networks have an energy function such that every
time the network is updated asynchronously the energy
level decreases (or is unchanged).

I For a given state (xi) of the network and for any set of
connection weights wij with wij = wji and wii = 0, let

E = −1
2

N∑
i,j=1

wijxixj

I We update xm to x ′
m and denote the new energy by E ′.

I Then E ′ ≤ E .
I The network eventually decreases to a stable equilibrium

which is a local minimum of E .

Training the network: one pattern

I Training pattern ~x = (x1, . . . , xi , . . . , xN) ∈ {−1,1}N

I To construct a Hopfield network that remembers ~x , we
need to choose the connection weights wij appropriately.

I Choose wij = ηxixj for 1 ≤ i , j ≤ N (i 6= j), where η > 0 is
the learning rate,

I Then the values xi will not change under updating:
I We have

hi =
N∑

j=1

wijxj = η
∑
j 6=i

xixjxj = η
∑
j 6=i

xi = η(N − 1)xi

I Thus the value of xi , whether 1 or −1 will not change, so
that ~x is a fixed point or an attractor of the network.

Neurons pull in or push away each other

I Consider the connection weight wij = wji between two
neurons i and j .

I If wij > 0, the updating rule implies:
I when xj = 1 then the contribution of j in the weighted sum,

i.e. wijxj , is positive. Thus xi is pulled by j towards its value
xj = 1;

I when xj = −1 then wijxj , is negative, and xi is again pulled
by j towards its value xj = −1.

I Thus, if wij > 0, then i is pulled by j towards its value. By
symmetry j is also pulled by i towards its value.

I It follows that for a given set of values xi ∈ {−1,1} for
1 ≤ i ≤ N, the choice of weights taken as wij = xixj for
1 ≤ i ≤ N corresponds to the Hebbian rule.

Training the network: Many patterns

I More generally, if we have p patterns ~xk , k = 1, . . . ,p, we
choose wij =

1
N
∑p

k=1 xk
i xk

j .

I If p/N is small then with high probability each pattern ~xk

becomes a fixed point of the network.

Perror p/N
0.001 0.105
0.0036 0.138
0.01 0.185
0.05 0.37
0.1 0.61

I There are also some spurious states (fixed points of the
network other than the p original patterns) for example
±sgn(±~xk1 ± ~xk2 ± ~xk3) called a mixture state.

Pattern Recognition

Energy landscape
Energy

States

. . .
.

.

.

stored patterns

spurious states

I Using a stochastic version of the Hopfield model one can
eliminate or reduce the spurious states.

Some other neural networks
I Boltzmann Machines extend Hopfield networks to two

layered networks. They can be used to recognise greyton
images or probability distributions.

I Feed-Forward Networks such as the perceptron are
hierarchically layered with non-symmetric, unidirectional,
non-zero synaptic couplings only between neurons in each
layer and those in the next layer.

I The values of input nodes (layer zero) and those of the
output nodes (final layer) are specified as well as the rule
for computing the values of the neurons at each layer in
terms of those in the previous layer.

I The task is to obtain the synaptic couplings by some
learning rule so that the final out put matches with the
output nodes.

I These networks will not have an energy function like the
Hopfield networks.

	

