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Abstract
We develop game theoretic descriptions of attach-
ment interactions between a child and a parent
within an iterative, reinforcement learning based
framework, whereby the parent’s payoff matrix can
evolve over time. We show how targeted reinforce-
ment can lead an initially avoidant child in her re-
lationship with the parent into a secure attachment
style, and consider how this evolution is affected by
both the relative value the parent places on immedi-
ate/future rewards, and the set of outcomes that are
encouraged. Our method, which to the best of our
knowledge is new, also provides a model of psy-
chotherapy by mapping the child/parent relation-
ship into the internal dynamics of the adult self and
the inner child. We also consider a ‘social game’,
whereby the individual parent-child dyads are part
of a larger society and the parent is influenced by
the actions of other parents within their neighbour-
hood.

1 Introduction
Attachment theory is a branch of psychology in which the
bonds between people, and their lasting impact on psycholog-
ical well-being, are studied. The theory outlines the need of
every infant to develop an emotionally supportive, dependant
relationship with a primary caregiver, to whom they become
‘attached’; and the central tenet is that the type of attachment
that emerges, with a life long enduring impact on the individ-
ual, is representative of the many interactions the parent and
child have with each other during these early, formative years.
It grew out of the work of Bowlby [Bowlby and Ainsworth,
1953], and was expanded on by Ainsworth who devised a
’strange situation’ laboratory experiment in the 1970s, to in-
vestigate the attachment of a child to its mother and the ef-
fects of attachment on behaviour [Ainsworth et al., 1978]. In
these experiments, a series of separation episodes designed to
activate attachment behaviour are carried out on children be-
tween 12 and 18 months. The observed quality of interaction
with the caregiver upon separation and reunion, along with
the degree of exploration of the unfamiliar environment, are
then used as the basis for four attachment classifications: a se-
cure category, along with three forms of insecure attachment
(avoidant, ambivalent and disorganised).

Work in AI on computational modelling of attachments
includes an agent-based simulation of the strange situation,
which explains attachment styles as adaptations to care giv-
ing styles [Petters, 2005], and an exploration of the poten-
tial ability of robots to fulfil attachment related care giving

Parent
Attend Ignore

Child Go 4,2 2,3
Don’t Go 3,1 3,4

Figure 1: A Type-IIA game with an avoidant Nash equilib-
rium (child payoff is given first)

Parent
Attend Ignore

Child Go 4,4 2,2
Don’t Go 3,1 3,3

Figure 2: A Type-IIB2a game with both secure and avoidant
Nash equilibria (child payoff is given first)

functions [Petters et al., 2010]. Directly relevant here is the
work of Buono et al, who have devised a series of stage game
models to describe the part of the strange situation at which
point the parent returns to the room, in order to show how
the behavioural characteristics of ‘secure’, ‘ambivalent’ and
‘avoidant’ might emerge for the child as equilibrium choices
with respect to the way in which the parent responds to the
child’s needs [Buono et al., ]. We consider two of these games
below.

The Type-IIA game (Figure 1) is the ordinal representation
of a game for which the child’s stress will increase if they go
for attention but are ignored by the parent, and for which the
parent prefers to ignore the child given that they have chosen
to go for attention. We can see that this game is reflective of
an avoidant attachment style: the parent’s Ignore strategy is
dominant and, given this, the child is always better off choos-
ing Don′tGo. The game has a single Nash equilibrium in
pure strategies at (Don′tGo, Ignore).

The Type-IIB2a (Figure 2) game is the ordinal represen-
tation of a game for which the child’s stress will increase if
they go for attention but the parent chooses to ignore them,
but for which the parent prefers to attend to the child given
that they have chosen to go for attention. This game has
two Nash equilibria in pure strategies, at (Go,Attend) and
(Don′tGo, Ignore). The first equilibrium is Pareto optimal
and representative of secure attachment, whereas the second
equilibrium represents an avoidant relationship.

Only the ordinal ranks, i.e. the relative weight of the pay-
offs, are considered here. These payoffs can be regarded as
the degree of pleasure-displeasure experienced by the child
and the parent; their real values for each particular child-



parent pair can be determined in future work by techniques
in affective computing using for example the PAD (Pleasure-
Arousal-Dominance) model [Mehrabian, 1995] [Scherer and
Roesch, 2010].

2 Iterated Game
In the context of attachment behaviour, we are interested in
how the repeated game can model a change from one attach-
ment style to another. Evidence suggests that radical shifts
in the way a parent interacts with their child can result in a
change in attachment style [Waters et al., 2000], and in this
section we will focus on modelling the particular transitional
case from insecure to secure attachment.

In games where there are multiple Nash equilibria in
pure strategies, it may be the case that the attachment style
can move from an insecure to secure relationship simply
by moving from one equilibrium to another. For example,
in the game in Figure 2 moving from the equilibrium at
(Don′tGo, Ignore) to (Go,Attend) signifies a shift in at-
tachment style from avoidant to secure. Once this shift has
somehow been achieved neither the child nor parent would
have an incentive to deviate unilaterally nor jointly, since this
is a Pareto optimal Nash equilibrium. A realisation by the
parent that this more efficient equilibrium exists, and a will-
ingness to direct the interaction in this direction may thus be
all that is required.

Iterated games in which the payoffs change have previ-
ously been considered in Stochastic game theory [Shapley,
1953]. Stochastic games are based on Markov Decision Pro-
cesses [Howard, 1960] whereby the game can change be-
tween each round according to some probabilistic function
over the action choices. The probabilistic state transition
function has the Markov property, i.e. given the current
state and action, the next state is independent of all previous
states and actions. In our model, we use for our state repre-
sentation the ordinal equivalence of the absolute, externally-
reinforceable payoff matrix belonging to the parent. We show
how, when combined with reinforcement learning, this model
can facilitate the emergence of secure attachment in games for
which there is initially just an avoidant Nash equilibrium. To
the best of our knowledge, such evolving games in which the
payoffs are externally reinforced have not been studied.

2.1 The Child’s Game
We assume that the child is unaware of any change to the
structure of the game being played and that they therefore
continue to play according to the initial game payoff matrix.
It is also assumed that the child will be playing a strategy
with a reactive characteristic - i.e. that they pick their move
in each round based on their analysis of the pattern of play
of the parent, rather than, for example, deliberately trying to
guide the interaction pattern into a new equilibrium.

Evidence for both statistical inference [Kushnir et al.,
2010] and event memory [Bauer, 2006] in strange situation
aged children suggests that such a suitable reactive strategy
may be one in which the child maximises their expected pay-
off based on a probability distribution over the last n moves
that the parent chose. In this paper we concentrate on the

simple case of this strategy for which n = 1, i.e. a ‘best re-
sponse to last move’ (BRTLM) strategy, whereby the child
picks their move corresponding to their highest payoff based
on the assumption that the parent will play the same move
that they played in the previous round.

2.2 The Parent’s Game
Since the child’s payoffs remain unaltered, the parent’s payoff
matrix must change in order for new Nash equilibria corre-
sponding to secure attachment to emerge. This means that the
parent must change the value they place on individual game
outcomes, so that outcomes resulting in the parent choos-
ing Attend and the child choosing Go gradually come to
be preferred over avoidant interaction outcomes. The par-
ent therefore plays an evolving iterated game where their ini-
tial payoff matrix becomes their absolute payoff matrix, and
subsequently changes according to a payoff reinforcement
rule. The goal is to model a learning process for the parent,
whereby the reinforcement of certain desirable action com-
binations gradually leads the parent (and thus the child) into
a stable pattern of play resembling a secure attachment rela-
tionship.

The parent’s side of the game is a state transition system
consisting of a finite set of states S. Each state is repre-

sented by an ordinal payoff matrix
[
t u
v w

]
, corresponding

to the ordinal equivalence of the parent’s absolute payoff ma-
trix. The state therefore represents the relative value that the
parent places over the corresponding stage game outcomes.
There are 4! states for the permutations of all strict ordinal
payoff matrices (i.e. for the case where t 6= u 6= v 6= w), plus
4!/2! states for the non-strict ordinal payoff matrices with two
equal elements (t 6= u 6= v = w), plus 4!/3! states for the
non-strict ordinal payoff matrices with three equal elements
(t 6= u = v = w), plus 4!/4! states for the case where all the
payoffs are equal (t = u = v = w), giving a state space size
of 41.

At each discrete step in time (representing a moment in
which a decision is to be made) the system is in some par-
ticular state s ∈ S, where each state s has a corresponding
finite set of valid actions A for the parent to choose between.
For simplicity we assume that each state has the same action
set Ap = {Attend, Ignore}. The parent chooses an action
ap ∈ Ap, and the child chooses an action ac ∈ Ac, where
Ac = {Go,Don′tGo}, resulting in an action-combination
outcome for each stage game (ac, ap). It is this action-
combination outcome which determines whether or not a re-
inforcement occurs on the parent’s absolute payoff matrix,
and it is these reinforcements which in turn are the driver of
state transition.

With each reinforcement, the absolute value of the corre-
sponding payoff for the parent will grow, and thus their pay-
off matrix will change over repeated interactions. It is the
ordinal structure of the evolving payoff matrix that we are
concerned with, since this can be seen to represent the par-
ent’s emotional state and thus forms our state representation.
As a consequence of this ordinal state representation, we can
see that an action-combination outcome that results in pay-
off reinforcement does not necessarily also result in a state



transition s
ap→ s′, since such a transition only occurs if the

resulting ordinal payoff matrix differs to the current state.
The problem of the parent choosing the optimal action

within each state of the evolving game is suited to a reinforce-
ment learning framework [Sutton and Barto, 1998]. We ap-
ply the well known ‘Q-Learning’ reinforcement learning al-
gorithm over the state transition system as a model of how the
choices that the parent makes will adapt over time [Watkins,
1989]. The Q function Q : S × A → R calculates a Q value
for each action associated with a particular state. These Q val-
ues are an estimate of the expected reward that the parent will
receive from choosing this particular action when they come
to make an action decision. Following the choice of action ap
in state s and an observed transition to state s′, we update the
Q values according to the conventional update rule:

Q(s, ap) ← Q(s, ap) + `[Rap
(s, s′) + γ]

where

γ = δ max
a′
p

Q(s′, a′p)−Q(s, ap)

This update rule represents the learning process by which
the parent re-evaluates the quality of each state-action com-
bination according to the rewards received from the action
choices they make. The discount factor 0 ≤ δ < 1 signifies
the relative value the parent places on immediate/future re-
wards, and the learning rate 0 < ` ≤ 1 determines the extent
to which newly acquired information overrides old informa-
tion. We associate a learning rate with each (s, ap) pair and

set it according to `(s, ap) =
1

n(s, ap)
, where n(s, ap) equals

the number of times action ap has been chosen in state s, so
that initially `(s, ap) = 1 and decreases with each subsequent
selection of action ap in state s.

Action Choice

In order to avoid the parent’s Q values getting stuck in a lo-
cal maximum, actions associated with non-optimal Q values
should occasionally be played and as much of the state space
as possible be explored. At the same time the parent should
want to focus their exploration primarily on the most promis-
ing states. To resolve this exploration and exploitation tension
we employ a probabilistic ‘Boltzmann’ action selection rule
[Kaelbling et al., 1996]: given that the parent is in state s and
has exploration parameter k, the probability that they select
action api

is:

P (api
|s) = kQ(s,api

)∑
i

kQ(s,api
)

As k increases, the probability of selecting those actions
with low Q values becomes smaller, and so one way of look-
ing at the exploration parameter is to say that larger values
of k are representative of a parent who has more ‘embedded’
behaviour.

Payoff Reinforcement Rule
Only desirable or helpful outcomes to each stage game should
be praised and encouraged. We label this set of action-
combinations, that will trigger reinforcements in the par-
ent’s absolute payoff matrix, η. In any single stage game
the action-combination (Go,Attend) is desirable, since we
are hoping to guide the iterated game such that every game
ultimately has this outcome. However, this is not nec-
essarily the only action-combination that should be rein-
forced: we intuitively observe that the action-combination
(Don′tGo,Attend) is also a helpful outcome, since the
parent attending could encourage the child to Go in a fol-
lowing round. Conversely, the outcomes (Go, Ignore) and
(Don′tGo, Ignore) are neither desirable nor helpful out-
comes to any stage game since they will encourage and rein-
force ‘Ignore’ behaviours in the parent, and are never praised.

We define r > 1 to be the reinforcement parameter. In
each round of the game the parent chooses their action ac-
cording to the action selection rule outlined in the previous
section, and the child picks theirs according to their game
theoretic strategy (BRTLM), resulting in an action combina-
tion (ac, ap). The reward component of the Q value update
rule, Rap

(s, s′), corresponds to the payoff the parent receives
from the action-combination (ac, ap). If (ac, ap) ∈ η then
this reward is a reinforcement of the corresponding payoff in
their absolute payoff matrix, and the parent’s ordinal payoff
matrix may transition into a new state as a result of this rein-
forcement. If (ac, ap) /∈ η then the reward for the parent is
a non-reinforced payoff and no state transition will occur, i.e.
s′ = s.

Reinforcements on the parent’s absolute payoff matrix
are multiplicative, since each time a desirable action-
combination (ac, ap) ∈ η is observed following a round
in the iterated game, the corresponding payoff element in
the parent’s absolute payoff matrix is reinforced by this fac-
tor r. Thus, if we had experienced N rounds of play,
where the action combination (Go,Attend) had occurred
j times, (Don′tGo,Attend) had occurred m times, and
(Go, Ignore) and (Don′tGo, Ignore) occurred a total of
N − (j + m) ≥ 0 times, and our reinforcement rule is
η = { (Go,Attend), (Don′tGo,Attend) }, then the par-
ent’s absolute payoff matrix will have been reinforced to that
in Figure 3 (such that the ordinal equivalence of this rein-
forced payoff matrix is the parent’s current state in the state
transition system). The payoff element u has not been re-
inforced since the action-combination (Go, Ignore) has not
occurred, and is not a reinforceable outcome anyway since
(Go, Ignore) /∈ η. Likewise, the element w has not been
reinforced since (Don′tGo, Ignore) /∈ η.

An alternative state representation would be based on the
parent’s absolute payoff matrix as in Figure 3. In this case,
the system would be an infinite transition system with states
given by (j,m) ∈ N2 with deterministic rules of transition
(i.e. a stochastic game with transition probabilities of either
0 or 1). In such a system, with r > 0 a constant, a state
can never be re-visited. In contrast, when we use an ordinal
payoff state representation, states can be re-visited and the
parent can make use of their learning in any other round in
which the absolute payoffs were ordinally equivalent.



[
trj u
vrm w

]
Figure 3: The reinforced absolute payoff matrix after
(Go,Attend) occurred j times and (Don′tGo,Attend) oc-
curred m times, where t, u, v and w are the initial payoffs
prior to reinforcement and r is the reinforcement parameter.
The ordinal equivalence of this absolute payoff matrix forms
the parent’s current state.

The condition for convergence to a stable pattern
of play is the emergence of a Nash equilibrium at
(Go,Attend). This is true for both the case where
η = { (Go,Attend), (Don′tGo,Attend) } and η =
{(Go,Attend)}, as the child prefers to choose Go over
Don′tGo given that the parent has chosen Attend. Since
we are using a probabilistic ‘Boltzmann’ action selection
rule whereby the probability of the parent choosing Attend
will always be greater than a minimum positive number, the
game will converge, in measure-theoretic terminology, al-
most surely (i.e., with probability one) to this Nash equilib-
rium over an infinite number of rounds. What we are really
interested in, however, is not convergence per se, but the rate
of convergence with regards to the learning parameters, since
for a technique to be useful in psychotherapy its effects must
be seen within a reasonably small time frame.

2.3 Simulation Results
Simulations of iterated games were run such that each iter-
ated game consisted of 10,000 rounds, the initial game was
the Type IIA game (Figure 1). Since the game begins with
an avoidant attachment style, the Q values are initialised such
that the parent’s expectation of rewards associated with the
action in each state corresponds to an expectation that the
child will playDon′tGo, and without a consideration for any
potential reinforcements or state transitions. For example, for

the state
[
2 3
1 4

]
the initial Q value for the action Attend is

1 and for ‘Ignore’ it is 4. Similarly, for the state
[
4 3
1 2

]
the

initial Q value for Attend is 1 and for ‘Ignore’ it is 2.
Each individual simulation was repeated independently

200 times, and the average number of rounds before the
interaction converged towards a stable, secure relationship
(i.e. where both the parent chose Attend and the child
chose Go without any deviation) was calculated. This pro-
cess was repeated for various combinations of the parame-
ters for the discount factor δ, for reinforcement rates r =
1.01, r = 1.02 and r = 1.03, and for the reinforce-
ment rules η = {(Go,Attend), (Don′tGo,Attend)} and
η = {(Go,Attend)}. In all games we set the parent’s ex-
ploration parameter to k = 2. Below we chart our simulation
results, where a solid line indicates that the reinforcement rule
η = {(Go,Attend)} was used, and a dashed line that the re-
inforcement rule η = {(Go,Attend), (Don′tGo,Attend)}
was used. The resulting stable secure game that evolved was
of Type IIB2a (Figure 2).

As the size of the reinforcement r on the parent’s payoff

matrix is increased, the average number of rounds required
before a stable, secure attachment style emerges decreases.
We also observe that, in general, parents with lower discount
factors (i.e. parents who prefer immediate rewards) see the
emergence of a secure attachment style more quickly than
those who favour future rewards. As would be intuitively
expected under our model, the results also show us that se-
cure attachment relationships are more quick to emerge when
η = {(Go,Attend), (Don′tGo,Attend)} (i.e. when any
outcome resulting from the parent selecting the ‘Attend’ ac-
tion is encouraged, represented by a dashed line) than when
η = {(Go,Attend)} (i.e. when only the (Go,Attend) out-
come is encouraged, represented by a solid line). However,
we note that this effect becomes less pronounced as the size
of the reinforcement r increases.

Figure 4: The average number of rounds required for a
stable, secure attachment style to evolve when the child
played BRTLM, for various discount factors (δ) and rein-
forcement rates (r). Solid lines are results for the rein-
forcement rule η = {(Go,Attend)} and dashed lines for
η = {(Go,Attend), (Don′tGo,Attend)}. We have pos-
tulated that a lower k would be required in order to reduce
convergence time beyond δ = 0.6

An unexpected observation was that parents who had a
large discount factor δ > 0.7 (i.e. parents who placed more of
a preference on future rewards) did not on average converge
to a stable, secure attachment style within 10,000 rounds of
play, and we will attempt to explain why here. If the action-
combination outcome from some arbitrary round (ac, ap) ∈ η
then the reward issued is based on a reinforcement of the par-



ent’s underlying payoff matrix. The parent will receive a re-
ward even when no state transition occurs, i.e. Ra(s, s

′) > 0
for s = s′. Since state transitions only occur when these rein-
forcements result in a new ordinal payoff matrix for the par-
ent, we can have the situation whereby Q values for Q(s, a)
are updated even if no state transition has occurred. A par-
ent with a high discount factor δ > 0.6 who initially selects
actions in state s that do not result in any state transitions
will learn relatively larger Q value updates for these non-
reinforceable actions than would a parent with a lower dis-
count factor. In addition, since the learning rate l decreases
with each action choice a in state s, early action choices
which do not result in state transitions are even more pro-
nounced. It appears as though there is a threshold for δ for
which these initial non-transitional Q value updates are so
large that the probability of exploration becomes too small
to result in a change in attachment style. Therefore, to see
a quicker convergence toward secure attachment in parents
with a discount factor of δ > 0.7, we postulate that a lower
value of k would be required, resulting in more state-action
exploration. This is interesting when considered within the
context of psychotherapy and the exploration of new states,
since it suggests that the more relative value a parent places
on future rewards, the more encouragement they will require
initially with regards to breaking embedded patterns of be-
haviour in order for a stable, secure form of attachment to be
achieved.

3 An Adaptive Model for Psychotherapy
We map our model into the dynamics of the inner world of a
person undergoing psychotherapy in order to obtain an iter-
ative internal game within the person’s internal psyche. The
inner world of the person is regarded as the interaction of
the ‘Inner Child’, which replaces the child, and the ‘Adult
Self’, which replaces the parent. The Inner Child represents
the non-optimal or damaged emotional part of the person,
whereas the ‘Adult Self’ represents her/his thinking and log-
ical part. The notions of inner child and adult self have their
roots partly in Eric Berne’s transactional analysis [Berne,
2010], a popularisation of Freud’s psychoanalysis, and have
been introduced in psychotherapy by various clinicians in the
past decades (e.g. [Whitfield, 1991] and [Farmer, 1990]). We
consider the Inner Child and the Adult Self as two indepen-
dent agents each with its own “rational” behaviour.

The parent strategy of ‘Attending’ is mapped to ‘Mental-
izing’, which is the capacity to understand the mental state
(including the emotional condition) of oneself and others.
Mentalizing has been introduced in Attachment Theory and
psycho-dynamic therapy by Peter Fonagy and his colleagues
in the past decade and is considered to be an overarching
foundational technique in different types of psychotherapy,
including Cognitive Behaviour Therapy (CBT) [Allen et al.,
2008]. Finally, the child’s strategy of ‘Go’ to the parent is
mapped to ‘Seek Support’ from the Adult Self, which, in the
case that the Adult Self chooses Mentalizing, leads to an in-
creased ability by the inner child to regulate its emotions, an
ability that is considered as the key goal in psychotherapy
[Schore, 2012]. The psychotherapy game then starts with the

Adult Self/Inner Child dyad in an insecure (e.g. avoidant)
attachment type and, using reinforcement from a psychother-
apist or a self-help therapeutic technique, gradually converges
to inner secure attachment. This iterative game thus provides
a game-theoretic model of psychotherapy and can be consid-
ered as ‘re-parenting’ the inner child, a concept used in par-
ticular in Schema Therapy [Young et al., 2006], which is an
extension of CBT that is heavily influenced by Attachment
Theory.

4 Social Game
In the previous section we considered an iterated game in
which a single, external force reinforces the parent’s payoff
corresponding to the observed outcome following each round.
The payoff reinforcements are governed by some predefined
rule, such that only specific round outcomes are encouraged.

In a realistic situation, parents will have relationships with
other parents such as friends and family members. Belsky
has done extensive research into the relative effects of these
‘social networks’, and has concluded that the way a parent
behaves towards their child can be influenced by factors such
as “praise for their skill in handling children”, the provision
of information and advice and the natural emergence of so-
cial expectations [Belsky, 1984]. Indeed, Green et al have
highlighted the theory that attachment style is malleable with
regards to environmental circumstances and feedback from
these social networks [Green et al., 2007]. As such, we now
consider ‘social games’ represented as mathematical graphs,
where each node represents an iterated parent-child attach-
ment game, such that the social game is actually a collection
of individual iterated games that are interconnected.

Framework
Whereas before the static reinforcement rule governed which
round outcomes were to be reinforced, we now model the
case whereby society (i.e. the neighbourhood of games) de-
termines which parental actions are desirable. Within this
context, reinforcement on the parent’s payoff matrix repre-
sents a sort of social validation of the action choices made by
them in each round of the iterated game they play with their
child.

We define the social game to be an undirected graph G =
(V,E) where V is a set of vertices (nodes) and E is a set of
edges. Each node v ∈ V represents an individual parent-child
iterated game, therefore the total number of individual games
is equal to the order of the graph |V |, and we label the nodes
from 1 to |V |. Each game is initialised to either a secure game
of Type IIB2a (Figure 2) and represented as a green node, or
an avoidant game of Type IIA (Figure 1) represented by a
red node. For the purposes of the analysis below we only
consider connected graphs such that each node has at least
one connection to another node.

As before, the child picks their action in each round accord-
ing to their game theoretic strategy (BRTLM), and their pay-
offs do not change. For simplicity we assume that the parent
simply picks their action according to the Nash equilibrium,
without defining any explicit underlying learning process. In
the case of the single iterated game, reinforcements on the



parent’s payoff matrix occurred after each round according to
some predefined reinforcement rule which ensured that only
the payoffs for certain ‘desirable’ outcomes were reinforced.
For the social game we relax this constraint and allow rein-
forcement on every element in the parent’s payoff matrix.

Any node connected to some particular node v is a neigh-
bour of v, and we label the set of these direct neighbours
of v as the set of nodes Cv , so that v has |Cv| ≥ 1 neigh-
bours. We define the neighbourhood for v asNv = Cv∪{v},
i.e. the set containing v and its direct neighbours, such that
|Nv| = |Cv|+ 1.

Now we define the individual reinforcement parameter rv
for node v, which is set according to the following rule:

rv =
2

|Nv|

Since we have stated the condition |Cv| ≥ 1 (i.e. each
node v must have at least 1 direct neighbour) we can deduce
that 0 < rv ≤ 1 . We use this reinforcement parameter rv
to define the reinforcements at node v as follows. For each
round of the iterated game at this arbitrary node v, the child
chooses an action ac ∈ Ac = {Go,Don′tGo} and the parent
chooses an action ap ∈ Ap = {Attend, Ignore}, resulting
in an action-combination (ac, ap). Following the round, the
element corresponding to this action-combination (ac, ap) in
the parent’s payoff matrix is reinforced by rvmv where 0 <
mv ≤ |Nv|. Here, mv is the number of nodes in Nv whose
parents also played the action ap (i.e. the same action that the
parent at node v played). For example, if in the round just
gone only the parent at node v played action ap then mv = 1,
whereas if one of v’s neighbours also played ap thenmv = 2.

At this arbitrary node v, reinforcements on the parent’s
payoff matrix are therefore determined by the actions of
neighbouring parents rather than the outcomes of neighbour-
ing games. For the case where mv > |Nv|

2 the reinforce-
ment rvmv > 1 and the corresponding payoff will increase.
When mv <

|Nv|
2 the reinforcement 0 < rvmv < 1 and the

corresponding payoff decreases. Finally, if mv = |Nv|
2 then

rvmv = 1 and the corresponding payoff remains unchanged.

Network Malleability
As a sufficient condition for reinforcement we require that
the majority action choice chosen by the parents of nodes in
Nv be different to the action chosen by the parent at node v.
If this is not the case then rvmv = 1 and the payoff does
not change. If rvmv 6= 1 then payoff reinforcement will
occur, with two possibilities. Either this reinforcement (or
a sequence of these reinforcements) will result in new Nash
equilibria, and thus new attachment styles for v, or it will not.

We refer to network configurations where either the pay-
offs are not reinforced, or they are reinforced such that the
existing Nash equilibria cannot be broken, as ‘unmalleable’
networks. In unmalleable networks, the attachment styles of
the nodes will not change. Networks in which both reinforce-
ments occur, and where a single (or successive) reinforce-
ment(s) can result in the emergence of new attachment styles
for one (or more) of the nodes, are referred to as ‘malleable’
networks. The attachment styles of one or more of the nodes

Figure 5: Malleable Networks of 3 nodes

Figure 6: Malleable Networks of 4 nodes

within malleable networks can change. It is these ‘malleable’
configurations that we are interested in. Figure 5 shows all
such malleable networks of 3 nodes, and Figure 6 shows all
malleable networks of 4 nodes, determined as the result of
simulations run over 1000 rounds.

5 Summary
In the single parent-child dyadic model, we assumed that
there was some external force such as a psychotherapist en-
couraging and praising only certain outcomes to rounds of
the iterated game. Based on a number of assumptions on
the part of the parent (such as a fixed exploration parameter
and a decreasing learning rate), we have demonstrated how
a combination of controlled outcome reinforcement, plus a
model of learning and re-appraisal (along with an initial will-
ingness to deviate from embedded behaviour) on the part of
the parent can result in the emergence of a stable, secure at-
tachment style. We have also shown how a parent who places
too much relative importance on future rewards (with a large
discount factor δ) may actually hinder rather than help this
evolution. Although we have only considered an evolution
from avoidant to secure attachment, our method can in prin-
ciple also be applied to dyads initially playing ambivalent or
disorganised games, and indeed other non-attachment games
in which we want to model the evolution of a new, stable
Nash equilibrium at some particular outcome. In fact, we
have highlighted how our method also maps into an internal
dyad within an individual to provide a game-theoretic model
of psychotherapy, which to our knowledge is new.

In the social game we considered a society of intercon-
nected dyads (nodes), and the long term effect of social re-
inforcement on the actions chosen by the parents at each of
these nodes in determining individual changes in attachment
styles. Although we have not considered different levels of
social conformity amongst the dyads, we have classified all
‘malleable’ social structures of 3 and 4 nodes. In future, we
can apply this technique to “Small World Networks” [Watts
and Strogatz, 1998].
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