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Abstract. We promote the concept of object oriented computability in computational
geometry in order to faithfully generalise the well-established theory of computability
for real numbers and real functions. In object oriented computability, a geometric
object is computable if it is the effective limit of a sequence of finitary objects of
the same type as the original object, thus allowing a quantitative measure for the
approximation. The domain-theoretic model of computational geometry provides such
an object oriented theory, which supports two such quantitative measures, one based
on the Hausdorff metric and one on the Lebesgue measure. With respect to a new data
type for the Euclidean space, given by its non-empty compact and convex subsets, we
show that the convex hull, Voronoi diagram and Delaunay triangulation are Hausdorff
and Lebesgue computable.

1 Introduction

In his “Commentaries on the Difficulties in the Postulates of Euclid’s Elements”, Omar
Khayyam, the 11th century Persian mathematician and poet, developed the first rudimentary
notion of a real number. He first showed the equivalence of Euclid’s notion of ratios with that
of continued fractions. Then, in a stroke of genius, he defined two ratios as equal “when they
can be expressed by the ratio of integer numbers with as great a degree of accuracy as we
like.” This idea thus contained the first notion of a real number and the germ of the concepts
of computability and computation up to any precision. Three centuries later, Ghiasseddin
Jamshid Kashani, another Persian mathematician, devised the first fixed point technique for
computation in analysis in the beginning of the 15th century: he used a cubic polynomial in
a recursive scheme to approximate the sine of 1◦ correctly up to 17 decimal places; see [2] for
the details.

Following the formalisation of real numbers by Cantor and Dedekind in the 19th century
and the development of recursion theory by Turing, Church, Gödel and Kleene in the first half
of the 20th century, the concept of a computable real number was first defined by Turing in
his seminal work in mid 1930’s [17] and [18]. In the decades since that work, several notions
of computability for real numbers and real functions have been proposed, as for example
in [13], [15], [19], [16], [10], [1], which turn out to be essentially equivalent. A computable real
number in all these different but equivalent approaches is in essence the limit of an effective
sequence of rational numbers, and a computable real function is one which maps computable
real numbers to computable real numbers in an effective way. The effective nature of the
sequence of rational numbers approximating a computable number implies that each term
of the sequence gives a lower and an upper bound for the real number, with the distance
between the two bounds providing a quantitative measure of the approximation. Regarding a
real number as an object and a rational number as a finitary object of the same type as a real
number, we can say that a computable object is defined as the effective limit of two monotonic
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sequences of finitary objects, providing at each stage finitary lower and upper bounds for the
computable object. In this sense, we say that the computability theory of real numbers and
real functions is object oriented.

In more recent years, several attempts have been made to define the notion of computabil-
ity for subsets of the Euclidean space and operations on such subsets [12], [11], [4], [7], [8],
[9], [14], [3], [20], [21]. Here, there are several different approaches which give rise to a number
of non-equivalent theories of computability for subsets of the Euclidean space and operations
on them.

The domain-theoretic framework introduced in [7] and [8] for studying computability of
subsets of Euclidean spaces and their operations is an object oriented theory for computa-
tional geometry, which faithfully generalises the object oriented computability theory of real
numbers and real functions. As the membership predicate of a proper subset of a Euclidean
space is undecidable on its boundary, subsets with the same boundary are identified in the
domain-theoretic framework and thus any subset is represented by two disjoint open sub-
sets: its interior and its exterior3. With respect to any enumeration of a countable basis of
the Euclidean topology, a computable subset is one whose interior and exterior are each the
union of an effective increasing sequence of the basis elements. Thus, computability of an
object is defined by two effective sequences of the same type converging to the object. In a
similar way, computability of all basic operations on subsets such as union, intersection, and
Minkowski sum, as treated in [8], as well as the convex hull, Voronoi diagram and Delaunay
triangulation, as dealt with in [9] and [14], are always defined in terms of sequences of finitary
objects of similar type. For example, the computability of the convex hull of a finite number of
points in the Euclidean space is defined using two effective sequences of interior and exterior
convex rational polygons converging to the interior and the exterior of the convex hull of the
points.

The object oriented computability provided by the domain-theoretic model provides other
distinguished features:

– All basic predicates such as membership, subset inclusion and comparison as well as all
basic operations are Scott continuous and computable in this model. Thus, algorithms
developed in this framework are inherently robust in contrast with classical algorithms in
computational geometry, which are non-robust due to the non-computability of compar-
ison of real numbers or the membership predicate of a subset in classical geometry.

– In this model, one obtains robust algorithms for computing operations such as convex
hull, Voronoi diagram and Delaunay triangulation with the same complexity of the cor-
responding non-robust classical algorithms.

– Since the computability of an object is defined in terms of effective sequences of finitary
objects of a similar type, one can employ two quantitative measures of approximation:
one using the Hausdorff metric and one using the Lebesgue measure.

Therefore, in this framework the notion of computability of a geometric object and the task
of computing it up to any required precision by the user are synthesised into one paradigm,
thus providing the foundation of a robust CAD system.

In this paper, we study the three notions of recursion theoretic computability, Hausdorff
computability and Lebesgue computability of three basic computational geometry operations,
namely the convex hull, Voronoi diagram and Delaunay triangulation, in the context of a
general data type for the Euclidean space given by the domain of non-empty compact convex
subsets of the space ordered by reverse inclusion.

3 The exterior of a set is the interior of its complement.
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2 The mathematical model and the new data type

The solid domain (SRd,⊑) of Rd is the collection of pairs of disjoint open subsets of Rd

partially ordered componentwise by subset inclusion: (I, E) ⊑ (I ′, E′) iff I ⊆ I ′ and E ⊆ E′;
it is a bounded complete ω-continuous dcpo [8]. A classical geometric object, i.e. a subset
A ⊆ Rd is represented in this model as (A◦, (Ac)◦), where X◦ and Xc denote respectively the
interior and the complement of a set X. More generally, we think of an element (I, E) ∈ SRd

as a partial solid or partial geometric objects with interior I, exterior E and boundary (I∪E)c.
An element (I, E) is maximal in SRd iff I = (Ec)◦ and E = (Ic)◦, which imply that I and
E are regular4. The collection of pairs of interiors of disjoint dyadic (or rational) d-polygons
forms a basis for SRd. Any partial geometric object (I, E) can be obtained as the union of
these basis elements.

Our new data type is described as follows. We assume that we have lower and upper
rational bounds on the coordinates (xk)1≤k≤d of an imprecisely given point x ∈ Rd in say

n given directions, that is we have βj ≤
∑d
k=1 ajkxk ≤ γj , where (ajk)1≤k≤d fixes the n

given directions for 1 ≤ j ≤ n. We assume that the set of directions for our data type
is known in advance, and is independent from the data itself. Thus, each data point x is
located within a rational d-polygon, namely the intersection of the finite number of strips
given by the above inequalities. In most applications, we only have the d directions of the
coordinate axes, i.e. when each coordinate of an imprecisely given point is known to lie within
an interval as in interval analysis, for example when the coordinates of x are given by floating
point numbers. But this data type is also essential in cases when we have lower and upper
bounds on some linear combination of coordinates. In Figure 1, we have shown 6 out of the
18 possible types of polygons for an imprecisely given point in R2, where there are precisely
three directions of possible approximations: along the two coordinate axes and along the (1, 1)
vector, corresponding to the linear combination x1 + x2.

Fig. 1. Imprecise points defined by three directions (1, 0), (0, 1), (1, 1)

Note that the filtered intersection of a non-empty family of convex d-polygons in Rd is a
non-empty, convex and compact subset. Our domain of computation is therefore the collection
(CRd,⊇) of all non-empty, convex and compact subsets of Rd ordered by reverse inclusion
and equipped with the Scott topology. It is a bounded complete ω-continuous domain with
a countable basis given by the collection PRd of all rational convex d-polygons in Rd. The
map s : Rd → CRd with x 7→ {x} is a topological embedding, i.e. we can identify the
maximal elements of this domain with Rd. We also note that (CRd,⊇) is order isomorphic
with a sub-domain of SRd by identifying a non-empty convex and compact set A ∈ CRd with
(∅, Ac) ∈ SRd, i.e. with a geometric object whose interior is empty and its exterior is the
complement of A.

In this extended abstract, we restrict ourselves to computational geometry in R2; our
results however extend to Rd as we will show in the full version of the paper.

4 An open set is regular if it is the interior of its closure
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2.1 Computability

We assume the reader is familiar with the notion of computability for continuous domains [10],
[5], [8]. Recall that given an effective structure for a bounded complete ω-continuous dcpo
with respect to an enumeration of a countable basis, a computable element is defined as
the lub of an effective increasing sequence of basis elements. A computable function from a
bounded complete ω-continuous dcpo with an effective structure to another such domain is
a map which sends computable elements to computable elements in an effective way. We fix
effective structures on CR2 and SR2 by using, for example, an enumeration of rational convex
polygons as a basis of CR2 and an enumeration of pairs of disjoint rational polygons as a
basis of SR2. These effective structures induce effective structures on (CR2)N and (SR2)N

for all positive integers N .
We will define the notions of Hausdorff and Lebesgue computability in the solid domain.

Let dH denote the Hausdorff distance between non-empty compact sets. We put dH(∅, ∅) = 0
and for Y 6= ∅, dH(∅, Y ) = ∞. The notion of Hausdorff computability for a partial geometric
object has been defined in [8]. Here, we define the notion of a nestedly Hausdorff computable
map.

Definition 1. Consider a computable map f : (C[−a, a]2)N → S[−a, a]2, for some a > 0,
with f(Ĉ) = (fI(Ĉ), fE(Ĉ)), where Ĉ = (C1, . . . , CN ) represents an ordered list of non-

empty convex compact subsets of [−a, a]2. Let {B̂i | i ≥ 0} be an enumeration of the basis of

(C[−a, a]2)N . Consider an arbitrary Ĉ =
⊔

i≥0 B̂φ(n) with dH(Ĉ, B̂φ(i)) < 2−i, where φ is a

total recursive function and 〈B̂φ(i)〉i≥0 is an increasing chain. We say the interior part fI of

f is nestedly Hausdorff computable if there exists a total recursive function ψ1 such that

dH((fI(Ĉ)), fI(B̂φ(ψ1(i)))) < 2−i and dH((fI(Ĉ))
c
, fI(B̂φ(ψ1(i)))

c
) < 2−i

where A is the closure of A and complements are with respect to [−a, a]2. Similarly, the

exterior part fE of f is nestedly Hausdorff computable if there exists a total recursive function

ψ2 such that

dH((fE(Ĉ)), fE(B̂φ(ψ2(i)))) < 2−i and dH((fE(Ĉ))
c
, fE(B̂φ(ψ2(i)))

c
) < 2−i

If both fI and fE are nestedly Hausdorff computable then we say that f is nestedly Hausdorff
computable.

As we will see later, the partial Delaunay triangulation map is nestedly Hausdorff com-
putable but not Hausdorff continuous.

Proposition 1. With the assumptions of Definition 1, suppose fI(Ĉ) and fI(B̂φ(i)) are reg-

ular. Then fI is nestedly Hausdorff computable if there exists a total recursive function ψ1

such that

dH(∂(fI(Ĉ)), ∂(fI(B̂φ(ψ1(i))))) < 2−i,

where ∂(A) is the boundary of A. Similarly for fE.

Definition 2. With the assumptions of Definition 1, we say fI is nestedly Lebesgue com-
putable if there exists a total recursive function ψ1 such that

λ((fI(Ĉ)), fI(B̂φ(ψ1(i)))) < 2−i and λ((fI(Ĉ))
c
, fI(B̂φ(ψ1(i)))

c
) < 2−i.

Similarly, fE is nestedly Lebesgue computable if there exists a total recursive function ψ2

such that

λ((fE(Ĉ)), fE(B̂φ(ψ2(i)))) < 2−i and λ((fE(Ĉ))
c
, fE(B̂φ(ψ2(i)))

c
) < 2−i
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If both fI and fE are nestedly Lebesgue computable then we say f is nestedly Lebesgue
computable.

Proposition 2. With the assumptions of Definition 2, if the boundaries of fI(B̂i) and fE(B̂i)
are continuous curves for each i ∈ ω and if their lengths are uniformly bounded, then f is

Lebesgue computable.

3 Convex Hull

The convex hull map for compact subsets is defined as:

Γ : (CR
2) → CR

2

where CR2 is the set of all non-empty compact subsets of R2 and CR2 is the set of all non-
empty compact convex subsets of R2, both with the Hausdorff metric; for any non-empty
compact set C, the image Γ (C) is the convex hull of C.

The partial convex hull map has type:

H : (CR2)N → SR2

Ĉ 7→ (HI ,HE),
(1)

where Ĉ = (C1, . . . , CN ) represents an ordered list of N non-empty compact convex sets in
the plane R2. For a given Ĉ define R(Ĉ) = {{p1, . . . , pN} | pi ∈ Ci, i = 1, . . . , N} to be the
collection of all possible N -element sets, each containing precisely one element from each Ci.
An element P ∈ R(Ĉ) is called a representative set for Ĉ.

We define: HI(Ĉ) =
⋂

P∈R(Ĉ) Γ (P ) and HE(Ĉ) =
⋃

P∈R(Ĉ) Γ (P ). Thus, HI is the set of
points that are inside the convex hull of any representative set. Similarly, HE is the set of
points that are outside the convex hull of any representative set.

When Ĉ ∈ (CR2)N is a basis element, i.e. a list of N convex rational polygons, an
algorithm has been developed [6] that computes (HI ,HE) as follows. Assume that there are
n directions given by the unit normals dj (1 ≤ j ≤ n) with non-negative y coordinates, and
ordered anti-clockwise from the positive x-axis. The unit circle is partitioned into 2n arcs

d̂jdj+1 (1 ≤ j ≤ 2n) with dn+j = −dj for 1 ≤ j ≤ n and d2n+1 = d1. Then, we have:

• HE(Ĉ) = Γ ({c | c is a corner of Ci, 1 ≤ i ≤ N})
• HI(Ĉ) =

⋂2n
j=1 Γ ({cij | 1 ≤ i ≤ N}),

where cij is a corner of Ci furthest away from the boundary of any half-plane containing

Ci with unit normal in d̂jdj+1, see Figure 2. The above two expressions give an N logN
algorithm to compute the interior and the exterior parts of the partial convex hull in rational
arithmetic.

We will use this algorithm to prove that the partial convex hull is nestedly Hausdorff and
Lebesgue computable. For a subset X of the Euclidean space and ǫ > 0, we let X+ǫ = {y |
d(y,X) < ǫ} and X−ǫ = {y | d(y,Xc) > ǫ}.

Lemma 1. Suppose A is a regular compact set, then we have:

∀ǫ > 0,∃δ > 0. A ⊂ (A−δ)
+ǫ
.

Proof. For any set A, we have:
⋃

δ>0A
−δ = A◦. Also, for any regular set A and ǫ > 0:

∀x ∈ A,∃y ∈ A◦. d(x, y) < ǫ (regularity)
y ∈ A◦ ⇒ ∃δ > 0. y ∈ A−δ

}

⇒ x ∈ (A−δ)
+ǫ

which proves A ⊂
⋃

δ>0 (A−δ)
+ǫ

. Since A is compact, ∃δ > 0, such that A ⊂ (A−δ)
+ǫ

.
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Fig. 2. (a) Three given directions have partitioned the unit circle into six arcs; (b) Partial convex
hull of five partial points; (c)–(d) Partial convex hull with refined data.

Lemma 2. Assume P,Q ⊂ R2 are two regular non-empty compact convex sets with P ⊆ Q.

If Q ⊆ P+r then P c ⊆ (Qc)+r.

Theorem 1. The exterior part of the convex hull map is nestedly Hausdorff computable.

Proof. Let Ĉ =
⊔

B̂i where 〈B̂i〉 is an effective increasing sequence of basis elements. We
have Ĉ ⊆ B̂i.

dH(Ĉ, B̂i) < r ⇒ B̂i ⊆ Ĉ+r ⇒ (HE(B̂i))
c ⊆ (HE(Ĉ+r))c, (2)

Ĉ ⊆ (HE(Ĉ))c ⇒ Ĉ+r ⊆ ((HE(Ĉ))c)+r ⇒ (HE(Ĉ+r))c ⊆ ((HE(Ĉ))c)+r. (3)

From (2) and (3) we get (HE(B̂i))
c ⊆ ((HE(Ĉ))c)+r, and by using Lemma 2, we get

HE(Ĉ) ⊆ (HE(B̂i))
+r. This shows that dH(HE(Ĉ),HE(B̂i)) < r if dH(Ĉ, B̂i) < r. In partic-

ular, dH(Ĉ, B̂i) < 2−i implies dH(HE(Ĉ),HE(B̂i)) < 2−i. ⊓⊔

More work is required to show the property for the interior part of the partial convex hull.
For the next two results, we will work in Rd.

Lemma 3. For any regular compact convex set P and r > 0, we have: P = (P+r)−r.

Proposition 3. Suppose A,A′, B, and B′ are compact convex subsets of Rd and A ∩B and

A′ ∩B′ are regular. Then ∀ǫ > 0, ∃δ > 0, such that

dH(A,A′) < δ & dH(B,B′) < δ ⇒ (A ∩B) ⊂ (A′ ∩B′)
+ǫ

& (A′ ∩B′) ⊂ (A ∩B)
+ǫ

i.e. dH((A ∩B), (A′ ∩B′)) < ǫ.

Proof. We prove (A ∩ B) ⊂ (A′ ∩B′)
+ǫ

. The other relation is similar. Let ǫ > 0 be given.

Using Lemma 1, there exists δ > 0 such that (A ∩B) ⊂ [(A ∩B)
−δ

]
+ǫ

. Also,

dH(A,A′) < δ ⇒ A ⊂ A′+δ ⇒ A−δ ⊂ (A′+δ)
−δ

A is compact and convex ⇒ (A′+δ)
−δ

= (A′)◦

}

⇒ A−δ ⊂ A′ ⇒ (A ∩B)
−δ ⊂ A′.

Similarly for B, we have (A ∩B)
−δ ⊂ B′. Hence, (A ∩B)

−δ ⊂ (A′∩B′). Combining this with

(A ∩B) ⊂ [(A ∩B)
−δ

]
+ǫ

we get (A ∩B) ⊂ (A′ ∩B′)
+ǫ

. ⊓⊔

Since the interior convex hull, as discussed previously, is the intersection of a finite number
of classical convex hulls, it follows from Proposition 3 that the interior part HI of the partial
convex hull map is a continuous map. To prove that it is nestedly Hausdorff computable, we
need some preliminary results.
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Theorem 2. The map Γ is non-expansive with respect to the Hausdorff metric, i.e. dH(Γ (A), Γ (B)) ≤
dH(A,B), and therefore Hausdorff continuous.

Proof. Assume dH(Γ (A), Γ (B)) > r for some r > 0. Without loss of generality we can assume
that:

∃a ∈ Γ (A), s.t. b(a, r) ∩ Γ (B) = ∅,

where b(a, r) is the ball with centre a and radius r. Because both b(a, r) and Γ (B) are convex,
there is a plane separating them, i.e., denoting by Sd−1 the unit sphere with centre at the
origin, we have:

∃s ∈ Sd−1, u ∈ R : Γ (B) ⊂ {x | s · x− u ≤ 0} (1)
b(a, r) ⊂ {x | s · x− u ≥ 0}
⇒ a ∈ {x | s · x− u− r ≥ 0}
⇒ Γ (A) 6⊂ {x | s · x− u− r ≤ 0} (2)

We can easily see that:

(1) ⇒ B ⊂ {x | s · x− u ≤ 0}
(2) ⇒ A 6⊂ {x | s · x− u− r ≤ 0}

}

⇒ dH(A,B) > r,

which completes the proof.

For a basis element Ĉ ∈ (CR2)N , i.e. an ordered list of N convex rational polygons, let

γ(Ĉ) := inf{α | α is the smallest angle of Γ (P ) ∩ Γ (Q), P and Q representative sets}.

Lemma 4. Suppose Ĉ ∈ (CR2)N is a basis element. The minimum angle β of HI(Ĉ) is

bounded below by γ(Ĉ). Furthermore, β is the minimum angle of Γ (P ) ∩ Γ (Q) for a pair of

representative sets P,Q ∈ R(Ĉ) such that all the elements of P and Q are corners of the N
polygons in Ĉ.

Lemma 5. For any convex polygon P with minimum angle β and any r > 0 such that

P−r 6= ∅, we have P ⊆ (P−r)
+r/ sin(β/2)

.

Theorem 3. The interior part of the partial convex hull map is nestedly Hausdorff com-

putable.

Proof. Suppose Ĉ =
⊔

B̂i, where 〈B̂i〉 is an increasing effective sequence of basis elements.
We have Ĉ ⊆ B̂i and for any r > 0,

dH(Ĉ, B̂i) < r ⇒ B̂i ⊆ Ĉ+r ⇒ (HI(B̂i))
c ⊆ (HI(Ĉ

+r))c, (4)

(HI(Ĉ
+r))c =





⋂

x̂∈R(Ĉ+r)

Γ (x̂)





c

=
⋃

x̂∈R(Ĉ+r)

(Γ (x̂))
c
, (5)

((HI(Ĉ))c)+r =









⋂

ŷ∈R(Ĉ)

Γ (ŷ)





c 



+r

=





⋃

ŷ∈R(Ĉ)

(Γ (ŷ))
c





+r

=
⋃

ŷ∈R(Ĉ)

((Γ (ŷ))c)
+r
. (6)

We show that the right hand side of (5) is a subset of the right hand side of (6).

∀x̂ ∈ R(Ĉ+r),∃ŷ ∈ R(Ĉ); dH(x̂, ŷ) < r ⇒ dH(Γ (x̂), Γ (ŷ)) < r ⇒ (Γ (x̂))c ⊆ ((Γ (ŷ))c)+r



8 A. Edalat, A. A. Khanban, and A. Lieutier

Now, using (4) we have (HI(B̂i))
c ⊆ ((HI(Ĉ))c)+r. A careful use of Lemma 5 shows that

dH(HI(Ĉ),HI(B̂i)) < r/ sin(β/2), where β is the minimum angle of HI(Ĉ). Using Lemma 4,
we can show that β ≥ γ(B̂i0) for the least i0 ≥ 0 where HI(B̂i0) 6= ∅. By finding the least
k ≥ 0 such that 2−k < sin(γ(B̂i0)/2), the required total recursive function ρ can be taken as
ρ(i) = i+ k. ⊓⊔

Corollary 1. The partial convex hull map is nestedly Lebesgue computable.

4 Partial Perpendicular Bisector

For a point x ∈ R2 and a compact C ∈ CR2, we have the following distance functions
appropriate for the Voronoi diagram of partial points. Let ds(x,C) = min{|x − p| : p ∈ C}
and dl(x,C) = max{|x− p| : p ∈ C} be, respectively, the shortest and longest distance from
x to C. For two compact subsets C1 and C2, we define the partial Voronoi cell of C1 with
respect to C2 as:

C12 = {x | dl(x,C1) < ds(x,C2)} (7)

Similarly we define C21. The partial perpendicular bisector of C1 and C2 is the remaining
points of the plane, B(C1, C2) := (C12 ∪C21)

c = {z ∈ R2 | ∃x ∈ P1, y ∈ P2; |z− x| = |z− y|}.
The domain theoretic definition of the partial perpendicular bisector map is:

B : CR2 × CR2 → SR2

(C1, C2) 7→ (∅, C12 ∪ C21).

For basis elements C1, C2 ∈ CR2, the boundary of C12 ∪C21 consists of segments of parabolas
and straight lines [6], see Figure 3(a).

Proposition 4. The restriction of the partial perpendicular bisector map B to C[−a, a]2 is

Hausdorff continuous for any a > 0.

Proposition 5. The partial perpendicular bisector map B is Scott continuous.

Theorem 4. The restriction of the partial perpendicular bisector map B to C[−a, a]2 is nest-

edly Hausdorff and Lebesgue computable for any a > 0.

5 Partial Voronoi Diagram

We define the partial Voronoi map on a list Ĉ = (C1, . . . , CN ) ∈ (CR2)N of N polygons in
the plane:

V : (CR
2)N → (SR

2)N ,

with the ith component, 1 ≤ i ≤ N , defined as

Vi : Ĉ 7→ ((Vi)I , (Vi)E) = (
⋂

j 6=i

Cij ,
⋃

j 6=i

Cji),

where Cji is defined in Equation 7.

Proposition 6. The restriction of the partial Voronoi diagram map V to (C[−a, a]2)N is

Hausdorff continuous for any a > 0.

Proposition 7. The partial Voronoi diagram map V is Scott continuous.

For a basis element Ĉ ∈ (CR2)N , the boundaries of
⋂

j 6=i Cij and
⋃

j 6=i Cji consist of segments
of parabolas and straight lines [6] as in the case of the partial perpendicular bisector.

Theorem 5. The restriction of the partial Voronoi diagram map V to (C[−a, a]2)N is nest-

edly Hausdorff and Lebesgue computable for any a > 0.
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6 Partial Disc

Partial disc map has been defined by the authors in [6] as:

D : (CR2)3 → SR2

(C1, C2, C3) 7→ (DI ,DE),

where DI = DE = ∅ if C1, C2 and C3 are collinear, i.e. when there exists a straight line
which intersects C1, C2 and C3, otherwise DI = (

⋂

{Dxyz | x ∈ C1, y ∈ C2, z ∈ C3})
◦ and

DE = (
⋃

{Dxyz | x ∈ C1, y ∈ C2, z ∈ C3})
c, where Dxyz is the disc made by the circle

passing through x, y, and z.
Note that O(C1, C2, C3) = {s ∈ R2 | ∃x ∈ C1, y ∈ C2, z ∈ C3; |x− s| = |y − s| = |z − s|},

and hence O(C1, C2, C3) is the locus of the centres of circles which intersect the three convex
sets C1, C2 and C3. We call O(C1, C2, C3) the partial centre of the partial circumcircle of the
three partial points.

Let D(o
CCF

, r
CCF

) denote the closed disc with centre o
CCF

and radius r
CCF

, which passes
through the following three points: (i) the point of C1 closest to o

CCF
, (ii) the point of C2 clos-

est to o
CCF

and (iii) the point of C3 furthest from o
CCF

; hence the subscript in o
CCF

. Similarly,
five other pairs of centres and radii are defined: (o

CF C
, r

CF C
), (o

F CC
, r

F CC
), (o

F F C
, r

F F C
),

(o
F CF

, r
F CF

) and (o
CF F

, r
CF F

). Now, consider the three discs D1 = D(o
F CC

, r
F CC

), D2 =
D(o

CF C
, r

CF C
) andD3 = D(o

CCF
, r

CCF
) on the one hand and the three discsD′

1 = D(o
CF F

, r
CF F

),
D′

2 = D(o
F CF

, r
F CF

) and D′
3 = D(o

F F C
, r

F F C
) on the other hand, Figure 3(b). As shown in [6]

by the authors, the interior and the exterior of the partial disc are given by:

(DI ,DE) = ((D1 ∩D2 ∩D3)
◦, (D′

1 ∪D
′
2 ∪D

′
3)
c) .

Proposition 8. The restriction of the partial disc map D to (C[−a, a]2)3 is Hausdorff con-

tinuous for any a > 0.

Proposition 9. The partial disc map D is Scott continuous.

For a basis element (C1, C2, C3) ∈ (CR2)3, the centres and radii of the six discs above can be
obtained using the partial perpendicular bisectors of each pair of these three partial points [6].

Theorem 6. The restriction of the partial disc map D to (C[−a, a]2)3 is nestedly Hausdorff

and Lebesgue computable for any a > 0.

7 Partial Delaunay Triangulation

We define the partial edge Ed(C1, C2) of two partial points C1 and C2 to be the convex hull
of C1 and C2. We also define the partial triangle of three partial points to be their partial
convex hull. Given N partial points C1, . . . , CN ∈ CR2, we say that Ed(Ci1 , Ci2) is legal if
there exists i3 such that for all j 6= i1, i2, i3 we have Cj ⊂ DE(Ci1 , Ci2 , Ci3), illegal if there
exists i3 such that there exists j 6= i1, i2, i3 with Cj ⊂ DI(Ci1 , Ci2 , Ci3) and indeterminate

otherwise. The partial Delaunay triangulation map is now defined as:

T : (CR2)N → SR2

(C1, . . . , CN ) 7→ (TI , TE),

where TI = ∅ and

TE = (
⋃

{Ed(Ci, Cj) | Ed(Ci, Cj) legal or indeterminate})c.
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(a) (b) (c)

Fig. 3. (a) PPB of two polygons, (b) The interior and exterior of a partial disc, (c)The exterior of
a partial Delaunay triangulation of five black polygons has been shown with gray colour. Note that
there are two indeterminate and six legal edges.

We now proceed to show that the partial Delaunay triangulation map is nestedly Hausdorff
computable. Since the interior is always empty, we only need to prove the computability for
the exterior. In the example in Figure 3(c), the partial points are shown in black, while the
exterior of the Delaunay triangulation, which is a disconnected set, is shown in gray. Note that
the partial Delaunay triangulation map is not Hausdorff continuous, since an indeterminate
partial edge may become illegal with an arbitrarily small non-nested perturbation of the
input or partial points. The classical Delaunay triangulation map is similarly not Hausdorff
continuous.

Proposition 10. The partial Delaunay triangulation map T is Scott continuous.

In [6], an incremental algorithm has been presented which computes the partial Delaunay
triangulation of a set of partial points on average in N logN on non-degenerate input, gener-
alising a similar algorithm for the classical Delaunay triangulation.

Lemma 6. The minimum angle amongst all components of the exterior of a partial Delaunay

triangulation of the set Ĉ of partial points is bounded below by the minimum interior angle

of all the partial triangles with non-empty interior, each made from three partial points in Ĉ.

Theorem 7. The partial Delaunay triangulation map T is nestedly Hausdorff and Lebesgue

computable.

Proof. The function δ = ǫ sin(β/2) can be used here, where β is the minimum angle as defined
in Lemma 6.
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