
Imperial College London

Department of Computing

MEng Individual Project

Linear Programming for
Piecewise Linear Geometric
Objects with Function and

Derivative Constraints

Author:
Constantin Mateescu

Supervisor:
Prof. Abbas Edalat

June, 2016

Abstract

A piecewise linear function of two real variables, whose graph is a piece-
wise linear surface in the Euclidean space, can be defined by the lower and
upper constraints on its value and its partial derivatives inside each sub-
rectangle of a two-dimensional grid. If both the function and derivative
information are consistent, then we can construct such a map by joining
together local patches of the surface in each sub-rectangle of the grid. A
similar result holds in higher dimensions, by considering a partitioning of
sub-hyper-rectangles of an n-dimensional domain, where the function value
and all the partial derivatives lie within closed and compact intervals.

In this project we develop a framework, using linear programming, that
can check consistency in the general case of an n-dimensional domain, n ≥ 2.
Whenever the test indicates consistency, we also determine the minimal and
maximal bounding surfaces. We achieve this by extending the known linear
programming algorithm which decides consistency and we provide a simple
analytical proof of this new result. Also, we implement a graphical user in-
terface to help visualise the 3D piecewise linear surfaces, in the case when
the domain is two-dimensional. During evaluation, we extensively test the
correctness of our implementation by reverse engineering the constraints of
the linear programming algorithms.

Finally, we investigate the problem when the constraint on the gradient
of the surface is contained in a convex polygon, rather than a simple rectan-
gle. Here we develop an algorithm that can decide consistency whenever the
domain is given by a two-dimensional triangle.

Acknowledgements

I would like to express my gratitude to my project supervisor, Professor
Abbas Edalat for all the support provided throughout the year as well as for
his valuable suggestions and comments.

Contents

1 Introduction 3
1.1 Motivation . 3
1.2 Objectives . 4
1.3 Contributions . 5

2 Background 7
2.1 Exact Computation . 7

2.1.1 Fixed-Point Paradigm 7
2.1.2 Floating-Point Representation 9
2.1.3 Towards an Alternative to the f.p. Paradigm 9

2.2 Linear Programming . 11
2.2.1 Linear Programming in Standard Form 11
2.2.2 The Fundamental Theorem of LP 15
2.2.3 Polyhedral Convex Sets 17
2.2.4 A Geometric Approach 18
2.2.5 Complexity Limitations and Alternative Approaches . 21
2.2.6 Duality Theory . 23

2.3 CVXOPT Framework . 24
2.3.1 Formulation of LP Problems in CVXOPT 24
2.3.2 Simple Example . 25

2.4 Domain Theory . 26
2.4.1 Introduction . 26
2.4.2 Main Definitions and Examples 26

3 Consistency of function and derivative constraints 29
3.1 Notations and terminology . 29
3.2 The property of consistency 33

3.2.1 Consistency for the one-dimensional case 35
3.2.2 Consistency for the n-dimensional case, n ≥ 2 38
3.2.3 Consistency for a triangle with convex

derivative information in the two-dimensional case . . . 47

4 Implementation 51
4.1 Tools . 51
4.2 Back-end . 52

4.2.1 Input Format and Data Generation 52
4.2.2 Linear Programming Algorithms 55

4.3 Front-end . 60

1

MEng Individual Project - Final Report

4.3.1 Triangulation of Sub-rectangles 62
4.3.2 Minimal and Maximal Surfaces 64

5 Evaluation 65
5.1 Input Generation . 65

5.1.1 Generation of consistent input 66
5.1.2 Generation of inconsistent input 69

5.2 Results . 71
5.2.1 Examples of 3D Piecewise Linear Surfaces 71

5.3 Challenges & Limitations . 79

6 Conclusion 81
6.1 Future Work . 81

2

Chapter 1

Introduction

Many of the recent advances in modern sciences have been possible due to
the improvements made in computational and optimisation theory developed
over the course of the last decades. Various fields ranging from electrical en-
gineering and mechanics, to economics and molecular modelling, have been
able to take advantage of the latest developments in the sphere of mathe-
matical optimisation. Mostly, this area provides mechanisms through which
the optimal solution to a problem, also known as optimum, is produced.

Since very ancient times, people have been developing models and theo-
ries to deal with various optimisations problems in order to achieve the best
possible results for specific tasks in everyday life. While interesting in the-
ory, those ideas had very little practical use due to the daunting amount of
computational effort required. It was not until the advent of the computer
that those early thoughts have been resurrected and resulted in what is now
regarded as a growing branch of applied mathematics.

On the other hand, whilst computers have evolved rapidly over the last
years and are able to cope with an enormous amount of computation, the
problem of precision, that is, accurate calculation, is still one of great sig-
nificance even today. The issue arises from the floating-point representation
widely available in today’s computers which is known to have limited preci-
sion. However, certain scientific and engineering applications cannot tolerate
the presence of any such rounding errors, as these may lead to catastrophic
events. For example, in computational geometry we may need to deal with
infinite amount of precision in order to accurately track the position of ob-
jects and points in space. This is known as an emerging trend in exact
computation, explained further in this work.

1.1 Motivation

In this context of approximation and computability, differential equations,
introduced in the 17th century by Newton and Leibniz, play a central role in
modern mathematics and have countless applications in almost all branches
of contemporary science. Several numerical approaches for computing the

3

MEng Individual Project - Final Report

solutions to differential equations have been developed, including the well-
known Euler and Runge-Kutta methods. These have been shown, however,
to suffer from a great loss of precision as their error estimation is too conser-
vative to be of any practical use [1].

One classical problem is the famous initial-value problem, which states
that, given an initial condition and an ordinary/partial differential equation
that models some evolution of a system, we can determine the unknown
function describing the underlying process. For such problems, a novel tech-
nique for computing the unique solution up to any desired accuracy has been
proposed in [1] (such a solution is guaranteed to exist under certain assump-
tions). The basic idea is that, at each stage of the computation, one can
obtain two continuous maps which provide upper and lower bounds for the
solution, essentially giving the precise error.

A related problem to the one described above – and formulated again
in [1] and [2] –, concerns the idea of consistency of two given maps subject
to some constraints and will make most of the subject of the present work.
A pair of functions (f, g), representing function and derivative information,
respectively, is said to be consistent if one can find a third map h which is
approximated by the first element of the pair and whose derivative informa-
tion is approximated by the second component of the pair.

Furthermore, assuming that f is defined by lower and upper constraints
on its value and g is restricted to lie within rectangles (or hyper-rectangles,
if referring to higher dimensional spaces), then the property of consistency
is decidable upon solving a finite set of inequalities which represent the con-
straints of a linear programming problem. Finally, if such a map h exists,
then we can construct the minimal and maximal piecewise linear surfaces
which are consistent with the information from both f and g.

1.2 Objectives

This discussion brings us to the aim of this project, which is twofold:

• Firstly, to implement the linear programming test that decides con-
sistency when the function approximation is interval-valued and the
gradient constraints lie within hyper-rectangles, for a certain parti-
tioning of an n-dimensional domain. Also, in case the test indicates
consistency, the task is to determine the global bounding surfaces;

4

MEng Individual Project - Final Report

• Secondly, to study a more general setting in which the derivative con-
straints are considered to lie within convex polyhedra, rather than
hyper-rectangles, which is a more challenging problem.

1.3 Contributions

As a project which required both practical implementation and deep theo-
retical study in the field of multi-variable differentiable calculus, we made
the following contributions:

• Linear Programming Algorithms for Determining the Least
and Greatest Piecewise-Linear Maps in the Rectangular Case
We extended the linear programming test presented in [2], which can
decide consistency for rectangular derivative constraints in an arbitrary
dimension n ≥ 2, to also account for the explicit construction of the
minimal and maximal piecewise-linear surfaces. We also provide a sim-
ple analytical proof of the result.

• Framework for Deciding Consistency in the Rectangular Case
Using Linear Programming
We implemented a general framework to check consistency of function
and rectangular derivative information in an arbitrary n-dimensional
domain, n ≥ 2, by using the linear programming test from [2]. When-
ever the test indicates consistency, we also determine the least and
greatest surfaces by means of the above linear programming algorithms.
We also created a simple GUI to allow for the visualisation of the 3D
piecewise linear surfaces in the case of a two-dimensional domain.

• Decidability of Consistency for a Two-Dimensional Triangle
with Convex Derivative Constraints
We also develop a simple algorithm for deciding consistency in the
particular instance when the domain is given by a two-dimensional
triangle in which the function information is also interval-valued, but
the derivative constraints lie within a convex polygon, rather than a
simple rectangle.

5

Chapter 2

Background

This section provides the necessary background for understanding the theo-
retical aspects of this project. We begin by introducing the notion of exact
computation [3], a new emerging paradigm in the field of modern computa-
tion. We also discuss the significance of this work in the context of exact
geometric computation [4]. Finally, we introduce the main concepts of opti-
misation and linear programming that the reader should be familiar with.

2.1 Exact Computation

The underlying nature of computation is par excellence numerical: num-
bers have been at the heart of all calculations since very ancient times,
while modern mathematics developed a whole range of theories to formalise
many aspects of computable numbers. Early computers had the sole purpose
of performing large complex calculations (the so-called number crunchers),
which then turned into the original mass-produced computers, in the form of
friendly pocket calculators. Although computers have evolved significantly
and moved towards more abstracted and higher-level programs, numerical
computation remains a major pillar of modern computer technology.

In particular, scientific computation is a rapidly growing inter-disciplinary
field that makes use of advanced numerical capabilities. It is considered as
adding a new dimension to the classical methods of theory and experimen-
tation, sometimes referred to as the “third scientific method” of computation
[3].

2.1.1 Fixed-Point Paradigm

At its core, scientific computation is subject to the fixed-precision paradigm
of computation. Under this representation, numbers are expressed using a
fixed number of digits after the decimal/radix point, thus providing fixed
computational precision (usually machine-dependant).

Based on this specification, one can use several approaches to limit the
unavoidable rounding errors. For instance, a mild form of fixed-precision

7

MEng Individual Project - Final Report

can be applied such that computations are performed up to a user-specified
precision level. Although we can set a very high level of precision that we may
think is satisfactory, the build-up of round-off errors that accumulate may
produce totally unexpected results. We can illustrate this with an example
from [5]. Consider the sequence an defined recursively as:

an =



11

2
, n = 0

61

11
, n = 1

111−
1130− 3000

an−1

an
, n ≥ 2

.

Using the Unix utility bc, we can compute the terms of the sequence an
up to some fixed precision of k decimal places, which we shall denote by a

(k)
n .

Performing calculations with 5 decimal places, gives (note that the results
have been rounded for presentation purposes, as in [5]):

a
(5)
0 5.500

a
(5)
1 5.500

a
(5)
2 5.500

a
(5)
3 5.500

a
(5)
4 5.648

a
(5)
5 5.242

a
(5)
6 −3.241

a
(5)
7 283.1

a
(5)
8 103.738

a
(5)
9 100.209

a
(5)
10 100.012

a
(5)
11 100.001

One would therefore believe that the sequence converges to 100. However,
computing the number a100 with higher and higher precisions will contra-
dict our expectations (the “exponents” below indicate repeating digits, e.g.
1.234 = 1.2224):

a
(5)
100 100.041

a
(30)
100 100.0291

a
(60)
100 100.057997

a
(100)
100 100.01798 . . .

a
(110)
100 100.0792

a
(120)
100 −3.790 . . .

a
(130)
100 5.978697 . . .

a
(140)
100 5.9787925 . . .

8

MEng Individual Project - Final Report

Here we can notice that if the precision is either 5, 30, 60, 100 or even
110 decimal places, then our expectation from above holds (an → 100 as
n grows larger). However, when increasing the precision even further, we
obtain rather spurious results.

The actual limit of the sequence is equal to 6, since we can evaluate the
general term an as:

an =
6n+1 + 5n+1

6n + 5n
.

This example therefore shows how even the mild form of fixed-precision
can lead to flawed results. It is therefore unclear what level of precision needs
to be set in advance to a program such as bc in order to obtain the correct
answer. As we could see, up until 110 decimal places we got roughly the same
(wrong) result and we actually had to consider precision above 130 decimal
places to arrive at the right answer.

2.1.2 Floating-Point Representation

Similar to the fixed precision paradigm, modern computers use floating-point
arithmetic to perform real number calculations. This representation can be
seen as a trade-off between range and precision when approximating real
number: with a given precision, the floating-point model is able to represent
both numbers of small magnitude with many bits of significance or conversely,
large magnitude and few bits of significance. While many different represen-
tations have been developed in the past, the one defined by IEEE 754 has
emerged as the industry standard. This standard is a step forward towards
addressing the issue of portability and therefore makes errors in floating point
computation machine-independent.

However, this representation is essentially just as inaccurate as the fixed-
point model, since we must approximate real numbers by their nearest rep-
resentable one. Thus, the same rounding errors will occur in practice, e.g.
when small inaccuracies propagate in successive iterations like the one that
we have just seen when computing a simple mathematical limit.

2.1.3 Towards an Alternative to the f.p. Paradigm

Even with industry-leading standards, rather intractable problems arise from
the presence of round-off errors and compromise the robustness of the f.p.

9

MEng Individual Project - Final Report

paradigm. We can, at the arithmetic level, increase precision via techniques
such as double extended precision, guard-bits, gradual underflow etc, which
can usually be implemented in hardware. Interval arithmetic is another well-
known method. Looking from a geometric perspective, an idea would be to
divide the input and computed data into combinatorial and numerical, and
to give precedence to the former when making decisions. An argument in
favour of this approach is that we can allow the numerical data to be per-
turbed in order to maintain the combinatorial data. This avoids “topological
inconsistencies” and can be implemented for simple cases, but the intractable
nature of combinatorial problems makes it rather difficult to deal with more
general cases [3].

Therefore, in the light of these non-robustness issues, one needs a com-
pletely different approach to handle cases in which the correct and exact an-
swer is required. A new direction in the literature of computation is called,
unsurprisingly, the exact computation paradigm. According, to [3] or [4], this
paradigm assumes a computational process that:

1. represents all the underlying mathematical objects exactly ;

2. all branching decisions are error-free.

As a result, multi-precision arithmetic is a necessary condition (but not
sufficient) for exact computation. A different issue is that exact computation
will naturally come at the expense of performance. It therefore makes sense
to target only those applications which are not cycle-critical (i.e. we afford
to incur some sort of computational slow-down). For example, exact com-
putation cannot be avoided in computational number theory and in many
aspects of algebra (e.g. testing the irreducibility of a polynomial).

Finally, we conclude this section with the idea of weak exact computation,
similar in intent with the mild form of the f.p. paradigm. As explained
in the numerical example above, one starts the computations using some
fixed bound k on the precision. However, one would need to perform a
thorough analysis as to what minimal values of k will indeed give the exact
results. This is clearly a non-trivial problem and several suggestions have
been proposed: in the same [3], the theory of root bounds has been developed;
in [5], the exact real arithmetic offers lower and upper bounds guarantees that
are trustworthy.

10

MEng Individual Project - Final Report

2.2 Linear Programming

A great deal of problems encountered in the real world involve maximisa-
tion or minimisation of certain quantities. Most often, these quantities we
seek to optimise are profits (in the case of maximisation) as well as costs
(in the case of minimisation). In linear programming we therefore aim to
minimise/maximise a certain linear function (which we usually call objective
function) subject to some linear constraints that describe the restrictions of
our problem.

One would immediately think that calculus, developed by Leibniz and
Newton in the 17th century, can deal with this types of problems very ele-
gantly given the arsenal of techniques readily available. However, calculus
is inadequate since it can only imply that the maxima and/or minima of
some objective function lie on the boundaries of the sets determined by the
constraints. Thus, a special set of techniques and algorithms is needed to
deal with such linear programming problems (this is what the term “pro-
gramming” really refers to in this case).

As such, linear programming plays a very important role in the fields of
mathematics and business, finding many applications in management science
and operations research.

2.2.1 Linear Programming in Standard Form

A linear program (LP) is an optimisation problem in which the objective
function (i.e. the quantity we want to minimise/maximise) is linear in the
unknowns and the constraints consist of linear equalities and/or linear in-
equalities. The exact form of these constraints may be problem-dependant,
but one can always rewrite a linear program in the following standard form:

Minimise c1x1 + c2x2 + . . . + cnxn

subject to a11x1 + a12x2 + . . . + a1nxn = b1
a21x1 + a22x2 + . . . + a2nxn = b2

...
am1x1 + am2x2 + . . . + amnxn = bm
x1, x2, . . . xn ≥ 0.

(2.1)

where the coefficients bi, cj, aij, i = 1,m, j = 1, n are fixed real constants and
the decision variables xi, i = 1, n, are yet to be found. For simplicity, we will

11

MEng Individual Project - Final Report

assume that all bi ≥ 0 (if necessary, one can multiply by −1 the equations for
which bi ≤ 0). Lastly, the first m constraints are said to be main constraints,
while the second n constraints are called non-negativity constraints.

We can rewrite the standard form given by 2.1 using matrix notation to
derive the following compact statement:

Minimise c⊤x
subject to Ax = b

x ≥ 0,
(2.2)

where x is an n-dimensional column vector, c⊤ is an n-dimensional row vec-
tor, A is an m × n matrix and b is an m-dimensional column vector with
b ≥ 0. Inequalities of the type x ≥ 0 are understood to hold component-wise.

To illustrate the point that we can convert any LP problem into standard
form, we need to consider various scenarios that may arise in practice. Apart
from the fact that we may have equality constraints with negative right hand
sides (which we can mitigate upon multiplication with −1, as previously
mentioned), general LP problems can:

1. be maximisation (instead of minimisation) problems;

2. have inequality (instead of equality) constraints;

3. have free (instead of non-negative) decision variables.

In order to deal with maximisation problems, we need to observe that we
can simply invert the objective function and then formulate the correspond-
ing LP problem as a minimisation problem. We thus state the following:

Theorem 2.2.1. Let f : Ω → R be a real valued function and assume that
both the minimum and maximum of f are attained within the set Ω. Then:

min
x∈Ω

f(x) = −max
x∈Ω
−f(x).

Proof. The minimum of f satisfies:

min f(x) = f ⋆ ≤ f(x),∀ x ∈ Ω.

Similarly, the maximum of −f satisfies:

max−f(x) = F ⋆ ≥ −f(x), ∀ x ∈ Ω.

12

MEng Individual Project - Final Report

But if −F ⋆ < f ⋆ then there exists an x ∈ Ω such that f(x) < f ⋆ contradict-
ing the optimality of f ⋆. Conversely, if −f ⋆ > F ⋆ then there exists an x ∈ Ω
such that −f(x) > f ⋆ contradicting the optimality of F ⋆. In conclusion
f ⋆ = −F ⋆.

Now, to address the issue of LP problems with inequality constraints, we
need to consider the following problem in which the constraints are given by
linear inequalities:

Minimise c1x1 + c2x2 + . . . + cnxn

subject to a11x1 + a12x2 + . . . + a1nxn ≤ b1
a21x1 + a22x2 + . . . + a2nxn ≤ b2

...
am1x1 + am2x2 + . . . + amnxn ≤ bm
x1, x2, . . . xn ≥ 0.

In this case, one can introduce new positive variables si ≥ 0 (called slack
variables), where i = 1,m, to convert each inequality constraint into an
equality in the following manner:

Minimise c1x1 + c2x2 + . . . + cnxn

subject to a11x1 + a12x2 + . . . + a1nxn + s1 ≤ b1
a21x1 + a22x2 + . . . + a2nxn + s2 ≤ b2

...
am1x1 + am2x2 + . . . + amnxn + sm ≤ bm
x1, x2, . . . xn ≥ 0,
s1, s2, . . . sm ≥ 0.

It is now easy to see that this is an LP problem in standard form with
m+n decision variables and coefficient matrix having the form [A, I] (where
A is the original matrix as defined in the standard form 2.1, and I is the
m × m identity matrix – corresponding to the slack variables si that have
been added). In matrix notation, we can write that:

Minimise c⊤x
subject to Ax ≤ b

x ≥ 0,
⇐⇒

Minimise c⊤x
subject to Ax+ s = b

x ≥ 0, s ≥ 0,

where s = [s1, s2, . . . , sm]
⊤. Hence, the slack variables characterise the dif-

ference b−Ax. Similarly, one can deal with reversed inequality constraints
such as:

13

MEng Individual Project - Final Report

ai1x1 + ai2x2 + . . .+ ainxn ≥ bi

by introducing surplus variables si ≥ 0 (also known as excess variables):

ai1x1 + ai2x2 + . . .+ ainxn − si = bi.

Again, the resulting LP problem will have n +m decision variables and we
can write it in compact matrix form as follows:

Minimise c⊤x
subject to Ax ≥ b

x ≥ 0
⇐⇒

Minimise c⊤x
subject to Ax− s = b

x ≥ 0, s ≥ 0,

where surplus variables characterise the difference Ax− b.

Finally, let us deal with LP problems in which decision variables xi are
free, i.e. the unknowns can either be positive or negative. There are two
different techniques that allow one to convert such a problem into standard
form:

(a) If xi is unconstrained, then we can use the substitution: xi = x+
i − x−

i ,
where x+

i , x
−
i ≥ 0. This means that the LP problem is now in stan-

dard form and has n+ 1 decision variables, namely: x1, x2, . . . , xi−1, x
+
i ,

x−
i , xi+1, . . . , xn.

(b) If xi is unconstrained, then we can use any equality constraint to elimi-
nate xi so that the standardised LP problem will now have n−1 decision
variables and m − 1 constraints. The value of the free variable xi can
then be determined from the equation used to eliminate the variable in
the first place.

Example 2.2.1.1. Here is a simple example which illustrates this tech-
nique. Consider the following LP program which we wish to standardise:

Minimise x1 + 3x2 + 4x3

subject to x1 + 2x2 + x3 = 5
2x1 + 3x2 + x3 = 6

x2, x3 ≥ 0.

Since x1 is an unconstrained variable, use the first equation to substitute
x1 = 5− 2x2 − x3 and convert the original LP problem into:

14

MEng Individual Project - Final Report

Minimise x2 + 3x3 + 5
subject to x2 + x3 = 4

x2, x3 ≥ 0,

which is now in standard form.

2.2.2 The Fundamental Theorem of LP

In this section we will develop the necessary background on basic solutions
for linear programming problems that will allow us to state the Fundamental
Theorem of Linear Programming (see Section 2.3 from [6]).

Let us therefore focus on the standard form given by 2.2. Recall that
A ∈ Rm×n, b ∈ Rm

+ and c ∈ Rn. In what follows, we will assume that the
number of decision variables is always greater than or equal to the number
of equations, i.e. n ≥ m, as otherwise the system Ax = b will be overde-
termined. Also, we assume that a problem written in standard form has no
redundant or inconsistent constraints, i.e. the rows of matrix A are linearly
independent and hence rank(A) = m.

Now, consider the system of linear equations from the standard form 2.2:

Ax = b (2.3)

and suppose, for convenience, that we denote by B the m×m matrix formed
by the first m columns of matrix A. Then it follows that the matrix B is
non-singular, so the equation:

BxB = b

is guaranteed to have a unique solution xB . By setting the first m elements
of the vector x to be equal to those of xB and filling the remaining n −m
entries with 0, i.e. x = [xB ,0], we have a solution for the linear system
Ax = b. We are now in a position to formulate:

Definition 2.2.1. Given the set of m simultaneous linear equations in n
unknowns 2.3, let B be any nonsingular m × m sub-matrix consisting of
columns of A. Then, if all n−m entries of x not associated with columns of
B are set equal to zero, the solution to the resulting set of equations is said
to be a basic solution to 2.3 with respect to the basis B. The entries of x
associated with columns of B are called basic variables.

15

MEng Individual Project - Final Report

We also need to note that, under the rank assumption for matrix A, i.e.
rank(A) = m, the system of linear equations 2.3 will always have at least one
basic solution. However, basic variables in a basic solution can potentially
be zero as well. We thus introduce the following:

Definition 2.2.2. If one or more of the basic variables in a basic solution is
equal to zero, that solution is called degenerate basic solution.

Until this point, we have not yet treated the non-negativity constraints
of the decision variables, i.e. x ≥ 0. So let:

Ax = b
x ≥ 0

(2.4)

be the system of constraints for any LP problem in the standard form
2.2. We can now state similar definitions that apply when these restrictions
are considered together, so let us present:

Definition 2.2.3. A vector x satisfying 2.4 is called feasible for these con-
straints. A feasible solution to the constraints 2.4 that is also basic is called
basic feasible solution; if this solution is also a degenerate basic solution, it
is called a degenerate basic feasible solution.

Before introducing the fundamental theorem of LP, we require one more
definition to account for the optimality of solutions for an LP problem, so
for this reason we present:

Definition 2.2.4. Given an LP in standard form, a feasible solution to the
constraints 2.4 that achieves the optimal value of the objective function is
called an optimal feasible solution. If the solution is basic then it is an optimal
basic feasible solution.

In this moment we have all the necessary concepts to formulate the main
result from this section:

Theorem 2.2.2. (Fundamental Theorem of Linear Programming) Given a
linear program in standard form 2.2, where A is an m × n matrix with
rank(A) = m,

1. if there is a feasible solution, there is a basic feasible solution;

2. if there is an optimal feasible solution, there is an optimal basic feasible
solution.

16

MEng Individual Project - Final Report

2.2.3 Polyhedral Convex Sets

In this section we will depart from the elementary properties of linear sys-
tems that we employed in the study of the fundamental theorem of linear
programming and rather focus on a more intuitive geometrical interpreta-
tion. Concepts from the standard theory of convex sets will be used to give
an alternative definition to the fundamental theorem, which will lead to a
clearer geometric understanding of the result. As it will soon become ap-
parent, there is an intimate link between the basic feasible solutions of the
algebraic theory and extreme points of convex polygons in the geometric ap-
proach. We proceed with the following definitions and theorems, followed in
the next section by a concrete example.

Definition 2.2.5. Let x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) ∈ Rn. Then
the line segment between x and y (including the endpoints) is given by:

αx+ (1− α)y, 0 ≤ α ≤ 1.

Definition 2.2.6. Let S ⊂ Rn. The set S is said to be convex if for all
x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) ∈ S it holds that:

αx+ (1− α)y, 0 ≤ α ≤ 1.

Definition 2.2.7. The set of points (x1, x2, . . . , xn) ∈ Rn satisfying an equa-
tion of the form

a1x1 + a2x2 + . . .+ anxn = b

is said to be a hyperplane of Rn. The set of points (x1, x2, . . . , xn) ∈ Rn

satisfying an inequality of the form

a1x1 + a2x2 + . . .+ anxn ≶ b

is said to be a closed half-space of Rn.

Theorem 2.2.3. The constraint set of a canonical maximisation/minimi-
sation linear programming problem is convex. Such a set is said to be a
polyhedral convex set.

Definition 2.2.8. Let x = (x1, x2, . . . , xn) ∈ Rn. The norm of x, denoted
∥x∥, is given by:

∥x∥=
√
x2
1 + x2

2 + . . .+ x2
n.

17

MEng Individual Project - Final Report

Definition 2.2.9. Let r ≥ 0. The set of points x = (x1, x2, . . . , xn) ∈ Rn

such that

∥x∥≤ r

is said to be the closed ball of radius r centred at the origin.

Definition 2.2.10. A set S ⊂ Rn is said to be bounded if there exists r ≥ 0
such that every element of S is contained in the closed ball or radius r centred
at the origin. A set S ⊂ Rn is said to be unbounded if it is not bounded.

Definition 2.2.11. Let S be a convex set in Rn. A point e ∈ S is said to be
an extreme point of S if there do not exist x,y ∈ S and α ∈ (0, 1) such that

e = αx + (1− α)y.

Theorem 2.2.4. If the constraint set S of a linear programming problem in
standard form is bounded, then the maximum/minimum value of the objective
function is attained at an extreme point of S.

Theorem 2.2.5. If the constraint set S of a linear programming problem
in standard form is unbounded, then there exists some M ∈ R such that the
objective function f satisfies f(x1, x2, . . . , xn) ≶ M for all (x1, x2, . . . , xn) ∈
S, i.e. f is bounded above/below (by M), them the maximum/minimum value
of the objective function is attained at an extreme point of S.

2.2.4 A Geometric Approach

Let us illustrate the above concepts with a typical example of resource allo-
cation problem.

Example 2.2.4.1. A furniture company manufactures sofas and armchairs.
The production of one sofa requires 2 hours in the parts division and 1 hour
on the assembly line of the company. The production of one armchair re-
quires 1 hour in the parts division and 2 hours on the assembly line. The
parts department of the company operates at most 8 hours per day, while the
assembly division is active at most 10 hours per day. Knowing that the profit
of selling one sofa is £30 and the profit of selling one armchair is £50, what
are the optimal quantities of sofas and armchairs that the company should
produce in order to maximise profits?

We start by translating the problem in mathematical terms. Note that
we are interested in the number of sofas and armchairs to be produced, so
let us denote:

18

MEng Individual Project - Final Report

x1 = # of sofas per day;
x2 = # of armchairs per day.

According to the above definitions, x1 and x2 are the decision variables
of our problem. Next, we wish to maximise the profits of the company,
namely:

f(x1, x2) = 30x1 + 50x2.

This is the objective function that we want to optimise. But we can-
not have unlimited quantities and hence infinite profits, since the company
is constrained by the availability of the parts and assembly divisions. We
observe that 2 hours are spent in the parts division for one sofa and 1 hour
is spent in the same division for one armchair. Together with the constraint
of 8 hours per day in this department, we derive the constraint:

2x1 + x2 ≤ 8.

Similarly, we can derive the other constraint for the assembly line, which
gives a second inequality:

x1 + 2x2 ≤ 10.

Finally, we also have the obvious constrains:

x1 ≥ 0,
x2 ≥ 0.

since the company cannot produce negative quantities of sofas or arm-
chairs. The above 4 constraints represent the feasible set that enforce
the admissible production plans x = (x1, x2). Note that, for example, x =
(20, 30) cannot belong to this feasible set, as there is not enough availability
in both the parts and assembly divisions to satisfy that level of production.
The final optimisation problem is a maximisation problem that can be for-
mulated mathematically as follows:

19

MEng Individual Project - Final Report

Figure 2.1: Feasible set of points satisfying all constraints

Maximise f(x1, x2) = 30x1 + 50x2

subject to 2x1 + x2 ≤ 8
x1 + 2x2 ≤ 10
x1 ≥ 0
x2 ≥ 0.

The set of points (x1, x2) satisfying the above constraints is given by the
shaded region from Figure 2.1.

The region in Figure 1 above was obtained by intersecting the four 2-
dimensional regions determined by the constraints 2x1+x2 ≤ 8, x1+2x2 ≤ 10,

20

MEng Individual Project - Final Report

Figure 2.2: All individual constraints

x1 ≥ 0, and x2 ≥ 0 (Figure 2.2). Therefore, the question boils down to de-
termining which point in the shaded region in Figure 1 maximises f(x1, x2).

Since the constraint set is bounded, we can use Theorem 2.2.4 to deduce
that the maximum value of f(x, y) is attained at an extreme point in Figure
1, namely at either (0, 0), (4, 0), (0, 5), or (2, 4). A simple analysis shows
that the maximum is attained at (2, 4) where f(2, 4) = 260, and as a result
the company should produce 2 sofas and 4 armchairs in order to maximise
their profits (and get £260 in return).

2.2.5 Complexity Limitations and Alternative Approaches

Having seen the geometric method which allows us to reason about LP prob-
lems, we can already notice some of its limitations. In real-life LP problems,
one would typically deal with potentially tens if not hundreds of variables.

For example, assuming m constraints and n decision variables, we will
have at most (

m+ n

n

)
=

(m+ n)!

m! ·n!

candidate extrema points to be tested. This clearly poses a problem and
makes the visualisation of the constraint set impossible.

Another more relevant problem concerns the cases when the constraint
set is unbounded. In such scenarios, according to Theorem 2.2.5 we would
also need to ensure that the objective function is bounded by above or be-

21

MEng Individual Project - Final Report

low, depending on whether the LP problem at hand is a maximisation or a
minimisation problem, respectively. This is largely problem dependant and
can complicate the analysis significantly. One such example is given by the
following LP problem:

Maximise f(x, y, z) = 2x+ 3y + 4z
subject to y + 5x ≤ 10

2y + 3z ≤ 15
x, y, z ≥ 0

Here there is no restriction on x other than being positive, and as such
for x→∞ we will have f(x, y, z)→∞, and hence the objective function is
unbounded.

Given these obvious limitations, several algorithms have been developed
to address this rather exponential nature of linear programming problems.
The famous simplex algorithm is able to find optimal solutions to LP prob-
lems without testing a large number of candidate extrema points. It is also
able to detect edge cases where the constraint sets are empty and the objec-
tive functions are unbounded (see [7]). The basic idea is that the simplex
method is capable of continually decreasing the value of the objective func-
tion by intelligently pivoting from one feasible solution (i.e. one extreme
point) to another. This reduces the search space considerably and leads to
a more computationally-friendly algorithm. However, even with such opti-
misations in place, the simplex algorithm can still exhibit exponential time
complexity, as shown by Klee-Minty (see Section 5.2 from [7] for such an
example).

Cutting-plane algorithms such as the ellipsoid method have been found
to have polynomial-time complexity in the size of the problem (O((m+n)4)),
but it was discovered that in practice they do not perform any better than
the simplex algorithm.

Currently, the state-of-the-art algorithm that is being used by major LP
software packages relies on the interior-point method belonging to Karmarkar
which has total complexity of the order O(nm2 log(n/ε)), where ε is a toler-
ance parameter (see also [7]). This method was found to behave much better
in practice than the simplex algorithm and it is also reasonably effective when
applied to large-scale LP problems.

22

MEng Individual Project - Final Report

2.2.6 Duality Theory

In this last subsection on linear programming, we briefly discuss the duality
relationship that holds for certain pairs of LP problems. To this end, we will
deviate from the standard form given by 2.1, as duality arises naturally from
the symmetry of LP problems expressed only in terms of inequalities. We
now define duality through the following pair of programs:

Maximise c⊤x
subject to Ax ≤ b

x ≥ 0

Minimise b⊤y
subject to A⊤y ≥ c

y ≥ 0
, (2.5)

where A is an m× n matrix, x is an n-dimensional column vector and c,y
are m-dimensional column vectors. The symmetry of the above LP problems
allows us to define a duality relationship between the two programs: one of
them will be called primal, while its counterpart will be named dual. It is
also important to note that the roles of the primal and dual problems can be
swapped. We are now able to state the fundamental theorems on duality:

Theorem 2.2.6. (Weak Duality). If x and y are feasible solution for the
LP problems defined by 2.5, then the following inequality holds: c⊤x ≤ b⊤y.

Proof. Since x ≥ 0 we have: c⊤x ≤
(
A⊤y

)⊤
x = y⊤Ax ≤ y⊤b = b⊤y.

Theorem 2.2.7. (Strong Duality). If either of the problems defined in 2.5
has a finite optimal solution, so does the other, and the corresponding val-
ues of the objective functions coincide. If either problem has an unbounded
objective, the other problem has no feasible solution as well.

Proof. The interested reader can refer to Section 4.2 from [6].

We conclude this brief tour of linear programming with some remarks that
are connected to the duality relationship presented above. In the view of The-
orem 2.2.1 presented in an earlier section, one can simplify the computational
framework for LP problems by treating all such problems as being either min-
imisation problems or maximisations problems. Usually, most optimisations
problems are formulated as minimisations problems and a convention is fol-
lowed as to whether the column vector that defines the inequality constraints
represents the lower bounds or the upper bounds of those constraints. Gen-
erally, the preferred way is to define the constraints as: Gx ≤ h, so that h
represents the column vector of right hand side terms.

23

MEng Individual Project - Final Report

2.3 CVXOPT Framework

In order to implement the linear programming algorithms that decide con-
sistency of function and derivative information (which will be described in a
later section), we had to choose a library that is specifically tailored for deal-
ing with LP problems. Previous experience with GNU’s GLPK package [8],
which uses a rather obfuscated syntax with many intricate constructs, made
us look for an alternative package in the open-source landscape. Given that
Python is a well-established programming language, which is known for its
ease of use which allows fast and convenient code development, we decided
to narrow down our search to linear programming solvers available in Python.

After a quick search for such libraries, we discovered that the CVXOPT
library [9] will be suitable for the purposes of this project, since it combines
both decent performance and convenient formulation of the LP problems. In
addition to handling problems with linear objectives, CVXOPT also features
support for more general convex optimisation problems which have non-linear
objective functions [citation needed].

2.3.1 Formulation of LP Problems in CVXOPT

The API for specifying the constraints and the objective function of a linear
programming problem is very simple and has the following function signature
(which is simplified here for presentation purposes) [citation needed]:

cvxopt.solvers.lp(c, G, h[, A, b[, solver]]),

and is designed for solving the following minimisation problem:

Minimise c⊤x
subject to Gx ≤ h

Ax = b
. (2.6)

Note that the parameters c, G, h are compulsory, while the remaining ones are
optional. Depending on whether the LP problem at hand features equality
constraints or not, one would need to specify both the following parameters A
and b. In addition, external solvers such as ‘glpk’ or ‘mosek’ (if installed) can
be used instead of the default one used internally, by means of the argument
solver. For completeness, assuming that there are n decision variables, p
inequality constraints and m−p inequality constraints, it holds that: c ∈ Rn,
G ∈ Rp×n, h ∈ Rp, A ∈ R(m−p)×n and b ∈ Rm−p.

24

MEng Individual Project - Final Report

2.3.2 Simple Example

We can now illustrate the strengths of the CVXOPT framework with a simple
example. Given the following optimisation problem:

Minimise f(x1, x2) = 2x1 + x2

subject to −x1 + x2 ≤ 1
x1 + x2 ≥ 2
x2 ≥ 0
x1 − 2x2 ≤ 4,

we ask for the optimal solution vector x = (x1, x2) ∈ R2 which minimises the
given linear objective function. Since we are only dealing with inequalities
constraints, we simply need to construct the vector c ∈ R2, the coefficient
matrix G ∈ R2×4 and the column vector of right hand sides h ∈ R4. By
transforming the above optimisation problem into the form 2.6, we have:

c =

[
2
1

]
G =


−1 1
−1 −1
0 −1
1 2

 h =


1
−2
0
4

,
which we can now input in the interactive Python interpreter, followed by
the call to solvers.lp to retrieve the optimal solution to the given problem:

>>> from cvxopt import matrix, solvers
>>> c = matrix([2.0, 1.0])
>>> G = matrix([[-1.0, -1.0, 0.0, 1.0], [1.0, -1.0, -1.0, -2.0]])
>>> h = matrix([1.0, -2.0, 0.0, 4.0])
>>> sol = solvers.lp(c, G, h)

pcost dcost gap pres dres k/t
0: 2.6471e+00 -7.0588e-01 2e+01 8e-01 2e+00 1e+00
1: 3.0726e+00 2.8437e+00 1e+00 1e-01 2e-01 3e-01
2: 2.4891e+00 2.4808e+00 1e-01 1e-02 2e-02 5e-02
3: 2.4999e+00 2.4998e+00 1e-03 1e-04 2e-04 5e-04
4: 2.5000e+00 2.5000e+00 1e-05 1e-06 2e-06 5e-06
5: 2.5000e+00 2.5000e+00 1e-07 1e-08 2e-08 5e-08

>>> print(sol[‘x’])
[5.00e-01]
[1.50e+00]

25

MEng Individual Project - Final Report

2.4 Domain Theory

We introduce basic domain theory knowledge that will become useful when
dealing with the problem of consistency in a later section. We use [5] and
[10] when referencing these results, unless otherwise stated.

2.4.1 Introduction

Domain theory was introduced in 1970 by Dana Scott as a mathematical
theory of programming languages. The basic idea of domain theory is to
provide better and better approximations to an object by means of simple
recursion. It has applications in the field of computer science, e.g. solving
canonically fixed point equations or recursive equations of procedures and
data structures.

2.4.2 Main Definitions and Examples

Definition 2.4.1. A partial order (or a partially ordered set or poset) (D,≤)
is a set D together with a binary relation ≤ which is:

1. reflexive: a ≤ a,

2. anti-symmetric: a ≤ b ∧ b ≤ a =⇒ a = b, and

3. transitive: a ≤ b ∧ b ≤ c =⇒ a ≤ c.

Most often, the binary relation of a partial order is written as ⊑. Then
a ⊑ b can be interpreted as a having less information than b.

Definition 2.4.2. A subset A of an ordered set (P,⊑) is an upper set if
x ∈ A =⇒ y ∈ A, for all y ⊒ x. We denote by ↑ A the set of all elements
above some element of A. For convenience, we abbreviate ↑ {x} as ↑ x. The
dual notions are lower set and ↓ A [11].

Definition 2.4.3. A non-empty subset A ⊂ P is said to be directed if for
any pair of elements a, b ∈ A there exists c ∈ A such that a ⊑ c and b ⊑ c.

Definition 2.4.4. A directed complete partial order (dcpo) or a domain is a
partial order in which every directed subset has a least upper bound (lub).
A dcpo is said to be pointed if it has a least element which is denoted by ⊥
and is called bottom.

26

MEng Individual Project - Final Report

Definition 2.4.5. Given two elements a and b of a dcpo we say that a is
way-below or approximates b, denoted by a≪ b, if for every directed subset
A with b ⊑

⊔
A there exists c ∈ A with a ⊑ c.

Definition 2.4.6. A basis of a domain D is a subset B ⊂ D such that for
every element x ∈ D of the domain the set Bx = {y ∈ B | y ≪ x} of elements
in the basis way-below x is directed with x =

⊔
Bx. Also, a dcpo with a

(countable) basis is said to be an (ω)-continuous domain.

Definition 2.4.7. A function f : D → E between dcpo’s is said to be Scott-
continuous if and only if it is monotone (i.e. a ⊑ b =⇒ f(a) ⊑ f(b))
and preserves’ lub’s of directed sets i.e. for any directed A ⊆ D, we have
f
(⊔

a∈A a
)
=

⊔
a∈A f(a). Moreover, if D is an ω-continuous dcpo, then f is

continuous if and only if it is monotone and preserves the lub’s of increasing
sequences (i.e. f

(⊔
i∈ω xi

)
=

⊔
i∈ω f(xi), for any increasing (xi)i∈ω).

Definition 2.4.8. Let D be a dcpo. A subset A is called (Scott-)closed if it
is a lower set and is closed under suprema of directed subsets. Complements
of closed sets are called (Scott-)open; they are the elements of ωD, the Scott-
topology on D [11].

Example 2.4.2.1. [5] The interval domain I[0, 1]n of the unit box [0, 1]n ⊆
Rn is the set of all non-empty n-dimensional sub-rectangles in [0, 1]n ordered
by reverse inclusion. A basic Scott open set is given, for every open subset
O of Rn, by the collection of all rectangles contained in O.

The map x 7→ {x} : [0, 1]n → I[0, 1]n is an embedding onto the set of
maximal elements of I[0, 1]n . Every maximal element {x} can be obtained
as the least upper bound (lub) of an increasing chain of elements, that is
a shrinking, nested sequence of sub-rectangles, each containing {x} in its
interior and thereby giving an approximation to {x} or equivalently to x.
The set of sub-rectangles with rational coordinates provides a countable basis.
One can similarly define, for example, the interval domain IRn of Rn.

27

Chapter 3

Consistency of function and deriva-
tive constraints

In this section we focus on the main idea of the proposed project, which
involves the concept of consistency between function and derivative infor-
mation for a given real-valued map defined on an n-dimensional domain.
More specifically, the basic idea is to determine whether a map h : Rn → R
can be constructed given restrictions on the function value and derivative
information, respectively. The nature of the derivative constraints can pose
a major challenge towards the linear-programming algorithms that will be
developed further, depending on whether we consider hyper-rectangles or
convex-polyhedra in an n-dimensional setup.

We begin by stating the main notations and terminology on interval-
valued maps, Lipschitz functions and their derivatives (see [2]). We then
proceed to defining the consistency relationship in a domain-theoretical set-
ting and towards the end of the chapter we present the algorithms that can
decide consistency for maps defined on Rn, n ≥ 1. In what follows, we
consider n ≥ 1, unless otherwise stated.

3.1 Notations and terminology

We denote by R the set of real numbers and by IR = {[a, b] | a ≤ b ∈ R}∪{R}
the interval domain, i.e. the set of compact, nonempty intervals, equipped
with a least element ⊥ = R, ordered by reverse inclusion. It has a canonical
basis consisting of all compact intervals with rational end points augmented
with ⊥. We write a non-bottom element v ∈ IR as v = [v−, v+] and we
identify any real number x ∈ R with the singleton {x} ⊂ R.

Also, we denote by IRn the product domain consisting of all non-empty
compact hyper-rectangles with faces parallel to the standard coordinate planes
ordered with reverse inclusion and augmented with the whole space Rn as the
bottom element. It has a canonical basis consisting of all its rational (com-
pact) hyper-rectangles and the bottom element. We denote the continuous
Scott domain of the nonempty, compact and convex subsets of Rn, taken

29

MEng Individual Project - Final Report

together with Rn as the bottom element and ordered by reverse inclusion,
by CRn. We will use a canonical basis of CRn, consisting of rational convex
compact polyhedra together with the set Rn as the bottom element.

For an open subset U ⊂ Rn, let C0(U) be the function space of all con-
tinuous functions of type U → R. We will also use domains of function
spaces of the form (U → D) where D is a countably based continuous dcpo,
which is either IR, IRn or CRn in our case. For the sake of convenience,
denote D0(U) = U → IR. A function f ∈ D0(U) is given by a pair of
respectively lower and upper semi-continuous functions f−, f+ : U → R
with f(x) = [f−(x), f+(x)] when f(x) ̸= ⊥ for all x ∈ U . Recall that
given an open subset a ⊂ U and an element b ∈ D, the single step function
bχa : X → D is dened as (bχa)(x) = b if x ∈ a and ⊥ otherwise. Single-step
functions are continuous with respect to the Scott topology. Any finite set
of single-step functions that are bounded in the function space U → D has a
least upper bound, called a step function; the set of step functions provides
a basis for the continuous Scott domain U → D. This basis in turn gives a
countable and canonical basis of rational step functions for U → D, where
D = IR, IRn or CRn, generated by single-step functions of the form bχa

where a is a rational open hyper-rectangle with faces parallel to the coordi-
nate hyper-planes of Rn and b is a rational interval for D = IR, a rational
hyper-rectangle for D = IRn and a rational compact convex polyhedron in
Rn for D = CRn. Finally, the set of elements above an element c in a domain
will be denoted by ↑ c.

Furthermore, we will make use of two operations from interval arithmetic
which extend the conventional addition and multiplication of numbers by
point-wise application to sets of points. Recall that ∥x∥ =

√∑n
i=1 x

2
i is the

standard Euclidean norm of x = [x1, x2, . . . xn]
⊤ ∈ Rn. Then the Euclidean

norm is extended point-wise to b ∈ CRn by ∥b∥ = max{∥x∥ : x ∈ b}. We
will also consider the extension −·− : CRn×Rn → IR of the scalar product
which is defined point-wise b · x = {y · x : y ∈ b}.

Let us now recall the several well-known definitions from calculus regard-
ing directional derivatives and Lipschitz functions.

Definition 3.1.1. (Partial Derivative) If f : Rn → R, then its partial deriva-
tive with respect to dimension i is defined as:

∂f(x)

∂xi

= lim
h→0

f(x1, . . . , xi + h . . . xn)− f(x1, . . . , xi, . . . , xn)

h

30

MEng Individual Project - Final Report

Definition 3.1.2. (Gradient) If f : Rn → R, then the vector of partial
derivatives is called the gradient and is defined by:

∇f(x) =



∂f(x)
∂x1

∂f(x)
∂x2

...

∂f(x)
∂xn


.

Definition 3.1.3. (Directional Derivative) Let f : Rn → R be a real valued
function, and let d ∈ Rn\{0}. The directional derivative of f in the direction
d is defined as:

∂f

∂d
(x) = lim

h→0

f(x+ hd)− f(x)

h
.

Definition 3.1.4. (Lipschitz Function) [12] A function f : S → Rm is called
Lipschitz continuous if there is a constant L such that:

∥f(x)− f(y)∥ ≤ L · ∥x− y∥, ∀ x,y ∈ S.

Definition 3.1.5. Let U ⊂ Rn be an open subset of a Rn and let f : U → R
be Lipschitz near x ∈ U and d ∈ Rn. The generalised directional derivative
[12] of f at x in the direction of d is given by:

f ◦(x;d) = lim
y→x

sup
h↓0

f(y + hd)− f(y)

h

Definition 3.1.6. (Clarke Gradient) The generalised gradient of f at x,
denoted by ∂f(x) is the subset of Rn given by:

{A ∈ X⋆ : f ◦(x;d) ≥ A(d) for all v ∈ Rn}.

In addition, ∂f(x) is a non-empty, convex and compact subset of Rn and for
d ∈ Rn we have:

f ◦(x;d) = max{A(d) : A ∈ ∂f(x)}

31

MEng Individual Project - Final Report

The following definitions, which are given in [2], provide the necessary
background on the L-derivative and the domain of Lipschitz maps, specialised
to finite dimensions. We begin by introducing the following extension to
Lipschitz functions:

Definition 3.1.7. (Set-valued Lipschitz functions) The continuous function
f : U → R has a non-empty, convex and compact set-valued Lipschitz con-
stant b ∈ CRn in an open subset a ⊂ U if for all x,y ∈ a we have:

b · (x− y) ⊑ f(x)− f(y).

The single step tie δ(a, b) ⊆ C0(U) of a with b is the collection of all partial
functions f on U with a ⊂ dom(f) ⊂ U in C0(U) which have b as non-empty
convex compact set-values Lipschitz constant in a.

For the rest of this subsection, we will assume that n ≥ 2. It is possi-
ble, as shown in [13] to give an equivalent definition for the Clarke gradient
which is expressed only in terms of elementary set notions. In what follows,
the equivalent generalised derivative for Lipschitz continuous maps will be
referred to as L-derivative. Also, from this points onwards we assume n ≥ 2
and, in a slight abuse of notation, we will write C0 instead of C0(U).

Definition 3.1.8. A step tie of C0 is any finite intersection
∩

i∈I δ(ai, bi) ⊂
C0, where I is a finite indexing set. A tie of C0 is any intersection ∆ =∩

i∈I δ(ai, bi) ⊂ C0, for an arbitrary index set I. The domain of a non-empty
tie ∆ is defined as dom(∆) =

∪
i∈I{ai | bi ̸= ⊥}.

Definition 3.1.9. The primitive map
∫

: (U → CRn) → T 1(U) is defined
by

∫
(g) =

∩
i∈I δ(ai, bi), where g = supi∈I biχai . We usually write

∫
(f) as∫

f and call it the set of primitives of f .

Definition 3.1.10. A map g : U → CRn is said to be integrable if
∫
g ̸= ∅.

Given a continuous function f : U → R, the relation fδ(a, b) gives finitary
information about the local differential properties of f . The collection of all
such information defines the L-derivative of f , as follows:

Definition 3.1.11. The derivative of a continuous function f : U → R is
defined as:

Lf =
⊔

f∈δ(a,b)

bχa : U → CRn

32

MEng Individual Project - Final Report

Theorem 3.1.1. In the case of arbitrary (possibly infinite) dimension, it
holds that (see [13]):

1. Lf is well-defined and Scott continuous.

2. If f ∈ C1 then Lf = f ′ .

3. f ∈ δ(a, b) if and only if bχa ⊑ Lf .

The following interesting corollary holds, which can be seen as an alterna-
tive of the Fundamental Theorem of Calculus for domain-theoretic functions.
Moreover, we can state the duality between Clarke gradient and the previ-
ously defined L-derivative (see [13]):

Corollary 3.1.1.1. f ∈
∫
g ⇐⇒ g ⊑ Lf .

Theorem 3.1.2. In finite dimensional Euclidean spaces, the L-derivative
coincides with the Clarke gradient.

3.2 The property of consistency

In this section, we will give a formal definition to the concept of consistency
which we briefly mentioned at the beginning of this chapter and is the central
piece of the present work. We will also present the algorithms that can decide
whether consistency holds given constraints on the function and derivative
information, respectively.

Informally, a pair of functions (f, g), representing function and derivative
information respectively, is called consistent if there exists a third function
w whose function value is approximated by the first component of the pair
and whose derivative information is approximated by the second component.

The function information f is given by a finite set of step functions repre-
sented as {ai, bi}i∈I , where ai ⊆ Rn is a rational hyper-rectangle and bi ⊆ R is
a compact interval such that bi and bj have non empty intersection whenever
this is the case for the interiors of ai and aj. Equivalently, we can write that
f ∈ D0(U), i.e. f is interval-valued within each hyper-rectangle defined in
its domain. On the other hand, the derivative information g is given for each
of the n partial derivatives in the form {ai, bi}i∈I , where ai are as before, but
we allow bi to be, in the most general setting, rational compact polyhedra.
Simply put, g : U → CRn, i.e. the range of is a convex polyhedra for each
n-dimensional hyper-rectangle inside the domain.

33

MEng Individual Project - Final Report

As we will see, in the particular case when the derivative constraints
lie within hyper-rectangles with faces parallel to the coordinate planes, we
can decide whether a consistency witness w exists or not, via a linear pro-
gramming algorithm. In addition, when the algorithm indicates that (f, g)
is consistent, we can also construct the least and greatest consistent maps
– in the sense that the heights of the minimal and maximal witnesses are
minimised and maximised, respectively:

wmin ≤ w ≤ wmax.

As further explained, the construction of such witnesses will give rise to piece-
wise linear surfaces, because we approximate a witness by linear interpolat-
ing between the heights at the corners of any n-dimensional hyper-rectangle
defined in the domain. Besides, the resulting (n + 1)-dimensional surfaces
(hyper-planes) will be kinked when transitioning between adjacent hyper-
rectangles in the domain.

It should be noted that choosing rectangular derivative information may
result in some loss of information, but it will vastly simplify the LP algo-
rithms and provides a practical framework for implementation. The more
challenging problem of convex derivative information will also be analysed in
a simple 2-dimensional setting, for which a linear test can also be developed.

Let us now state the consistency relation more formally, as presented
in [2], using the terminologies developed so far. Later, we will look at the
algorithms that decide consistency, firstly in the rectangular setting for the
1D and nD cases, n ≥ 2 (as shown in [1] and [2], respectively).

Definition 3.2.1. The consistency relation Cons ⊂ D0(U)× (U → CRn) is
defined by:

(f, g) ∈ Cons if ↑ f ∩
∫
g ̸= ∅.

Also the least and greatest consistency witnesses can be defined through
the following:

Proposition 3.2.1. Let O be a connected component dom(g) and let R(U)
be the set of partial maps of U into the extended real line R ∪ {−∞,∞}.
Consider the two dcpos (R(U),≤) and (R(U),≥) having pointwise ordering
inherited from the extended real line. Then the maps s : D0(O) × (U →
CRn)→ (R(U),≤) and t : D0(O)× (U → CRn)→ (R(U),≥) defined by:

34

MEng Individual Project - Final Report

s(f, g) = inf

{
h : dom(g)→ R

∣∣∣∣ h ∈ ∫
g, h ≥ f−

}

t(f, g) = sup

{
h : dom(g)→ R

∣∣∣∣ h ∈ ∫
g, h ≤ f+

}
represent the least primitive map of g that is greater than the lower part of
f and the greatest primitive map of g that is less than the upper part of
f , respectively. We also get from here that the following 3 conditions are
equivalent:

1. (f, g) ∈ Cons;

2. s(f, g) ≤ t(f, g);

3. There exists a locally Lipschitz function h : dom(g) → R with g ⊑ Lh
and f ⊑ h on dom(g).

Furthermore, the maps s and t are Scott continuous and the relation Cons
is Scott closed (see [2]).

Corollary 3.2.0.1. Let (f, g) ∈ Cons. Then in each connected component O
of the domain of definition of g which intersects the domain of definition of f
there exist two locally Lipschitz functions s(f, g) : O → R and t(f, g) : O → R
such that s(f, g), t(f, g) ∈ ↑ f ∩

∫
g and for each w ∈ ↑ f ∩

∫
g, it holds that:

s(f, g)(x) ≤ w(x) ≤ t(f, g)(x),

for all x ∈ O.

3.2.1 Consistency for the one-dimensional case

We will now explain the framework for consistency in the case when the
domain is unidimensional. For simplicity, we can assume, without loss of
generality, that the domain U = [0, 1]. Otherwise, one can easily convert a
closed interval [a, b] into [0, 1] upon a simple rescaling of the axis. Notice that
the range of the derivative map g will be IR, as we are only dealing with the
derivative concerning a single variable.

Let us consider a partition 0 = y0 < y1 < . . . < yn = 1 of the domain [0, 1]
in which interval-valued functions f, g : [0, 1]→ IR, representing approxima-
tions for function and derivative information, respectively, are given. Then
the following algorithm (which appears in Section 3 from [1]) with linear

35

MEng Individual Project - Final Report

complexity in the number of partitions induced by (f, g) can be developed as
a test for consistency and also for determining the least map s(f, g) ≡ wmin

which is also a witness to consistency. A analogous algorithm computes the
greatest witness, i.e. t(f, g) ≡ wmax.

Algorithm 3.2.1. The function updating algorithm consists of an initialisa-
tion step and two other main steps (see Figure 3.1). The initialisation process
determines the common partition points {y0, . . . yn} of (f, g). On each inter-
val (yk−1, yk), the functions g− and g+ are constant, with g−|(yk−1,yk)= λt.e−k
and g+|(yk−1,yk)= λt.e+k , where e−k , e

+
k ∈ R. Furthermore, on each interval

(yk−1, yk), the map f− has a constant slope, ak say, i.e. f−|(yk−1,yk)= f−
k ,

with f−
k (x) = akx+ bk.

Figure 3.1: The function updating algorithm

36

MEng Individual Project - Final Report

Input: f, g : [0, 1] → IR, where f is a linear step function and g is a step
function.

Output: Continuous function s(f, g) : [0, 1]→ IR which represents the least
function consistent with the information from f and g.

Initialisation:
{y0, . . . yn} : induced-partition-of (f, g)

Part 1:
u(y0) := f−(y+0)
for k = 1 . . . n and ∀x ∈ [yk−1, yk)

u(x) := max{f−(x), u(yk−1) + (x− yk−1)e
−
k }

u(yk) := max{limf−(yk), u(yk−1) + (yk − yk−1)e
−
k }

Part 2:
s(yn) := u(yn)
for k = n . . . 1 and ∀x ∈ [yk−1, yk)

s(f, g)(x) := max{u(x), s(yk) + (x− yk−1)e
+
k }

Figure 3.2: Consistency for the 1D case. The least witness s and the greatest witness to
consistency t are shown (they are both made up of piecewise-linear segments). Note that
any other witness can vary within the shaded region.

37

MEng Individual Project - Final Report

3.2.2 Consistency for the n-dimensional case, n ≥ 2

After getting a flavour of the algorithm in the one-dimensional setup, we
can now proceed to the central piece of the present work by explaining the
general framework that decides consistency in higher dimensional spaces. As
with the previous case, we will assume, for convenience, that the derivative
information is rectangular, that is, contained within hyper-rectangles (as we
are referring to higher dimensional spaces).

We will begin our analysis with the case n = 2, as it provides a simpler
way to reason about the geometric structure of the problem. The algorithm
for this case is described in Section 3 from [2], but we will follow a much sim-
pler geometric approach to derive the linear programming algorithm (without
using theory of cones). Afterwards, it will become straightforward to gener-
alise the algorithm for any arbitrary n ≥ 2.

Let us therefore consider consider the two-dimensional case. We will
assume, as in the uni-dimensional setting, that each variable is constrained
to lie within the closed interval [0, 1] and as such we can consider U = [0, 1]2

as the domain of definition. Now, both the function approximation f and
derivative approximation g will be defined for rational rectangles inside U , so
we can therefore enforce a grid (p0, p1, . . . , pk−1)× (q0, q1, . . . , ql−1) within the
unit square, where all points pi and qj lie on the x and y axis, respectively,
i = 0, k − 1, j = 0, l − 1. By this construction, we have: p0 = q0 = 0 and
pk−1 = ql−1 = 1. Then, for every sub-rectangle Rij = (pi, pi+1) × (qj, qj+1)
formed by adjacent grid points, the functions f : U → IR and g : U → IR2

are given as follows:

f |Rij
=

[
c−ij, c

+
ij

]
= cij ∈ IR (3.1)

g|Rij
= b1ij × b2ij = bij ∈ IR2, (3.2)

for all i = 0, k − 2, j = 0, l − 2. Note that each bkij, k ∈ {1, 2} is also an
interval, as we restrict the value of each partial derivative to lie within a
closed and compact interval, so: bkij =

[
bk−ij , bk+ij

]
for every k.

Therefore, the problem of checking consistency for the pair of step func-
tions (f, g) in the two-dimensional case reduces to determining the exis-
tence of heights hij ≡ h((pi, qj)) at all the grid points (pi, qj), i = 0, k − 1,
j = 0, l − 1, subject to the given constraints (3.1) and (3.2).

38

MEng Individual Project - Final Report

Let us first tackle the constraints for function information. By (3.1) we
see that all 4 heights at the corners of any of the k × l sub-rectangles Rij

must lie within cij ∈ IR and hence:

c−ij ≤ hst ≤ c+ij, for s ∈ {i, i+ 1}, t ∈ {j, j + 1} (3.3)

where i = 0, k − 2, j = 0, l − 2. An observant reader would now notice
that most of the inequalities (3.3) have the potential to overlap, due to the
fact that a height hij can de defined for at most 4 sub-rectangles at a time
(e.g. h11 is constrained by c00, c10, c01 as well as c11). Therefore, we need
to account for 3 types of grid points (pi, qj): corner, border and interior (see
Figure 3.3 below), so that, upon intersecting all possible constraints, we can
derive the tightest bounds for each height hij.

x

y

h00

p0

q0 h10

p1

h20

p2

h01q1 h11 h21

h02q2 h12 h22

h0,l−1ql−1

h0,l−2ql−2 h1,l−2

h1,l−1

hij

hk−1,0

pk−1

hk−1,l−1

hk−2,l−2

hk−2,1

hk−2,0

pk−2

hk−1,l−2

hk−1,1

hi−1,j+1 hi+1,j+1

hi+1,j−1hi−1,j−1

hi,j+1

hi,j−1

hi−1,j hi+1,j

hi−1,1 hi+1,1

hi+1,0

pi+1

hi−1,0

pi−1

hi1

hk−2,l−1

hi0

pi

c00 c10

c01 c11

c0,l−2

ci−1,0 ci0

ci,j−1ci−1,j−1

ci−1,j cij

ck−2,l−2

ck−2,0

Figure 3.3: Function information for each sub-rectangle of the grid.

39

MEng Individual Project - Final Report

We now consider each case in turn:

1. If (pi, qj) is a corner point of the grid, then hij will only use the con-
straint within its own sub-rectangle, namely:

c−00 ≤ h00 ≤ c+00

c−k−1,0 ≤ hk−1,0 ≤ c+k−1,0

c−0,l−1 ≤ h0,l−1 ≤ c+0,l−1

c−k−1,l−1 ≤ hk−1,l−1 ≤ c+k−1,l−1.

(3.4)

2. Now, if (pi, qj) is a border point of the grid, then, apart from the con-
straint defined for its sub-rectangle, hij will also require the constraint
from the adjacent sub-rectangle. For example, consider the grid point
(pi, q0) along the x axis. Then the constraint for hi0 will be derived by
intersecting the constraints for the sub-rectangles Ri−1,0 and Ri,0. We
can proceed similarly for all the other border points along the sides of
the unit-square to get the following inequalities:

max
{
c−i−1,0, c

−
i0

}
≤ hi0 ≤ min

{
c+i−1,0, c

+
i0

}
max

{
c−i−1,l−1, c

−
i,l−1

}
≤ hi,l−1 ≤ min

{
c+i−1,l−1, c

+
i,l−1

}
max

{
c−0,j−1, c

−
0j

}
≤ h0j ≤ min

{
c+0,j−1, c

+
0j

}
max

{
c−k−1,j−1, c

−
k−1,j

}
≤ hk−1,j ≤ min

{
c+k−1,j−1, c

+
k−1,j

}
,

(3.5)

where i = 1, k − 2 and j = 1, l − 2.

3. Finally, if (pi, qj) is an interior point of the grid, then in order to derive
the best bounds for hij we will need to account for all four adjacent
sub-rectangles with common vertex (pi, qj). As such, we can optimise
the constraints in this case by taking the intersection of the intervals
ci−1,j−1, ci,j−1, ci−1,j and cij, respectively, so we can thus write:

max
{
c−i−1,j−1, c

−
i,j−1, c

−
i−1,j, c

−
ij

}
≤ hij ≤ min

{
c+i−1,j−1, c

+
i,j−1, c

+
i−1,j, c

+
ij

}
,

for all i = 1, k − 2 and j = 1, l − 2. (3.6)

40

MEng Individual Project - Final Report

In the analysis developed so far, we made the tacit assumption that all
adjacent intervals cij have non-empty intersection. This is an absolute re-
quirement for consistency to hold, because otherwise the rectangular paral-
lelepipeds defined by adjacent sub-rectangles in the grid would not intersect
and will naturally give rise to discontinuities. If that is the case, then the
function information will be classified as being inconsistent. In equivalent
terms, inconsistent function information will translate to at least one of the
inequalities from above being false (in such a scenario the greatest lower
bound for some hij will be strictly greater than its lowest upper bound, con-
tradiction).

Having broken down the function information constraints into inequali-
ties of the type: lower_bound ≤ hij ≤ upper_bound, for all suitable indices
i and j, let us now focus our attention on the derivative constraints given by
function g.

Consider an arbitrary sub-rectangle with lower left corner starting at
(pi, qj) in the square U , where 1 ≤ i ≤ k− 2, 1 ≤ j ≤ l− 2. The correspond-
ing heights at each of the 4 corners of the sub-rectangle Rij are, respectively,
hij, hi+1,j, hi,j+1, hi+1,j+1, all bounded within the rectangular box with height
c+ij−c−ij (see the diagram from Figure 4.2). Since a consistent witness h needs
to pass through all the 4 heights hst, where s ∈ {i, i + 1}, t ∈ {j, j + 1},
it means that the resulting surface contained inside the rectangular paral-
lelepiped will be piecewise-linear and can be obtained by interpolating the
heights as follows:

• In the triangle with vertices (pi, qj), (pi, qj+1) and (pi+1, qj), the map h
linearly interpolates between the values hij, hi,j+1 and hi+1,j at these
vertices respectively.

• In the triangle with vertices (pi+1, qj+1), (pi, qj+1) and (pi+1, qj), the
map h linearly interpolates between the values hi+1,j+1, hi,j+1 and hi+1,j

at these vertices respectively.

This construction is depicted in 4.2. Alternatively, the piecewise linear sur-
face can be constructed by interpolating the values given at the vertices
of the other two triangles, that is, one with vertices (pi, qj), (pi, qj+1) and
(pi+1, qj+1), and the other with vertices (pi, qj), (pi+1, qj) and (pi+1, qj+1) –
from a geometric perspective, this means that the slanted line of intersection
between the two triangular surfaces would join hij and hi+1,j+1 as opposed
to hi,j+1 and hi+1,j.

41

MEng Individual Project - Final Report

O

qj

qj+1

pi pi+1

(pi, qj+1) (pi+1, qj+1)

(pi+1, qj)(pi, qj)

hij

hi+1,j

hi+1,j+1

hi,j+1

c+ij

c−ij

x

yz

Figure 3.4: Piecewise-linear surfaces obtained by interpolating along the heights of a
consistent witness.

Hence, the piecewise linear map constructed above (in either scenario)
satisfies the derivative constraints if and only if the slopes of each of the 4
lines obtained by joining adjacent heights lie within the appropriate part of
bij = b1ij × b2ij ∈ IR2. For example, the slope of the line passing through the
points ((pi, qj), hij) and ((pi+1, qj), hi+1,j) must be included in the interval b1ij
corresponding to the partial derivative with respect to x (see the green trian-
gle from Figure 4.2). Similarly, the slope of the line joining ((pi, qj+1), hi,j+1)
and ((pi+1, qj+1), hi+1,j+1) must belong to b1ij, so we can thus write:

b1−ij ≤
hi+1,j − hij

pi+1 − pi
≤ b1+ij b1−ij ≤

hi+1,j+1 − hi,j+1

pi+1 − pi
≤ b1+ij , (3.7)

where i = 0, k − 2 and j = 0, l − 1 (but in the second case we require that
j = 0, l − 2).

42

MEng Individual Project - Final Report

In a similar fashion, the constraints for the partial derivative with respect
to y translate to:

b2−ij ≤
hi,j+1 − hij

qi+1 − qi
≤ b2+ij b2−ij ≤

hi+1,j+1 − hi+1,j

qi+1 − qi
≤ b2+ij , (3.8)

where i = 0, k − 1 and j = 0, l − 2 (but i = 0, k − 2 in the second case).

We can already notice that the inequalities given by (3.7) and (3.8) fea-
ture the same kind of overlapping structure as with the inequalities (3.3)
defined within each sub-rectangle Rij. As a result, there is a potential for
optimising these constraints in the same manner as we did earlier for the
function approximation (see Figure 3.5 below).

x

y

h00

p0

q0 h10

p1

h20

p2

h01q1 h11 h21

h02q2 h12 h22

h0,l−1ql−1

h0,l−2ql−2 h1,l−2

h1,l−1

hij

hk−1,0

pk−1

hk−1,l−1

hk−2,l−2

hk−2,1

hk−2,0

pk−2

hk−1,l−2

hk−1,1

hi−1,j+1 hi+1,j+1

hi+1,j−1hi−1,j−1

hi,j+1

hi,j−1

hi−1,j hi+1,j

hi−1,1 hi+1,1

hi+1,0

pi+1

hi−1,0

pi−1

hi1

hk−2,l−1

hi0

pi

b00 b10

b01 b11

b0,l−2

bi−1,0 bi0

bi,j−1bi−1,j−1

bi−1,j bij

bk−2,l−2

bk−2,0

Figure 3.5: Derivative information for each sub-rectangle of the grid.

43

MEng Individual Project - Final Report

The difference here is that we only need to account for interior sides of
sub-rectangles, because the constraint coming from an adjacent sub-rectangle
may potentially contribute towards improving the bounds of a slope of type
(hi+1,j − hij)/(pi+1 − pi). On the other hand, the slopes defined along the
border edges of the grid will only use the constraint within their correspond-
ing sub-rectangle.

By writing the inequalities in full and taking great care of indices, we get
in each case that:

1. The slopes along the border sides of sub-rectangles are simply:

b1−i0 ≤ hi+1,0 − hi0

pi+1 − pi
≤ b1+i0

b1−i,l−2 ≤
hi+1,l−1 − hi,l−1

pi+1 − pi
≤ b1+i,l−2

b2−0j ≤ h0,j+1 − h0j

qj+1 − qj
≤ b2+0j

b2−k−2,j ≤
hk−1,j+1 − hk−1,j

qj+1 − qj
≤ b2+k−2,j,

(3.9)

where i = 0, k − 2 and j = 0, l − 2.

2. The slopes along the interior sides of sub-rectangles need also to take
into account that the same slope occurs in an adjacent sub-rectangle
and hence we get the following inequalities:

max
{
b1−i,j−1, b

1−
ij

}
≤ hi+1,j − hij

pi+1 − pi
≤ min

{
b1+i,j−1, b

1+
ij

}
max

{
b2−i−1,j, b

2−
ij

}
≤ hi,j+1 − hij

qj+1 − qj
≤ min

{
b2+i−1,j, b

2+
ij

}
,

(3.10)

where i = 0, k − 2 and j = 1, l − 2 for the first chain of inequalities,
while for the second we impose i = 1, k − 2 and j = 0, l − 2.

From the discussion developed so far, we observe that all the inequalities
given by (3.4), (3.5), (3.6), (3.9) and (3.10) represent, in fact, necessary
and sufficient conditions for deciding whether a pair of functions (f, g) is
consistent or not. We can therefore introduce the following:

44

MEng Individual Project - Final Report

Theorem 3.2.1. (Decidability of consistency) A pair (f, g) ∈ (U → IR) ×
(U → IR2), representing function and derivative information respectively, is
consistent if and only if we can find values hij ∈ R at the grid points (pi, qj)
such that the inequalities (3.4), (3.5), (3.6), (3.9) and (3.10) are simultane-
ously satisfied.

Since f and g are given in terms of rational numbers, the question of
consistency boils down to solving a finite set of inequalities with rational
coefficients for the k × l unknowns hij, which is decidable. In fact, it repre-
sents the set of constraints for a linear programming problem in which only
a feasible solution is required to be found in order to guarantee the existence
of a consistent witness.

Finally, we will show that the construction of the minimal and maximal
surfaces which are also witnesses to consistency can be derived upon min-
imising or maximising

∑
0≤ i≤ k−1
0≤ j≤ l−1

hij, respectively. Let us therefore present:

Algorithm 3.2.2. (Minimal consistent witness) For a consistent pair (f, g) ∈
(U → IR) × (U → IR2), representing function and derivative information
respectively, consider the following linear programming problem:

Minimise
∑

0≤ i≤ k−1
0≤ j≤ l−1

hij

subject to Constraints (3.4), (3.5), (3.6), (3.9) and (3.10),

(3.11)

which minimises the sum of heights at each of the given grid points (pi, qj) in
the unit square. Then the linear programming problem (3.11) has an optimal
solution given by:

wmin =
{
h⋆
ij | 0 ≤ i ≤ k − 1, 0 ≤ j ≤ l − 1

}
and furthermore wmin ≤ w, for any other consistent witness w.

Proof. Let W be the set of all witnesses consistent with the pair (f, g). By
Theorem 3.2.1 we clearly have that W ̸= ∅. According to Corollary 6.4
from [2], the minimal and maximal surfaces are guaranteed to exist for a
consistent pair (f, g). Thus, w⋆ = infW exists and is a witness. In particular,
the heights h⋆

ij of w⋆ are optimal and will therefore minimise the objective
function. Now, if wmin ≤ w⋆ then there would be some hij < h⋆

ij, thus
contradicting the optimality of h⋆

ij and also the optimality of the objective
function. Consequently, w⋆ = wmin, as desired.

45

MEng Individual Project - Final Report

A similar recipe applies for deriving the algorithm that will determine
the greatest consistent witness wmax, as we only need to convert (3.11) to
become a maximisation problem:

Algorithm 3.2.3. (Maximal consistent witness) For a consistent pair (f, g) ∈
(U → IR) × (U → IR2), representing function and derivative information
respectively, consider the following linear programming problem:

Maximise
∑

0≤ i≤ k−1
0≤ j≤ l−1

hij

subject to Constraints (3.4), (3.5), (3.6), (3.9) and (3.10),

(3.12)

which maximises the sum of heights at each of the given grid points (pi, qj) in
the unit square. Then the linear programming problem (3.11) has an optimal
solution given by:

wmax =
{
h⋆
ij | 0 ≤ i ≤ k − 1, 0 ≤ j ≤ l − 1

}
and furthermore w ≤ wmax, for any other consistent witness w.

The above algorithms (3.11) and (3.12), together with the Theorem of de-
cidability of consistency 3.2.1 can now be easily extended to an n-dimensional
setting. We consider the unit cube U ⊂ Rn and a number of points along
each of the n edges intersecting at the origin of the cube so that f ∈ IR and
g ∈ IRn are constant in each of the resulting sub-hyper-rectangles. We then
derive similar constraints to (3.4), (3.5) and (3.6) from the function approx-
imation by intersecting all the overlapping intervals at grid-points contained
in adjacent sub-hyper-rectangles. Similar to the inequalities (3.9) and (3.10),
we need to account for each of the n partial derivatives when constructing
the derivative constraints – the slope between heights at adjacent grid-points
must lie within the intersection of all the intervals at sub-hyper-rectangles
that contain the edges defined by neighbouring grid-points.

Finally, the algorithms for minimising and maximising the least and great-
est consistent witnesses are identical to the ones developed for the 2D case:
we require that sum of heights for all grid-points to be either minimised
or maximised, respectively, subject to the constraints derived from the pair
(f, g) ∈ (U → IR)× (U → IRn).

46

MEng Individual Project - Final Report

3.2.3 Consistency for a triangle with convex
derivative information in the two-dimensional case

Let us now examine a more general framework for deciding consistency, which
is presented in [14]. Suppose we have a non-empty convex and compact poly-
gon B of the plane as the derivative information. Assume three distinct points
vi = (xi, yi) with i ∈ {1, 2, 3} and T123, or simply T , is the closed region de-
fined by these three points. Suppose that we have hi ∈ R for i = {1, 2, 3}. We
aim to establish if there is a Lipschitz witness z = w(x, y) with w : T → R,
that goes through the three points (vi, hi), for i ∈ {1, 2, 3}, whose derivative
everywhere is contained in B. Let z = P (x, y) = αx+βy+γ with P : T → R
be the plane that goes through three points (vi, hi), for i ∈ {1, 2, 3} with
∇P = (α, β) = b. Then, w satisfies our requirements if and only if w − P
goes through (vi, 0), for i = {1, 2, 3}, with its derivative consistent with B−b.
Thus, we can equivalently consider the latter problem of finding a Lipschitz
maps that goes through (xi, yi, 0), for i ∈ {1, 2, 3}, with its derivative con-
tained everywhere in B′ ≡ B − b.

Consider eij ≡ vj − vi , with ij in the cyclic order 1, 2, 3 and let e⊥ij be
unit vector orthogonal to eij in the direction into the triangle T . Now, by
the mean value theorem (MVT) for Lipschitz maps, for a witness to exist, it
is necessary that:

0 ∈ B′ · eij
for all distinct pairs i, j ∈ {1, 2, 3}. Assume therefore that these conditions,
called the MVT conditions, hold. Thus, there exist bij ∈ B′ for cyclic ordered
pairs ij such that bij · eij = 0, i.e., bij = ke⊥ij for some k ∈ R. Let [b−ij, b

+
ij]

be the interval along the direction e⊥ij that is contained in B. Let P−
ij be the

plane with ∇P−
ij = b−ij that contains eij for each cyclic order ij.

Proposition 3.2.2. [14] Suppose the MVT conditions hold. Then, there is
Lipschitz map w⋆ : T → R that goes through the three points (xi, yi, hi), with
i = 1, 2, 3 and whose derivative is contained in B, such that for every other
witness w with these properties we have:

minw ≤ w⋆ ≤ maxw.

Proof. If b ∈ B (i.e. 0 ∈ B′) then the plane w⋆ = P satisfies our conditions;
see the thick dashed triangle in the figure. Suppose, therefore, that b /∈ B.
By considering witnesses of the form w−P we can equivalently consider the
reduced problem with hi = 0 and B′ = B − b. Then 0 /∈ B′. In particular,
the convex hull of the three segments [b−ij, b

+
ij] along e⊥ij does not contain 0.

47

MEng Individual Project - Final Report

This means that there exist two pairs i1i2 and i3i1 such that precisely one of
the following two conditions hold:

• Both b−i1i2 and b−i3i1 have positive components along e⊥i1i2 and e⊥i3i1 re-
spectively while b+i2i3 has negative component on e+i2i3 .

• Both b−i1i2 and b−i3i1 have negative components along e⊥i1i2 and e⊥i3i1 re-
spectively while b+i2i3 has positive component on e+i2i3 .

Figure 3.6: Consistency for triangle

We consider the first case depicted in Figure 3.6 as the second is similar.
Therefore, assume that there exist two pairs i1i2 and i3i1 such that b−i1i2 and
b−i3i1 have positive components along e⊥i1i2 and e⊥i3i1 respectively while b+i2i3 has
negative component on e⊥i2i3 .

Let c0 ≡ b−i3i1 , c1, . . . , ck−1, ck ≡ b−i1i2 be the vertices of B′ from b−i3i1 to b−i1i2
on the same side of the origin with respect to the line l that goes through
b−i3i1 and b−i1i2 . For any c ∈ R2 let z = Pc(x, y) = c1x+ c2y + γc be the plane

48

MEng Individual Project - Final Report

through (vi, hi) with ∇Pc = (c1, c2) = c. Therefore, using our previous nota-
tion, we have Pc0 = Pi3i1 and Pck = Pi1i2 . Let w⋆ ≡ min

{
P−
cj

: 0 ≤ j ≤ k
}

.

Now let w be any Lipschitz map through the three points vi = (xi, yi, 0)
for i ∈ {1, 2, 3} and consistent with B′. Then, w is differentiable almost
everywhere, and is equal to the integral of its derivative. Consider any path
p : [0, 1] → T , given by p(t) = vi1 + t · (r − vi1) from vertex vi1 to a point r
on the opposite edge E of T . Then inf B′ · (r − vi1) = cj · (r − vi1) for some
j with 0 ≤ j ≤ k and w⋆|[vi1 ,r] = Pcj , where [vi1 , r] is the line segment from
vi1 to r in T . Thus we immediately obtain that:

w(r)− w(vi1) =

∫ 1

0

w′(vi1 + t(r − vi1)) · (r − vi1) dt

≥
∫ 1

0

cj · (r − vi1) dt

=

∫ 1

0

w⋆(vi1 + t(r − vi1)) · (r − vi1) dt

= w⋆(r)− w⋆(vi1)

On the other hand, w(vi1) = w⋆(vi1) = hi1 = 0. But maxw⋆ = maxr∈E w⋆(r)
and hence:

maxw ≥ max
r∈E

w(r) ≥ max
r∈E

w⋆(r) = maxw⋆

Consequently, maxw ≥ maxw⋆ and since minw ≤ min {hi | i ∈ {1, 2, 3}} =
minw⋆, the result follows.

Now recall the original problem with three points (xi, yi, hi), for i ∈
{1, 2, 3}, and derivative information B. Suppose lower and upper limits
c− ≤ c+ are given. Let P : T → R be the plane that goes through three
points (xi, yi, hi), for i ∈ {1, 2, 3} with ∇P = b and put B′ = B−b. Consider
w⋆ constructed above.

Theorem 3.2.2. [14] There is a witness to consistency if and only if the
following two conditions hold:

• For all distinct pairs i, j ∈ {1, 2, 3}, we have: 0 ∈ B′ · eij.

• c− ≤ w⋆ + P ≤ c+.

49

MEng Individual Project - Final Report

This shows that consistency is semi-decidable, that is, for any given h =
(h1, h2, h3) ∈ R3 we can decide if there is a witness for consistency with
heights hi at vertex vi for i ∈ {1, 2, 3}. Returning to the original problem we
can now state the following:

Theorem 3.2.3. [14] Let rational points vi for i ∈ {1, 2, 3}, forming a trian-
gle in the plane, a rational convex polygon B and rational numbers c− ≤ c+

be given. Then it is decidable that there exist heights hi for which there exists
a Lipschitz witness going through (vi, hi) consistent with B and the bound c−

and c+ in the closed region bounded by the triangle, where i ∈ {1, 2, 3}.

Proof. We first check if there exists h ∈ R3 such that the plane z = P (x, y) =
αx+βy+γ going through the three points (vi, hi) for i ∈ {1, 2, 3} has gradient
(α, β) ∈ B. If this condition holds then P is clearly a witness and we are done.
Otherwise, we know from the construction presented in this section that there
is a witness w if and only if w⋆ + P is a witness, where w⋆ is the piecewise
linear surface constructed above using B′ = B − ∇P and z = P (x, y) is
the plane passing through the three points (vi, hi), with hi = w(vi) where
i ∈ {1, 2, 3}. Let us now show that for each consecutive pair of vertices cj
and cj+1 in the construction of w⋆ above, the slanted line of intersection of
the two planes Pcj and Pcj+1

– equivalently the line of intersection of the two
planes P ′

j ≡ Pcj + P and P ′
j+1 ≡ Pcj+1

+ P – is perpendicular to the line
segment cjcj+1. Recall that all planes Pcj pass through the point (v, 0) with
v ≡ vi1 . This allows us to write that:

Pj(v) = Pj+1(v) = 0.

Now, for some u = (x, y) ∈ T we can successively write that:

P ′
j(u) = P ′

j+1(u) ⇐⇒ Pcj(u) = Pcj+1
(u)

⇐⇒ Pcj(u)− Pcj(v) = Pcj+1
(u)− Pj+1(v)

⇐⇒ cj · (u− v) = cj+1 · (u− v)

⇐⇒ (u− v) · (cj − cj+1) = 0,

as claimed. It follows that the piecewise linear witness w will linearly inter-
polate in each of the triangles with a vertex at vi1 and sides with common
vertex vi1 perpendicular to the faces cjcj+1 for j = 0, k. This gives a simple
triangulation of T . Let the vertices of the all the triangles in the triangu-
lation be denoted by u0, u1, . . . , uN which includes the vertices v1, v2 and v3
and suppose tj ≡ w(uj) for j = 1, N .

50

Chapter 4

Implementation

In this chapter we will present a detailed overview of the implementation
and design decisions behind the linear test that decides consistency for the
rectangular case in n-dimensions, as explained by Theorem 3.2.1. In the case
when the test indicates consistency for a pair of functions (f, g), representing
function and derivative information, respectively, we make use of the linear
programming algorithms 3.11 and 3.12 to determine the minimal and maxi-
mal bounding surfaces. We also implemented a simple GUI that allows the
user of this program to visualise the 3D piecewise-linear surfaces whenever
the algorithm reports consistency for the two-dimensional case.

4.1 Tools

The entire codebase of the project has been written in the Python program-
ming language. As mentioned in Section 2.3, this choice was motivated by the
existence of a robust and developer-friendly linear programming framework
called CVXOPT, which is implemented in Python. The language features
both functional and object oriented programming styles that are expressed
using a lightweight and intuitive syntax.

In addition to being a cross-platform language, Python is a very popular
choice among programmers due to the plethora of readily-available pack-
ages which can be easily integrated in projects of any scale and complexity.
Python also enjoys tremendous support from the academical community,
which has boosted the development of a great deal of libraries. Apart from
CVXOPT, we used a couple of other dependencies including:

• numpy [15]: scientific package which offers a variety of convenient fea-
tures such as powerful n-dimensional arrays with flexibility for arbi-
trary data types, efficient numerical computation and random number
capabilities.

• sympy [16]: written entirely in Python, this module enables effective
symbolic computation for mathematical expressions. Moreover, it has
excellent support for polynomials with an arbitrary number of variables

51

MEng Individual Project - Final Report

e.g. computing the value of a polynomial at a specific point, or the value
of a derivative at any given point.

• matplotlib [17]: a library that is rather destined for 2D plots, but also
features decent support for basic 3D graphs via the mplot3d toolkit.
This package allowed very fast development of the front-end component
of our framework, which will be detailed later in this chapter.

4.2 Back-end

We will now explain the two main components which make up the core im-
plementation of the framework that decides consistency when the derivative
approximation is constrained by hyper-rectangles. Despite having dealt with
the 2D case in the previous chapter, the implementation below is described as
much as possible for the general setting where the domain is n-dimensional.
For the sake of clarity, we may occasionally illustrate with examples in the
two-dimensional case whenever the general instance becomes notationally
heavy or harder to reason about.

4.2.1 Input Format and Data Generation

In order to formulate the constraints for the linear programming problems
given by Algorithms 3.11 and 3.12, we first need to specify three essential ele-
ments to our program: grid information, function information and derivative
information respectively. For simplicity, these are all provided in a single file
that will be loaded when the final program is run. We impose the following
format for each element:

1. Grid information: this is given as n separate lines, corresponding to
the n axis of the domain. Each line is represented as a sequence of
strictly increasing rational numbers which specify the divisions within
[0, 1] (including the endpoints) along the ith axis, 1 ≤ i ≤ n. Thus,
each line is assumed to contain at least 2 values.

For presentation purposes, let us denote by pi ≥ 2 the number of
points along the ith axis so that any point of the grid can be writ-
ten as Gk1k2...kn , where 0 ≤ ki ≤ pi − 1, for every 1 ≤ i ≤ n (e.g.
G00...0 will correspond to the origin O of Rn, while Gp1−1,...,pn−1 will be
mapped to (1, 1, . . . , 1) ∈ Rn; more specifically, the ith coordinate of
such a point is given by the kth

i rational value located on the ith line
above).

52

MEng Individual Project - Final Report

2. Function information: this is specified as an n-dimensional array
of intervals, whose size p1 × p2 × . . . × pn is determined by the grid
information provided earlier. An entry at an array index (k1, k2, . . . kn),
where 0 ≤ ki ≤ pi − 2 is given as a pair of floating point numbers:(

c−k1k2...kn , c
+
k1k2...kn

)
with c−k1k2...kn ≤ c+k1k2...kn , such that it represents the closed and com-
pact interval constraint inside the sub-hyper-rectangle with 2n vertices
Gk1+b1,...,kn+bn , where bi ∈ {0, 1}, for 1 ≤ i ≤ n.

It is now crucial to observe that a point Gk1k2...kn for which at least
some ki = pi − 1, where 1 ≤ i ≤ n, then the function information is
already provided within one or more sub-hyper-rectangles that lie on
the border of the unit-square U = [0, 1]n. We will refer to such points
as being border grid points (not to be confused with the interpretation
given in Section 3.2.2 from Chapter 2, which is fundamentally differ-
ent). For simplicity, we will provide a default pair of (0, 0) at each of
these p1 × p2 × . . . × pn − (p1 − 1) × (p2 − 1) × . . . × (pn − 1) border
grid-points so that the n-dimensional array is fully initialised.

Finally, in order to store the n-dimensional array within the input file,
we use a convenient 2D matrix layout with p1 × p2 × . . . × pn−1 rows
and pn columns.

3. Derivative information: this is also constructed as an n-dimensional
array of size p1×p2× . . .×pn similar to the one presented above for the
function information. The only distinction here is that each entry will
be given as a tuple of n pairs, where each pair will represent a closed
and compact interval constraint for each partial derivative within the
corresponding sub-hyper-rectangle. Specifically, an entry belonging to
the derivative information array at index (k1, k2, . . . kn) features the
following form:((

b1−k1k2...kn , b
1+
k1k2...kn

)
,
(
b2−k1k2...kn , b

2+
k1k2...kn

)
, . . . ,

(
bn−k1k2...kn , b

n+
k1k2...kn

))
,

where 0 ≤ ki ≤ pi − 2 and bi−k1k2...kn ≤ bi+k1k2...kn are given rational values
for each 1 ≤ i ≤ n. Similarly, for the indices corresponding to border
grid points in the unit-square, we need to initialise the n-dimensional
array with a default value – e.g. we can consider each element of the
n-dimensional tuple to be the interval (0, 0).

53

MEng Individual Project - Final Report

Grid information:
0.0 0.6 1.0
0.0 1.0

Function information:
Array shape: (3, 2)
(2.89, 29.64) (0.0, 0.0)
(2.89, 29.73) (0.0, 0.0)
(0.0, 0.0) (0.0, 0.0)

Derivative information:
Array shape: (3, 2)
((-21.16, 5.97), (-13.55, 10.76)) ((0.0, 0.0), (0.0, 0.0))
((-5.55, 18.32), (-15.08, 6.44)) ((0.0, 0.0), (0.0, 0.0))
((0.0, 0.0), (0.0, 0.0)) ((0.0, 0.0), (0.0, 0.0))

Listing 4.1: Sample input file

A very minimalistic example is provided in Listing 4.1 where we consid-
ered three points along the first axis, and only the endpoints 0 and 1 along
the second axis. Observe that for the border points previously defined as
having at least one coordinate equal to 1, the default values of (0.0, 0.0)
and ((0.0, 0.0), (0.0, 0.0)) are used for function and derivative infor-
mation, respectively.

Although the format developed above for specifying grid, function and
derivation information can be scaled to an arbitrary dimension n ≥ 2, it
would become extremely cumbersome if we were to input such data manu-
ally into a file. Also, apart from very simple cases like the one shown above,
we would not have any guarantees as to whether the input is consistent or
not. This will immediately pose a significant problem, especially when deal-
ing with a fine-grained structure of the n-dimensional grid contained inside
the unit-square U = [0, 1]n.

In order to address these issues, we had to come up with a robust method
of generating data automatically in the above format. Also, for the purposes
of evaluation, we had to ensure that we can actually generate both consistent
and inconsistent input so that the correctness of our implementation can then
be thoroughly validated. We will present the input generation mechanisms
in very great detail in the next chapter dedicated to Evaluation.

54

MEng Individual Project - Final Report

4.2.2 Linear Programming Algorithms

Given that we devised a scalable method for representing all the necessary
input required for the linear programming algorithms 3.11 and 3.12, we can
now dive into their implementation.

It is first important to notice that the Theorem 3.2.1 allows us to test for
whether a pair of functions (f, g) is consistent or not by constructing an LP
problem which will only check for the feasibility of a solution, rather than
for optimising a linear objective function. However, either algorithms 3.11 or
3.12 can verify the existence of a solution given the provided constraint set
while at the same time trying to derive the least and greatest surfaces that
are witnesses to consistency.

Therefore, it makes complete sense to use one or the other optimisation
problems given by 3.11 and 3.12 for assessing the consistency of a given pair
(f, g). Without loss of generality, we will first ask the LP solver to deal with
the minimisation problem 3.11. In case consistent input has been detected
– and implicitly the minimal witness constructed – we will then proceed to
solving the converse maximisation problem. According to Theorem 2.2.1, the
latter will be nothing else than solving the minimisation problem again but
flipping the sign of the objective function upon multiplication with −1, as
the constraint sets are otherwise identical for both problems.

On the other hand, given our reliance on the CVXOPT library which
we covered in Section 2.3, we had to ensure that the Algorithm 3.11 (or the
corresponding result in higher dimensions) is mapped to the following matrix
form 2.6 expected by the LP solver (note that we stripped off the equality
constraints Ax = b which are not relevant in this case):

Minimise c⊤x
subject to Gx ≤ h.

(4.1)

Firstly, it should be clear than all the p1 × p2 × . . . × pn heights in the
unit-square U will be the decision variables corresponding to the vector x
in 4.1 above (not to be confused with h, which is the column vector for the
inequality constraints that will be discussed further). As we are trying to
minimise the sum of all these heights, it immediately follows that all the
p1 × p2 × . . .× pn components of c will have to be equal to 1.

Before moving on to the inequality constraints of the LP problem, we need
to make a crucial assumption that will be used throughout the construction

55

MEng Individual Project - Final Report

of the coefficient matrix G and the column vector of right hand sides h.
As pointed out earlier, the vector x of decision variables will include the
heights hk1k2...kn at each grid point Gk1k2...kn in the unit-square U , where
0 ≤ ki ≤ pi − 1, 1 ≤ i ≤ n. Since the product between the coefficient
matrix G and the column vector x will involve all the dot products between
each row of the matrix and the vector of decision variables, we need to have
a precise ordering of the entries hk1k2...kn within x. This is equivalent to
imposing a specific ordering on the indices k1k2 . . . kn, where, as before, 0 ≤
ki ≤ pi − 1 and 1 ≤ i ≤ n. The most convenient arrangement is to consider
the lexicographical ordering for these indices, that is:

(k1, k2, . . . , kn) ≤l (k
′
1, k

′
2, . . . , k

′
n)

holds if and only if:

∃ m > 0. ∀ i < m. (ki = k′
i ∧ km < k′

m) .

With this assumption in mind, we are now ready to tackle the inequality
constraints from Algorithm 3.11, which need to be written in the matrix form
Gx ≤ h. We should now observe that there are only two types of inequality
constraints that can arise from the LP Algorithm 3.11 (written below for the
arbitrary case n ≥ 2):

1. From the function information, the heights corresponding to each grid-
point in the unit-square will be constrained by lower and upper bounds
of the form:

C−
k1k2...kn

≤ hk1k2...kn ≤ C+
k1k2...kn

, (4.2)

where 0 ≤ ki ≤ pi − 1, 1 ≤ i ≤ n.

2. From the derivative information, the differences between adjacent heights
at a sub-hyper-rectangle will satisfy inequalities of the form:

Bk−
k1k2...kn

≤ hk′1k
′
2...k

′
n
− hk1k2...kn ≤ Bk+

k1k2...kn
, (4.3)

where k1k2 . . . kn and k′
1k

′
2 . . . k

′
n are appropriately chosen indices along

the kth axis within the sub-hyper-rectangle with vertices Gk1+b1,...,kn+bn ,
bi ∈ {0, 1}, for 0 ≤ ki ≤ pi − 2, 1 ≤ i ≤ n.

However, it is important to observe that the representation 4.1 enforced
by CVXOPT requires that any linear combination of decision variables to be
bounded above by a corresponding upper bound from the column vector h.

56

MEng Individual Project - Final Report

Thus, we will need to flip the lower bounds from the above constraints and
write them as follows:

−hk1k2...kn ≤ −C−
k1k2...kn

hk1k2...kn − hk′1k
′
2...k

′
n
≤ −Bk−

k1k2...kn
. (4.4)

As a result, it suffices to create the coefficient matrix G for the right hand
sides of (4.2) and (4.3), because then G′ = −G will be the corresponding
coefficient matrix for the lower bounds written in the form 4.4. We can actu-
ally think of the matrix G as being split into sub-blocks G1 and G2, which
represent the coefficient matrices for the upper bounds of (4.2) and the upper
bounds of (4.3), respectively. Corresponding to these G1 and G2 we will have
some column vectors of right hand sides h+

1 and h+
2 , respectively, whose en-

tries will be nothing else than the values C+
k1k2...kn

and Bk+
k1k2...kn

, respectively.
Similarly, for the inverted lower bounds given by the inequalities (4.4), we
will have coefficient sub-matrices −G1 and −G2 with corresponding upper
bounds given by −C−

k1k2...kn
and −Bk−

k1k2...kn
, that will be gathered in some

column vectors h−
1 and h−

2 , respectively.

In summary, by putting together all the constraints from (4.2) and (4.3)
in the form required by (4.1), we get that:

G1x ≤ h+
1

−G1x ≤ h−
1

G2x ≤ h+
2

−G2x ≤ h−
2

(4.5)

Note that the construction of the column vectors h−
k and h+

k , k ∈ {1, 2}
is equivalent to finding the the best bounds C−

k1k2...kn
, C+

k1k2...kn
, Bk−

k1k2...kn
,

Bk+
k1k2...kn

, where 1 ≤ k ≤ n, which one can express in terms of the given
c−k1k2...kn , c+k1k2...kn , bk−k1k2...kn , bk+k1k2...kn as well as the grid information – the
latter being needed only when computing the gradients as a difference of
appropriately chosen consecutive heights. We have described this procedure
for the two-dimensional case in Chapter 3, Section 3.2.2. This is not more
technically or conceptually involved in the n-dimensional setting, as we fol-
low the same procedure described in the particular case: we consider all the
sub-hyper-rectangles in the unit-grid and iteratively optimise the bounds for
each height and for each particular difference of heights corresponding to all
the n partial derivatives.

Thus, it remains to address the construction of the coefficient matrices
G1 and G2, respectively. We will also briefly discuss them in relation to the

57

MEng Individual Project - Final Report

column vectors of right hand sides h+
1 as well as h−

2 (note that the case for
the inverted lower bounds is similar). Let us take each of them in turn:

Construction of G1. According to the upper bound of (4.2), G1 will
simply be the identity matrix of size p1 × p2 × . . . × pn. This is easy to see
because relation (4.2) has p1 × p2 × . . . × pn independent inequalities, each
corresponding to a distinct height defined at grid point Gk1k2...kn . It is also
obvious that, since we imposed the lexicographical ordering within the vector
x of heights, then the entries of type C+

k1k2...kn
in the column vector of right

hand sides h+
1 will follow the same lexicographical ordering for the subscripts

k1k2 . . . kn.

Construction of G2. Finally, for the construction of G2 we need the
following important observation. From the right hand side of (4.3), we see
that it is convenient to consider the inequalities for each ith partial derivative
in turn. Thus, matrix G2 can striped horizontally in n sub-matrices Gi

2, each
corresponding to the ith partial derivative, where 1 ≤ i ≤ n.

Let us now focus on such a sub-matrix Gd
2, for some fixed d, 1 ≤ d ≤

n. Note that the upper bounds for the inequalities (4.3) require all the
differences between heights at adjacent grid points for all the sub-hyper-
rectangles within the unit-square [0, 1]n. Since we examine the constraints
along the dth partial derivative, we can observe that there are exactly:

Nd ≡ (pd − 1) ·
∏
i̸=d

pi

such inequalities, given that those differences are only undefined when we
have reached a border grid point Gk1k2...kn for which kd = pd − 1 (since we
cannot step outside the unit-grid to obtain an additional difference of two
heights).

To be more specific, for this dth partial derivative, we can rewrite the upper
bounds of (4.3) as follows:

hk1,...,kd−1,kd+1,kd+1,...,kn − hk1,...,kd−1,kd,kd+1,...,kn ≤ Bd+
k1k2...kn

, (4.6)

where 0 ≤ ki ≤ pi − 1 for 1 ≤ i ≤ n, i ̸= d and 0 ≤ kd ≤ pd − 2.

Finally, we can construct the upper coefficient matrix G+
2 since we now have

the mathematical expression of all the Nd inequalities given by (4.6). Hence,
for each of the Nd rows of the sub-matrix in question, we need to determine

58

MEng Individual Project - Final Report

the column indexes, running from 0 to p1× p2× . . .× pn, at which the values
−1 and 1 will be placed, so that taking the dot product with x will yield
all the inequalities (4.6). Recall that x contains all the decision variables
whose indices are ordered lexicographically. Thus, in order to determine the
appropriate column indices previously mentioned, we simply need to find the
sequencing/row number of each height hk1k2...kn within the column vector x.
But this is now trivial, as given any index k1k2 . . . kn, we can compute its
0-indexed position within the vector x as follows:

k1 ·
∏
i≥1

pi + k2 ·
∏
i≥2

pi + . . .+ kn−1 · pn + kn. (4.7)

Needless to say, the vector of right hand sides h+
2 will be similarly row striped

in d sub-vectors and the position within such a stripe at which Bd+
k1k2...kn

will
be inserted can be computed using the same (4.7) derived earlier.

To better illustrate this rather convoluted discussion, we will show in
full the sparse matrix G2, together with the the column vector h+

2 for a
simple example in the two-dimensional case. We will consider, for the sake
of presentation, that we have p1 = 3 and p2 = 4 points along the x and y
axis, respectively. Thus, there are 3 × 4 = 12 decision variable in total and
the system G2x ≤ h+

2 is given by:



−1 0 0 0 1 0 0 0 0 0 0 0
0 −1 0 0 0 1 0 0 0 0 0 0
0 0 −1 0 0 0 1 0 0 0 0 0
0 0 0 −1 0 0 0 1 0 0 0 0
0 0 0 0 −1 0 0 0 1 0 0 0
0 0 0 0 0 −1 0 0 0 1 0 0
0 0 0 0 0 0 −1 0 0 0 1 0
0 0 0 0 0 0 0 −1 0 0 0 1

−1 1 0 0 0 0 0 0 0 0 0 0
0 −1 1 0 0 0 0 0 0 0 0 0
0 0 −1 1 0 0 0 0 0 0 0 0
0 0 0 0 −1 1 0 0 0 0 0 0
0 0 0 0 0 −1 1 0 0 0 0 0
0 0 0 1 0 0 −1 1 0 0 0 0
0 0 0 0 0 0 0 0 −1 1 0 0
0 0 0 0 0 0 0 0 0 −1 1 0
0 0 0 1 0 0 0 0 0 0 −1 1





h00

h01

h02

h03

h10

h11

h12

h13

h20

h21

h22

h23



≤



B+
00

B+
01

B+
02

B+
03

B+
10

B+
11

B+
12

B+
13

B+
20

B+
21

B+
22

B+
23


59

MEng Individual Project - Final Report

Putting together the algorithm. After the thorough analysis devel-
oped so far, we now possess all the necessary information to write a procedure
that, given n-dimensional function and derivative constraints for each of the
sub-hyper-rectangles in the unit square U , determines whether consistency
holds or not.

The pseudocode Algorithm 4.2.1 defines a procedure SolveLPAlgo-
rithm which takes as input interval-valued function information f and rect-
angular derivative-information g within an n-dimensional grid. The program
builds the constraints in the matrix form 4.5 and then solves the minimisa-
tion LP problem to decide consistency. If found, the procedure also solves the
converse optimisation problem by inverting the objective function. In such
a case, the output will be a pair of n-dimensional arrays representing the
minimal and maximal bounding surfaces which are witnesses to consistency.
Otherwise, an empty pair is returned signalling that the input given by the
pair (f, g) is inconsistent.

4.3 Front-end

Lastly, we will cover some details regarding the graphical user interface that
we implemented alongside the LP algorithms described above. Given that
for an n-dimensional domain the resulting piecewise linear surfaces are in
dimension (n + 1), we could only provide 3D visualisation of the geometric
objects for a consistent pair defined in the two-dimensional unit square.

In order to achieve this, we leveraged the mplot3d toolkit from the
matplotlib1 package, which provides rendering of tri-surface plots via the
following convenient API: 2

Axes3D.plot_tri_surf(X, Y, Z, color, cmap, norm, vmin, vmax,
shade, triangles),

where X, Y and Z are the data values represented as flat, one-dimensional
arrays. All the next parameters offer enough flexibility for customising the
look and feel of the resulting plot. We will dedicate a special attention to
the last argument, i.e. triangles, which can be used to specify a particular
arrangement of the triangular patches that are finally rendered in the 3D
scene.

1http://matplotlib.org/mpl_toolkits/mplot3d/
2http://matplotlib.org/mpl_toolkits/mplot3d/tutorial.html#mpl_toolkits.

mplot3d.Axes3D.plot_trisurf

60

http://matplotlib.org/mpl_toolkits/mplot3d/
http://matplotlib.org/mpl_toolkits/mplot3d/tutorial.html#mpl_toolkits.mplot3d.Axes3D.plot_trisurf
http://matplotlib.org/mpl_toolkits/mplot3d/tutorial.html#mpl_toolkits.mplot3d.Axes3D.plot_trisurf

MEng Individual Project - Final Report

Algorithm 4.2.1 The Final Linear Programming Algorithm
1: procedure SolveLPAlgorithm(f , g, grid)
2: result← (∅, ∅)
3:
4: ▷ Coefficient matrices for function and derivative constraints.
5: G1 ← BuildFunctionCoefMatrix(f, grid)
6: G2 ← BuildDerivativeCoefMatrix(g, grid)
7:
8: ▷ Column vectors of optimised lower and upper bound constraints.

For function information, this works by taking the max of all the
lower bounds as well as the min of all the upper bounds for each
height that is defined in adjacent sub-hyper-rectangles within the
grid. A similar reasoning applies for optimising the overlapping
differences of heights using the derivative constraints.

9: (C−
vec, C

+
vec) ← BuildFunctionConstraints(f, grid)

10: (B−
vec, B

+
vec)← BuildDerivativeConstraints(g, grid)

11:
12: ▷ Right hand sides corresponding to 4.5.
13: (h+

1 ,h
−
1)← (C+

vec,−C−
vec)

14: (h+
2 ,h

−
2)← (B+

vec,−B−
vec)

15:
16: ▷ Solve the LP minimisation problem by combining constraints 4.5

into single matrix form Gx ≤ h.
17: c ← Vector(1, gridnoPoints)
18: G← JoinMatrices(G1, −G1, G2, −G2)
19: h ← JoinVectors(h+

1 , h
−
1 , h

+
2 , h

−
2)

20: xmin ← SolveLP(c, G, h)
21:
22: ▷ If consistency is found, then solve the LP maximisation problem.
23: if xmin ̸= ∅ then
24: xmax ← SolveLP(−c, G, h)
25: result← (xmin,xmax)
26: end if
27:
28: return result
29: end procedure

61

MEng Individual Project - Final Report

4.3.1 Triangulation of Sub-rectangles

Recall that in Section 3.2.2 from Chapter 3, when discussing the construction
of the piecewise linear surfaces, we chose to divide each 2D sub-rectangle of
the grid along the diagonal joining the lower-right and upper-left corners of
any such sub-rectangle. This allows us to linearly interpolate the z-values at
the vertices of all of these triangles in a consistent manner.

However, without the last parameter, the Axes3D.plot_tri_surf func-
tion will employ Delaunay triangulation [18] which performs the partitioning
of sub-rectangles in such a way so that it maximises the minimal angle of the
resulting 3D piecewise linear triangles. As a consequence, this technique al-
lows for more aesthetically pleasing surfaces because it avoids skinny or close
to degenerate triangles. Despite the fact that this triangulation also yields
a consistent piecewise linear witness, we nonetheless wanted to follow our
own construction that we previously described. To do this, one can override
the default Delaunay triangulation by providing a list of vertex-labels upon
which the triangulation of any rectangular quadrilateral will be uniquely de-
termined. We illustrate how this labelling works using a simple example.
Consider a 3× 4 grid within the square [0, 1]× [0, 1] as follows:

(p0, q0)

0

(p2, q0)

8

(p0, q3)

3

(p2, q3)

11

(p0, q1)

1

(p0, q2)

2

(p1, q0)

4

(p1, q3)

7

(p2, q2)

10

(p2, q1)

9

(p1, q2)

6

(p1, q1)

5

Figure 4.1: Labelling for a 3× 4 grid.

62

MEng Individual Project - Final Report

We will now assume that the z-values for the heights hij at each grid-
point (pi, qj), i = 0, 2, j = 0, 3, have been arranged as a one-dimensional
array such that the collection of indices ij are ordered lexicographically. If
this is the case, then each two-dimensional grid point (pi, qj) will be assigned
a label corresponding to the index at which the height hij is located in the
flat array of values. In the above Figure 4.1, the labels are shown in the box
next to each grid-point.

Finally, the triangulation expected by Axes3D.plot_tri_surf will sim-
ply require a two-dimensional list of all the triangle labels defined using the
above procedure. In this example, the triangles parameter would therefore
be set to:

[[0, 4, 1], [4, 5, 1], [1, 5, 2], [5, 6, 2], [2, 6, 3],
[6, 7, 3], [4, 8, 5], [8, 9, 5], [5, 9, 6], [9, 10, 6],
[6, 10, 7], [10, 11, 7]].

Figure 4.2: Triangulation for a consistent piecewise linear witness

63

MEng Individual Project - Final Report

Figure 4.2 shows an example of this triangulation for a piecewise linear
surface within a similar 3× 4 grid. Note that, for presentation purposes, we
chose equally spaced points along the [0, 1] segments. In addition, the 3D
scene in the running application can be zoomed, panned or even rotated so
that one can analyse the piecewise linear surfaces at a greater level of detail.

4.3.2 Minimal and Maximal Surfaces

We can now easily integrate the visualisation of the least and greatest wit-
nesses to consistency in our framework. Assuming consistent input has been
supplied, we retrieve both the minimal and maximal heights via Algorithm
4.2.1 and we then make two separate calls to Axes3D.plot_tri_surf by us-
ing the same x and y parameters, but different z arguments.

Figure 4.3 shows an example of the least and greatest bounding surfaces
that are witnesses to consistency within a 3× 4 grid as before:

Figure 4.3: Example of minimal and maximal piecewise linear surfaces

64

Chapter 5

Evaluation

In this chapter we will examine the techniques used to ensure that the imple-
mentation of the linear programming algorithm 4.2.1 that decides consistency
is correct. We begin by focusing on the methodology of generating consis-
tent/inconsistent input for both function and derivative information, which
will lead to an effective method of performing boundary testing [19]. Also,
in the particular case when the domain is two-dimensional, we will use the
visualisation of the 3D piecewise linear surfaces to further validate our im-
plementation subject to varying some parameters. We then conclude with
the challenges and limitations associated with this project.

5.1 Input Generation

Recall that at the end of Section 4.2.1 from the previous chapter we es-
tablished that it is rather impractical to manually input data in the form
of closed and compact intervals for function and derivation information, re-
spectively. Even in the case of a two-dimensional domain, the task of writing
values into a file is certainly cumbersome, let alone in higher dimensional
spaces.

The problem becomes even more serious when we would like to distinguish
between consistent and inconsistent input for the purposes of verification.
This is because we want to guarantee that the implementation of the LP
algorithm is correctly identifying consistent input as being consistent and,
conversely, that inconsistent input is classified as being inconsistent. Thus,
the absence of any false alarms when testing on a large number of randomly-
generated inputs will provide a strong justification towards the correctness
of our implementation.

As a result, the task of generating input is of paramount importance to
a successful evaluation of this project. We start by looking at how we can
automatically produce consistent input, based either on randomly chosen
values or randomly-generated polynomials. We will then see how we can
create inconsistent input by making a minimal and non-trivial modification
to any consistent pair of function and derivative approximation.

65

MEng Individual Project - Final Report

Throughout this analysis, we will make extensive use of the notations
developed in Section 4.2.1 from the previous chapter. If needed, the reader is
strongly encouraged to refer back to that section, as the following discussion
will be rather notationally-heavy.

5.1.1 Generation of consistent input

The problem of generating consistent function and derivative information
reduces to reverse engineering the constraints of the linear programming al-
gorithms 3.11 and 3.12 from Chapter 3. For this reason, we start by randomly
generating heights hk1k2...kn at each of the of the grid points Gk1k2...kn , where
0 ≤ ki ≤ pi − 1 and 1 ≤ i ≤ n. We implemented two distinct ways for
generating such arbitrary heights:

• Either by drawing p1× p2× . . .× pn values from a uniform distribution
over a fixed interval;

• Or, more interestingly, by constructing a random polynomial in n vari-
ables from which we calculate the values at each of the p1×p2× . . .×pn
grid points Gk1k2...kn .

Consistent Function Information. After having the heights in place
for all the p1 × p2 × . . . × pn grid points, we firstly need to ensure that we
construct large enough intervals such that all the heights within a sub-hyper-
rectangle satisfy:

c−k1k2...kn ≤ hk1+b1,...,kn+bn ≤ c+k1k2...kn ,

where 0 ≤ ki ≤ ki − 2 and bi ∈ {0, 1}, for 1 ≤ i ≤ n. It is now easy to
see that we can guarantee consistent function information by choosing the
tightest closed and compact intervals[

c−k1k2...kn , c
+
k1k2...kn

]
,

where 0 ≤ k1 ≤ pi − 2 and 1 ≤ i ≤ n. This is trivial because for each
of the (p1 − 1) × (p2 − 1) × . . . × (pn − 1) sub-hyper-rectangles inside the
unit-square U , the corresponding heights will be contained within the most
rigid (n+ 1)-dimensional box.

However, for added flexibility, we can introduce a parameter ε to allow
for more loose bounding boxes at each of the sub-hyper-rectangles within the
grid, so we will define intervals of the form:

66

MEng Individual Project - Final Report

[
c−k1k2...kn − ε, c+k1k2...kn + ε

]
,

for all 0 ≤ ki ≤ pi − 2, 1 ≤ i ≤ n.

A simple implementation of the ideas discussed thus far is given by the
pseudocode procedure 5.1.1. This function returns an n-dimensional array
of intervals representing consistent function information within each sub-
hyper-rectangle of U , given random heights hrand, grid information grid and
tolerance parameter ε.

Algorithm 5.1.1 Generating Consistent Function Information
1: procedure GenerateFunctionInfo(hrand, grid, ε)
2: f ← ∅
3: for all indexcurr ∈ GetGridIndices(grid) do
4: interval← (0, 0)
5: if indexcurr /∈ BorderIndexSet(grid) then
6: (hmin, hmax)← (∞,−∞)
7: for all indexnext ∈ NextGridIndices(indexcurr) do
8: h← hrand[indexnext]
9: (hmin, hmax)← (Min(hmin, h),Max(hmax, h))

10: end for
11: interval ← (hmin − ε, hmax + ε)
12: end if
13: f [indexcurr]← interval
14: end for
15: return f
16: end procedure

Consistent Derivative Information. Finally, we also need to deal
with the construction of the n-dimensional array that will provide the deriva-
tive information. Given that we derived the minimal bounding boxes that
guarantee consistent function information, we could very easily compute the
minimal and maximal slopes along n intersecting hyper-rectangular faces
which are pairwise orthogonal. However, this approach may result in some
loss of information since we specifically started from random heights at the
grid points and most of these heights will be strictly included in the minimal
bounding boxes computed previously.

67

MEng Individual Project - Final Report

As a result, we will take into account all the randomly generated heights
in our strategy for deriving the tightest closed and compact intervals along
each of the n axis and for each of the (p1 − 1) × (p2 − 1) × . . . × (pn − 1)
sub-hyper-rectangles in the unit-grid. For convenience, we will explain this
method for the case when n = 2, as it is similar for higher dimensions.

Recall Figure 3.2 in which we had a single sub-rectangle defined by the
lower-left corner at (pi, qj) ∈ R2 and 4 heights hst, s ∈ {i, i+1}, t ∈ {t, t+1}.
As demonstrated by 3.7 in Section 3.2.2, the gradients along the x axis are
given by the following slopes:

hi+1,j − hij

pi+1 − pi

hi+1,j+1 − hi,j+1

pi+1 − pi
. (5.1)

Algorithm 5.1.2 Generating Consistent Derivative Information
1: procedure GenerateDerivativeInfo(hrand, grid, ε)
2: d← ∅
3: for all indexcurr ∈ GetGridIndices(grid) do
4: ▷ n-dimensional tuple of pairs
5: intervals← ((0, 0), . . . (0, 0))
6: if indexcurr /∈ BorderIndexSet(grid) then
7: for k ← 1, n do
8: ▷ Calculate the edge-length between indexcurr and the

next index along the kth axis for the current sub-hyper-
rectangle in the grid

9: edgelen ← GetEdgeLength(grid, indexcurr, k)
10: (smin, smax)← (∞,−∞)
11: Iedges ← IndicesForParallelEdges(grid, indexcurr, k)
12: for all (indexleft, indexright) ∈ Iedges do
13: (hleft, hright)← (hrand[indexleft], hrand[indexright])
14: s← (hright − hleft)/edgelen

15: (smin, smax)← (Min(smin, s),Max(smax, s))
16: end for
17: intervals[i− 1]← (smin − ε, smax + ε)
18: end for
19: end if
20: d[indexcurr]← intervals
21: end for
22: return d
23: end procedure

68

MEng Individual Project - Final Report

Notice that both ratios have in common the distance given by pi+1 − pi,
which represents the edge-length of the sub-rectangle in the x direction. Also,
it is obvious that in this simple two-dimensional case we would just construct
a consistent interval from the values of these 2 ratios.

With these details in mind, we can explain the most challenging parts
in the pseudocode procedure 5.1.2. We use the same input parameters as
before and we output an n-dimensional array of tuples, with each such tuple
consisting of n pairs. Now, on line 9 we effectively determine the common
edge-length for the current sub-hyper-rectangle in the direction of the kth

derivative. Secondly, on line 11 we collect all 2n−1 pairs of grid indices for
which the corresponding heights will need to be subtracted, in the style shown
by (5.1) for the 2D case. In the particular instance that we just analyzed,
the IndicesForParallelEdges procedure would return the set with 2
elements: {(

(i, j), (i+ 1, j)
)
,
(
(i, j + 1), (i+ 1, j + 1)

)}
since indexcurr = (i, j) and k = 1 (i.e. the partial derivative along the x
axis). Lastly, one can specify the tolerance parameter ε to accommodate
wider intervals for each partial derivative, in the same manner as we did
when extending the minimal bounding boxes for function information.

5.1.2 Generation of inconsistent input

Having seen a rather involved procedure for constructing consistent input,
one may think that generating inconsistent function or derivative information
would be much easier. This is indeed the case, and we have two ways for
tackling this problem:

• We can either break the function information by making two adjacent
bounding boxes to have empty intersection – thus, no continuous wit-
ness will exist in such a case;

• Or, we can make a minimal change to break the derivative information
as follows: we consider to have generated the most constrained intervals
for both function and derivative information, as shown in Algorithms
5.1.1 and 5.1.2 when ε = 0 is supplied to both procedures. This means
that we have the most rigid (n + 1)-dimensional hyper-rectangles and
also the tightest intervals across all partial derivatives. Now we can
pick a random sub-hyper-rectangle in the unit-square U at grid index

69

MEng Individual Project - Final Report

Gr1r2...rn , as well as a random axis ra, for which we have the following
interval: [

br
−
a
r1r2...rn

, br
+
a
r1r2...rn

]
(5.2)

where 0 ≤ ri ≤ pi − 2, 0 ≤ i ≤ n and 1 ≤ r ≤ n. Now, since the
corresponding minimal bounding box is given in terms of the closed
and compact interval: [

c−r1r2...rn , c
+
r1r2...rn

]
,

it means that the greatest consistent interval for the rtha partial deriva-
tive is Sra ≡

[
− sramax, s

ra
max

]
, where

sramax ≡
c+r1r2...rn − c−r1r2...rn

Gra
r1...(ra+1)...rn

−Gra
r1...ra...rn

represents the largest achievable slope within the corresponding sub-
hyper-rectangle along this randomly chosen derivative. Notice that we
use Gk

k1k2...kn
to denote the kth coordinate of the grid point Gk1k2...kn ,

where 0 ≤ ki ≤ pi − 1, 1 ≤ i ≤ n, 1 ≤ k ≤ n. As a matter of fact,
the denominator of sramax would be the output of the virtual procedure
GetEdgeLength within GenerateDerivativeInfo, whose pseu-
docode was given as part of Algorithm 5.1.2.

At last, coming back to the single modification that is needed in order
to obtain inconsistent derivative information, we need to see that the
interval from (5.2) will always be included within Sra , i.e.[

br
−
a
r1r2...rn

, br
+
a
r1r2...rn

]
⊆

[
− sramax, s

ra
max

]
.

Hence, by choosing any interval that is strictly outside of Sra it will
be sufficient to guarantee inconsistent input. This is because the slope
along the rtha partial derivative within the minimal (n+1)-dimensional
bounding box under consideration will not have the necessary freedom
to oscillate beyond the limits of Sra .

For the purposes of verifying our implementation described in Algorithm
4.2.1, we decided to choose for second alternative when generating inconsis-
tent data. This is easily motivated because it enables us to perform effective
boundary testing [19], as we are able to create inconsistent input by making
the minimal non-trivial change to a consistent pair of function and derivative
information, respectively, upon altering the latter.

70

MEng Individual Project - Final Report

5.2 Results

Having developed robust methods for automatically generating both consis-
tent and inconsistent input, it was now possible to assess the correctness of
our implementation of the Algorithm 4.2.1.

We checked the implementation against hundreds of randomly generated
input files for dimensions n ∈ {2, 3, 4, 5, 6} and considering at most 12 points
along each axis. Furthermore, we allowed the parameter ε ≥ 0 to disturb both
the function and derivative information whenever generating consistent input
– which was either coming from random polynomials or from arbitrary values
drawn from the interval [10, 30]. We chose ε ∈ {0.0, 0.1, 0.5, 1.0, 10.0, 50.0}
in order to cover a wider spectrum of test cases, although it is only when
ε→ 0 that the generated test cases are more relevant.

The results are indeed very encouraging. After a couple of weeks spent
to address various issues in the implementation outlined in Algorithm 4.2.1,
we managed to successfully classify each type of input when running a sub-
stantial suite of tests for all dimensions considered under analysis (≈ 1000
tests in total). As such, in the absence of any counterexamples, we have the
confidence that we delivered a solid implementation of the linear program-
ming algorithm that decides consistency in the rectangular case.

We do not, however, exclude the possibility of any bugs being missed
throughout this process: despite having generated as many various tests as
possible, there might still be rather unusual situations which may very well
uncover bugs in our framework, e.g. precision errors due to floating-point
arithmetic, bugs in the CVXOPT solver etc.

5.2.1 Examples of 3D Piecewise Linear Surfaces

As a final method of evaluation, let us now visually inspect and comment on
some of the piecewise linear maps that we have briefly seen as part of the
Front-End Section in the previous chapter. We will start by looking at the
simplest example in the two-dimensional domain, that is, when the grid is
given by the corners of the unit-square U = [0, 1]2. We will then gradually
increase the granularity of the grid, together with varying the ε parameter.
In all the plots that follow, the randomly-generated surfaces from which
consistent data has been constructed are coloured with green. Blue and red
are reserved for the minimal and maximal consistent surfaces, respectively.

71

MEng Individual Project - Final Report

Figures 5.1 and 5.2 show two examples of consistent input when the grid
coincides with the unit-square. The randomly generated surface in the mid-
dle is in fact the same in both cases, but the constraints for function and
derivative approximation are altered by means of ϵ ∈ {0, 1}.

Note that when ε = 0, the least and greatest piecewise linear witnesses
will just touch the original surface at its global minimum and maximum,
respectively. This is indeed expected as these extreme values determine the
most rigid rectangular parallelepiped in which any witness will lie. In ad-
dition, we should also observe that the minimal and maximal surfaces are
slanted towards the interior of this tightest bounding box, because the inter-
vals for derivative constraints did not contain 0 for sure – as otherwise these
witnesses would have been parallel to the xy-plane.

Figure 5.1: 2× 2 grid and ε = 0.

Now, when ε = 1 in Figure 5.2, we get to see that the minimal and
maximal surfaces are separated from the initial one by exactly this value of ε
at the extreme points of the original witness. Moreover, the global bounding
surfaces are flatter this time compared to the ones in Figure 5.1 where ε = 0.
This is because an ε > 0 will result in wider intervals for the derivative
constraints, thus allowing the gradients to have more freedom.

72

MEng Individual Project - Final Report

Figure 5.2: 2× 2 grid and ε = 1

Next, Figures 5.3, 5.4 and 5.5 show the case of a 3× 3 grid with equally
spaced points along each axis. In all of these scenarios we end up with much
richer surfaces given the more granular partitioning of the unit-square.

Figure 5.3: 3× 3 grid and ε = 0

73

MEng Individual Project - Final Report

Figure 5.4: 3× 3 grid and ε = 1

As in the case of a 2 × 2 grid, the witnesses are more apart from each
other as the ε increases. Similarly, the maximal and minimal surfaces are
flatter, due to more permissive constraints on the derivative information.

Figure 5.5: 3× 3 grid and ε = 5

74

MEng Individual Project - Final Report

Apart from randomly generating values within an interval, we also have
the ability to generate consistent input from random polynomials. In the
two-dimensional case, these polynomials have the following general form:

P (x1, x2) ≡
10∑
i=1

αix
e1i
1 x

e2i
2 ,

where the coefficients αi ∈ [−40, 40] and exponents e1i , e
2
i ∈ [0, 10] are ran-

domly chosen, for all 1 ≤ i ≤ 10. We opted for a rather small number of
terms when generating polynomials, because otherwise evaluating P for each
point in the unit grid would require a great deal of unnecessary arithmetic
operations.

As we can see in Figures 5.6, 5.7 and 5.8, the resulting surfaces feature
a much smoother geometry than before. Note that ε = 0 for the first two
plots. Since there is no additional offset introduced into the constraints, the
original green surface is now “sandwiched” between the least and greatest
consistent witnesses, for all the sub-rectangles in the unit square [0, 1]2. Fi-
nally, in Figure 5.8, a larger offset ε = 30 produces separate minimal and
maximal surfaces which is what we anticipated.

Figure 5.6: 6× 5 grid and ε = 0

75

MEng Individual Project - Final Report

Figure 5.7: 11× 11 grid and ε = 0

In addition, we also implemented random generation of grid points, as
they do not necessarily need to be equally spaced along the axis of the grid.
This is depicted in Figures 5.7 and 5.8.

Figure 5.8: 11× 11 grid and ε = 30

76

MEng Individual Project - Final Report

Figure 5.9: 11× 11 grid and ε = 10

For the remaining plots, only arbitrary values are used to create the input.
Figures 5.9, 5.10 show an 11 × 11 grid in which ε ∈ {10, 50}. As expected,
the surfaces are much closer together for the smaller value of the ε.

Figure 5.10: 11× 11 grid and ε = 50

77

MEng Individual Project - Final Report

Figure 5.11: 20× 20 grid and ε = 80

Upon increasing the grain size of the grid, the piecewise linear objects
present a much richer geometrical structure, as we can examine in Figures
5.11 and 5.12, respectively.

Figure 5.12: 40× 40 grid and ε = 80

78

MEng Individual Project - Final Report

5.3 Challenges & Limitations

In this section, we will outline some of the limitations that arise in the imple-
mentation of our framework that decides consistency in the rectangular case.
The major bottleneck concerns the size of the linear programming problem
which involves no less than p1 × p2 × . . . × pn number of decision variables,
where pi is the number of points along the ith axis, 1 ≤ i ≤ n.

To show why this presents an enormous problem, we carried out a very
simple performance analysis to evaluate the time spent in each of the core
components of our implementation. We run 10 separate tests for each di-
mension ranging from n = 2 to n = 9, where we chose the hyper-rectangle
[0, 1]n as the grid information – hence each LP problem involves 2n decision
variables. The averaged results across all of these experiments are shown in
Figure 5.13 below:

2 3 4 5 6 7 8 9
Dimension

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

T
im

e
 (
s)

Performance Analysis

Input
Matrix form
Min LP
Max LP

Figure 5.13: Performance analysis for dimensions n = 2, 9, where the grid coincides with
the n-dimensional unit square. Measurements are averaged across 10 separate runs using
randomly generated input.

79

MEng Individual Project - Final Report

Even in this simplest scenario where we have the least number of points
along each axis, i.e. pi = 2, for 1 ≤ i ≤ n, we can notice that the total time
spent within each of the main components (input generation, construction
of matrix form Gx ≤ b and both LP algorithms) nearly doubles with every
increment of the domain dimension n. This is clearly expected, as we need
to build an exponentially bigger input which will also reflect in the size of
the resulting linear programming problem.

However, as it obvious from the previous plot, the time spent in the
components prior to invoking the CVXOPT solver dominate more than half
of the total running time. Thus, there is a scope for improvement in the
areas of input generation and construction of final matrix form, which would
involve careful parallelisation of the current codebase. The main challenge
here would be to decompose the overlapping structure of the function and
derivative approximation into disjoint components, as most of the heights
use information not only from their designated sub-hyper-rectangle, but also
from the adjacent ones.

80

Chapter 6

Conclusion

For the most part, we consider this project to have been a success. Using
very rigorous mathematical tools, we showed that the problem of consistency
for a pair of interval-valued function and rectangular derivative approxima-
tion, defined on an n-dimensional domain, n ≥ 2, reduces to whether a finite
set of inequalities are simultaneously satisfied. In addition, we also proved
that the minimal and maximal surfaces that are witnessing consistency can
be derived by means of a linear programming algorithm, which provides a
practical setting for implementation.

By leveraging the Python programming language, we successfully devel-
oped a framework which implements the above linear test for consistency,
given constraints for both function and derivative information within a par-
titioning of the n-dimensional unit hyper-rectangle. Moreover, the least and
greatest surfaces are also determined whenever the provided input is found
to be consistent. In order to provide a better insight into the problem, we
implemented a simple graphical user interface which can depict the 3D piece-
wise linear surfaces whenever there is a consistent pair defined in the unit
square [0, 1]× [0, 1].

Finally, we spent a great deal of time developing an automatic testing
framework that was crucial for assessing the correctness of our implementa-
tion. At the same time, we do not rule out the possibility of our implemen-
tation being completely error-free; however, we believe that the absence of
any counterexamples in the sustained testing performed up to 6th dimension
is convincing enough to guarantee a solid and reliable end-product.

6.1 Future Work

As an open-ended project, we suggest a list of possible ideas in which the
present work can be further extended:

• A faster method of input generation and translation of the linear pro-
gramming problem into matrix form would be highly desirable. This
may allow further test cases to be more quickly generated and verified.

81

MEng Individual Project - Final Report

• Extend the current framework to implement the algorithms that decide
consistency in the case of a triangle/convex quadrilateral subject to
convex derivative constraints.

• Also, examine if the latter algorithms in the convex setting can be
extended to higher dimensions, similar to the rectangular case.

82

Bibliography

[1] A. Edalat, M. Krznarić, and A. Lieutier. Domain-theoretic solution
of differential equations (scalar fields). In Proceedings of MFPS XIX,
volume 83 of Electronic Notes in Theoretical Computer Science, 2003.
www.entcs.org/files/mfps19/mfps19.html, full paper in www.doc.
ic.ac.uk/~ae/papers/scalar.ps.

[2] A. Edalat, A. Lieutier, and D. Pattison. A computational model for
multi-variable differential calculus. Information and Computation, 224:
23–45, 2013.

[3] C. K. Yap and T. Dubé. The exact computation paradigm. D.-Z. Du,
F.K. Hwang (Eds.), Computing in Euclidean Geometry, World Scientific
Press, pages 452–486, 1995.

[4] C. K. Yap. Towards exact geometric computation. Computational Ge-
ometry: Theory and Applications, 7(1-2):3–23, 1997.

[5] Abbas Edalat and Reinhold Heckmann. Computing with real numbers -
i. the lft approach to real number computation - ii. a domain framework
for computational geometry. In PROC APPSEM SUMMER SCHOOL
IN PORTUGAL, pages 193–267. Springer Verlag, 2002.

[6] David G. Luenberger and Yinyu Ye. Linear and Nonlinear Programming.
Springer Verlag, 3 edition.

[7] James. K. Strayer. Linear Programming and Its Applications. Springer
Science+Business Media New York, 1989.

[8] GLPK (GNU Linear Programming Kit). URL https://www.gnu.org/
software/glpk/. Accessed: 2016-01-20.

[9] CVXOPT (Python Software for Convex Optimization). URL http:
//cvxopt.org. Accessed: 2016-01-20.

[10] Abbas Edalat. Domain theory and fractals, 1999. URL
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.
1.32.1725&rep=rep1&type=pdf. Accessed: 2015-11-4.

[11] Samson Abramski and Achim Jung. Domain theory. URL http://www.
cs.bham.ac.uk/~axj/pub/papers/handy1.pdf. Accessed: 2015-10-28.

[12] F. H. Clarke. Optimization and Nonsmooth Analysis. Wiley, 1983.

83

www.entcs.org/files/mfps19/mfps19.html
www.doc.ic.ac.uk/~ae/papers/scalar.ps
www.doc.ic.ac.uk/~ae/papers/scalar.ps

[13] Abbas Edalat. A continuous derivative for real-valued functions. In S. B.
Cooper, B. L öwe, and A. Sorbi, editors, New Computational Paradigms,
Changing Conceptions of What is Computable, pages 493–519. Springer,
2008.

[14] Abbas Edalat. Decidability of consistency for a triangle and convex
quadrilateral. Unpublished note.

[15] Numpy. URL http://www.numpy.org. Accessed: 2016-05-08.

[16] Sympy. URL http://www.sympy.org/en/index.html. Accessed: 2016-
05-08.

[17] Matplotlib. URL http://matplotlib.org. Accessed: 2016-05-08.

[18] Delaunay triangulation. URL http://uk.mathworks.com/help/
matlab/math/delaunay-triangulation.html. Accessed: 2016-05-12.

[19] T. Murnane, K. Reed, and R. Hall. On the learnability of two repre-
sentations of equivalence partitioning and boundary value analysis. In
Software Engineering Conference, 2007. ASWEC 2007. 18th Australian,
pages 274–283, April 2007. ISSN 1530-0803.

84

	Introduction
	Motivation
	Objectives
	Contributions

	Background
	Exact Computation
	Fixed-Point Paradigm
	Floating-Point Representation
	Towards an Alternative to the f.p. Paradigm

	Linear Programming
	Linear Programming in Standard Form
	The Fundamental Theorem of LP
	Polyhedral Convex Sets
	A Geometric Approach
	Complexity Limitations and Alternative Approaches
	Duality Theory

	CVXOPT Framework
	Formulation of LP Problems in CVXOPT
	Simple Example

	Domain Theory
	Introduction
	Main Definitions and Examples

	Consistency of function and derivative constraints
	Notations and terminology
	The property of consistency
	Consistency for the one-dimensional case
	Consistency for the n-dimensional case, n2
	Consistency for a triangle with convex derivative information in the two-dimensional case

	Implementation
	Tools
	Back-end
	Input Format and Data Generation
	Linear Programming Algorithms

	Front-end
	Triangulation of Sub-rectangles
	Minimal and Maximal Surfaces

	Evaluation
	Input Generation
	Generation of consistent input
	Generation of inconsistent input

	Results
	Examples of 3D Piecewise Linear Surfaces

	Challenges & Limitations

	Conclusion
	Future Work

