
Imperial College London

Department of Computing

Interim Report

Linear Programming for
Piecewise Linear Geometric
Objects with Function and

Derivative Constraints

Author:
Constantin Mateescu

Supervisors:
Prof. Abbas Edalat

Dr. Mahdi Cheraghchi

January, 2016



Contents

1 Introduction 2
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background 5
2.1 Exact Computation . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Fixed-Point Paradigm . . . . . . . . . . . . . . . . . . 5
2.1.2 Floating-Point Representation . . . . . . . . . . . . . . 7
2.1.3 Towards an Alternative to the f.p. Paradigm . . . . . . 7

2.2 Linear Programming . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.1 Canonical Forms for LP Problems . . . . . . . . . . . . 9
2.2.2 Polyhedral Convex Sets . . . . . . . . . . . . . . . . . 10
2.2.3 A Geometric Approach . . . . . . . . . . . . . . . . . . 12
2.2.4 Issues and Alternative Approaches . . . . . . . . . . . 15

2.3 CVXOPT Framework . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.1 Simple Example . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Domain Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.2 Main Results . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 Consistency of two functions . . . . . . . . . . . . . . . . . . . 18
2.5.1 Notations and terminology . . . . . . . . . . . . . . . . 19
2.5.2 The property of consistency . . . . . . . . . . . . . . . 20
2.5.3 Consistency for the one-dimensional case . . . . . . . . 22
2.5.4 Consistency for the n-dimensional case, n ≥ 2 . . . . . 23

3 Project Plan 25

4 Evaluation Plan 27

1



Chapter 1

Introduction

Many of the recent advances in modern sciences have been possible due to
the improvements made in computational and optimisation theory developed
over the course of the last decades. From electrical engineering and mechan-
ics, to economics and molecular modelling, all these sciences have taken ad-
vantage of the latest developments in the area of mathematical optimisation.
The latter is the process by which the optimal solution to a problem, also
known as optimum, is produced.

Since very ancient times, people have been developing models and theo-
ries to deal with various optimisations problems in order to achieve the best
possible results for specific tasks in everyday life. While interesting in the-
ory, those ideas had very little practical use due to the daunting amount of
computational effort required. It was not until the advent of the computer
that those early thoughts have been resurrected and resulted in what is now
regarded as a growing branch of applied mathematics.

On the other hand, whilst computers have evolved rapidly over the last
years and are able to deal with an enormous amount of computation, the
problem of precision (i.e. accurate calculation) is still one of great importance
even today. The issue arises from the floating-point representation widely
available in today’s computers which is known to have limited precision.
However, certain scientific applications cannot accept such rounding errors
as they may well lead to catastrophic events. For example, in computational
geometry we may need to deal with infinite amount of precision in order to
accurately track the position of objects and points in space. This is known
as an emerging trend in exact computation, explained further in this work.

1.1 Motivation

In this context of approximation and computability, differential equations,
introduced in the 17th century by Newton and Leibniz, play a central role in
modern mathematics and have countless applications in almost all branches
of contemporary science. Several numerical approaches for computing the
solutions to differential equations have been developed, including the well-

2



MEng Individual Project - Interim Report

known Euler and Runge-Kutta methods. They have been shown, however,
to suffer from a great loss of precision as their error estimation is too conser-
vative to be of any practical use [1].

One classical problem is the famous initial-value problem, which states
that, given an initial condition and an ordinary/partial differential equation
that models some evolution of a system, we can determine the unknown
function describing the underlying process. For such problems, a novel tech-
nique for computing the unique solution up to any desired accuracy has been
proposed in [1] (such a solution is guaranteed to exist under certain assump-
tions).

The basic idea is that, at each stage of the computation, one can obtain
two continuous maps which provide upper and lower bounds for the solution,
essentially giving the precise error. Furthermore, the two maps have the
additional property of being continuous and piecewise linear, making them
suitable to be determined by means of a linear programming algorithm, as
presented in [1].

A related problem to the one described above formulated again in [1],
[2], concerns the idea of consistency of two given maps subject to some con-
straints and will make most of the subject of the present work. A pair
of functions (f, g), representing function and derivative information respec-
tively, is called consistent if one can find a third map h which is approximated
by the first component and whose derivative information is approximated by
the second component of the pair. Assuming that f is defined by lower and
upper constraints on its value and g is constrained to lie within rectangles (or
hyper-rectangles, if referring to higher dimensional spaces) then a consistency
witness h, which is piecewise linear, is guaranteed to exist. In addition, one
can determine the least and greatest piecewise linear maps consistent with
the information from f and g via a linear programming algorithm as shown
in both [1] and [2].

1.2 Objectives

This discussion brings us to the aim of this project, which is twofold:

• Firstly, to implement the above optimisation problem in the form of a
linear programming algorithm when the derivative constraints are spec-
ified as hyper-rectangles and to determine the global bounding surfaces;

3



MEng Individual Project - Interim Report

• Secondly, to study a more general setting in which the derivative con-
straints are considered to lie within convex polyhedra, rather than
hyper-rectangles, which is a more challenging problem.

The final outcome of this project should be in the form of a linear pro-
gramming framework that implements the aforementioned algorithms and
allows a user to determine the consistent piecewise linear map given some in-
put functions f and g (the function and derivative information, respectively).

4



Chapter 2

Background

This section provides the necessary background for understanding the theo-
retical aspects of this project. We begin by introducing the notion of exact
computation [3], a new emerging paradigm in the field of modern computa-
tion. We also discuss the significance of this work in the context of exact
geometric computation [4]. Finally, we introduce the main concepts of opti-
misation and linear programming that the reader should be familiar with.

2.1 Exact Computation

The underlying nature of computation is par excellence numerical: num-
bers have been at the heart of all calculations since very ancient times,
while modern mathematics developed a whole range of theories to formalise
many aspects of computable numbers. Early computers had the sole purpose
of performing large complex calculations (the so-called number crunchers),
which then turned into the original mass-produced computers, in the form of
friendly pocket calculators. Although computers have evolved significantly
and moved towards more abstracted and higher-level programs, numerical
computation remains a major pillar of modern computer technology.

In particular, scientific computation is a rapidly growing inter-disciplinary
field that makes use of advanced numerical capabilities. It is considered as
adding a new dimension to the classical methods of theory and experimenta-
tion, sometimes referred to as the “third scientific method” of computation
[3].

2.1.1 Fixed-Point Paradigm

At its core, scientific computation is subject to the fixed-precision paradigm
of computation. Under this representation, numbers are expressed using a
fixed number of digits after the decimal/radix point, thus providing fixed
computational precision (usually machine-dependant).

Based on this specification, one can use several approaches to limit the
unavoidable rounding errors. For instance, a mild form of fixed-precision

5



MEng Individual Project - Interim Report

can be applied such that computations are performed up to a user-specified
precision level. Although we can set a very high level of precision that we may
think is satisfactory, the build-up of round-off errors that accumulate may
produce totally unexpected results. We can illustrate this with an example
from [5]. Consider the sequence an defined recursively as:

an =



11

2
, n = 0

61

11
, n = 1

111−
1130− 3000

an−1

an
, n ≥ 2

.

Using the Unix utility bc, we can compute the terms of the sequence an
up to some fixed precision of k decimal places, which we shall denote by a

(k)
n .

Performing calculations with 5 decimal places, gives (note that the results
have been rounded for presentation purposes, as in [5]):

a
(5)
0 5.500

a
(5)
1 5.500

a
(5)
2 5.500

a
(5)
3 5.500

a
(5)
4 5.648

a
(5)
5 5.242

a
(5)
6 −3.241

a
(5)
7 283.1

a
(5)
8 103.738

a
(5)
9 100.209

a
(5)
10 100.012

a
(5)
11 100.001

One would therefore believe that the sequence converges to 100. However,
computing the number a100 with higher and higher precisions will contra-
dict our expectations (the “exponents” below indicate repeating digits, e.g.
1.234 = 1.2224):

a
(5)
100 100.041

a
(30)
100 100.0291

a
(60)
100 100.057997

a
(100)
100 100.01798 . . .

a
(110)
100 100.0792

a
(120)
100 −3.790 . . .

a
(130)
100 5.978697 . . .

a
(140)
100 5.9787925 . . .

6



MEng Individual Project - Interim Report

Here we can notice that if the precision is either 5, 30, 60, 100 or even
110 decimal places, then our expectation from above holds (an → 100 as
n grows larger). However, when increasing the precision even further, we
obtain rather spurious results.

The actual limit of the sequence is equal to 6, since we can evaluate the
general term an as:

an =
6n+1 + 5n+1

6n + 5n
.

This example therefore shows how even the mild form of fixed-precision
can lead to flawed results. It is therefore unclear what level of precision needs
to be set in advance to a program such as bc in order to obtain the correct
answer. As we could see, up until 110 decimal places we got roughly the same
(wrong) result and we actually had to consider precision above 130 decimal
places to arrive at the right answer.

2.1.2 Floating-Point Representation

Similar to the fixed precision paradigm, modern computers use floating-point
arithmetic to perform real number calculations. This representation can be
seen as a trade-off between range and precision when approximating real
number: with a given precision, the floating-point model is able to represent
both numbers of small magnitude with many bits of significance or conversely,
large magnitude and few bits of significance. While many different represen-
tations have been developed in the past, the one defined by IEEE 754 has
emerged as the industry standard. This standard is a step forward towards
addressing the issue of portability and therefore makes errors in floating point
computation machine-independent.

However, this representation is essentially just as inaccurate as the fixed-
point model, since we must approximate real numbers by their nearest rep-
resentable one. Thus, the same rounding errors will occur in practice, e.g.
when small inaccuracies propagate in successive iterations like the one that
we have just seen when computing a simple mathematical limit.

2.1.3 Towards an Alternative to the f.p. Paradigm

Even with industry-leading standards, rather intractable problems arise from
the presence of round-off errors and compromise the robustness of the f.p.

7



MEng Individual Project - Interim Report

paradigm. We can, at the arithmetic level, increase precision via techniques
such as double extended precision, guard-bits, gradual underflow etc, which
can usually be implemented in hardware. Interval arithmetic is another well-
known method. Looking from a geometric perspective, an idea would be to
divide the input and computed data into combinatorial and numerical, and
to give precedence to the former when making decisions. An argument in
favour of this approach is that we can allow the numerical data to be per-
turbed in order to maintain the combinatorial data. This avoids “topological
inconsistencies” and can be implemented for simple cases, but the intractable
nature of combinatorial problems makes it rather difficult to deal with more
general cases [3].

Therefore, in the light of these non-robustness issues, one needs a com-
pletely different approach to handle cases in which the correct and exact an-
swer is required. A new direction in the literature of computation is called,
unsurprisingly, the exact computation paradigm. According, to [3] or [4], this
paradigm assumes a computational process that:

1. represents all the underlying mathematical objects exactly ;

2. all branching decisions are error-free.

As a result, multi-precision arithmetic is a necessary condition (but not
sufficient) for exact computation. A different issue is that exact computation
will naturally come at the expense of performance. It therefore makes sense
to target only those applications which are not cycle-critical (i.e. we afford
to incur some sort of computational slow-down). For example, exact com-
putation cannot be avoided in computational number theory and in many
aspects of algebra (e.g. testing the irreducibility of a polynomial).

Finally, we conclude this section with the idea of weak exact computation,
similar in intent with the mild form of the f.p. paradigm. As explained
in the numerical example above, one starts the computations using some
fixed bound k on the precision. However, one would need to perform a
thorough analysis as to what minimal values of k will indeed give the exact
results. This is clearly a non-trivial problem and several suggestions have
been proposed: in the same [3], the theory of root bounds has been developed;
in [5], the exact real arithmetic offers lower and upper bounds guarantees that
are trustworthy.

8



MEng Individual Project - Interim Report

2.2 Linear Programming

A great deal of problems encountered in the real world involve maximisa-
tion or minimisation of certain quantities. Most often, these quantities we
seek to optimise are profits (in the case of maximisation) as well as costs
(in the case of minimisation). In linear programming we therefore aim to
minimise/maximise a certain linear function (which we usually call objective
function) subject to some linear constraints that describe the restrictions of
our problem.

One would immediately think that calculus, developed by Leibniz and
Newton in the 17th century, can deal with this types of problems very ele-
gantly given the arsenal of techniques readily available. However, calculus
is inadequate since it can only imply that the maxima and/or minima of
some objective function lie on the boundaries of the sets determined by the
constraints. Thus, a special set of techniques and algorithms is needed to
deal with such linear programming problems (this is what the term “pro-
gramming” really refers to in this case).

As such, linear programming plays a very important role in the fields of
mathematics and business, finding many applications in management science
and operations research.

2.2.1 Canonical Forms for LP Problems

As already discussed, there are two ways to define a linear programming prob-
lem: either as a minimisation or maximisation problem. The canonical forms
for each of those is presented below along with some standard terminology [6].

Definition 2.2.1. A problem is said to be a canonical maximisation linear
programming problem if it has the following form:

Maximise f(x1, x2, . . . , xn) = c1x1 + c2x2 + . . .+ cnxn − d
subject to a11x1 + a12x2 + . . .+ a1nxn ≤ b1

a21x1 + a22x2 + . . .+ a2nxn ≤ b2
...

am1x1 + am2x2 + . . .+ amnxn ≤ bm
x1, x2, . . . xn ≥ 0.

9



MEng Individual Project - Interim Report

Definition 2.2.2. A problem is said to be a canonical minimisation linear
programming problem if it has the following form:

Minimise g(x1, x2, . . . , xn) = c1x1 + c2x2 + . . .+ cnxn − d
subject to a11x1 + a12x2 + . . .+ a1nxn ≥ b1

a21x1 + a22x2 + . . .+ a2nxn ≥ b2
...

am1x1 + am2x2 + . . .+ amnxn ≥ bm
x1, x2, . . . xn ≥ 0.

In both canonical forms, the first m constraints are said to be main con-
straints, while the second n constraints are called non-negativity constraints.

Definition 2.2.3. The linear function f and g in Definition 1.1 and 1.2 are
said to be objective functions.

Definition 2.2.4. The set of all points (x1, x2, . . . , xn) satisfying the m+ n
constraints of a canonical maximisation/minimisation linear programming
problem is said to be the constraint set of the problem. Any element of the
constraint set is said to be a feasible point or feasible solution.

Definition 2.2.5. Any feasible solution of a canonical maximisation (respec-
tively minimisation) linear programming problem which maximises (respec-
tively minimises) the objective function is said to be an optimal solution.

2.2.2 Polyhedral Convex Sets

Let us state some additional results that are essential towards assessing the
optimality of feasible solutions in linear programming (see also [6]).

Definition 2.2.6. Let x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) ∈ Rn. Then
the line segment between x and y (including the endpoints) is given by:

αx + (1− α)y, 0 ≤ α ≤ 1.

Definition 2.2.7. Let S ⊂ Rn. The set S is said to be convex if for all
x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) ∈ S it holds that:

αx + (1− α)y, 0 ≤ α ≤ 1.

10



MEng Individual Project - Interim Report

Definition 2.2.8. The set of points (x1, x2, . . . , xn) ∈ Rn satisfying an equa-
tion of the form

a1x1 + a2x2 + . . .+ anxn = b

is said to be a hyperplane of Rn. The set of points (x1, x2, . . . , xn) ∈ Rn

satisfying an inequality of the form

a1x1 + a2x2 + . . .+ anxn ≶ b

is said to be a closed half-space of Rn.

Theorem 2.2.1. The constraint set of a canonical maximisation/minimi-
sation linear programming problem is convex. Such a set is said to be a
polyhedral convex set.

Definition 2.2.9. Let x = (x1, x2, . . . , xn) ∈ Rn. The norm of x, denoted
‖x‖, is given by:

‖x‖ =
√
x21 + x22 + . . .+ x2n.

Definition 2.2.10. Let r ≥ 0. The set of points x = (x1, x2, . . . , xn) ∈ Rn

such that

‖x‖ ≤ r

is said to be the closed ball of radius r centred at the origin.

Definition 2.2.11. A set S ⊂ Rn is said to be bounded if there exists r ≥ 0
such that every element of S is contained in the closed ball or radius r centred
at the origin. A set S ⊂ Rn is said to be unbounded if it is not bounded.

Definition 2.2.12. Let S be a convex set in Rn. A point e ∈ S is said to be
an extreme point of S if there do not exist x,y ∈ S and α ∈ (0, 1) such that

e = αx + (1− α)y.

Theorem 2.2.2. If the constraint set S of a canonical maximisation/minimi-
sation linear programming program is bounded, then the maximum/minimum
value of the objective function is attained at an extreme point of S.

11



MEng Individual Project - Interim Report

Theorem 2.2.3. If the constraint set S of a canonical maximisation/min-
imisation linear programming problem is unbounded, then there exists some
M ∈ R such that the objective function f satisfies f(x1, x2, . . . , xn) ≶ M
for all (x1, x2, . . . , xn) ∈ S, i.e. f is bounded above/below (by M), them the
maximum/minimum value of the objective function is attained at an extreme
point of S.

2.2.3 A Geometric Approach

Let us illustrate the above concepts with a typical example of resource allo-
cation problem.

Example 2.2.3.1. A furniture company manufactures sofas and armchairs.
The production of one sofa requires 2 hours in the parts division and 1 hour
on the assembly line of the company. The production of one armchair re-
quires 1 hour in the parts division and 2 hours on the assembly line. The
parts department of the company operates at most 8 hours per day, while the
assembly division is active at most 10 hours per day. Knowing that the profit
of selling one sofa is £30 and the profit of selling one armchair is £50, what
are the optimal quantities of sofas and armchairs that the company should
produce in order to maximise profits?

We start by translating the problem in mathematical terms. Note that
we are interested in the number of sofas and armchairs to be produced, so
let us denote:

x1 = # of sofas per day;
x2 = # of armchairs per day.

According to the above definitions, x1 and x2 are the decision variables
of our problem. Next, we wish to maximise the profits of the company,
namely:

f(x1, x2) = 30x1 + 50x2.

This is the objective function that we want to optimise. But we can-
not have unlimited quantities and hence infinite profits, since the company
is constrained by the availability of the parts and assembly divisions. We
observe that 2 hours are spent in the parts division for one sofa and 1 hour
is spent in the same division for one armchair. Together with the constraint
of 8 hours per day in this department, we derive the constraint:

2x1 + x2 ≤ 8.

12



MEng Individual Project - Interim Report

Similarly, we can derive the other constraint for the assembly line, which
gives a second inequality:

x1 + 2x2 ≤ 10.

Finally, we also have the obvious constrains:

x1 ≥ 0,
x2 ≥ 0.

since the company cannot produce negative quantities of sofas or arm-
chairs. The above 4 constraints represent the feasible set that enforce
the admissible production plans x = (x1, x2). Note that, for example,
x = (20, 30) cannot belong to this feasible set, as there is not enough avail-
ability in both the parts and assembly divisions to satisfy that level of pro-
duction. The final optimisation problem is a maximisation problem that can
be formulated mathematically as follows:

Figure 2.1: Feasible set of points satisfying all constraints

Maximise f(x1, x2) = 30x1 + 50x2
subject to 2x1 + x2 ≤ 8

x1 + 2x2 ≤ 10
x1 ≥ 0
x2 ≥ 0.

13



MEng Individual Project - Interim Report

The set of points (x1, x2) satisfying the above constraints is given by the
shaded region from Figure 2.1.

Figure 2.2: All individual constraints

The region in Figure 1 above was obtained by intersecting the four 2-
dimensional regions determined by the constraints 2x1+x2 ≤ 8, x1+2x2 ≤ 10,
x1 ≥ 0, and x2 ≥ 0 (Figure 2.2). Therefore, the question boils down to de-
termining which point in the shaded region in Figure 1 maximises f(x1, x2).

Since the constraint set is bounded, we can use Theorem 2.2.2 to deduce
that the maximum value of f(x, y) is attained at an extreme point in Figure
1, namely at either (0, 0), (4, 0), (0, 5), or (2, 4). A simple analysis shows
that the maximum is attained at (2, 4) where f(2, 4) = 260, and as a result
the company should produce 2 sofas and 4 armchairs in order to maximise
their profits (and get £260 in return).

14



MEng Individual Project - Interim Report

2.2.4 Issues and Alternative Approaches

Having seen the geometric method which allows us to reason about LP prob-
lems, we can already notice some of its limitations. In real-life LP problems,
one would typically deal with potentially tens if not hundreds of variables.

For example, assuming m constraints and n decision variables, we will
have at most (

m+ n

n

)
=

(m+ n)!

m! · n!

candidate extrema points to be tested. This clearly poses a problem and
makes the visualisation of the constraint set impossible.

Another more relevant problem concerns the cases when the constraint
set is unbounded. In such scenarios, according to Theorem 2.2.3 we would
also need to ensure that the objective function is bounded by above or be-
low, depending on whether the LP problem at hand is a maximisation or a
minimisation problem, respectively. This is largely problem dependant and
can complicate the analysis significantly. One such example is given by the
following LP problem:

Maximise f(x, y, z) = 2x+ 3y + 4z
subject to y + 5x ≤ 10

2y + 3z ≤ 15
x, y, z ≥ 0

Here there is no restriction on x other than being positive, and as such
for x→∞ we will have f(x, y, z)→∞, and hence the objective function is
unbounded.

Finally, we end this section on linear programming noting that several
algorithms have been developed to deal with the issues that we have just
noted. The famous simplex algorithm is able to find optimal solution to LP
problems without testing a large number of candidate extrema points. It is
also able to detect edge cases where the constraint sets are empty and the
objective functions are unbounded (see [6]). Several other optimisations such
as branch and bound and cutting plane algorithms can further be used to
further enhance the solution finding to LP problems [7].

15



MEng Individual Project - Interim Report

2.3 CVXOPT Framework

For the purposes of implementing the consistency properties as described in
the introduction section, we decided to use an open-source framework named
CVXOPT [8]. The main reason for choosing this software package was that
it allows straightforward development of linear/convex optimisation prob-
lems using the Python programming language. This framework can be used
either via an interactive Python interpreter or can be integrated within ex-
isting Python modules.

Previous experience with GNU’s GLPK package [9], which uses a rather
obfuscated syntax with many intricate constructs, made us choose an alter-
native package which can leverage the strengths of the Python programming
language.

2.3.1 Simple Example

We can illustrate the strengths of the CVXOPT framework with a simple
example. Given the following minimisation problem:

Minimise f(x1, x2) = 2x1 + x2
subject to −x1 + x2 ≤ 1

x1 + x2 ≥ 2
x2 ≥ 0
x1 − 2x2 ≤ 4,

we can retrieve the optimal solution vector x using the following set of com-
mands:

>>> from cvxopt import matrix, solvers

>>> A = matrix([[-1.0, -1.0, 0.0, 1.0], [1.0, -1.0, -1.0, -2.0]])

>>> b = matrix([1.0, -2.0, 0.0, 4.0])

>>> c = matrix([2.0, 1.0])

>>> sol=solvers.lp(c,A,b)

pcost dcost gap pres dres k/t

0: 2.6471e+00 -7.0588e-01 2e+01 8e-01 2e+00 1e+00

1: 3.0726e+00 2.8437e+00 1e+00 1e-01 2e-01 3e-01

2: 2.4891e+00 2.4808e+00 1e-01 1e-02 2e-02 5e-02

3: 2.4999e+00 2.4998e+00 1e-03 1e-04 2e-04 5e-04

4: 2.5000e+00 2.5000e+00 1e-05 1e-06 2e-06 5e-06

5: 2.5000e+00 2.5000e+00 1e-07 1e-08 2e-08 5e-08

16



MEng Individual Project - Interim Report

>>> print(sol[‘x’])

[ 5.00e-01]

[ 1.50e+00]

2.4 Domain Theory

We introduce basic domain theory knowledge that will become useful when
dealing with the problem of consistency in a later section. We use [5] and
[10] when referencing these results, unless otherwise stated.

2.4.1 Introduction

Domain theory was introduced in 1970 by Dana Scott as a mathematical
theory of programming languages. The basic idea of domain theory is to
provide better and better approximations to an object by means of simple
recursion. It has applications in the field of computer science, e.g. solving
canonically fixed point equations or recursive equations of procedures and
data structures.

2.4.2 Main Results

Definition 2.4.1. A partial order (or a partially ordered set or poset) (D,≤)
is a set D together with a binary relation ≤ which is:

1. reflexive: a ≤ a,

2. anti-symmetric: a ≤ b ∧ b ≤ a =⇒ a = b, and

3. transitive: a ≤ b ∧ b ≤ c =⇒ a ≤ c.

Most often, the binary relation of a partial order is written as v. Then
a v b can be interpreted as a having less information than b.

Definition 2.4.2. A subset A of an ordered set (P,v) is an upper set if
x ∈ A =⇒ y ∈ A, for all y w x. We denote by ↑ A the set of all elements
above some element of A. For convenience, we abbreviate ↑ {x} as ↑ x. The
dual notions are lower set and ↓ A [11].

Definition 2.4.3. A cpo (complete partial order) is a poset with a least
element denoted ⊥ such that every chain d0 v d1 v d2 v . . . has a least
upper bound, denoted by

⊔
i≥0 di or, more conveniently,

⊔
i di. Hence,

⊔
i di

gives precisely the total information contained in the chain (and no more).

17



MEng Individual Project - Interim Report

Definition 2.4.4. A non-empty subset A ⊂ P is said to be directed if for
any pair of elements a, b ∈ A there exists c ∈ A such that a v c and b v c.

Definition 2.4.5. A directed complete partial order (dcpo) or a domain is a
partial order in which every directed subset has a least upper bound (lub).

Definition 2.4.6. A dcpo is said to be pointed if it has a least element which
is denoted by ⊥ and is called bottom.

Definition 2.4.7. Given two elements a and b of a dcpo we say that a is
way-below or approximates b, denoted by a� b, if for every directed subset
A with b ∈ A there exists c ∈ A with a v c.

Definition 2.4.8. A basis of a domain D is a subset B ⊂ D such that for
every element x ∈ D of the domain the set Bx = {y ∈ B | y � x} of elements
in the basis way-below x is directed with x =

⊔
Bx.

Definition 2.4.9. A dcpo with a (countable) basis is said to be an (ω)-
continuous domain.

Definition 2.4.10. A function f : D → E between dcpo’s is said to be
Scott-continuous if and only if it is monotone (i.e. a v b =⇒ f(a) v f(b))
and preserves’ lub’s of directed sets i.e. for any directed A ⊆ D, we have
f
(⊔

a∈A a
)

=
⊔
a∈A f(a). Moreover, if D is an ω-continuous dcpo, then f is

continuous if and only if it is monotone and preserves the lub’s of increasing
sequences (i.e. f

(⊔
i∈ω xi

)
=
⊔
i∈ω f(xi), for any increasing (xi)i∈ω).

Definition 2.4.11. Let D be a dcpo. A subset A is called (Scott-)closed if it
is a lower set and is closed under suprema of directed subsets. Complements
of closed sets are called (Scott-)open; they are the elements of ωD, the Scott-
topology on D [11].

2.5 Consistency of two functions

In this section we focus on the main idea of the proposed project, which in-
volves the idea of consistency of two given maps subject to some constraints.
We begin by stating the main notations and terminologies used throughout
this section. We then present the general results for the n-dimensional case
and illustrate with examples for the particular 1D and 2D cases [1], [2].

18



MEng Individual Project - Interim Report

2.5.1 Notations and terminology

We denote by R the set of real numbers and by IR = {[a, b] | a ≤ b ∈ R}∪{R}
the interval domain, i.e. the set of compact, nonempty intervals, equipped
with a least element ⊥ = R, ordered by reverse inclusion. It has a canonical
basis consisting of all compact intervals with rational end points augmented
with ⊥. We write a non-bottom element v ∈ IR as v = [v−, v+] and we
identify any real number x ∈ R with the singleton {x} ⊂ R.

Also, we denote by IRn the product domain consisting of all non-empty
compact hyper- rectangles with faces parallel to the standard coordinate
planes ordered with reverse inclusion and augmented with the whole space
Rn as the bottom element. It has a canonical basis consisting of all its ra-
tional (compact) hyper-rectangles and the bottom element. We denote the
continuous Scott domain of the nonempty, compact and convex subsets of
Rn, taken together with Rn as the bottom element and ordered by reverse in-
clusion, by CRn. We will use a canonical basis of CRn, consisting of rational
convex compact polyhedra together with the set Rn as the bottom element.

For an open subset U ⊂ Rn, let C0(U) be the function space of all con-
tinuous functions of type U → R. We will also use domains of function
spaces of the form (U → D) where D is a countably based continuous dcpo,
which is either IR, IRn or CRn in our case. For the sake of convenience,
denote D0(U) = U → IR. A function f ∈ D0(U) is given by a pair of
respectively lower and upper semi-continuous functions f−, f+ : U → R
with f(x) = [f−(x), f+(x)] when f(x) 6= ⊥ for all x ∈ U . Recall that
given an open subset a ⊂ U and an element b ∈ D, the single step function
bχa : X → D is dened as (bχa)(x) = b if x ∈ a and ⊥ otherwise. Single-step
functions are continuous with respect to the Scott topology. Any finite set
of single-step functions that are bounded in the function space U → D has a
least upper bound, called a step function; the set of step functions provides
a basis for the continuous Scott domain U → D. This basis in turn gives a
countable and canonical basis of rational step functions for U → D, where
D = IR, IRn or CRn, generated by single-step functions of the form bχa

where a is a rational open hyper-rectangle with faces parallel to the coordi-
nate hyper-planes of Rn and b is a rational interval for D = IR, a rational
hyper-rectangle for D = IRn and a rational compact convex polyhedron in
Rn for D = CRn.

Finally, we introduce the following definition of interval Lipschitz constant
functions which generalises the well-known Lipschitz functions :

19



MEng Individual Project - Interim Report

Definition 2.5.1. The continuous function f : U → R has a non-empty,
convex and compact set-values Lipschitz constant b ∈ CRn in an open subset
a ⊂ U if for all x, y ∈ a we have: b · (x−y) v f(x)−f(y). The single step tie
δ(a, b) ⊆ C0(U) of a with b is the collection of all partial functions f on U
with a ⊂ dom(f) ⊂ U in C0(U) which have b as non-empty convex compact
set-values Lipschitz constant in a.

2.5.2 The property of consistency

In simple terms, a pair of functions (f, g), representing function and deriva-
tive information respectively, is called consistent if one can find a third map
h which is approximated by the first component and whose derivative infor-
mation is approximated by the second component of the pair.

The function information is given by a number of step functions whose
values are given by a finite set of pairs (ai, bi)i∈I , where ai ⊆ Rn is a rational
hyper-rectangle and bi ⊆ R is a compact interval such that bi and bj have
non empty intersection whenever this is the case for the interiors of ai and aj.
The derivative information for the n partial derivatives is given as a finite set
of pairs (ai, bi)i∈I , where ai are as above, but bj represent rational compact
polyhedra.

In the particular case when the derivative constraints lie within hyper-
rectangles with faces parallel to the coordinate planes, there is always a
piecewise linear witness for consistency. In addition, one can find the least
and greatest piecewise linear maps consistent with the information from f
and g via a linear programming algorithm as described in both [1] and [2].

We now formalise the consistency relation under the definitions and no-
tations used thus far:

Definition 2.5.2. The consistency relation Cons ⊂ D0(U)× (U → CRn) is
defined by:

(f, g) ∈ Cons if ↑ f ∩
∫
g 6= ∅.

For a consistent (f, g), we think of f as the function part or the function
approximation and g as the derivative part or the derivative approximation.
It can be shown that the Cons is Scott closed [2]. Also, in the one-dimensional
case it holds that (Section 2, [1]):

20



MEng Individual Project - Interim Report

Theorem 2.5.1. The following duality property holds:

h ∈
∫
g ⇐⇒ g v dh

dx
.

Furthermore, for a n-dimensional space, n ≥ 2, we have that (Corrolary
2.8 from [2]):

Theorem 2.5.2. The following duality property holds:

h ∈
∫
g ⇐⇒ g v Lh.

Now, according to [1] and [2], we have the least and upper consistency
witnesses defined by the following:

Proposition 2.5.1. Let O be a connected component dom(g) and let R(U)
be the set of partial maps of U into the extended real line R ∪ {−∞,∞}.
Consider the two dcpos (R(U),≤) and (R(U),≥) having pointwise ordering
inherited from the extended real line. Then the maps s : D0(O) × (U →
CRn)→ (R(U),≤) and t : D0(O)× (U → CRn)→ (R(U),≥) defined by:

s(f, g) = inf

{
h : dom(g)→ R

∣∣∣∣ h ∈ ∫ g, h ≥ f−
}

t(f, g) = sup

{
h : dom(g)→ R

∣∣∣∣ h ∈ ∫ g, h ≤ f+

}
represent the least primitive map of g that is greater than the lower part of
f and the greatest primitive map of g that is less than the upper part of f ,
respectively.

Corollary 2.5.2.1. The following 3 conditions are equivalent:

1. (f, g) ∈ Cons;

2. s(f, g) ≤ t(f, g);

3. There exists a locally Lipschitz function h : dom(g) → R with g v Lh
and f v h on dom(g).

Furthermore, the maps s and t are Scott continuous and the relation Cons
is Scott closed.

21



MEng Individual Project - Interim Report

2.5.3 Consistency for the one-dimensional case

Figure 2.3 shows the piecewise linear maps s and t which provide the least
and greatest bounds for the consistency witness, with the given function and
derivative approximations (the latter being constrained to rectangles in the
Euclidean plane).

Figure 2.3: Consistency for the 1D case.

A linear algorithm in the number
of partitions induced by (f, g) (i.e.
the partition of points derived from
intersecting all rectangle constraints,
within the domain [0, 1]) is given in
[1], Algorithm 3.3, to obtain the map
s(f, g) (a similar one computed the
upper bound t(f, g)).

Algorithm 2.5.1. The function up-
dating algorithm consists of an ini-
tialisation step and two other main
steps (see Figure 2.4). The initiali-
sation process determines the com-
mon partition points {y0, . . . yn} of

(f, g). On each interval (yk−1, yk), the functions g− and g+ are constant,
with g−|(yk−1,yk) = λt.e−k and g+|(yk−1,yk) = λt.e+k , where e−k , e

+
k ∈ R. Further-

more, on each interval (yk−1, yk), the map f− has a constant slope, ak say,
i.e. f−|(yk−1,yk) = f−k , with f−k (x) = akx+ bk.

Input: f, g : [0, 1] → IR where f is a linear step function and g is a step
function.
Output: Continuous function s(f, g) : [0, 1]→ IR which represents the least
function consistent with the information from f and g.

Initialisation:
{y0, . . . yn} : induced-partition-of (f, g)
Part 1:
u(y0) := f−(y+0 )
for k = 1 . . . n and ∀x ∈ [yk−1, yk)

u(x) := max{f−(x), u(yk−1) + (x− yk−1)e−k }
u(yk) := max{limf−(yk), u(yk−1) + (yk − yk−1)e−k }

Part 2:
s(yn) := u(yn)
for k = n . . . 1 and ∀x ∈ [yk−1, yk)

s(f, g)(x) := max{u(x), s(yk) + (x− yk−1)e+k }

22



MEng Individual Project - Interim Report

Figure 2.4: The function updating algorithm

2.5.4 Consistency for the n-dimensional case, n ≥ 2

The framework for studying consistency for an n-dimensional setup (n ≥ 2)
is much more challenging than what we have just seen already. In this section
we describe the algorithm from [2] which works for the general case n ≥ 2.
However, for the purposes of presentation, we will only deal with the case
when n = 2, which is easier to reason about (from a geometric perspective at
least). Notice that, as with the 1D case, the derivative constraints are given
as hyper-rectangles, to simplify the computational framework.

Figure 2.5 shows two examples of consistent tuples, namely the least
and greatest witnesses that enforce the consistency property described so
far. In the example from the left hand side, there is one hyper-rectangle
for the function approximation, while the derivative approximation in the x
and y directions is given my the constant intervals [n,N ] and [m,M ], where

23



MEng Individual Project - Interim Report

n,m > 0. In the other instance, on the right, there are two intersecting hyper-
rectangles for the function approximation and the derivative approximations
are the constant intervals [0, 0] and [m,M ], where m > 0.

Figure 2.5: Consistency for the 2D case

We now proceed to explaining the framework, as presented in [2], Section
3. Let us introduce the following linear programming algorithm:

Algorithm 2.5.2. In a similar fashion to the induced partitions for the 1D
case, we impose a grid (p0, . . . pk) × (q0, . . . ql) on the unit square U such
that the function approximation given by the step function f : U → IR
and the derivative approximation given by the step function g : U → CRn

are constant respectively with values cij ∈ IR and bij ∈ CRn inside every
sub-rectangle (pi, pi+1) × (qj, qj+1), for i = 0, k − 1 and j = 0, l − 1, defined
by adjacent grid points. Note that if cij = ⊥ or bij = ⊥ then f or g are
undefined in the sub-rectangle and their contribution can be ignored in the
following analysis.

If the pair of step functions (f, g) ∈ (U → IR)×(U → CRn) is consistent
then we can find values hi,j ∈ R at all the grid points (pi, qj) for i = 0, k and
j = 0, l, such that for i = 0, k − 1 and j = 0, l − 1 they satisfy the following
two conditions:

1. c−ij ≤ hs,t ≤ c+ij, for s = i, i+ 1 and t = j, j + 1;

2. c :=

(
hi+1,j − hi,j
pi+1 − pi

,
hi,j+1 − hi,j
qj+1 − qj

)
∈ b1ij × b2ij = bij.

24



Chapter 3

Project Plan

This section provides information on the next steps of the project, and the
order in which the implementation tasks will be handled. Given the reading I
have carried out so far, as detailed in the background section above, I expect
to complete the project in the following stages:

1. Start with the 1D case for consistency, when derivative constraints lie
within rectangles and implement the linear programming algorithm as
presented in section 3.3 from [1];

2. Move on towards the nD case for consistency, n ≥ 2, when the re-
strictions for the derivative information are given by compact hyper-
rectangles with faces parallel to the coordinate planes. The algorithm
for this more generic case is presented in [2];

3. Implement the 2D case for consistency, when the constraints lie in
convex (hyper)-quadrilaterals, for which a known linear programming
algorithm exists;

4. Finally, investigate if the latter case can be generalised to convex poly-
gons/polyhedra constraints and whether the result still holds in higher
dimensional spaces.

Below is a table giving the timeline I expect to follow for each of the
above-mentioned tasks, until the project deadline. Any incomplete work by
the Easter break will need to be completed during the holiday, to ensure the
completion of all milestones of the project.

25



MEng Individual Project - Interim Report

Term & Weeks Dates Description

Term 2, Weeks 4-5 1 FEB - 14 FEB Starting first task (consis-
tency for the 1D case)

Term 2, Weeks 6-7 15 FEB - 28 FEB Proceeding to the second
task (consistency for the n-
dimensional case, n ≥ 2)

Term 2, Weeks 8-9 29 FEB - 13 MAR Moving on to a more gen-
eral case as part of task
3 (consistency for the 2D
case with convex quadrilat-
eral constraints for deriva-
tives)

Term 2, Weeks 9-11 14 MAR - 27 MAR Exams Preparation
Easter Break 28 MAR - 24 APR Code tweaking, refining and

catching up on any implemen-
tation that is left incomplete

Term 3, Weeks 1-4 25 APR - 22 MAY Investigating the most chal-
lenging generalisation as de-
scribed in task 4 (consis-
tency in higher dimensions,
where derivative constraints
are specified as convex poly-
hedra, rather than hyper-
rectangles/quadrilaterals)

Term 3, Weeks 5-7 23 MAY - 12 JUN Consolidating final report,
findings and evaluation

Term 3, Weeks 8-9 13 JUN - 24 JUN Final report submission and
presentation

26



Chapter 4

Evaluation Plan

In terms of evaluation, the implementation of the linear programming algo-
rithms must be verified against a relevant and thorough test-suite. After each
stage of the project, a number of test-suites will be written so as to validate
the work and make sure I can proceeded confidently to the next challenges.

The plan is to also validate some of the results presented in [1], [2] in
order to have a satisfying product by the end of the project. In addition, it
would probably be worthwhile to have some sort of GUI to demonstrate with
relevant examples the implementation of the linear programming algorithm.
This will be useful, for example, at the end of task 2, when we want to find
the minimal and maximal bounding surfaces, once the consistent witness is
determined.

In addition, when the linear programming framework will be fully imple-
mented at the end of stage 3, it should become relatively straightforward to
extend it in order to assess whether the consistency property holds in more
general settings. Assuming the results hold for convex shaped objects and a
consistent witness can be determined, we will be able to conjecture or even
prove our findings. Should counterexamples be found, we can be certain that
the problem of consistency will not hold for those specific cases.

Finally, the framework to be developed should be convenient to use to
allow further extensions to be carried out easily in the future. This could
include, as mentioned before, some graphical additions to allow the visual-
isation of the piecewise linear maps. In order to enhance the overall use of
our framework, we may also consider ways to add more constraints at run-
time or modify input parameters on-the-fly and have the results displayed in
real-time.

27



Bibliography

[1] A. Edalat, M. Krznarić, and A. Lieutier. Domain-theoretic solution
of differential equations (scalar fields). In Proceedings of MFPS XIX,
volume 83 of Electronic Notes in Theoretical Computer Science, 2003.
www.entcs.org/files/mfps19/mfps19.html, full paper in www.doc.

ic.ac.uk/~ae/papers/scalar.ps.

[2] A. Edalat, A. Lieutier, and D. Pattison. A computational model for
multi-variable differential calculus. Information and Computation, 224:
23–45, 2013.

[3] C. K. Yap and T. Dubé. The exact computation paradigm. D.-Z. Du,
F.K. Hwang (Eds.), Computing in Euclidean Geometry, World Scien-
tific Press, pages 452–486, 1995.

[4] C. K. Yap. Towards exact geometric computation. Computational Ge-
ometry: Theory and Applications, 7(1-2):3–23, 1997.

[5] Abbas Edalat and Reinhold Heckmann. Computing with real numbers -
i. the lft approach to real number computation - ii. a domain framework
for computational geometry. In PROC APPSEM SUMMER SCHOOL
IN PORTUGAL, pages 193–267. Springer Verlag, 2002.

[6] James. K. Strayer. Linear Programming and Its Applications. Springer
Science+Business Media New York, 1989.

[7] L. R. Foulds. Optimization Techniques. Springer Verlag New York, 1981.

[8] CVXOPT (Python Software for Convex Optimization). URL http:

//cvxopt.org. Accessed: 2016-01-20.

[9] GLPK (GNU Linear Programming Kit). URL https://www.gnu.org/

software/glpk/. Accessed: 2016-01-20.

[10] Abbas Edalat. Domain theory and fractals, 1999. URL
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.

1.32.1725&rep=rep1&type=pdf. Accessed: 2015-11-4.

[11] Samson Abramski and Achim Jung. Domain theory. URL http://www.

cs.bham.ac.uk/~axj/pub/papers/handy1.pdf. Accessed: 2015-10-28.

28

www.entcs.org/files/mfps19/mfps19.html
www.doc.ic.ac.uk/~ae/papers/scalar.ps
www.doc.ic.ac.uk/~ae/papers/scalar.ps

	Introduction
	Motivation
	Objectives

	Background
	Exact Computation
	Fixed-Point Paradigm
	Floating-Point Representation
	Towards an Alternative to the f.p. Paradigm

	Linear Programming
	Canonical Forms for LP Problems
	Polyhedral Convex Sets
	A Geometric Approach
	Issues and Alternative Approaches

	CVXOPT Framework
	Simple Example

	Domain Theory
	Introduction
	Main Results

	Consistency of two functions
	Notations and terminology
	The property of consistency
	Consistency for the one-dimensional case
	Consistency for the n-dimensional case, n2


	Project Plan
	Evaluation Plan

