Set-valued Lipschitz constant for vector-valued functions: Failure of the "natural" extension of the definition for scalar functions

For a scalar function $f: U \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$, the definition of a set-valued Lipschitz constant is the following [1]:
Definition 0.1. The continuous function $f: U \rightarrow \mathbb{R}$ has a non-empty, convex and compact set-valued Lipschitz constant $b \in \mathbf{C R}^{n}$ in an open subset $a \subset U$ if for all $x, y \in a$ we have: $b(x-y) \sqsubseteq f(x)-f(y)$, equivalently $f(x)-f(y) \in b(x-y)$.

Note that in the above definition, we use a compact convex set namely $b(x-y)$ that contains the difference $f(x)-f(y)$ of the values of the function at two points $x, y \in a$, i.e., we require: $b(x-y) \sqsubseteq f(x)-f(y)$, equivalently $f(x)-f(y) \in b(x-y)$. This therefore gives a set-theoretic bound for $f(x)-f(y)$ using b and $x-y$. We now see the similarity with the definition of the classical Lipschitz constant k for a map $f: X \rightarrow Y$ between normed vector spaces, i.e., $\|f(x)-f(y)\| \leq k\|x-y\|$, which gives an upper bound for the norm of the difference $f(x)-f(y)$ in terms of k and $\|x-y\|$. Thus, it seems natural that for extension to vector functions $f: \mathbb{F}^{n} \rightarrow \mathbb{F}^{m}$ we follow the same rule and require that the difference $f(x)-f(y)$ be contained in $b(x-y)$.

So, suppose we replace Definition 3.2 in the current paper with the following definition which is a "natural" extension of the above definition of a set-valued Lipschitz constant for scalar functions.

Definition 0.2. The continuous function $f: U \subset \mathbb{F}^{n} \rightarrow \mathbb{F}^{m}$ has a non-empty, convex and compact set-valued Lipschitz constant $b \in \mathbf{C}\left(\mathbb{F}^{m \times n}\right)$ in an open subset $a \subseteq U$ if for all $x, y \in a$ we have: $b(x-y) \sqsubseteq f(x)-f(y)$, equivalently $f(x)-f(y) \in b(x-y)$.

It is now natural to define the zero-containment predicate $\mathrm{Z}\left(b, \mathbb{F}^{m \times n}\right)$ in the "natural" setting as:

$$
\mathrm{Z}\left(b, \mathbb{F}^{m \times n}\right) \equiv \forall \epsilon>0 . \forall v \in S . \exists A \in b .\|A v\| \leq \epsilon
$$

We will show here that with this "natural" extension of the notion of set-valued Lipschitz constant from scalar functions to vector functions, Lemma 3.5 (which plays a crucial role in the results of the paper) fails.

It can be shown that the following four conditions are equivalent:

- $\mathrm{Z}\left(b, \mathbb{F}^{m \times n}\right)$
- $\forall u \in \mathbb{F}^{m} .0 \in u b=\{u B: B \in b\}$
- $\forall u \in \mathbb{F}^{m} \forall v \in \mathbb{F}^{n} .0 \in u b v=\{u B v: B \in b\}$
- $\forall u \in \mathbb{F}^{m} \forall v \in \mathbb{F}^{n} .0 \in\left\{\sum_{i=1}^{m} \sum_{j=1}^{n} B_{i j} u_{i} v_{j}: B \in b\right\}$

The latter condition is weaker than $\forall w \in \mathbb{F}^{m \times n} .0 \in B w=\left\{\sum_{i=1}^{m} \sum_{j=1}^{n} B_{i j} w_{i j}: B \in b\right\}$. This latter condition of course implies $0 \in b$.

Consider the set of tensor products $T=\left\{u \otimes v: u \in \mathbb{F}^{m}, v \in \mathbb{F}^{n}\right\}$ where $u \otimes v \in F^{m \times n}$ with $(u \times v)_{i j}=u_{i} v_{j}$. Then, T spans $F^{m \times n}$ but it is not dense in $\mathbb{F}^{m \times n}$.

Therefore, to construct a counter-example in the new setting to Lemma 3.5 for the simplest case with $\mathbb{F}=\mathbb{R}$ and $m=n=2$, say, we construct a compact and convex non-empty set b with $0 \notin b$ such that b is contained in an open subset of $\mathbb{F}^{m \times n}$ which does not contain any tensor product $u \otimes v \in T$.

Here is an example. Let $m=n=2$, and consider the following matrices:

$$
\begin{aligned}
I & =\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
A & =\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \\
B & =\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \\
C & =\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
\end{aligned}
$$

Observe that I is not in the closure of T and A, B, C span a hyperplane orthogonal to I.
Consider:

$$
b=\{I+\alpha A+\beta B+\gamma C: \alpha \in[-1,1], \beta, \gamma \in[-2,2]\}
$$

Note that b is convex as well as compact and does not contain 0 . Take $s \in b$:

$$
s=\left(\begin{array}{cc}
1+\alpha & \beta \\
\gamma & 1-\alpha
\end{array}\right)
$$

Consider $v=\binom{x}{y} \neq\binom{ 0}{0}$
We have:

$$
s v=\left(\begin{array}{cc}
1+\alpha & \beta \\
\gamma & 1-\alpha
\end{array}\right)\binom{x}{y}=\binom{(1+\alpha) x+\beta y}{\gamma x+(1-\alpha) y}
$$

If $|x| \geq|y|$, taking $\alpha=-1, \beta=0, \gamma=-2 y / x$ gives $s v=0$ and if $|x| \leq|y|$, taking $\alpha=1, \beta=-2 x / y, \gamma=0$ gives again $s v=0$. Thus, $Z\left(b, \mathbb{R}^{2 \times 2}\right)$ is satisfied but $0 \notin b$. This counter-example shows that Lemma 3.5 would become false if we chose the above "natural" extension of the notion of set-valued Lipschitz constant.
(I spent many months trying to show that the "natural extension" works as I was convinced it was correct but (in retrospect) obviously could not prove Lemma 3.5 in that setting. Then I found it non-trivial to construct a counter example as above to Lemma 3.5 in that setting.)

References

A. Edalat. A continuous derivative for real-valued functions. In S. B. Cooper, B. Löwe, and A. Sorbi, editors, New Computational Paradigms, Changing Conceptions of What is Computable, pages 493-519. Springer, 2008.

