Set-valued Lipschitz constant for vector-valued functions:
Failure of the ‘“natural’ extension of the definition for scalar functions

For a scalar function f : U C R” — R, the definition of a set-valued Lipschitz constant is the following [1]:

Definition 0.1. The continuous function f : U — R has a non-empty, convex and compact set-valued Lipschitz constant
b € CR" in an open subset a C U if forall z,y € a we have: b(z —y) C f(x) — f(y), equivalently f(z)— f(y) € b(x —y).

Note that in the above definition, we use a compact convex set namely b(z — ) that contains the difference f(x) — f(y) of
the values of the function at two points .,y € a, i.e., we require: b(x—y) C f(z)— f(y), equivalently f(z)—f(y) € b(x—y).
This therefore gives a set-theoretic bound for f(x) — f(y) using b and x — y. We now see the similarity with the definition
of the classical Lipschitz constant & for amap f : X — Y between normed vector spaces, i.e., || f(z) — f()| < kllz — y||
which gives an upper bound for the norm of the difference f(x) — f(y) in terms of k and ||z — y||. Thus, it seems natural
that for extension to vector functions f : F™ — F™ we follow the same rule and require that the difference f(x) — f(y) be
contained in b(z — y).

So, suppose we replace Definition 3.2 in the current paper with the following definition which is a “natural” extension of
the above definition of a set-valued Lipschitz constant for scalar functions.

Definition 0.2. The continuous function f : U C F™ — F™ has a non-empty, convex and compact set-valued Lipschitz
constant b € C(F™*™) in an open subset a C U if for all ,y € a we have: b(z — y) C f(z) — f(y), equivalently

f(x) = f(y) € bz —y).

It is now natural to define the zero-containment predicate Z(b, F™*") in the “natural” setting as:
Z(b,F™ ") =Ve>0.Yv € S.3A € b.||Av| <e

We will show here that with this “natural” extension of the notion of set-valued Lipschitz constant from scalar functions
to vector functions, Lemma 3.5 (which plays a crucial role in the results of the paper) fails.
It can be shown that the following four conditions are equivalent:

o Z(bFmxm)

o VueF".0cub={uB:Becb}

o Vu e F"™Vv € F".0 € ubv = {uBv : B € b}

o Yu e F™Vu € F™.0 € {3772, >0, Bijuv; : B € b}

The latter condition is weaker than Yuw € F™*™.0 € Bw = {37, >°_| Bijjw;; : B € b}. This latter condition of course
implies 0 € b.

Consider the set of tensor products 7' = {u @ v : u € F”,v € F"} where v ® v € F™*™ with (u X v);; = u;v;. Then,
T spans F™*™ but it is not dense in F"™*",

Therefore, to construct a counter-example in the new setting to Lemma 3.5 for the simplest case with ' = R and
m = n = 2, say, we construct a compact and convex non-empty set b with 0 ¢ b such that b is contained in an open
subset of F'™*™ which does not contain any tensor product u @ v € T'.



Here is an example. Let m = n = 2, and consider the following matrices:

-G

Observe that [ is not in the closure of 7" and A, B, C' span a hyperplane orthogonal to I.

Consider:
b={I+aA+pBB+C:ac[-11],8,v€[-22]}

Note that b is convex as well as compact and does not contain 0. Take s € b:

1+« B
5( v 1—a)

. T 0

Consider v = <y) #* <0>

We have:

Sv_<1—|—a Ié; ><x)_((1+a)x+5y)
v 1-a)\y vz + (1 —a)y

If |z| > |y| , taking o« = —1,8 = 0,y = —2y/x gives sv = 0 and if |z| < |y|, taking« = 1, 8 = —2z/y,y = 0 gives
again sv = 0. Thus, Z(b, R?*2) is satisfied but 0 ¢ b. This counter-example shows that Lemma 3.5 would become false if
we chose the above “natural” extension of the notion of set-valued Lipschitz constant.

(I spent many months trying to show that the “natural extension” works as I was convinced it was correct but (in retrospect)

obviously could not prove Lemma 3.5 in that setting. Then I found it non-trivial to construct a counter example as above to
Lemma 3.5 in that setting.)

References

A. Edalat. A continuous derivative for real-valued functions. In S. B. Cooper, B. Loéwe, and A. Sorbi, editors, New Compu-
tational Paradigms, Changing Conceptions of What is Computable, pages 493-519. Springer, 2008.



