
Set-valued Lipschitz constant for vector-valued functions:
Failure of the “natural” extension of the definition for scalar functions

For a scalar function f : U ⊂ Rn → R, the definition of a set-valued Lipschitz constant is the following [1]:

Definition 0.1. The continuous function f : U → R has a non-empty, convex and compact set-valued Lipschitz constant
b ∈ CRn in an open subset a ⊂ U if for all x, y ∈ a we have: b(x−y) v f(x)−f(y), equivalently f(x)−f(y) ∈ b(x−y).

Note that in the above definition, we use a compact convex set namely b(x−y) that contains the difference f(x)−f(y) of
the values of the function at two points x, y ∈ a, i.e., we require: b(x−y) v f(x)−f(y), equivalently f(x)−f(y) ∈ b(x−y).
This therefore gives a set-theoretic bound for f(x) − f(y) using b and x − y. We now see the similarity with the definition
of the classical Lipschitz constant k for a map f : X → Y between normed vector spaces, i.e., ‖f(x)− f(y)‖ ≤ k‖x− y‖,
which gives an upper bound for the norm of the difference f(x) − f(y) in terms of k and ‖x − y‖. Thus, it seems natural
that for extension to vector functions f : Fn → Fm we follow the same rule and require that the difference f(x) − f(y) be
contained in b(x− y).

So, suppose we replace Definition 3.2 in the current paper with the following definition which is a “natural” extension of
the above definition of a set-valued Lipschitz constant for scalar functions.

Definition 0.2. The continuous function f : U ⊂ Fn → Fm has a non-empty, convex and compact set-valued Lipschitz
constant b ∈ C(Fm×n) in an open subset a ⊆ U if for all x, y ∈ a we have: b(x − y) v f(x) − f(y), equivalently
f(x)− f(y) ∈ b(x− y).

It is now natural to define the zero-containment predicate Z(b,Fm×n) in the “natural” setting as:

Z(b,Fm×n) ≡ ∀ε > 0.∀v ∈ S.∃A ∈ b. ‖Av‖ ≤ ε

We will show here that with this “natural” extension of the notion of set-valued Lipschitz constant from scalar functions
to vector functions, Lemma 3.5 (which plays a crucial role in the results of the paper) fails.

It can be shown that the following four conditions are equivalent:

• Z(b,Fm×n)

• ∀u ∈ Fm. 0 ∈ ub = {uB : B ∈ b}

• ∀u ∈ Fm∀v ∈ Fn. 0 ∈ ubv = {uBv : B ∈ b}

• ∀u ∈ Fm∀v ∈ Fn. 0 ∈ {
∑m

i=1

∑n
j=1Bijuivj : B ∈ b}

The latter condition is weaker than ∀w ∈ Fm×n. 0 ∈ Bw = {
∑m

i=1

∑n
j=1Bijwij : B ∈ b}. This latter condition of course

implies 0 ∈ b.

Consider the set of tensor products T = {u⊗ v : u ∈ Fm, v ∈ Fn} where u⊗ v ∈ Fm×n with (u× v)ij = uivj . Then,
T spans Fm×n but it is not dense in Fm×n.

Therefore, to construct a counter-example in the new setting to Lemma 3.5 for the simplest case with F = R and
m = n = 2, say, we construct a compact and convex non-empty set b with 0 /∈ b such that b is contained in an open
subset of Fm×n which does not contain any tensor product u⊗ v ∈ T .
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Here is an example. Let m = n = 2, and consider the following matrices:

I =

(
1 0
0 1

)

A =

(
1 0
0 −1

)
B =

(
0 1
0 0

)
C =

(
0 0
1 0

)
Observe that I is not in the closure of T and A,B,C span a hyperplane orthogonal to I .

Consider:
b = {I + αA+ βB + γC : α ∈ [−1, 1], β, γ ∈ [−2, 2]}

Note that b is convex as well as compact and does not contain 0. Take s ∈ b:

s =

(
1 + α β
γ 1− α

)

Consider v =

(
x
y

)
6=
(
0
0

)
We have:

sv =

(
1 + α β
γ 1− α

)(
x
y

)
=

(
(1 + α)x+ βy
γx+ (1− α)y

)
If |x| ≥ |y| , taking α = −1, β = 0, γ = −2y/x gives sv = 0 and if |x| ≤ |y| , taking α = 1, β = −2x/y, γ = 0 gives

again sv = 0. Thus, Z(b,R2×2) is satisfied but 0 /∈ b. This counter-example shows that Lemma 3.5 would become false if
we chose the above “natural” extension of the notion of set-valued Lipschitz constant.

(I spent many months trying to show that the “natural extension” works as I was convinced it was correct but (in retrospect)
obviously could not prove Lemma 3.5 in that setting. Then I found it non-trivial to construct a counter example as above to
Lemma 3.5 in that setting.)
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