
Countable and uncountable sets



Structure of the lecture course

I Abbas Edalat will give the first part of the course with 9
lectures and the first assessed course work followed by the
second part with another 9 lectures and the second course
work by Pete Harisson.

I For the first part of the course, the General Lecture Notes
(by Istvan Maros) will be used mostly to review the material
you studied in your first year.

I In addition, there will be lecture notes covering new
material and providing proofs for some of results in the
General Lecture Notes.



Textbooks and Videos

I As well as the three textbooks recommended in the
description of the course on the departmental web-page
for the course, you can look at:
(i) Strang, Gilbert. Introduction to Linear Algebra. 4th ed.
Wellesley, MA: Wellesley-Cambridge Press, February
2009.[an introductory textbook]
(ii) Strang, Gilbert. Linear Algebra and its Applications. 3rd
ed. Harcourth Brace Jovanovich, February 1988. [a more
advanced textbook]

I You can also watch Gilbert Strang’s lectures at MIT on
video online.



Countable sets
I We say an infinite (i.e., a non-finite) set S is countable if

there exists an onto map (i.e., a surjection)

f : N→ S,

where N = {0,1,2, . . . , } is the set of natural numbers.
I Such a map f is called an enumeration of S.
I Given such an enumeration f we can construct an

enumeration
g : N→ S,

which would be 1-1 as well. Such g will have the same
range as f (namely S) but it will map distinct elements to
distinct elements.

I Here is an inductive definition of g:
I Let g(0) := f (0).
I For i > 0, assume inductively that g(i − 1) has been

defined and g(i − 1) = f (j) for some j ∈ N. Put g(i) = f (j ′)
where j ′ is the least integer greater than j (i.e., j ′ > j) such
that f (j ′) 6= f (n) for n < j ′.

I It is easy to check that g is onto and 1-1.



Rational numbers are countable

 
 
 
 
 
 
 
 
Consider the two dimensional array of fractional numbers below, where every 
fraction on the nth row has n in the numerator and every fraction in the mth 
column has m in the denominator. 
 
We count the elements of the array as in the diagram by discarding fractions 
that are not in reduced form. 
 
 
This gives a 1-1 correspondence between natural numbers and positive 
rational numbers. 
 
 
 

 
 
 

 

 

Figure: Graphical analysis of C(x) = cos x .



Exercises: examples of countable sets

(i) The set of all positive integers is countable.
(ii) The set of all integers is countable.
(iii) We can show by induction on n that the set of ordered lists

of natural numbers that have length n is countable.
(iv) We can then use (iii) to show that the set of all finite

ordered lists of natural numbers is countable.
(v) Any non-finite subset of a countable set is countable.
(vi) If S is countable then Sn, i.e., the collection of all n-tuples

of elements of S, is countable.
(vii) From (vi), we can deduce that the set of integer

polynomials (i.e., polynomials with integer co-efficients) is
countable.

(viii) From (vii) it follows that the set of roots of integer
polynomials, the so-called algebraic numbers, is also
countable.



Real numbers are not countable
I The set of real numbers in [0,1] is not countable.
I Suppose, for the sake of deriving a contradiction, that real

numbers in [0,1] are countable, given by a1,a2,a3, . . ..
I Write each of these in its decimal expansion:

am = 0.am1am2am3 . . . where amn ∈ {0,1,2, · · · ,9} is the
nth digit in the decimal expansion of am.

I We then obtain:
a1 = 0.a11a12a13 . . . a1m · · ·
a2 = 0.a21a22a23 . . . a2m · · ·
. . . . . . . . . . . . . . . . . . . . . . . .
am = 0.am1am2am3 . . . amm · · ·
. . . . . . . . . . . . . . . . . . . . . . . .

I Define b ∈ [0,1] with decimal expansion b = 0.b1b2b3 . . .
by putting: bm = 1 if amm 6= 1 and bm = 2 if amm = 1.

I Then, for each m = 1,2,3, . . ., the mth digit of b differs
from the mth digit of am and therefore we have b 6= am.

I Thus, b ∈ [0,1] but b 6= am for any m, a contradiction.


	

