233 Computational Techniques

Problem Sheet for Tutorial 2

Problem 1

Which of the following pairs of vectors are orthogonal:

- (a) [1,2] and [-1,1],
- (b) [2, 5, 1] and [-3, 1, 1],
- (c) [3, 5, 3, -4] and [4, -2, 2, 2].

Problem 2

For

$$oldsymbol{A} = \left[egin{array}{cccc} 1 & 0 & 4 \ -3 & 2 & 5 \end{array}
ight], \quad oldsymbol{u} = \left[egin{array}{ccccc} 1 \ 2 \ -1 \end{array}
ight], \quad oldsymbol{v} = \left[egin{array}{ccccc} 2 \ 3 \end{array}
ight],$$

decide which of the following products are defined, and compute them: (a) Au, (b) Av, (c) A^Tv , (d) u^Tv , (e) uv^T .

Problem 3

From the pair of vectors in problem 2(b), construct an orthonormal set $\{v_1, v_2, v_3\}$ such that two of them are multiples of the given pair.

Problem 4

Matrix representation of linear maps: Let $f : \mathbb{R}^2 \to \mathbb{R}^2$ be a linear map and let $\mathbf{e}_1, \mathbf{e}_2$ be a basis for \mathbb{R}^2 . Suppose

$$f(\mathbf{e}_1) = 5\mathbf{e}_1 - 6\mathbf{e}_2$$
 $f(\mathbf{e}_2) = \mathbf{e}_2 + 3\mathbf{e}_1.$

- Find the matrix A representing f with respect to the basis \mathbf{e}_1 , \mathbf{e}_2 .
- If $v \in \mathbb{R}^2$ is given by $v = 2\mathbf{e}_1 \mathbf{e}_2$. Find f(v) and check that the matrix A representing f correctly computes the coordinates of $f(\mathbf{v})$ with respect to the basis \mathbf{e}_1 , \mathbf{e}_2 .

Problem 5

Matrix multiplication is not commutative: that is, $AB \neq BA$ in general. As an illustration, prove that a square 2×2 matrix A satisfying AX = XA for every 2×2 matrix X must be a multiple of the unit matrix I_2 . In other words, prove the following:

$$A \in \mathbb{R}^{2 \times 2}$$
 and $AX = XA$ for all $X \in \mathbb{R}^{2 \times 2} \iff \exists \lambda \in \mathbb{R}$ such that $A = \lambda I_2$.

(This is true for square matrices of any size!) *Hint*: Compare AX and XA for matrices X which have one entry equal to 1 and all others zero; for instance for

$$oldsymbol{E}_{12}=\left[egin{array}{cc} 0&1\\0&0\end{array}
ight] \quad ext{and} \quad oldsymbol{E}_{21}=\left[egin{array}{cc} 0&0\\1&0\end{array}
ight] \,.$$

Note: The formulation was changed slightly in order to clarify the problem.