233 Computational Techniques

Problem Sheet for Tutorial 3

Problem 1

In 2 dimensions, the ℓ_p norm of a vector $\boldsymbol{x} = (x_1, x_2)$ is given by

$$\|\boldsymbol{x}\|_p = (|x_1|^p + |x_2|^p)^{1/p} \text{ for } 1 \le p < \infty, \qquad \|\boldsymbol{x}\|_{\infty} = \max\{|x_1|, |x_2|\}.$$

Sketch the surfaces of constant ℓ_p norm of 1,

$$C_p := \{ \boldsymbol{x} \in \mathbb{R}^2 : \| \boldsymbol{x} \|_p = 1 \}$$

for $p = 1, 2, \infty$ in a rectangular coordinate system.

Problem 2

(i) Using the definition of the angle between two vectors, prove the *cosine theorem* of trigonometry:

$$\|\boldsymbol{u} - \boldsymbol{v}\|_{2}^{2} = \|\boldsymbol{u}\|_{2}^{2} + \|\boldsymbol{v}\|_{2}^{2} - 2\|\boldsymbol{u}\|_{2}\|\boldsymbol{v}\|_{2}\cos\phi$$
(1)

for all $\boldsymbol{u}, \boldsymbol{v} \neq \boldsymbol{0}$, where ϕ is the angle between \boldsymbol{u} and \boldsymbol{v} . Which theorem is the special case $\phi = \pi/2$?

(ii) From (1) and the fact that the sum of angles in a triangle is equal to π , deduce

(a)
$$\cos\left(\frac{\pi}{3}\right) = \frac{1}{2}$$
, (b) $\cos\left(\frac{\pi}{4}\right) = \frac{1}{2}\sqrt{2}$.

Problem 3

Let \boldsymbol{A} and \boldsymbol{B} be two matrices

$$\boldsymbol{A} = \begin{bmatrix} -3 & 0 & 4 \\ 1 & 2 & 3 \end{bmatrix}, \quad \boldsymbol{B} = \begin{bmatrix} -9 & 2 & 3 \\ -4 & 8 & 6 \\ 1 & 5 & 7 \end{bmatrix}.$$

Determine $\|\boldsymbol{A}\|_1$, $\|\boldsymbol{A}\|_{\infty}$ and $\|\boldsymbol{B}\|_1$, $\|\boldsymbol{B}\|_{\infty}$.

Problem 4

Which of the following sets of vectors are linearly independent: (a) [1,5], [2,3];(b) [2,1,-3], [-1,1,-6], [1,1,-4];(c) [1,0,3], [-1,1,2], [2,0,-5]? Problem 5

For

$$\boldsymbol{A} = \left[\begin{array}{ccc} 2 & 0 & 1 \\ 3 & -1 & 2 \end{array} \right] \;,$$

find

(a) the nullspace of A,

(b) the nullspace of A^T ,

(c) the range of \boldsymbol{A} ,

(d) the range of \mathbf{A}^{T} .

(e) Check that null \mathbf{A}^T is orthogonal to range \mathbf{A} , and that null \mathbf{A} is orthogonal to range \mathbf{A}^T . (f) For $\mathbf{x} = [1, 1, 1]^T$, find the two vectors $\mathbf{x}_R \in \text{range}\mathbf{A}^T$ and $\mathbf{x}_N \in \text{null}\mathbf{A}$ which satisfy $\mathbf{x} = \mathbf{x}_R + \mathbf{x}_N$. Check that \mathbf{x}_R and \mathbf{x}_N are orthogonal!

Problem 6

Prove:

(a) If $A \in \mathbb{R}^{n \times n}$ is invertible, then its right and left inverses are equal; that is, if AB = I and CA = I then B = C.

(b) If A has an inverse, then the columns of A are linearly independent.

(c) If A and B are both nonsingular, then AB is nonsingular, and $(AB)^{-1} = B^{-1}A^{-1}$. (d) Suppose $\alpha \in \mathbb{R}$ and $u, v \in \mathbb{R}^n$ such that $\alpha u^T v \neq 1$. Then $E = I_n - \alpha u v^T$ is nonsingular, and its inverse is $I_n - \beta u v^T$, where

$$\beta = \frac{\alpha}{\alpha \boldsymbol{u}^T \boldsymbol{v} - 1}$$