
233 Computational Techniques

Problem Sheet for Tutorial 4

Problem 1
In the standard basis of R2, let the linear map f : R2 → R2 have matrix representation

A =

[
4 2
2 1

]
.

Find the eigenvalues and eigenvectors of A. Hence find the basis with respect to which
A is a diagonal matrix and find the matrix for this change of basis.

Problem 2
Find the singular value decomposition of the matrix.

A =

[
4 4
−3 3

]
.

Problem 3
Show that, for any matrix A ∈ Rm×m, if v is an eigenvector of ATA with eigenvalue

λ 6= 0, then Av is an eigenvector of AAT with the same eigenvalue. (Why do we need
λ 6= 0 here?) Show that if v1 and v2 are orthogonal eigenvectors of ATA, then Av1 and
Av2 are orthogonal. State and prove a similar result for eigenvectors of AAT . Deduce
that for any matrix A ∈ Rm×n, the two matrices ATA and AAT have the same set of
non-zero eigenvalues.

Problem 4
(i) Show that an orthogonal transformation preserves the angle between any two vec-

tors.

(ii) Show that an orthogonal transformation preserves the `2 norm of a vector. Hence,
use the SVD representation of any matrix A to show that the ‖A‖2 := sup‖x‖2=1 ‖Ax‖2
is equal to σ1 the largest singular value of A.

Problem 5
The purpose of this exercise is to show you an application of eigenvalues and eigenvectors
to a topic which, at first glance, might seem totally unrelated: the Fibonacci series.
Recall (from the 1st year PPT classes) that the series is defined by x0 := 0, x1 := 1 and

xn+1 := xn + xn−1 (1)
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for n ≥ 1. This formula is recursive, that is, in order to find xn for higher values of n,
you have to know (or compute) the values for smaller n.
In many situations recursive formulae are not good enough, for instance if one wants
to know how xn grows with n. In this exercise you can find a formula for xn which is
non-recursive in the sense that it gives xn as a function of the index n rather than as a
function of previously computed values. Eigenvalues and -vectors are a good tool for this.
Here is how to do it:
(a) Express (1) as a vector equation of the form[

xn+1

xn

]
= A

[
xn
xn−1

]
(2)

for some 2×2 matrix A. This transforms the original series into a series of two-dimensional
vectors.
(b) By recursive application of (2), express [xn+1, xn]T as a power of A times the “initial”
vector (which one)?
(c) Now, find eigenvalues λi and eigenvectors ui of A. (Here the ui need not be normal-
ized.)
(d) Express the initial vector as a linear combination of the eigenvectors of A.
(e) Use the results of (b)–(d) and the relation Aui = λiui to find the vector [xn+1, xn]—
and hence xn itself—as a function of n alone.
(f) Test your formula for n = 0, . . . , 4.

Problem 6
Using the fact that linear independence of the columns (or rows) of a matrix A ∈ Rm×n

is invariant under elementary row or column operations, as proved in the notes, show
that the column rank and the row rank of a matrix is invariant under elementary row or
column operations.
Hint: Consider the column rank of A. (i) Elementary column operations: For the
elementary operation of swapping two columns or multiplying one by a non-zero real
number the assertion is clear. Consider the elementary operation of subtracting λa2 from
a1. Take a set S of maximally independent column vectors of the matrix and consider
the four cases where a1 and a2 belong or do not belong to this set. (ii) Elementary
row operations: Consider any elementary row operation on the set S of a maximally
independent column vectors of the matrix.
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