
233 Computational Techniques

Problem Sheet for Tutorial 4

Problem 1
In the standard basis of R2, let the linear map f : R2 → R2 have matrix representation

A =

[
4 2
2 1

]
.

Find the eigenvalues and eigenvectors of A. Hence find the basis with respect to which
A is a diagonal matrix and find the matrix for this change of basis.

Problem 2
Find the singular value decomposition of the matrix.

A =

[
4 4
−3 3

]
.

Problem 3
Show that, for any matrix A ∈ Rm×m, if v is an eigenvector of ATA with eigenvalue

λ 6= 0, then Av is an eigenvector of AAT with the same eigenvalue. (Why do we need
λ 6= 0 here?) Show that if v1 and v2 are orthogonal eigenvectors of ATA, then Av1 and
Av2 are orthogonal. State and prove a similar result for eigenvectors of AAT . Deduce
that for any matrix A ∈ Rm×n, the two matrices ATA and AAT have the same set of
non-zero eigenvalues.

Problem 4
(i) Show that an orthogonal transformation preserves the angle between any two vec-

tors.

(ii) Show that an orthogonal transformation preserves the `2 norm of a vector. Hence,
use the SVD representation of any matrix A to show that the ‖A‖2 := sup‖x‖2=1 ‖Ax‖2
is equal to σ1 the largest singular value of A.

Problem 5
The purpose of this exercise is to show you an application of eigenvalues and eigenvectors
to a topic which, at first glance, might seem totally unrelated: the Fibonacci series.
Recall (from the 1st year PPT classes) that the series is defined by x0 := 0, x1 := 1 and

xn+1 := xn + xn−1 (1)
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for n ≥ 1. This formula is recursive, that is, in order to find xn for higher values of n,
you have to know (or compute) the values for smaller n.
In many situations recursive formulae are not good enough, for instance if one wants
to know how xn grows with n. In this exercise you can find a formula for xn which is
non-recursive in the sense that it gives xn as a function of the index n rather than as a
function of previously computed values. Eigenvalues and -vectors are a good tool for this.
Here is how to do it:
(a) Express (1) as a vector equation of the form[

xn+1

xn

]
= A

[
xn
xn−1

]
(2)

for some 2×2 matrix A. This transforms the original series into a series of two-dimensional
vectors.
(b) By recursive application of (2), express [xn+1, xn]T as a power of A times the “initial”
vector (which one)?
(c) Now, find eigenvalues λi and eigenvectors ui of A. (Here the ui need not be normal-
ized.)
(d) Express the initial vector as a linear combination of the eigenvectors of A.
(e) Use the results of (b)–(d) and the relation Aui = λiui to find the vector [xn+1, xn]—
and hence xn itself—as a function of n alone.
(f) Test your formula for n = 0, . . . , 4.

Problem 6
Using the fact that linear independence of the columns (or rows) of a matrix A ∈ Rm×n

is invariant under elementary row or column operations, as proved in the notes, show
that the column rank and the row rank of a matrix is invariant under elementary row or
column operations.
Hint: Consider the column rank of A. (i) Elementary column operations: For the
elementary operation of swapping two columns or multiplying one by a non-zero real
number the assertion is clear. Consider the elementary operation of subtracting λa2 from
a1. Take a set S of maximally independent column vectors of the matrix and consider
the four cases where a1 and a2 belong or do not belong to this set. (ii) Elementary
row operations: Consider any elementary row operation on the set S of a maximally
independent column vectors of the matrix.
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Solutions

Problem 1

The eigenvalues are 0 with eigenvector v1 =

[
−1
2

]
and 5 with eigenvector v2 =

[
2
1

]
. If

we take v1 and v2 as the new basis, then the matrix representing f would be

[
0 0
0 5

]
.

The matrix for change of basis is B = [v1,v2].

Problem 2
We find the SVD of the matrix as A = USV T . First we find the eigenvalues and

eigenvectors of

ATA =

[
4 −3
4 3

] [
4 4
−3 3

]
=

[
25 7
7 25

]
.

The eigenvalues are 32 with normalised eigenvector v1 = 1√
2

[
1
1

]
and 18 with normalised

eigenvector v2 = 1√
2

[
1
−1

]
. Thus, we have σ1 =

√
32 = 4

√
2 and σ2 =

√
18 = 3

√
2 with

V =

[
1√
2

[
1
1

]
,

1√
2

[
1
−1

]]
=

1√
2

[
1 1
1 −1

]
Next we put

u1 =
1

σ1
Av1 =

[
4 4
−3 3

]
1√
2

[
1
1

]
=

1

4
√

2

1√
2

[
8
0

]
=

[
1
0

]

u2 =
1

σ2
Av2 =

1

3
√

2

[
4 4
−3 3

]
1√
2

[
1
−1

]
=

1

3
√

2

1√
2

[
0
−6

]
=

[
0
−1

]
Putting U = [u1,u2] and S = diag(4

√
2, 3
√

2), a simple calculation shows that we have

USV T = A.
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Problem 3

From ATAv = λv, it follows that Av is not the zero vector since otherwise, as λ 6= 0, we
obtain v = 0, which is a contradiction becasue v is an eigenvector. By pre-multiplying
both sides of ATAv = λv with A, we get: AATAv = λAv or AAT (Av) = λAv as
desired. Also if v2 and v2 are orthogonal eigenvectors of ATA with eigenvalues λ1 and λ2
respectively, then (Av2)

TAv1 = vT
2A

TAv1 = λ1v
T
2 v1 = 0. We obtain the same results if

we start with an eigenvector u of AAT and consider ATu, which will be an eigenvector
of ATA.

Problem 4
(i) If x,y ∈ Rm are unit vectors and U ∈ Rm×m is an orthogonal matrix then the cosine
of the angle between them is x · y. But (Ux) · (Uy) = (Ux)T (Uy) = (xTUT )(Uy) =
xT (UTU)y = xTy = x · y, since UTU = I.
(ii)If x ∈ Rm and U ∈ Rm×m is an orthogonal matrix then we have: (‖Ux‖2)2 =
(Ux)TUx = (xTUT )Ux = xT (UTU)x = xTx = (‖x‖2)2, since UTU = I.
Now let A = USV T be the SVD of A. The vector x ∈ Rm is in one-to-one correspondence
with y = V Tx ∈ Rm and have the same `2 norm. Then

‖A‖2 := sup
‖x‖2=1

‖Ax‖2 = sup
‖x‖2=1

‖USV Tx‖2

= sup
‖y‖2=1

‖USy‖2 = sup
‖y‖2=1

‖Sy‖2,

since the orthogonal matrix U preserves the `2 norm.
Thus,

(‖A‖2)2 = sup
‖y‖2=1

{(σ1y1)2 + (σ2y2)
2 + · · ·+ (σpyp)

2},

where p = min (m,n). But σ2
1y

2
1 + σ2

2y
2
2 + · · · + σ2

py
2
p ≤ σ2

1(y21 + y22 + · · · y2p) ≤ σ2
1 for all

y ∈ Rm with ‖y‖2 = 1 and for yT = (1, 0, 0, · · · , 0) we have

(σ1y1)
2 + (σ2)

2y22 + · · ·+ (σp)
2y2p = σ2

1

which implies ‖A‖2 = σ1.

Problem 5

(a) The matrix in (2) is

A =

[
1 1
1 0

]
.

(b) The initial vector is [x1, x0]
T = [1, 0]T , and[
xn+1

xn

]
= An

[
1
0

]
.
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(c) The characteristic polynomial of A is

det(A− λI2) = det

[
1− λ 1

1 −λ

]
= −λ(1− λ)− 1 = λ2 − λ− 1 ,

with zeros λ1 = (1 +
√

5)/2 and λ2 = (1 −
√

5)/2; these are the eigenvalues of A. A
corresponding choice of eigenvectors is

u1 =

[
λ1
1

]
, u2 =

[
λ2
1

]
.

They are not normalized – this is not necessary here as we do not need the explicit
orthogonal matrix from the spectral decomposition.
(d) [

1
0

]
=

u1 − u2√
5

.

(e) Multiplying both sides of the last equation by An gives[
xn+1

xn

]
=

Anu1 −Anu2√
5

=
1√
5

{
λn1

[
λ1
1

]
− λn2

[
λ2
1

]}
.

Here the second component gives

xn =
λn1 − λn2√

5
=
{(1 +

√
5)/2}n − {(1−

√
5)/2}n√

5
. (3)

(f) Thus:

x0 = 0 ,

x1 =
(1 +

√
5)/2− (1−

√
5)/2√

5
= 1 ,

x2 =
(1 + 2

√
5 + 5)/4− (1− 2

√
5 + 5)/4√

5
= 1 ,

x3 =
(1 + 3

√
5 + 15 + 5

√
5)/8− (1− 3

√
5 + 15− 5

√
5)/8√

5
= 2 ,

x4 =
(1 + 4

√
5 + 30 + 20

√
5 + 25)/16− (1− 4

√
5 + 30− 20

√
5 + 25)/16√

5
= 3

in agreement with (1).
Obviously the recursive formula is better for small values of n as it avoids the “detour”
into the real numbers. However for large n, (3) with real arithmetic can be much faster
than (1) or (2) with integer arithmetic.
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Problem 6

By symmetry we only to prove the assertion for the column rank of A since then the
assertion about the row rank follows by considering AT . We use the following fact proved
in the notes:

(∗) Linear independence of the columns (or rows) of a matrix A ∈ Rm×n

is invariant under elementary row or column operations.

We consider the two cases of elementary column operation and elementary row operations
in turn.
(a) Elementary column operations: on A: For the elementary operation of swapping
two columns or multiplying one by a non-zero real number the assertion is clear. Consider
the elementary operation of subtracting λa2 from a1, where we assume that a2 6= 0. Take
a set S of maximally independent column vectors of the matrix, with say r vectors, which
correspond to a submatrix of A. Let A′ be the result of the elementary operation on A
and S ′ be the result of the elementary operation on S. Consider the four cases where a1

and a2 belong or do not belong to this set:
(i) a1 ∈ S and a2 ∈ S: By (*) the elementary operation preserves the linear independence
of the columns in S. Thus, the vectors in S ′ are linearly independent and since all column
vectors not in S can be expressed in terms of S and therefore in terms of S ′, it follows
that S ′ is a maximally linearly independent set of column vectors of A′. Thus, the column
rank is preserved.
(ii) a1 /∈ S and a2 /∈ S: In this case, we have S = S ′; furthermore a1 − λa2 can be
expressed in terms of column vectors in S as S is a set of maximally independent column
vectors of A. Thus, S ′ = S is still a set of maximally independent column vectors of A′.
(iii) a1 /∈ S and a2 ∈ S: Here we have S ′ = S. Since a1 − λa2 can be expressed as a
linear combination of vectors in S, the set S ′ = S remains a set of maximally linearly
independent column vectors again.
(iv) a1 ∈ S and a2 /∈ S: There are two sub-cases here.

Sub-case (1): Suppose S ′ has rank r. Let s ⊂ {1, 2, . . . , n} be such that ai ∈ S iff i ∈ s
and let a0 = a1 − λa2 and s′ = {0} ∪ (s \ {1}). We assert that S ′ is a set of maximally
linearly independent vectors. To show this, it is sufficient to show that we can express a1

as a linear combination of vectors in S ′. Since a1 = (a1− λa2) + λa2 and a1− λa2 ∈ S ′,
this latter claim follows if we show that a2 can be expressed as a linear combination of
elements in S ′. To obtain this linear combination, we need to find yi ∈ R for i ∈ s′ such
that a2 =

∑
i∈s′ yiai = y0(a1 − λa2) +

∑
i∈s′\{0} ai.

Since S is maximally linearly independent, there exist xi ∈ R for i ∈ s, with

a2 =
∑
i∈s

xiai (4)
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which can be rewritten as

(1− x1λ)a2 = x1(a1 − λa2) +
∑

i∈s\{1}

xiai. (5)

Note that 1 − x1λ 6= 0 since otherwise, the LHS of Equation (5) vanishes and by linear
independence of vectors in S ′, from the RHS of Equation (5) we get xi = 0 for all i ∈ s;
but this implies, by Equation (4) that a2 = 0 contrary to our assumption.
Thus, we obtain

a2 =
1

1− x1λ
(x1(a1 − λa2) +

∑
i∈s\{1}

xiai) =
1

1− x1λ
(x1(a1 − λa2) +

∑
i∈s′\{0}

xiai),

as required. This completes case (1).

Sub-case (2): Suppose S ′ has rank r− 1. This means that a1−λa2 can be expressed as
a linear combination of vectors in S \ a1. Thus, a1 = (a1 − λa2) + λa2 can be expressed
as a linear combination of vectors in T := (S \ a1) ∪ a2. Thus T is a set of maximally
linearly independent column vectors with r vectors and since T ′ = T it follows that the
column rank is preserved in this case as well.

Therefore the maximal number of linearly independent column vectors, i.e., the column
rank, is preserved under any elementary column operation.

(b) Elementary row operations: Consider any elementary row operation on the set S
of maximally independent column vectors of A as a sub-matrix of A with say r vectors.
Then, by (*), under the elementary row operation the vectors in S will remain linearly
independent. Moreover any set of r + 1 column vectors of A will be linearly dependent
and thus, by (*) again, will remain linearly dependent vectors. Therefore the maximal
number of linearly independent column vectors, i.e., the column rank, is preserved under
any elementary row operation.
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