Quantum Computing

Assessed Coursework (II)

1. In the Grover's algorithm, let $n=2$ so that $N=2^{n}=4$, and let $M=1$. Show that the oracle f with $f(x)=0$ for all $x \neq x_{0}$ and $f\left(x_{0}\right)=1$ can be chosen from the four circuits in Figure 1.

Figure 1: Four possible oracles

Show that the circuit in Figure 2 in effect implements the operation G. How many iterates of G are needed to determine x_{0} ?

Figure 2: Circuit for G
2. In the phase estimation algorithm, suppose the states $|u\rangle$ for $u \in T$ are eigenstates of U with eigenvalue $e^{2 \pi i \phi_{u}}$. The phase estimation algorithm maps the normalized state

$$
|0\rangle\left(\sum_{u \in T} d_{u}|u\rangle\right)
$$

to the state

$$
\sum_{u \in T} d_{u}\left|\hat{\phi}_{u}\right\rangle|u\rangle,
$$

where the state $\left|\hat{\phi}_{u}\right\rangle$ gives a good estimate of ϕ_{u}. Show that with t chosen as in Equation 18, page 100 of the notes, the probability of measuring ϕ_{u} accurate to s bits in the output of the phase estimation algorithm is at least $\left|d_{u}\right|^{2}(1-\epsilon)$.

