
Dynamical Systems



Continuous maps of metric spaces
I We work with metric spaces, usually a subset of Rn with

the Euclidean norm.
I A map of metric spaces F : X → Y is continuous at

x ∈ X if it preserves the limits of convergent sequences,
i.e., for all sequences (xn)n≥0 in X :

xn → x ⇒ F (xn)→ F (x).

I F is continuous if it is continuous at all x ∈ X .
I Examples:

I All polynomials, sin x , cos x , ex are continuous maps.
I x 7→ 1/x : R→ R is not continuous at x = 0 no matter what

value we give to 1/0. Similarly for tan x at x = (n + 1
2 )π for

any integer n.
I The step function s : R→ R : x 7→ 0 if x ≤ 0 and 1

otherwise, is not continuous at 0.
I Intuitively, a map R→ R is continuous iff its graph can be

drawn with a pen without leaving the paper.



Continuity and Computability

I Continuity of F is necessary for the computability of F .
I Here is a simple argument for F : R→ R to illustrate this.
I An irrational number like π has an infinite decimal

expansion and is computable only as the limit of an
effective sequence of rationals (xn)n≥0 with say
x0 = 3, x1 = 3.1, x2 = 3.14 · · · .

I Hence to compute F (π) our only hope is to compute F (xn)
for each rational xn and then take the limit. This requires
F (xn)→ F (π) as n→∞.



Discrete dynamical systems

I A deterministic discrete dynamical system F : X → X
is the action of a continuous map F on a metric space
(X ,d), usually a subset of Rn.

I X is the set of states of the system;
and d measures the distance between states.

I If x ∈ X is the state at time t , then F (x) is the state at t + 1.
I We assume F does not depend on t .
I Here are some key continuous maps giving rise to

interesting dynamical systems in Rn:
I Linear maps Rn → Rn, eg x 7→ ax : R→ R for any a ∈ R.
I Quadratic family Fc : R→ R : x 7→ cx(1− x) for c ∈ [1,4].
I We give two simple applications of linear maps here and

will study the quadratic family later on in the course.



In Finance
Suppose we deposit $1,000 in a bank at 10% interest. If we
leave this money untouched for n years, how much money will
we have in our account at the end of this period?

Example (Money in the Bank)

A0 = 1000,
A1 = A0 + 0.1A0 = 1.1A0,

...
An = An−1 + 0.1An−1 = 1.1An−1.

This linear map is one of the simplest examples of an iterative
process or discrete dynamical system. An = 1.1An−1 is a 1st
order difference equation. In this case, the function we iterate
is F : R→ R with F (x) = 1.1x .



In Ecology

Let Pn denote the population alive at generation n. Can we
predict what will happen to Pn as n gets large? Extinction,
population explosion, etc.?

Example (Exponential growth model)
Assume that the population in the succeeding generation is
directly proportional to the population in the current generation:

Pn+1 = rPn,

where r is some constant determined by ecological conditions.
We determine the behaviour of the system via iteration. In this
case, the function we iterate is the function F : R→ R with
F (x) = rx .



Iteration

I Given a function F : X → X and an initial value x0, what
ultimately happens to the sequence of iterates

x0,F (x0),F (F (x0)),F (F (F (x0))), . . . .

I We shall use the notation

F (2)(x) = F (F (x)),F (3)(x) = F (F (F (x))), . . .

For simplicity, when there is no ambiguity, we drop the
brackets in the exponent and write

F n(x) := F (n)(x).

I Thus our goal is to describe the asymptotic behaviour of
the iteration of the function F , i.e. the behaviour of F n(x0)
as n→∞ for various initial points x0.



Orbits

Definition
Given x0 ∈ X , we define the orbit of x0 under F to be the
sequence of points

x0 = F 0(x0), x1 = F (x0), x2 = F 2(x0), . . . , xn = F n(x0), . . . .

The point x0 is called the initial point of the orbit.

Example
If F (x) = sin(x), the orbit of x0 = 123 is

x0 = 123, x1 = −0.4599..., x2 = −0.4439...,

x3 = −0.4294..., . . . , x1000 = −0.0543..., x1001 = −0.0543..., . . .



Finite Orbits
I A fixed point is a point x0 that satisfies F (x0) = x0.
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I Example: F : R→ R with F (x) = 4x(1− x) has two fixed
points at x = 0 and x = 3/4.

I The point x0 is periodic if F n(x0) = x0 for some n > 0. The
least such n is called the period of the orbit. Such an orbit
is a repeating sequence of numbers.

I Example: F : R→ R with F (x) = −x has periodic points
of period n = 2 for all x 6= 0.

I A point x0 is called eventually fixed or eventually
periodic if x0 itself is not fixed or periodic, but some point
on the orbit of x0 is fixed or periodic.

I For the map F : R→ R with F (x) = 4x(1− x), the point
x = 1 is eventually fixed since F (1) = 0, F (0) = 0.



Attracting and Repelling Fixed or Periodic Points
I A fixed point x0 is attracting if the orbit of any nearby point

converges to x0.
I The basin of attraction of x0 is the set of all points whose

orbits converge to x0. The basin can contain points very far
from x0 as well as nearby points.

I Example: Take F : R→ R with F (x) = x/2. Then 0 is an
attracting fixed point with basin of attraction R.

I A fixed point x0 is repelling if the orbit of any nearby point
runs away from x0.

I Example: Take F : R→ R with F (x) = 2x . Then 0 is a
repelling fixed point.
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Attracting/Repelling hyperbolic Fixed/Periodic Points
I If f : R→ R has continuous derivative f ′, then a fixed point

x0 is attracting if |f ′(x0)| < 1. If |f ′(x0)| > 1, then x0 is
repelling. In both cases we say x0 is hyperbolic.

I If x0 is a fixed point of f and |f ′(x0)| = 1 then further
analysis is required (eg Taylor series expansion near x0) to
determine the type of x0, which can also be attracting in
one direction and repelling in the other.
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I If x0 is a periodic point of period n, then x0 is attracting
and hyperbolic, if |(f n)′(x0)| < 1.

I Similarly, x0 is repelling and hyperbolic, if |(f n)′(x0)| > 1.



Graphical Analysis
Given the graph of a function F we plot the orbit of a point x0.

I First, superimpose the diagonal line y = x on the graph.
(The points of intersection are the fixed points of F .)

I Begin at (x0, x0) on the diagonal. Draw a vertical line to the
graph of F , meeting it at (x0,F (x0)).

I From this point draw a horizontal line to the diagonal
finishing at (F (x0),F (x0)). This gives us F (x0), the next
point on the orbit of x0.

I Draw another vertical line to graph of F , intersecting it at
F 2(x0)).

I From this point draw a horizontal line to the diagonal
meeting it at (F 2(x0),F 2(x0)).

I This gives us F 2(x0), the next point on the orbit of x0.
I Continue this procedure, known as graphical analysis.

The resulting “staircase” visualises the orbit of x0.



Graphical analysis of linear maps

f(x)=ax

a>1 a=1 0<a<1

a<−1 a=−1 −1<a<0
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y=x

y=x

y=−x

Figure : Graphical analysis of x 7→ ax for various ranges of a ∈ R.



A Non-linear Example: F (x) = cos x
I F has a single fixed point, which is attracting, as depicted.
I What is the basin of attraction of this attracting fixed point?
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Graphical Analysis: F(x) =cos(x)

Figure : Graphical analysis of F (x) = cos x .



Phase portrait
I When graphical analysis describes the behaviour of all

orbits of a dynamical system, we have performed a
complete orbit analysis providing the phase portrait of
the system.

I Example: Orbit analysis/phase portrait of x 7→ x3.
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Graphical Analysis: F(x) =x3

−1 0 1

I What are the fixed points and the basin of the attracting
fixed point?



Phase portraits of linear maps

f(x)=ax

a>1 a=1 0<a<1

a<−1 a=−1 −1<a<0

Figure : Graphical analysis of x 7→ ax



Bifurcation
I Consider the one-parameter family of quadratic maps

x 7→ x2 + d where d ∈ R.
I For d > 1/4, no fixed points and all orbits tend to∞.
I For d = 1/4, a fixed point at x = 1/2, the double root of

x2 + 1/4 = x .
I This fixed point is locally attracting on the left x < 1/2 and

repelling on the right x > 1/2.
I For d just less than 1/4, two fixed points x1 < x2, with x1

attracting and x2 repelling.
I The family x 7→ x2 + d undergoes bifurcation at d = 1/4.

1/2 x1      x2

d > 1/4 d = 1/4 d < 1/4
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