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We introduce a domain-theoretic framework for differential calculus. We define the set of

primitive maps and also the derivative of an interval-valued Scott continuous function on

the domain of intervals, and show that they are dually related, providing an extension of

the classical duality of differentiation and integration as in the fundamental theorem of

calculus. It is shown that, for locally Lipschitz functions of a real variable, the

domain-theoretic derivative coincides with the Clarke’s derivative. We then construct a

domain for differentiable real valued functions of a real variable by pairing consistent

information about the function and information about its derivative. The set of classical

C1 functions, equipped with its C1 norm, is embedded into the set of maximal elements

of this countably based, bounded complete continuous domain. This domain also

provides a model for the differential properties of piecewise C1 functions, locally

Lipschitz functions and more generally of all continuous functions. We prove that

consistency of function information and derivative information is decidable on rational

step functions, which shows that our domain can be given an effective structure. We thus

obtain a data type for differential calculus. As an immediate application, we present a

domain-theoretic formulation of Picard’s theorem, which provides a data type for solving

differential equations.

1. Introduction

We introduce a domain-theoretic framework for differentiable functions, which leads to

a data type for differentiable functions and a data type for solving differential equa-

tions. Differential calculus, introduced by Newton and Leibnitz in the 17th century, has

provided the foundation of modern science and technology and is the basis of applied

mathematics, mathematical physics and scientific computation. By constructing data

types for differential calculus, we seek to bring smooth mathematics into the realm of

computer science.

The key element in our framework is the notion of the set of primitive maps of a Scott

continuous function on the domain of intervals, which is derived here from basic princi-

ples. First, the concept of an interval Lipschitz constant of a Scott continuous function

is introduced. A non-trivial interval Lipschitz constant of a classical continuous function

in an open interval is given by a compact interval whose left and right end points are,
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respectively, a lower and an upper Lipschitz constant for the function in that open inter-

val. An interval Lipschitz constant in an open interval thus corresponds to a single-step

function, and the collection of interval Lipschitz constants is in bijective correspondence

with the collection of single-step functions. The natural concept of interval Lipschitz con-

stant in an open interval, and its corresponding single-step function, can be generalized

to Scott continuous functions of the domain of intervals. The set of primitive maps of a

single-step function is then defined as the collection, or the single-step tie, of all Scott

continuous functions which have interval Lipschitz constants corresponding to the single-

step function. Using the fact that any Scott continuous function can be constructed from

single-step functions, the set of primitive maps of a Scott continuous function can then

be defined as a collection, or tie, of Scott continuous functions with interval Lipschitz

constants represented by the integrand. The collection of ties ordered by reverse inclusion

is a directed complete partial order and the primitive sets function, which for a Scott

continuous interval valued functions outputs its corresponding tie of Scott continuous

functions, is itself Scott continuous.

An interval Lipschitz constant of a Scott continuous function gives local information

on the differential properties of the function. By collecting all such information, we move

from a local to a global viewpoint and define the domain-theoretic derivative of a Scott

continuous function on the domain of intervals, which is itself shown to be a Scott con-

tinuous function. This is in sharp contrast to the situation in classical analysis in which

a continuous function may not have a derivative at a point or indeed at any point at all.

In the domain-theoretic world, such irregularities do not occur and the derivative of any

Scott continuous function is itself a function of the same type.

We derive a duality between the domain-theoretic derivative and the primitive maps

function, which can be considered as an interval version of the fundamental theorem of

calculus for interval-valued functions of an interval variable: a Scott continuous function

f is a primitive map of a Scott continuous function g if and only if the domain-theoretic

derivative of f refines g. In the case of interval-valued functions of a real variable this

duality is closely linked with the fundamental theorem of classical calculus.

When we restrict to functions with real input, the domain-theoretic derivative of a

locally Lipschitz function of one real variable coincides with the so-called Clarke’s gra-

dient (Clarke, 1983; Clarke et al., 1998). For functions of n real variables as treated

in (Edalat et al., 2004), which is the sequel to the present paper, the domain-theoretic

derivative of a locally Lipschitz function at a point gives the smallest n-dimensional rect-

angle, with sides parallel to the coordinate axis, which contains the Clarke’s gradient at

that point. The domain-theoretic derivative, however, extends to functions of an interval

variable as we will first consider in this paper.

The central part of this work is the construction of a domain D1 for differentiable

real valued functions of a real variable. This domain is a subset of the product of two

copies of the domain of Scott continuous interval-valued functions on the domain of

intervals, where the subset is characterized by a consistency relation between two Scott

continuous functions. In a consistent pair of functions, the first function represents an

approximation to the C1 function itself while the second function in the pair gives an

approximation to the derivative of this C1 function. The consistency relation is Scott
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closed and decidable on the basis consisting of pairs of rational step functions, which

shows that D1 is a countably based bounded complete continuous domain that can be

given an effective structure. The set of classical C1 functions, equipped with its C1 norm,

is embedded into the set of maximal elements of D1. Furthermore, the set of piecewise

C1 functions, the set of locally Lipschitz functions and the set of all continuous functions

are each embedded into the set of maximal elements of D1, thereby giving a model for

the differential properties of various types of functions.

As an immediate application, we present a domain-theoretic and effective general-

ization of Picard’s theorem, which provides a data type and an algorithm for solving

differential equations given by a vector field and an initial condition. At each step of

computation of this algorithm, one gets an approximation which is an interval piecewise

polynomial function with rational coefficients that provides information about the solu-

tion, even when both the initial condition and the specifying vector field are given with

uncertainty.

Another application of this work will be to provide an effective version of what is

referred to as the implicit function theorem, which is a main tool in the study of manifolds.

In the one variable case considered in this paper, the effective version of the implicit

function theorem provides an algorithm to obtain the isolated roots of differentiable

functions. In multi-variate differential calculus, which will be treated in a future paper,

the implicit function theorem is used extensively in geometric design of smooth curves

and surfaces. Since the functions defining the curves or surfaces used in CAD software

can be of various concrete classes (piecewise polynomial, rational, trigonometric as well

as more “exotic” classes of smooth functions), the use of abstract classes representing Ck

functions allows us to design generic algorithms for solving systems of equations arising

for example in surface intersections, ray shooting, and many other geometric operators.

In fact, the data type introduced here can provide a sound mathematical framework on

top of which these existing practices could be founded (Hu et al., 1996; Sakkalis et al.,

2001).

The present work is the continuation of the 10 year old project for constructing

domain-theoretic computational models in various subjects including fractal geometry,

measure and integration, real number computation, computational geometry and solid

modelling (Edalat, 1995b; Edalat, 1995a; Lawson, 1997; Edalat and Heckmann, 1998; Es-

cardó, 1996; Edalat and Escardó, 2000; Edalat and Potts, 1997; Edalat and Sünderhauf,

1998; Edalat, 1997; Edalat and Lieutier, 2002). Whereas the question of computability

for differentiable functions and their derivatives has been studied in the literature, this

seems to be the first time that data types for differential calculus are proposed, which

brings this subject into the discipline of domain theory and type theory.

We mention briefly other approaches to differential calculus in domain theory, com-

putable analysis, differential inclusions and interval analysis. In (Martin, 2000), using

some domain-theoretic ideas, a notion of informatic derivative is defined, which for a C1

function evaluates at each point to the absolute value of the derivative at that point. In

computable analysis, the relation between computability of a function and its derivative

has been investigated (Pour-El and Richards, 1988). In (Weihrauch, 2000), a representa-

tion of a C1 function is given, by brute force, such that the representation of the function
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and that of its derivative, using a type 2 machine, are both computable. The relationship

between the domain-theoretic derivative and the Clarke’s derivative, mentioned above,

gives a connection between domain theory and the area of analysis known as Differential

Inclusions (Aubin and Cellina, 1984) with applications in control theory. Finally, interval

analysis (Moore, 1966) provides an interval version of the Euler method for solving ordi-

nary differential equations with lower and upper bounds at each stage of computation for

the unique solution of an initial value problem given by a Lipschitz vector field. However,

when implemented with floating point arithmetic, the interval containing the solution at

a given point may get unduly large and convergence to the solution can no longer be guar-

anteed. Using the domain-theoretic Picard theorem, one obtains interval approximations

to the solution, which when implemented with rational arithmetic, are still guaranteed

to converge to the solution; for more details see the followup papers (Edalat et al., 2003;

Edalat and Pattinson, 2003).

2. The interval domain function spaces

We assume the reader is familiar with the basic notions in domain theory; our main

references for the subject are (Gierz et al., 1980; Abramsky and Jung, 1994; Stoltenberg-

Hansen et al., 1994; Amadio and Curien, 1998). For any dcpo (directed complete partial

order) A and x ∈ A, we write ↑x = {y ∈ A|x v y} and ↑↑x = {y ∈ A|x << y}. Let

Con(A,v) and Con(A,�) denote, respectively, the consistency predicate with respect to v
and �, i.e.

Con(A,v)(a1, a2, . . . an) ⇐⇒ ∃a ∈ A.ai v a for all 1 ≤ i ≤ n.

Con(A,�)(a1, a2, . . . an) ⇐⇒ ∃a ∈ A.ai � a for all 1 ≤ i ≤ n.

We often write Conv and Con� for Con(A,v) and Con(A,�) respectively. For dcpo’s

(D,vD) and (E,vE), the single-step function a↘ b : D → E is defined by

(a↘ b)(x) =

{
b if a� x

⊥ otherwise.

In this paper, we will only work with continuous Scott domains (i.e. bounded complete ω-

continuous dcpo’s). The general form of a step function from a continuous Scott domain

(D,vD) to another one (E,vE) is as follows. Consider the collection (ai ↘ bi)i∈I where

I is a finite set. Define the function space consistency predicate ConD→E(u) by:

ConD→E((ai ↘ bi)i∈I) ⇐⇒ ∀J ⊆ I.(Con(D,�)({ai | i ∈ J})⇒ Con(E,v)({bi | i ∈ J})).

Then the lub
⊔
i∈I ai ↘ bi exists iff ConD→E((ai ↘ bi)i∈I). When the lub exists, it takes

a finite number of values and it is given by:

(
⊔
i∈I

ai ↘ bi)(x) =
⊔
ai�x

bi.

The way-below ordering of step functions is given by:
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(
⊔
i∈I

ai ↘ bi)� (
⊔
j∈J

cj ↘ dj) ⇐⇒ ∀i ∈ I.bi �
⊔

cj�ai

dj .

For Scott continuous domains D and E, the collection of all lubs (
⊔
i∈I ai ↘ bi) of

consistent step functions with ai ∈ B and bi ∈ B′, where B and B′ are bases for D and

E respectively, gives a basis for D → E.

We consider the function spaces D0[0, 1] = (I[0, 1]→ IR) and D0
r [0, 1] = ([0, 1]→ IR);

here I[0, 1] is the continuous Scott domain of the compact intervals of [0, 1] ordered

by reverse inclusion, and IR is the continuous Scott domain of the compact intervals

of R together with R, ordered by reverse inclusion. Note that D0[0, 1] is the collection

of Scott continuous interval-valued functions of an interval variable, whereas D0
r [0, 1] is

the collection of Scott continuous interval-valued functions of a real variable; hence the

subscript r in D0
r [0, 1]. We sometimes write D0 for D0[0, 1] and D0

r for D0
r [0, 1]. The

choice of [0, 1] is simply for convenience. In practice, we sometimes replace [0, 1] by a

non-trivial compact interval a = [a, a], a relatively compact open interval a◦ = (a, a)

(with a < a) or even IR. Recall that any continuous function f : [0, 1] → R has a

canonical extension If : I[0, 1]→ IR given by (If)(x) = f(x), for x ∈ I[0, 1], where f(x)

is the direct image of the interval x. In particular the three basic arithmetic functions,

addition, subtraction and multiplication, extend pointwise to Scott continuous functions

IR→ IR which, for convenience, we denote simply by +, − and ×, i.e. for x, y ∈ IR we

write x ∗ y = {u ∗ v |u ∈ x, v ∈ y} where ∗ ∈ {+,−,×}. As usual we set a ∗ b = ⊥ if

a = ⊥ or b = ⊥ for ∗ ∈ {+,−,×}.
A function f : [0, 1] → IR, given by two functions f−, f+ : [0, 1] → R with f(x) =

[f−(x), f+(x)], is continuous with respect to the Euclidean topology on [0, 1] and the

Scott topology on IR iff f− and f+ are, respectively, lower and upper semi-continuous

functions. In this case, f will have a Scott continuous extension to I[0, 1], which, by

overloading notation, we denote by If = I[f−, f+] : I[0, 1] → IR; it is given by If(x) =

u{f(y) | y ∈ x}. Conversely, the restriction of a Scott continuous function f ∈ D0 to

the maximal elements induces a lower and an upper semi-continuous functions f−, f+ :

[0, 1] → R given by f({x}) = [f−(x), f+(x)]. Clearly, f preserves maximal elements iff

f− = f+, in which case the induced map f− = f+ : [0, 1]→ R is continuous with respect

to the Euclidean topology; for convenience, we denote this induced map simply by f

itself and write “the induced map f : [0, 1]→ R”.

The mapping E : D0
r → D0 with E(f) = If is Scott continuous and injective. Thus

we consider D0
r as a subdomain of D0. The Scott continuous map I : D0 → D0

r with

I : f 7→ λx. f({x}) in effect sends a function to its restriction on the maximal elements

of I[0, 1]. We have I ◦ E = 1D0
r

and E ◦ I w 1D0 where 1A is the identity function on

the dcpo A. In fact, we put M = E ◦ I; then M(f) is the greatest function in D0 whose

restriction to the maximal elements coincides with that of f (Edalat and Escardó, 2000).

We can deduce the action of I and E on step functions. We write a↘A b for the single-

step function a↘ b in the domain A. However, since we will only be concerned with step

functions in D0 and D0
r we write a ↘D0 b simply as a ↘ b and a ↘D0

r
b as a ↘r b. For
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any finite set I we have: I(
⊔
i∈I ai ↘ bi) =

⊔
i∈I ai ↘r bi while

E(
⊔
i∈I

ai ↘r bi) =
⊔
{(u

j∈Jaj)↘ uj∈J bj | J ⊆ I with
⋃
j∈J

a◦j connected}.

These formulas extend by continuity to all suprema of step functions. We have

ConD0(ai ↘ bi)i∈I ⇐⇒ ConD0
r
(ai ↘r bi)i∈I (1)

The step functions (ai ↘ bi)i∈I ∈ D0 and (ai ↘r bi)i∈I ∈ D0
r are called rational step

functions of D0 and D0
r , respectively, if ai and bi are rational intervals for all i ∈ I. The

collection of rational step functions of D0, respectively D0
r , gives a countable basis for

D0, respectively D0
r . It is convenient to define a more general basis for D0 and D0

r as

follows. By a rational polynomial we mean a polynomial with rational coefficients.

Definition 2.1. A continuous function p : [v, w] → R is a piecewise (rational) polyno-

mial if there exists a partition v = c0 < c1 · · · < cn−1 < cn = w of [v, w] such that ci
(i = 0, · · · , n) are real (rational) numbers and each restriction p �[ci−1,ci] is a (rational)

polynomial. We call p a piecewise semi-rational polynomial if ci (i = 0, · · · , n) are alge-

braic numbers and each restriction p �[ci−1,ci] is a rational polynomial up to an additive

algebraic number (i.e. all the coefficients are rational except possibly the constant term

which is an algebraic number).

Let a ∈ I[0, 1] and let p, q : [a, a] → R be piecewise (rational or semi-rational) poly-

nomials satisfying p(x) ≤ q(x) for x ∈ a◦. We define the (rational or semi-rational)

polynomial step function a↘ [p, q] : I[0, 1]→ IR by

(a↘ [p, q])(x) =

{
I[p, q](x) if a� x

⊥ otherwise.

Clearly, by choosing p and q to be the constant polynomials b and b we obtain an

ordinary rational step function, i.e. a↘ [b, b] = a↘ b. The consistency relation for a

finite set of polynomial step functions is given by: {ai ↘ [pi, qi] | i ∈ I} ∈ Con0 iff

∀J ⊆ I. Con�{ai | i ∈ J} ⇒ ∀i, k ∈ J ∀x ∈ (
⊔
j∈J

aj)
◦. pi(x) ≤ qk(x).

The collection of consistent finite sets of rational (or semi-rational) polynomial step

functions forms a basis for D0 which we call the rational (or semi-rational) polynomial

basis. We also get a similar basis for D0
r with its similar consistency relation; in fact

(a↘r [p, q]) = I(a↘ [p, q]) is given by

(a↘r [p, q])(x) =

{
I[p, q](x) if x ∈ a◦
⊥ otherwise.

Consider a step function f =
⊔
i∈I{(ai ↘ bi)}. The end points of the compact intervals

ai, (i ∈ I), partition [0, 1] into a finite number of intervals (open, closed or half-open, half-

closed) of [0, 1], called the associated intervals of the step function, with the property that

f({x}) is a constant compact interval for x in each of these intervals. For a polynomial

step function f =
⊔
i∈I{(ai ↘ [pi, qi])}, the compact interval f({x}) is bounded by two

fixed piecewise polynomials in each of the associated intervals.
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We define the domain of h : I[0, 1]→ IR by

Dom(h) = {x ∈ [0, 1]|h({x}) 6= ⊥}

2.1. Embedding of classical functions

Let C0[0, 1] be, as usual, the set of real-valued continuous functions on [0, 1] with the

sup norm; its topology is the same as the compact open topology. Furthermore, for an

integer k ≥ 1, we let Ck[0, 1] denote the set of functions with continuous kth derivative

on [0, 1] equipped with the norm ||f || = max{sup |f (n)| | 0 ≤ n ≤ k},where f (n) is the

nth derivative of f .

Define, Γ0 : C0[0, 1]→ D0[0, 1] by Γ0(f) = If . Recall that an embedding is a continu-

ous injection which maps open subsets to relatively open subsets in its image.

Theorem 2.2. The mapping Γ0 is an embedding into a proper subset of the maximal

elements of D0

Proof.

We use the way-below relation both for domains such as D0 and for the lattice ΩX of

the open subsets of a locally quasi-compact topological space X.

The function g : I[0, 1]→ IR with

g(x) =


{0} if x < 1/2

{1} if x > 1/2

[0, 1] if 1/2 ∈ x

(2)

is maximal but is not the extension of any function in C0[0, 1].

Continuity: We have

If =
⊔
i∈I
{ai ↘ bi|ai ↘ bi �D0 If} =

⊔
i∈I
{ai ↘ bi|↑↑ai �ΩI[0,1] (If)−1(↑↑bi)}.

Hence any open set containing If contains a step function
⊔
i∈J ai ↘ bi, for some fi-

nite indexing set J , with ↑↑ai � f−1(↑↑bi) (i ∈ J) which contains If . But the open set⋂
i∈J(ai, b

◦
i ) (of the compact open topology) contains f and is mapped into ↑↑(

⊔
i∈J ai ↘

bi).

Openness: Let (C,O) be an open set of the compact-open topology containing the

continuous f : [0, 1] → R. Then there exists a decreasing sequence Ci of finite unions of

intervals such that C =
⋂
i∈ω Ci. By Scott continuity of If , there exists an i ∈ ω such

that (If)(Ci) = f(Ci) ⊆ O. Suppose Ci =
⋃n
j=1Aj where each Aj is a compact interval.

Since f(Aj) is compact, there exist open sets Bj with f(Aj) ⊆ Bj ⊆ O and Bj ⊆ O, for

1 ≤ j ≤ n. Then If ∈ ↑↑(Aj ↘ Bj) for 1 ≤ j ≤ n. Moreover, (Γ0)−1(↑↑(Aj ↘ Bj)) ⊆
(C,O). Hence Γ0 is a topological embedding.

Recall that an adjunction between posets A and B is a pair of monotone maps l : A→ B,

called a lower adjoint, and u : B → A, called an upper adjoint, with u ◦ l w 1A and

l ◦ u v 1B . Since I ◦ E = 1D0
r

and E ◦ I w 1D0 , it follows that I is a lower adjoint. Thus,
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by (Abramsky and Jung, 1994, Proposition 3.1.14), I preserves the way-below relation

and is therefore an open map, i.e., one that preserves open subsets. Since I induces a

bijection between the set of maximal elements of D0 and that of D0
r , it follows that the

map Γ0
r = I ◦ Γ0 : C0 → D0

r sends any open subset to a relatively open subset in its

image and we obtain:

Corollary 2.3. Γ0
r : C0 → D0

r is an embedding into a proper subset of the maximal

elements of D0
r .

3. Primitive maps of a Scott continuous function

In classical analysis, the primitive maps, or the indefinite integrals, of a continuous func-

tion g : [0, 1]→ R can be considered as the family of continuous functions {f+a | a ∈ R}
where f : [0, 1] → R is differentiable with f ′ = g. In this section, we seek the analogous

concept in domain theory. In order to define the primitive maps of a Scott continuous

function, which in the spirit of classical analysis is expected to be a family of Scott

continuous functions, we first introduce the notion of an interval Lipschitz constant of

a Scott continuous function. Note that, in this paper, we write the classical derivative

of a classical function f as f ′. The notation df
dx is used only for the domain-theoretic

derivative that will be introduced in the next section. The type of a variable is always

clear from the context, which the reader should identify.

3.1. Interval Lipschitz constant

The idea of an interval Lipschitz constant can be motivated by considering the case of

a classical function or its canonical interval domain extension. Suppose, for some open

interval a ⊆ [0, 1] and a compact interval b ⊆ R, the function f : [0, 1] → R satisfies

b(x− y) ≤ f(x)− f(y) ≤ b(x− y) for all x, y ∈ a◦ with y ≤ x; note that if f is in fact C1

this will be equivalent to b ≤ f ′(x) ≤ b for all x ∈ a◦. We say that b and b are, respectively,

a lower Lipschitz constant and an upper Lipschitz constant for f in the open interval a.

Then we can think of b as an interval Lipschitz constant for f in a. The above inequalities

can be expressed in terms of If : I[0, 1]→ IR to give: b({x} − {y}) v If({x})− If({y})
for all {x}, {y} � a. This latter condition is now generalized as follows to define the

notion of an interval Lipschitz constant.

Definition 3.1. The continuous function f : I[0, 1] → IR has an interval Lipschitz

constant b ∈ IR in a ∈ I[0, 1] if f satisfies the following differential property: for all

x1, x2 ∈ I[0, 1] with a� x1 and a� x2, b(x1 − x2) v f(x1)− f(x2). The single-step tie

δ(a, b) ⊆ D0[0, 1] of a with b is the collection of all functions in D0[0, 1] which have an

interval Lipschitz constant b in a.

Proposition 3.2.

(i) If f ∈ δ(a, b), for a◦ 6= ∅ and b 6= ⊥, then f({x}) is maximal for each x ∈ a◦ and the

induced function f : (a, a)→ R is Lipschitz and for all u, v ∈ a◦ with v ≤ u we have

b(u− v) ≤ f(u)− f(v) ≤ b(u− v).
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(ii) For f : (a, a) → R, with a ⊆ [0, 1] a non-trivial interval, we have If ∈ δ(a, b) iff f is

Lipschitz and for all u, v ∈ a◦ with v ≤ u we have b(u− v) ≤ f(u)− f(v) ≤ b(u− v).

Proof. (i) Suppose f ∈ δ(a, b), but f({y}) is not maximal. Let ε > 0 be small enough

so that x = [y − ε, y + ε] ⊆ a◦. The diameter of b(x − x) can be made arbitrarily small

by choosing ε small. However, since b(x− x) v f(x)− f(x), it follows that the diameter

of b(x− x) is larger than the diameter of f(x)− f(x) which is larger than the diameter

of f({y}). This contradiction establishes the proof.

(ii) If If ∈ δ(a, b) and a < v ≤ u < a, then by putting x = {u} and y = {v} we get

b({u} − {v}) v If({u} − If({v}), in other words b(u− v) ≤ f(u)− f(v) ≤ b(u− v). For

the other implication, assume that x, y � a and z ∈ If(x)− If(y). Then z = f(u)−f(v)

for some u ∈ x and v ∈ y. Hence, z
u−v ∈ b and it follows that z ∈ b(x− y).

From Proposition 3.2, we get a simple geometric characterization for If ∈ δ(a, b) for

a classical function f ∈ C0[0, 1]. Let L(x, b) and L(x, b) be the straight lines through

the point (x, f(x)), for x ∈ a◦, with slopes b and b respectively. We have If ∈ δ(a, b) iff

the graph of f at (x, f(x)), for each x ∈ a◦, is locally contained within the closed region

bounded anti-clockwise from L(x, b) to L(x, b) (see Figure 1).

(x, f(x))

b

b

a

Graph(f)

.

Fig. 1. Geometric interpretation of interval Lipschitz constant

Example 3.3.

(i) If f1 : x 7→ |x| : R → R is the absolute value function and a ⊂ R is any compact

interval with 0 ∈ a◦, then If1 ∈ δ(a, [−1, 1]).

(ii) If f2 : x 7→ x2 sin 1
x : R→ R (with f(0) = 0), then If2 ∈ δ([−1, 1], [−3, 3]).

(iii)If f3 : x 7→ x sin 1
x : R → R (with f(0) = 0), then, for any compact interval a with

0 ∈ a◦, we have If2 ∈ δ(a, b) iff b = ⊥.

(iv)If g ∈ D0[0, 1] is the function given by Equation 2, then for any compact interval

a ⊆ [0, 1] with 1/2 ∈ a◦, we have g ∈ δ(a, b) iff b = ⊥.

The following proposition justifies our definition of interval Lipschitz constant.

Proposition 3.4. For f ∈ C1[0, 1], the following conditions are equivalent.

(i) If ∈ δ(a, b).
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(ii)∀z ∈ a◦. b ≤ f ′(z) ≤ b.
(iii)a↘ b v If ′.

Proof.

(i) ⇐⇒ (ii). This follows from Proposition 3.2 and the mean value theorem.

(iii) ⇒ (ii). Since a� {z} for all z ∈ a◦, it follows from a↘ b v If ′ that b v If ′{z} for

a� {z}.
(ii) ⇒ (iii). From (ii), we get b v If ′(x) for a� x. Hence a↘ b v If ′.

For each rational a and rational b, the tie δ(a, b) is a family of functions in D0 with a

finitary differential property as specified in Definition 3.1; similarly Im(Γ0)∩ δ(a, b) gives

a family of functions in C0 with a finitary differential property. Note that

(i) f v g ⇒ (f ∈ δ(a, b) ⇒ g ∈ δ(a, b)), i.e. δ(a, b) is an upper subset of I[0, 1]→ IR.

(ii) If f = g + {c} for some c ∈ R, then f ∈ δ(a, b) ⇐⇒ g ∈ δ(a, b).
We will see at the end of this section that δ(a, b) is defined as the set of primitive maps

of a↘ b. However, in order to define the set of the primitive maps of a Scott continuous

function in general, we first need to study and generalize the notion of single-step ties.

3.2. Ties and their properties

We will now study the single-step ties and their generalizations. First we note that single-

step ties share some common properties with single-step functions.

Proposition 3.5. Suppose a◦ 6= ∅ and b 6= ⊥. We have δ(a, b) ⊇ δ(c, d) iff c v a and

b v d.

Proof. The “if” part follows immediately from the definition of δ(a, b). To show the

“only if” part, assume δ(a, b) ⊇ δ(c, d) holds but not c v a. Let g : [0, 1] → R be the

linear partial function defined by

g(x) =


dx x ∈ c◦

(b− 1)x x ∈ (a \ c)◦
⊥ otherwise

Then Ig ∈ δ(c, d) but Ig /∈ δ(a, b). On the other hand if b v d does not hold, consider the

function f : c◦ → R with f(x) = tx for t ∈ d \ b. Then, If ∈ δ(c, d) \ δ(a, b).
Corollary 3.6. Suppose a◦ 6= ∅ and b 6= ⊥. We have: δ(a, b) ⊇ δ(c, d) iff a↘ b v c↘ d.

Corollary 3.7. Suppose a◦, c◦ 6= ∅ and b, d 6= ⊥. Then, δ(a, b) = δ(c, d) ⇐⇒ a =

c & b = d.

In analogy with step functions we now have the following definition.

Definition 3.8. A step tie of D0 is any non-empty finite intersection
⋂

1≤i≤n δ(ai, bi) ⊂
D0. A tie of D0 is any non-empty intersection ∆ =

⋂
i∈I δ(ai, bi) ⊂ D0. The domain of

∆ is dom(∆) =
⋃
i∈I{a◦i | bi 6= ⊥}.

A step tie with rational intervals gives us a family of functions with a finite set of given

differential properties, and a tie gives a family of functions with a set of given differential

properties. Similar to Proposition 3.2, we have the following result. Recall that a function
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f : O → R defined on the open set O ⊆ R is locally Lipschitz if it is Lipschitz in a

neighbourhood of any point in O.

Proposition 3.9. If ∆ ⊂ D0 is a tie and f ∈ ∆, then f({x}) is maximal for x ∈ dom(∆)

and the induced real valued function on dom(∆) is locally Lipschitz. In particular, for

f ∈ C0, if If ∈ ∆ then f is locally Lipschitz in dom(∆).

Proof. Let x ∈ dom(∆). Then there exists a step tie δ(a, b) with x ∈ a◦ and ∆ ⊆ δ(a, b)
and the result follows from Proposition 3.2 .

We now aim to establish a necessary and sufficient condition for a family of step ties

to be consistent. Let g ∈ D0 with g =
⊔
i∈I ai ↘ bi and put g({x}) = [g−(x), g+(x)].

Assume k : dom(g)→ R is any Lebesgue integrable function with g− ≤ k ≤ g+ and µ the

Lebesgue measure on [0, 1]. Let (Ot)t∈C be the set of connected components of dom(g)

and fix ct ∈ Ot for each t ∈ C. Define

f : [0, 1] → R⊥

x 7→

{ ∫ x
ct
k dµ x ∈ Ot

⊥ x /∈ dom(g)

Lemma 3.10. With f as defined above, we have: If ∈
⋂
i∈I δ(ai, bi).

Proof. We show that If ∈ δ(ai, bi) for each i ∈ I. Let x, y ∈ a◦i with x > y. For any

z ∈ a◦i , we have bi v g{z}. Hence

bi ≤ g−(z) ≤ k(z) ≤ g+(z) ≤ bi, (3)

which implies that [x, y] ⊆ dom(g), i.e. x and y belong to the same component Ot, say,

of dom(g). This gives: f(x) − f(y) =
∫ x
ct
k dµ −

∫ y
ct
k dµ =

∫ x
y
k dµ. By Equation 3, we

obtain bi(x− y) ≤ f(x)− f(y) ≤ bi(x− y), i.e. If ∈ δ(ai, bi).
Proposition 3.11. For any indexing set I,

⋂
i∈I δ(ai, bi) 6= ∅ iff the family of step

functions (ai ↘ bi)i∈I is consistent.

Proof. The “Only if” part. Suppose there exists f ∈
⋂
i∈I δ(ai, bi) but (ai ↘ bi)i∈I

is not consistent. Then there is a finite subfamily (ai ↘ bi)i∈J , for J ⊆ I, which is

not consistent, i.e. Con�(ai)i∈J but not Conv(bi)i∈J . Therefore there exists a pair, say

δ(a1, b1) and δ(a2, b2), in this finite subfamily such that a◦1 ∩ a◦2 6= ∅ with b1 ∩ b2 = ∅.
Assume without loss of generality that b2 < b1. Take maximal elements {x1} and {x2}
with x2 < x1 and x1, x2 ∈ (a1 ∩ a2)◦. Then b1({x1} − {x2}) and b2({x1} − {x2}) are

disjoint.

Since by assumption f ∈ δ(a1, b1) ∩ δ(a2, b2), we have

b1({x1} − {x2}) v f({x1})− f({x2})

b2({x1} − {x2}) v f({x1})− f({x2})
which gives a contradiction, since the two intervals on the left hand side are disjoint.

The “If” part. By assumption, g =
⊔
i∈I ai ↘ bi exists and, thus, the result follows

from Lemma 3.10 by taking k = g−, say.

Corollary 3.12.
⋂
i∈I δ(ai, bi) 6= ∅ iff for any finite subfamily J ⊆ I we have

⋂
i∈J δ(ai, bi) 6=

∅.
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Proposition 3.13. δ(a, b) ⊇
⋂
i∈I δ(ai, bi) if a↘ b v

⊔
i∈I ai ↘ bi.

Proof. Let a′ ↘ b′ � a↘ b so that b′ �
⊔
aiva′ bi. Assume f ∈

⋂
i∈I δ(ai, bi). We will

show that f ∈ δ(a′, b′). Let a′ � x1, x2. For each i ∈ I with ai v a′ we have:

bi(x1 − x2) v f(x1)− f(x2).

By the Scott continuity of product of two intervals and our assumption, we get:

b′(x1 − x2) v
⊔
aiva

bi(x1 − x2) v f(x1)− f(x2),

which show that f ∈ δ(a′, b′). Now let (a′n ↘ b′n)n≥0 be an increasing chain of single-step

functions way-below a ↘ b with lub a ↘ b. Then, we have f ∈
⋂
n≥0 δ(a

′
n, b
′
n). Let

a� x1, x2. Then we can find n such that a� an � x1, x2 and thus

bn(x1 − x2) v f(x1)− f(x2).

By Scott continuity we get

b(x1 − x2) v f(x1)− f(x2),

as required.

Corollary 3.14.
⋂
i∈I δ(ai, bi) ⊇

⋂
i∈J δ(ai, bi) if

⊔
i∈I ai ↘ bi v

⊔
i∈J ai ↘ bi.

Let (T 1[0, 1],⊇) be the poset of ties of D0 ordered by reverse inclusion.

Proposition 3.15. (T 1[0, 1],⊇) is a dcpo.

Proof. Suppose (∆j)j∈J is a directed set with respect to the partial order ⊇, i.e.

∆j1 ∩ ∆j2 6= ∅ for j1, j2 ∈ J . Let ∆j =
⋂
i∈Ij δ(ai, bi), where we assume Ij1 ∩ Ij2 = ∅

for j1 6= j2. Consider the collection (δ(ai, bi))i∈
⋃

j∈J Ij
. By Corollary 3.12, it suffices to

show that any finite subfamily of this collection has non-empty intersection. Suppose

it ∈
⋃
j∈J Ij for 1 ≤ t ≤ n. Then δ(ait , bit) ∈ ∆jt for some jt ∈ I (1 ≤ t ≤ n). By

assumption
⋂

1≤t≤n ∆jt 6= ∅. Hence,
⋂

1≤t≤n δ(ait , bit) ⊇
⋂

1≤t≤n ∆jt 6= ∅.
We are finally in a position to define the set of primitive maps of a Scott continuous

function; in fact now we can do more and define the integral operator which gives the

set of primitive maps of any Scott continuous function as follows.

Definition 3.16. The integral operator
∫

: D0 → T 1 is defined by
∫

(
⊔
i∈I ai ↘ bi) =⋂

i∈I δ(ai, bi). We usually write
∫

(f) as
∫
f and call it the set of primitive maps of f .

Proposition 3.17. The integral operator is well-defined, onto and continuous.

Proof. By Corollary 3.14,
∫

is well-defined and monotone. By Proposition 3.11, it is

onto. Let (gi)i∈I be a directed set in D0 with gi =
⊔
j∈Ii aj ↘ bj . Then,

∫ ⊔
i∈I gi =∫ ⊔

i∈I
⊔
j∈Ii aj ↘ bj =

⋂
i∈I
⋂
j∈Ii aj ↘ bj =

⋂
i∈I
∫
gi =

⊔
i∈I
∫
gi.

4. Derivative of a Scott continuous function

Given a Scott continuous function f : I[0, 1] → IR, the relation f ∈ δ(a, b), for some

intervals a and b, provides, as we have seen, finitary information about the local differ-

ential properties of f . By collecting all such local information, we obtain the complete
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differential properties of f , namely its derivative. For clarity, we will denote by df
dx the

new notion of the domain-theoretic derivative of a Scott continuous function f and write

as f ′ the classical derivative of a classical continuous function f .

Definition 4.1. The derivative of a continuous function f : I[0, 1]→ IR is the map

df

dx
=

⊔
f∈δ(a,b)

a↘ b : I[0, 1]→ IR.

Theorem 4.2.

(i) df
dx is well-defined and Scott continuous.

(ii) If f ∈ C1[0, 1] then dIf
dx = If ′.

(iii)f ∈ δ(a, b) iff a↘ b v df
dx .

Proof. (i) Let the indexing set I be defined by i ∈ I ⇐⇒ f ∈ δ(ai, bi). Then⋂
i∈I δ(ai, bi) 6= ∅. Hence, (ai ↘ bi)i∈I is consistent. Therefore, df

dx =
⊔
i∈I ai ↘ bi exists

and is Scott continuous.

(ii) By Proposition 3.4, we have: If ∈ δ(a, b) ⇐⇒ a↘ b v If ′. Hence, If ′ =⊔
If∈δ(a,b) a↘ b.

(iii) The left to right implication is obvious. For the right to left implication, we

show that a′ ↘ b′ � df
dx implies f ∈ δ(a′, b′), from which the result follows. Assume

that a′ ↘ b′ � df
dx . Since df

dx is the directed lub of step functions whose corresponding

simple ties contain f , there exists a step function (ai ↘ bi)i∈I with f ∈ δ(ai, bi) for all

i ∈ I such that a′ ↘ b′ v
⊔
i∈I ai ↘ bi. From Proposition 3.13, it follows that δ(a′, b′) ⊇⋂

i∈I δ(ai, bi) and thus f ∈ δ(a′, b′) as required.

Note the significance of Theorem 4.2. In classical mathematics, the derivative of a con-

tinuous function f : [0, 1] → R at a point x ∈ [0, 1] may not exist and in fact f may

be nowhere differentiable; even if the derivative f ′(x) exists at all points x ∈ [0, 1], the

map x 7→ f ′(x) : [0, 1]→ R may not be continuous. Such “irregularities” do not happen

in the domain-theoretic world. In fact, any Scott continuous function f : I[0, 1] → IR is

differentiable and its derivative df
dx : I[0, 1] → IR is a Scott continuous map, i.e. has the

same type as f itself.

Proposition 4.3.

(i) Let f : I[0, 1] → IR be Scott continuous. Suppose for some z ∈ [0, 1], f({z}) is not

maximal, then df
dx ({z}) = ⊥.

(ii) Suppose f ∈ D0. If df
dx ({y}) = {c} is maximal, then f sends maximal elements

to maximal elements in a neighbourhood U of y and the derivative of the induced

restriction f : U → R exists at y and f ′(y) = c.

(iii)If g : [0, 1] → R is a bounded, integrable function, and f : [0, 1] → R is a (clas-

sical) indefinite integral of g, i.e. f(y) =
∫ y

0
g dµ, then lim g(y) ≤ lim f(x)−f(y)

x−y ,

lim f(x)−f(y)
x−y ≤ lim g(y) and dIf

dx ({y}) w [lim g(y), lim g(y)].

Proof. (i) By Proposition 3.2, for b 6= ⊥, we have f ∈ δ(a, b)⇒ z /∈ a◦. Hence,

df

dx
({z}) =

⊔
{b|f ∈ δ(a, b) & z ∈ a◦} = ⊥.
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(ii) We have {c} = df
dx ({y}) =

⊔
{b | y ∈ a◦ & f ∈ δ(a, b)}. For any neighbourhood O

of c in R, there exists b with c ∈ b◦ and b ⊂ O such that there exists a ∈ I[0, 1] with

y ∈ a and f ∈ δ(a, b). By Proposition 3.2(i), this implies firstly that f({x}) is maximal

for each x ∈ a◦ and secondly that the restriction f : a◦ → R satisfies f(x)−f(y)
x−y ∈ b ⊆ O

for all x ∈ a◦ with x 6= y, i.e. limx→y
f(x)−f(y)

x−y = c.

(iii) Let ε > 0 be given. There exists a neighbourhood (a, a) of y such that for all

x ∈ a◦:

−ε+ lim g(y) ≤ g(x) ≤ ε+ lim g(y).

Integration on [x, z] yields:

(−ε+ lim g(y))(z − x) ≤ f(z)− f(x) ≤ (ε+ lim g(y))(z − x).

Thus If ∈ δ(a, [−ε + lim g(y), ε + lim g(y)]) and the first two inequalities follow. Since

ε > 0 is arbitrary, we also get

dIf

dx
({y}) =

⊔
{b | y ∈ a◦, If ∈ δ(a, b)} w [lim g(y), lim g(y)].

Example 4.4. The derivatives of the canonical extensions of f1, f2, f3 and g of Exam-

ple 3.3 are given by

dIf1
dx (y) =


{−1} if y < 0

{1} if y > 0

[−1, 1] if 0 ∈ y

dIf2
dx (y) =

{
If ′(y) if 0 /∈ y

[−1, 1] if 0 ∈ y

dIf3
dx (y) =

{
If ′(y) if 0 /∈ y

⊥ if 0 ∈ y
dIg
dx (y) =

{
{0} if 1/2 /∈ y

⊥ if 1/2 ∈ y
Note that the classical derivative of f2 exists at 0 but the derivative is not continuous at

0.

The operator

d
dx : D0[0, 1] → D0[0, 1]

f 7→ df
dx

is easily seen to be monotone but not continuous. In fact the derivative of any step func-

tion
⊔
i∈I ai ↘ bi for intervals bi (i ∈ I) with non-zero length is the bottom function.

Since, for example, the function If , where f = 0 is a constant function, can be con-

structed as the lub of an increasing chain of such step functions, it follows that d
dx is

not continuous. In Section 6, we will define what we will call the continuous derivative

operator. Finally, we note that the definition of the derivative together with Theorem 4.2

and Proposition 4.3 easily extend to D0
r .

We finally obtain the generalization of Theorem 4.2(iii) to ties, which establishes a

duality between primitive maps and differentiation.

Corollary 4.5. f ∈
∫
g iff g v df

dx .
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Proof. Let g =
⊔
i∈I ai ↘ bi, then by Theorem 4.2(iii):

f ∈
∫
g ⇐⇒ f ∈

⋂
i∈I

δ(ai, bi) ⇐⇒ ∀i ∈ I. ai ↘ bi v
df

dx
⇐⇒

⊔
i∈I

ai ↘ bi v
df

dx
.

The above duality can be considered as a fundamental theorem of calculus for interval-

valued functions of an interval variable. In the next section, we will see how a variant of

this result for functions of a real variable is closely related to the classical fundamental

theorem of calculus.

5. Functions of a real variable

Having studied ties of D0, we now consider the similar notion for D0
r . We will derive an

interval version of the fundamental theorem of calculus and establish the relation between

the domain theoretic derivative and the Clarke’s derivative. Furthermore, the information

ordering for the ties of D0
r has a simple characterization which we will determine here.

The single-step tie δr(a, b) ⊂ D0
r is simply the restriction of δ(a, b) to the subdomain

D0
r , in other words δr(a, b) = I(δ(a, b) ∩ E(D0

r )); more generally, a tie of D0
r is given by⋂

i∈I δr(ai, bi) = I((
⋂
i∈I δ(ai, bi)) ∩ E(D0

r )) for any tie
⋂
i∈I δ(ai, bi) of D0. Notice that,

by Proposition 3.2(i), any step tie of D0
r is essentially a collection of classical Lipschitz

functions. In particular, for f ∈ D0
r and b 6= ⊥, we have: f ∈ δr(a, b) iff the image of a◦

under f is a subset of maximal elements of IR and the induced map f : a◦ → R satisfies

b(x − y) ≤ f(x) − f(y) ≤ b(x − y) for all x ≥ y with x, y ∈ a◦. Clearly, for a◦ 6= ∅ and

b 6= ⊥, we have δr(a, b) ⊇ δr(c, d) iff a ⊆ c and d ⊆ b.
Proposition 5.1.

(i) f ∈
⋂
i∈I δr(ai, bi) ⇐⇒ E(f) ∈

⋂
i∈I δ(ai, bi).

(ii) I(f) ∈
⋂
i∈I δr(ai, bi) if f ∈

⋂
i∈I δ(ai, bi).

Proof. (i) We have f ∈
⋂
i∈I δr(ai, bi) iff f = I(g) for some g ∈

⋂
i∈I δ(ai, bi)∩E(D0

r ) iff

f = I(g) and g ∈
⋂
i∈I δ(ai, bi)∩E(D0

r ) with g = E(h) for some h ∈ D0
r . Since I ◦E = 1D0

r

the latter condition gives h = f and the result follows.

(ii) If f ∈
⋂
i∈I δ(ai, bi) then E ◦ I(f) ∈

⋂
i∈I δ(ai, bi) since ties are upper sets. The

result follows by (i).

Proposition 5.2. For any indexing set I,
⋂
i∈I δr(ai, bi) 6= ∅ iff the family of step func-

tions (ai ↘r bi)i∈I is consistent.

Proof. This follows immediately by Propositions 3.11 and 5.1(i) together with Equa-

tion 1.

We also have the following counterparts of Proposition 3.11, Corollary 3.14 and Propo-

sition 3.15 for ties in D0
r :

Proposition 5.3. δr(a, b) ⊇
⋂
i∈I δr(ai, bi) if a↘r b v

⊔
i∈I ai ↘r bi.

Proof. This can be proved by the same method used to prove Proposition 3.11.

Corollary 5.4.
⋂
i∈I δr(ai, bi) ⊇

⋂
i∈J δr(ai, bi) if

⊔
i∈I ai ↘r bi v

⊔
i∈J ai ↘r bi.
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Let (T 1
r [0, 1],⊇) be the poset of ties of D0

r ordered by reverse inclusion.

Proposition 5.5. (T 1
r [0, 1],⊇) is a dcpo.

Furthermore, the integral map
∫
r

: D0
r → T 1

r defined by
∫
r

⊔
i∈I ai ↘r bi =

⋂
i∈I δr(ai, bi)

is well-defined, onto and continuous; it satisfies
∫
r

= I ◦
∫
◦E . For convenience we write∫

for
∫
r

when no ambiguity can arise.

5.1. Fundamental theorem of calculus

As in the case of functions with interval input, we can define the domain-theoretic deriva-

tive of a function of a real variable.

Definition 5.6. The derivative of a continuous function f : [0, 1]→ IR is the map

df

dx
=

⊔
f∈δr(a,b)

a↘r b : [0, 1]→ IR.

Given f ∈ C0[0, 1], we write if for the map if : [0, 1]→ IR given by if(x) = {f(x)}. As

in Theorem 4.2, we obtain:

Theorem 5.7.

(i) df
dx is well-defined and Scott continuous.

(ii) If f ∈ C1[0, 1] then dif
dx = if ′.

(iii)f ∈ δr(a, b) iff a↘r b v df
dx .

We then have the following counterpart of Corollary 4.5.

Corollary 5.8. For f, g ∈ D0
r , we have: f ∈

∫
g iff g v df

dx .

By restricting to continuous classical functions, we obtain the classical fundamental the-

orem of calculus.

Corollary 5.9. If f, g ∈ D0
r are extensions of classical C0 function, then we have: f ∈

∫
g

iff g = df
dx .

It follows from Corollary 5.9, that the duality of differentiation and primitive functions

in Corollary 5.8 can be considered as an extension of the classical fundamental theorem

of calculus to interval-valued functions of a real variable.

5.2. Relation with Clarke’s’ derivative

We now recall the notion of Clarke’s derivative for Lipschitz functions. Recall that any

function f : [0, 1] → R that is Lipschitz in a neighbourhood of a point, is differentiable

almost everywhere in that neighbourhood. Denote by Ωf ⊂ [0, 1] the set of points at

which f is not differentiable.

Definition 5.10. (Clarke, 1983, page 63) Let f : [0, 1]→ R be Lipschitz near x ∈ [0, 1],

then the Clarke’s derivative of f at x is defined as

∂f = co{lim f ′(xm) : xm → x, xm /∈ Ωf}, (4)

where for a subset A ⊂ R the convex set generated by A is denoted by coA.
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The meaning of the above expression is as follows: consider any sequence xm ∈ [0, 1]n\Ωf ,

m ∈ N, tending to x such that the sequence f ′(xm) converges, then the convex hull of

all such limits is the Clarke’s derivative of f at x.

We note that the two notions of Clarke’s derivative and the domain-theoretic derivative

both extend to functions of several variables: f : [0, 1]n → R. The Clarke’s derivative in

higher dimensions is usually referred to as Clarke’s gradient. The Clarke’s gradient of a

function at a point where the function is locally Lipschitz is a non-empty, compact and

convex subset of Rn (Clarke, 1983, page 27). We now establish the connection between

the domain-theoretic derivative and the Clarke’s derivative.

Theorem 5.11. For any function f : [0, 1] → R, the domain-theoretic derivative at a

point where the function is locally Lipschitz coincides with the Clarke’s derivative at that

point. �

Proof. This follows from a more general result (Edalat et al., 2004, Thereom 4.2)

relating the domain-theoretic derivative of a real-valued locally Lipschitz function of

n real variables with the Clarke’s gradient: the domain-theoretic derivative gives the

smallest n-dimensional rectangle containing the Clarke’s gradient. The result then follows

since in dimension one the Clarke gradient, i.e. the Clarke derivative, is a nonempty

compact interval.

5.3. Partial order of ties

The information order in T 1
r has an elementary characterization, which we will now

determine. We note that the result of this subsection is not used in the rest of the paper

and the reader may wish to skip it in the first reading. Define the function

r : D0
r → ([0, 1]2 → IR)

by:

r−(g) : (x, y) 7→
{ ∫ y

x
g− dµ x, y in the same component of dom(g)

⊥ otherwise,

and,

r+(g) : (x, y) 7→
{ ∫ y

x
g+ dµ x, y in the same component of dom(g)

⊥ otherwise.

By the monotone convergence theorem r is a Scott continuous function. We also define

the Scott continuous map [s, t] : D0
r → ([0, 1]2 → IR) with

s(g) : (x, y) 7→


r−(g)(x, y) if x ≤ y with x, y in the same component of dom(g)

−r+(g)(y, x) if y ≤ x with x, y in the same component of dom(g)

⊥ otherwise.

t(g) : (x, y) 7→


r+(g)(x, y) if x ≤ y with x, y in the same component of dom(g)

−r−(g)(y, x) if y ≤ x with x, y in the same component of dom(g)

⊥ otherwise.

Proposition 5.12.
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(i) Let ∆ ∈ T 1
r and consider any g ∈ D0

r with ∆ =
∫
g. Then λy. s(g)(x, y) and

λy. t(g)(x, y) are in ∆, both vanishing at x. Moreover, we have:

h ∈ ∆ ⇐⇒ r−(g)(x, y) ≤ h(y)− h(x) ≤ r+(g)(x, y),

for all x, y belonging to the same component of dom(g) with x ≤ y.

(ii) The functions λy. s(g)(x, y) and λy. t(g)(x, y) are respectively the least and greatest

functions h ∈ ∆ with h(x) = 0.

(iii)The following are equivalent:

–
∫
g1 ⊇

∫
g2,

– g−1 ≤ g
−
2 a.e. and g+

2 ≤ g
+
1 a.e.,

– for all x, y with x ≤ y we have: r−(g1)(x, y) ≤ r−(g2)(x, y) and r+(g2)(x, y) ≤
r+(g1)(x, y),

– s(g1) ≤ s(g2) and t(g1) ≥ t(g2).

(iv)
∫
g1 =

∫
g2 iff g−1 = g−2 a.e. and g+

1 = g+
2 a.e.

(v) δr(a, b)�
⋂
i∈I δr(ai, bi) if a↘r b�

⊔
i∈I ai ↘r bi.

Proof. (i) Let g =
⊔
i∈I ai ↘ bi with

∫
g = ∆. Take x, y in the same component

of dom(g) with x ≤ y. Note that if h ∈ ∆, then, being locally Lipschitz (and hence

absolutely continuous) in dom(∆) = dom(g), h is differentiable a.e. (with respect to

the Lebesgue measure) in dom(g) and h is equal to the integral of its derivative, i.e.

h(y) − h(x) =
∫ y
x
h′ dµ (Hewitt and Stromberg., 1975, Sections 17.17 and 18.17). In

the following whenever we write h′(x) in a relation, it is meant that the relation holds

whenever h′(x) exists, which is a.e. We have, h ∈
⋂
i∈I δr(ai, bi) iff ∀i ∈ I, x ∈ a◦i . bi ≤

h′(x) ≤ bi iff supx∈a◦i bi ≤ h
′(x) ≤ infx∈a◦i bi iff h′(x) ∈

⊔
x∈a◦i

bi iff ∀x ∈ dom(g). g−(x) ≤
h′(x) ≤ g+(x) iff

∫ y
x
g− dµ ≤ h(y) − h(x) ≤

∫ y
x
g+ dµ, for all x, y belonging to the same

component of dom(g) with x ≤ y.

(ii) By part (i) any h ∈ ∆ with h(x) = 0 satisfies: s(g)(x, y) ≤ h(y) ≤ t(g)(x, y) for

all x, y in the same component of dom(g). On the other hand, by Lemma 3.10, the maps

λy. s(g)(x, y) and λy. t(g)(x, y) belong to ∆ for any x ∈ dom(g).

(iii) This follows from parts (i) and (ii).

(iv) Immediate consequence of part (iii).

(v) Assume a ↘r b �
⊔
i∈I ai ↘r bi, i.e.

⊔
ai�a bi � b. Let (∆i)i∈J be a directed set

of ties with
⋂
i∈I δr(ai, bi) ⊇

⋂
i∈J ∆i. Take gi ∈ D0

r with ∆i =
∫
gi for all i ∈ J and

let g =
⊔
i∈I ai ↘r bi. From a ↘r b � g we get b � g(a). Put c = g(a), so that b < c

and c < b. Then, for all x, y, z ∈ a with y ≥ z ≥ x we have: c ≤ g−(z) and g+(z) ≤ c.

Integrating from x to y, by part (i) we get:

b(y − x) < c(y − x) ≤ s(g)(x, y) ≤ sup
i∈J

s(gi)(x, y)

inf
i∈J

t(gi)(x, y) ≤ t(g)(x, y) ≤ c(y − x) < b(y − x).

Thus, for the directed set of continuous maps (λx. λy.s(gi)(x, y)− b(y− x))i∈J , we have:

sup
i∈J

(λx. λy.s(gi)(x, y)− b(y − x)) ≥ s(g(x, y))− b(y − x)) > 0.
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It follows that the directed family of continuous functions

(λx. λy.min(s(gi(x, y))− b(y − x), s(g)− b(y − x)))i∈J

converges monotonically, thus uniformly, to the function λx. λy.s(g) − b(y − x) > 0

on the compact set {(x, y) ∈ [0, 1]2 |x ≥ y}. Therefore, there exists i ∈ J such that

λx. λy.min(s(gi(x, y))− b(y−x), s(g)− b(y−x))) > 0 and thus λx. λy.s(gi(x, y))− b(y−
x) > 0. Similarly there exists i ∈ J such that λx. λy.t(gi(x, y))−b(y−x) < 0. Hence there

exists i ∈ J with λx. λy.s(gi(x, y)) − b(y − x) > 0 and λx. λy.t(gi(x, y)) − b(y − x) < 0.

It follows, by part (i) again, that δ(a, b) ⊇ ∆i as required.

The characterization of the information ordering for T 1 is far more involved than

Proposition 5.12 for T 1
r ; we will present it in a future paper.

6. The Domain of C1 functions

We now define the domain of C1 functions. Consider the relation Cons ⊂ D0 × D0

defined by (f, g) ∈ Cons if ↑f ∩
∫
g 6= ∅. We will show that this relation is Scott closed

and decidable on basis elements.

Proposition 6.1. Let g ∈ D0 and (fi)i∈I be a non-empty family of functions fi :

dom(g) → R with Ifi ∈
∫
g for all i ∈ I. If h1 = infi∈I fi is real-valued then Ih1 ∈

∫
g.

Similarly, if h2 = supi∈I fi is real-valued, then Ih2 ∈
∫
g.

Proof. Suppose h1 is real-valued. Let a↘ b v g. From Proposition 3.2, we have

b(u − v) ≤ fi(u) − fi(v) ≤ b(u − v) for all u, v ∈ a◦ with u > v and all i ∈ I. Taking

infimum, we get b(u−v) ≤ h1(u)−h1(v) ≤ b(u−v) and, by Proposition 3.2, Ih1 ∈ δ(a, b),
as required. The case of h2 is similar.

Let L[0, 1] be the set of partial maps of [0, 1] into the extended real line. Consider

the two dcpo’s (L[0, 1],≤) and (L[0, 1],≥). Define the maps s : D0 ×D0 → (L,≤) and

t : D0 ×D0 → (L,≥) by

s : (f, g) 7→ inf{h : dom(g)→ R | Ih ∈
∫
g & h ≥ f−}

t : (f, g) 7→ sup{h : dom(g)→ R | Ih ∈
∫
g & h ≤ f+}.

We use the convention that the infimum and the supremum of the empty set are ∞ and

−∞, respectively. Note that given a connected component A of dom(g) with A∩dom(f) =

∅, then s(f, g)(x) = −∞ and t(s, f)(x) =∞ for x ∈ A.

Proposition 6.2. The following are equivalent:

(i) (f, g) ∈ Cons.

(ii) s(f, g) ≤ t(f, g).

(iii)There exists h : dom(g)→ R with Ih ∈
∫
g and f− ≤ h ≤ f+ on dom(g).

Proof. If dom(f) ∩ dom(g) = ∅, then the three statements hold trivially. So assume in

the following proof that dom(f) ∩ dom(g) 6= ∅.
(ii)⇒ (i). Suppose s(f, g) ≤ t(f, g). Then, f tIs(f, g) ∈ ↑f ∩

∫
g and hence (f, g) ∈ Cons.
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(i) ⇒ (ii). Suppose (f, g) ∈ Cons. Assume h ∈ ↑f ∩
∫
g. Then, the induced map h :

dom(g)→ R satisfies Ih ∈
∫
g. Hence, f− ≤ h ≤ f+ and thus s(f, g) ≤ t(f, g).

(ii) ⇒ (iii). Suppose s(f, g) ≤ t(f, g). Put h = s(f, g).

(iii) ⇒ (ii). We have s(f, g) ≤ h ≤ t(f, g).

Proposition 6.3. The maps s and t are Scott continuous.

Proof. Consider the map s. If f1 v f2 and g1 v g2, then we have
∫
g1 ⊇

∫
g2 and

f−1 ≤ f
−
2 and it follows that s(f1, g1) ≤ s(f2, g2). Let {(fi, gi)}i∈ω be an increasing chain

and put f =
⊔
i∈ω fi and g =

⊔
i∈ω gi. To show the continuity of s we need to show that

supis(fi, gi) ≥ s(f, g) on any connected component of dom(g) =
⋃
i∈ω dom(gi). Take any

such connected component A ⊆ dom(g). If A ∩ dom(f) = ∅ then s(f, g) = −∞ on A

and the result follows. Assume that A ∩ dom(f) 6= ∅, i.e., domfi0 ∩ domgi0 6= ∅ for some

i0 ∈ ω. If s(fi, gi) = ∞ on A ∩ dom(gi) for some i ≥ i0, then supi∈ωs(fi, gi) = ∞ on A

and the result follows again. Otherwise, assume without loss of generality that −∞ <

s(fi, gi) <∞ on A ∩ dom(gi) for all i ∈ ω. Then from I(s(fi, gi))�A∈
∫
gi it follows that

∀i ≥ j. I(s(fi, gi))�A∈
∫
gj , and hence, by Proposition 6.1, I(supi∈ω(s(fi, gi)�A)) ∈

∫
gj .

Thus I(supi∈ω s(fi, gi))�A∈
⊔
j

∫
gj =

∫ ⊔
gj . On the other hand, s(fi, gi) ≥ f−i on A

implies supi∈ω s(fi, gi) ≥ f−i on A and hence supi∈ω s(fi, gi) ≥ f− on A. This shows that

s is continuous. Similarly t is continuous.

Corollary 6.4. The relation Cons is Scott closed.

Proof. Let (fi, gi)i∈I ⊂ D0 × D0 be a directed family with (fi, gi) ∈ Cons for all

i ∈ I. Then, by Proposition 6.2, s(fi, gi) ≤ t(fi, gi) for all i ∈ I. Hence, s(f, g) =

supi∈I s(fi, gi) ≤ infi∈I t(fi, gi) = t(f, g).

Corollary 6.5. Let (f, g) ∈ Cons. Then in each connected component O of the domain

of definition of g which intersects the domain of definition of f , there exist two locally

Lipschitz functions s : O → R and t : O → R such that Is, It ∈ ↑f ∩
∫
g and for each

u ∈ ↑f ∩
∫
g, we have u({x}) = {v(x)} with s(x) ≤ v(x) ≤ t(x) for all x ∈ O (see

Figure 2).

Next we will show that Cons is decidable on (rational or semi-rational polynomial)

basis elements. To construct an effective structure for D1 later in this section, only the

decidability of consistency on rational step functions is required and the reader may

skip the details of the following lemma for the general case of rational or semi-rational

polynomial basis in the first reading and assume that the basis elements (f, g) in the

lemma are rational step functions, in which case the proof considerably simplifies. We

note the following general property.

Proposition 6.6. If α, β : [v, w]→ R are two piecewise semi-rational polynomials, then

the relation α ≤ β (i.e. ∀x ∈ [v, w]. α(x) ≤ β(x)) is decidable.

Lemma 6.7. Let f, g ∈ D0[0, 1] be semi-rational basis elements with (f, g) ∈ Cons.

Then the functions s(f, g) and t(f, g) are piecewise semi-rational polynomials in each

connected component of dom(g) with non-empty intersection with dom(f).

Proof.

Fix a connected component O = (v, w) of dom(g) with O∩dom(f) 6= ∅. Then, for x ∈
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Fig. 2. Two pairs of functions in Cons

O, we have s(f, g)(x) = sup
y∈O∩dom(f)

S(f,g)(x, y) where S(f,g) : O× (O∩dom(f))→ R
with

S(f,g)(x, y) =

{
f−(y) +

∫ x
y
g−(u) du x ≥ y

f−(y)−
∫ y
x
g+(u) du x < y

In other words, s(f, g) is the upper envelop of the one parameter family of functions

x 7→ S(f,g)(x, y). We will now construct s explicitly, which gives a constructive proof of

the lemma. Consider the common refinement A = {c0, c1, c2, · · · , cn}, with v = c0 < c1 <

c2 < · · · < cn = w, of the two partitions of O by the associated intervals of f and g

as described in Section 2. In the open intervals (ci−1, ci) (i = 1, · · · , n), the restrictions

f−�(ci−1,ci) = pi
− and f+�(ci−1,ci) = pi

+ are polynomials. Let q−, q+ : [v, w] → R be

the continuous piecewise polynomial functions with, say, q−(v) = q+(v) = 0 such that

for all x ∈ O \ A we have (q−)′(x) = g−(x) and (q+)′(x) = g+(x). Let q−i and q+
i be,

respectively, the restrictions of q− and q+ to [ci−1, ci]. Then for y ∈ (ci−1, ci) we have:



A. Edalat and A. Lieutier 22

S(f,g)(x, y) = p−i (y) +Qi(x, y) with

Qi(x, y) =

{
q−(x)− qi−(y) x ≥ y
q+(x)− qi+(y) x < y

,

where Qi : [v, w]× [ci−1, ci]→ R is a continuous piecewise polynomial function. For fixed

x ∈ [v, w], the left and right partial derivatives of Qi with respect to y ∈ (ci−1, ci) exist

and are given by

∂−Qi(x, y)

∂y
= −(q+

i )′(y)
∂+Qi(x, y)

∂y
= −(q−i )′(y).

The upper envelop can be expressed as,

s(f, g)(x) = sup
1≤i≤n

( sup
y∈[ci−1,ci]

(p−i (y) +Qi(x, y))).

The graph of the upper envelop for y ∈ [ci−1, ci], i.e. the graph of

x 7→ sup
y∈[ci−1,ci]

p−i (y) +Qi(x, y)

contains a finite number of segments each of which can be one of two types:

— A segment of the graph of p−i in an interval [α, β] ⊆ [ci−1, ci], where, for y ∈ [α, β],

the graph of x 7→ Qi(x, y) is, in a neighbourhood of y, below the tangent to p−i at y.

For this to happen, we must have the following two necessary conditions:

– α = ci−1 or (p−i )′(α) = (q+
i )′(α) or (p−i )′(α) = (q−i )′(α).

– β = ci or (p−i )′(β) = (q+
i )′(β) or (p−i )′(β) = (q−i )′(β).

— A segment of the graph of x 7→ p−i (y) +Qi(x, y) for some y ∈ [ci−1, ci], where either

y = ci−1 or y = ci or, else, (p−i )′(y) = (q+
i )′(y) or (p−i)′(y) = (q−i )′(y).

Let Ki = {ci−1, ci} ∪ {y ∈ (ci−1, ci) | (p−i )′(y) = (q+
i )′(y) or (p−i )′(y) = (q−i )′(y)}. Since

p−i , q−i and q+
i are semi-rational polynomials, Ki is, for each i = 1, · · · , n, a finite set of

algebraic numbers and we have:

sup
y∈[ci−1,ci]

p−i (y) +Qi(x, y) = sup
y∈Ki

p−i (y) +Qi(x, y). (5)

Recalling the definition of Qi, we see that for each y ∈ Ki, we have

p−i (y) +Qi(x, y) =

{
q−(x) + γ− x ≥ y
q+(x) + γ+ x < y,

where γ− = p−i (y) − q−i (y) and γ+ = p−i (y) − q+
i (y) are algebraic numbers. Recall that

comparison of algebraic numbers is decidable. It follows that the supremum in Equation 5

consists of a continuous piecewise polynomial function such that each polynomial defining

the function is a rational polynomial translated by an algebraic number and defined on

an interval with algebraic endpoints.

Now put K =
⋃

1≤i≤nKi = {dj | 0 ≤ j ≤ m} with v = d0 < d1 < · · · < dm = w.

Then, there are rational polynomials rj and algebraic numbers γj (1 ≤ j ≤ m) such that

s(f, g)(x) = rj(x) + γj for x ∈ [dj−1, dj ], as required. Similarly, it follows that t(f, g) is

a piecewise semi-rational polynomial in O.
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Theorem 6.8. The relation Cons ⊆ D0[0, 1]×D0[0, 1] is decidable on the basis of semi-

rational polynomial step functions.

Proof. Let f, g ∈ D0[0, 1] be semi-rational polynomial step functions. We note that

(f, g) ∈ Cons iff (f, g) is consistent in each connected open component of dom(g) with non-

empty intersection with dom(f). Fix a connected component O of the domain of g. Then,

using the notations in Lemma 6.7, (f, g) will be consistent in O iff ∀x ∈ O. s(f, g)(x) ≤
f+(x). Since s(f, g) and f+ are piecewise semi-rational polynomials, it follows by Propo-

sition 6.6, that the relation ∀x ∈ O. s(f, g)(x) ≤ f+(x), and hence the relation Cons, is

decidable.

Definition 6.9. The domain of C1 functions on [0, 1] is the subdomain of (D0[0, 1])2

given by

D1[0, 1] = {(f, g) ∈ (D0[0, 1])2|(f, g) ∈ Cons}.
Corollary 6.10. D1[0, 1] is an ω-continuous bounded complete dcpo which can be given

an effective structure.

Proof. We simply note that D1[0, 1] is a Scott-closed subset of the ω-continuous

bounded complete dcpo (I[0, 1] → IR)2 and is therefore itself an ω-continuous bounded

complete dcpo. Because Cons is decidable on the basis of step functions (and also on the

polynomial step functions), D1[0, 1] can be provided with an effective structure. More

specifically, we start with a standard effective structure on D0[0, 1]: a standard enumer-

ation of the basis of rational step functions, with decidable predicates for vD0 , �D0 ,

Con(D0,v) and Con(D0,�) when restricted to the basis; see (Smyth, 1977; Plotkin, 1981).

We take the product of the effectively given D0[0, 1] with itself, together with the decid-

able Cons on the pairs of basis elements. Since the basic relations in D1[0, 1] are obtained

componentwise from that of (D0[0, 1]) × (D0[0, 1]), we will obtain an enumeration of

the induced basis of D1[0, 1] with decidable predicates for vD1 , �D1 , Con(D1,v) and

Con(D1,�) when restricted to this basis.

Proposition 6.11. Let (f, g) ∈ D1 such that f and g preserve maximal elements in

some open set O ⊆ dom(f)∩dom(g). Then for all x ∈ O, the induced maps f, g : O → R
satisfy f ′(x) = g(x) for all x ∈ O .

Let the derivative operator

D

Dx
: D1[0, 1]→ D0[0, 1]

be the projection to the second component, i.e. D
Dx (f, g) = g. Then D

Dx is clearly contin-

uous and we have:

Proposition 6.12.

D

Dx
(f, g) vu{ d

dx
Ih | Ih ∈↑f ∩

∫
g}.

Proof. If Ih ∈↑f ∩
∫
g, then g v d

dxIh by Corollary 4.5 .

Let Γ1 : C0[0, 1]→ D1[0, 1] be defined by Γ1(f) = (If, dIfdx ).
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Theorem 6.13. The map Γ1 is an embedding into the set of maximal elements of D1.

Proof. We first check that Γ1 is well-defined. By Corollary 4.5, we have If ∈
∫
dIf
dx and

thus, (If, dIfdx ) ∈ D1. We now show that (If, dIfdx ) is maximal. If dIfdx v g and (If, g) ∈ D1

then for any a ↘ b v g we have If ∈
∫
g ⊆ δ(a, b), which implies a ↘ b v dIf

dx , thus

g v dIf
dx , i.e., g = dIf

dx and (f, dIfdx ) is maximal. That Γ1 is an embedding follows from

Theorem 2.2.

The map Γ1 restricts to give an embedding of locally Lipschitz functions into the set of

maximal elements of D1. Note that f ∈ C0[0, 1] is locally Lipschitz iff dIf
dx (y) 6= ⊥ for

all y ∈ I[0, 1]. Also Γ1 restricts to give an embedding of piecewise C1 functions into the

set of maximal elements of D1. It is easy to see that a function f ∈ C0[0, 1] is piecewise

C1 iff dIf
dx ({y}) is non-maximal for all but a finite number of y ∈ [0, 1]. Moreover, if we

consider C1 functions with their C1 norm we obtain:

Corollary 6.14. The map Γ1 restricts to give a topological embedding Γ1 : C1[0, 1] →
D1[0, 1], which makes the following diagram commute:

C1[0, 1]

Γ1

��

d
dx // C0[0, 1]

Γ0

��
D1[0, 1]

D
Dx // D0[0, 1]

Finally, we note that analogously we can define

D1
r = {(f, g) ∈ D0

r ×D0
r | (f, g) ∈ ↑f ∩

∫
r

g 6= ∅},

and all the results in this section will have their analogues for D1
r .

7. A domain-theoretic version of Picard’s theorem

Consider a vector field v : O → R for some open subset O ⊆ R2 and a point (t0, x0) ∈ O.

The following theorem, whose proof is based on Banach fix-point theorem, is referred to

as Picard’s theorem and is at the foundation of the theory of differential equations.

Theorem 7.1. (Kolmogorov and Fomin, 1975) If v is continuous in O and uniformly

Lipschitz in the second argument then the initial value problem ẋ = v(t, x) with x(t0) =

x0 has a unique solution in a neighbourhood of t0 and can be obtained as the unique

fix-point of the operator:

P : f 7→ λt.(x0 +

∫ t

t0

v(t, f(t)) dt) : C0[t0 − δ, t0 + δ]→ C0[t0 − δ, t0 + δ].

in some small enough neighbourhood |t− t0| ≤ δ.
Picard’s theorem can be easily extended to vector fields v : O → Rn, with O ⊆ Rn+1,

which gives a basis for solving systems of ordinary differential equations. In this section

we present a domain-theoretic version of this theorem for n = 1 which, like Picard’s

theorem can easily be extended to any dimension n ≥ 1. The result is more general

than the classical theorem, as it allows for the initial condition to be given by two
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approximation, one to the solution itself and one to the derivative of the solution at the

initial time. If only the classical initial value problem is considered, a simpler domain-

theoretic extension of the Picard’s theorem can be obtained as presented in the followup

paper (Edalat and Pattinson, 2003).

The classical operator P above can be reformulated as the composition of two oper-

ators U,Av : (C0[t0 − δ, t0 + δ])2 → (C0[t0 − δ, t0 + δ])2 on pairs (f, g), where f gives

approximation to the solution and g gives approximation to the derivative of the solution.

The map Av upgrades the information on the derivative and U upgrades the information

on the function itself:

U(f, g) = (λt.(x0 +

∫ t

t0

g dt), g) Av(f, g) = (f, λt.v(t, f(t)).

We have P (f) = π0(U ◦Av(f, g)), for any g, where π0 is projection to the first component.

The unique fix-point (f, g) of U ◦Av will satisfy: f ′ = g = λt.v(t, f(t)).

We consider a domain-theoretic framework for differential equations and define similar

operators in that setting. We define:

H : (I[0, 1]× IR→ IR)×D0 → D0

by

H(v, f) : t 7→ v(t, f(t)).

In analogy with the classical vector field above, we consider v ∈ (I[0, 1] × IR → IR) as

an interval-valued vector field with interval input. The map H is Scott continuous and

we put Hv : D0 → D0 with Hv(f) = H(v, f). Let

Ap : (I[0, 1]× IR→ IR)× (D0 ×D0)→ D0 ×D0

with Ap(v, (f, g)) = (f,H(v, f)) and let Apv : D0 × D0 → D0 × D0 with Apv(f, g) =

Ap(v, (f, g)) . Also define

Up : D1 → D1

with Up(f, g) = (I[s(f, g), t(f, g)], g) and put Up1(f, g) = I[s(f, g), t(f, g)].

Proposition 7.2.

(i) The maps Apv and Up are continuous.

(ii)Up1(f, g) w (
⊔
{h| ↑h ∩

∫
g =↑f ∩

∫
g}).

(iii)Up1(Up1(f, g), g) = Up1(f, g).

Proof. (i) The continuity of Ap follows from the continuity of H, the continuity of Up

from the continuity of s and t (Proposition 6.3).

(ii) Note that for k1, k2 ∈ C0, with k1 ≤ k2, we have I[k1, k2] = Ik1 u Ik2. Let h ∈ D0

satisfy ↑h ∩
∫
g =↑f ∩

∫
g. Since Is(f, g), It(f, g) w h, we get

Up1(f, g) = I[s(f, g), t(f, g)] = (Is(f, g)) u (It(f, g)) w h.

(iii) Recall that, for each component O of dom(g) which intersects dom(f), the map

s(f, g) : O → R is the least function h ∈ C0(O) with h ≥ f− and Ih ∈
∫
g; the dual prop-

erty holds for t(f, g). Since Up1(f, g) = I[s(f, g), t(s, f)] ∈
∫
g we get: s(Up1(f, g), g) =

s(f, g) and t(Up1(f, g), g) = t(f, g).



A. Edalat and A. Lieutier 26

Unlike Up, the map Apv does not take D1[0, 1] to itself. We need to work in a subdo-

main of D1[0, 1], dependent on v, which is preserved by Apv. In order to define such a

subdomain we first define a stronger version of consistency. We say that (f, g) ∈ D1 is

strongly consistent, and write (f, g) ∈ SCons, if (f, h) ∈ Cons for all h w g.

Proposition 7.3. If (f, g) ∈ SCons then:

(i) (f, h) ∈ SCons for all h w g.

(ii)Up(f, g) ∈ SCons.

Proof. (i) is trivial. To see (ii), let h w g. Since (f, g) ∈ SCons, we have (f, h) ∈ Cons.

But then Up(f, h) = (Up1(f, h), h) ∈ Cons. Now, by the monotonicity of Up1, we have:

Up1(f, g) v Up1(f, h) and therefore (Up1(f, g), h) ∈ Cons. This shows that Up(f, g) =

(Up1(f, g), g) ∈ SCons.

Proposition 7.4. Strong consistency is closed under taking lubs of increasing chains,

that is, if (fi, gi) ∈ SCons where (fi) and (gi) are increasing chains in D1. Then

(
⊔
fi,
⊔
gi) ∈ SCons

Proof.

Suppose (fi, gi) ∈ SCons where (fi)i∈ω and (gi)i∈ω are increasing chains in D1. We

want to show that (
⊔
i∈ω fi,

⊔
i∈ω gi) ∈ SCons. Let

⊔
i∈ω gi v g. Then gi v g for all i ≥ 0.

Hence, by strong consistency of (fi, gi), we have (fi, g) ∈ Cons. Since Cons is Scott closed

we get (
⊔
i∈ω fi, g) ∈ Cons.

We now define a subdomain of D1[0, 1] which is preserved by the updating maps. Let

D1
v = {(f, g) ∈ D1|(f, g) ∈ SCons & g v H(v, f)}.

Proposition 7.5. D1
v is a dcpo and the two maps Apv and Up take D1

v into itself.

Proof. By Proposition 7.4, SCons is closed under the lubs of increasing chains. On the

other hand suppose ((fi, gi))i∈ω is an increasing chain with gi v H(v, fi) for i ∈ ω. Then

by continuity of Hv we get
⊔
i∈ω gi v

⊔
i∈ωH(v, fi) =

⊔
i∈ωHv(fi) = Hv(

⊔
i∈ω fi).

Let (f, g) ∈ D1
v. Then Apv(f, g) = (f,H(v, f)). Since g v H(v, f) and (f, g) ∈

SCons, by Proposition 7.3(i), we get the strong consistency of (f,H(v, f)). It follows

that Apv(f, g) ∈ D1
v, as the second condition is trivially satisfied. On the other hand,

Up(f, g) = (Up1(f, g), g) ∈ SCons by Proposition 7.3(ii). Finally, by monotonicity of Hv

we get: g v Hv(f) v Hv(Up(f, g)). Hence, Up(f, g) ∈ D1
v.

We have now a domain-theoretic generalization of the Picard’s theorem. Let Pv : D1
v →

D1
v be given by Pv = Up ◦ Apv. For (f0, g0) ∈ D1

v, let D1
v,(f0,g0) = ↑(f0, g0) ∩ D1

v. Then

D1
v,(f0,g0) is a dcpo with least element (f0, g0). Thus we obtain:

Theorem 7.6. The restriction Pv,(f0,g0) = Pv �D1
v,(f0,g0)

: D1
v,(f0,g0) → D1

v,(f0,g0) has a

least fix-point (fs, gs) with f0 v fs and g0 v gs.

7.1. Width of the fix-point fs

We first obtain a bound for the update Up(f, g).
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Proposition 7.7. We have h ∈
∫
g iff, for all x, x1, x2 ∈ I[0, 1] with x v x1, x2, we have

(x2 − x1)g(x) v h(x2)− h(x1).

Proof. The “only if” part. Let a↘ b v g, then a simple calculation shows that for all

x1, x2 w x we have:

(x2 − x1)(a↘ b)(x) v (x2 − x1)b v h(x2)− h(x1).

Taking the supremum over all step functions way-below g, the result follows by the Scott

continuity of the interval product −×− : (u, v) 7→ uv : IR× IR→ IR.

The “if part”. Let a↘ b v g. It suffices to show that h ∈ δ(a, b). Suppose x1, x2 � a

and put x = x1 u x2. Then x� a and x1, x2 w x. Thus,

(x2 − x1)b = (x2 − x1)(a↘ b)(x) v (x2 − x1)g(x) v h(x2)− h(x1),

and, hence, h ∈ δ(a, b).
Corollary 7.8. Ih ∈

∫
g iff, for all x, y ∈ dom(g) with x ≤ y, we have:

(y − x)g([x, y]) ≤ h(y)− h(x) ≤ (y − x)g([x, y]).

Assume now that h ∈ ↑f ∩
∫
g. For all x, x1, x2 ∈ I[0, 1], with x v x1, x2, from

Proposition 7.7, we get:

f(x1) + (x2 − x1)g(x) v h(x1) + (x2 − x1)g(x) v h(x2)− h(x1) + h(x1) v h(x2) (6)

and, therefore: ⊔
{f(x1) + (x2 − x1)g(x) | x v x1 & x w x2} v h(x2). (7)

By Proposition 7.2(ii), it follows that:

Up(f, g)(x2) w
⊔
{f(x1) + (x2 − x1)g(x) | x v x1 & x w x2} . (8)

Let (fs, gs) be the fix-point of Theorem 7.6, so that Up(fs, gs) = fs. Hence, by Equation 8,

we have:

fs(x2) w
⊔
{fs(x1) + (x2 − x1)gs(x) | x v x1 & x w x2} .

In particular, for real numbers t1 and t2, with t1 < t2, considered as maximal elements

of I[0, 1],

fs(t2) w fs(t1) + (t2 − t1)gs([t1, t2]), (9)

where for convenience we have written ti for {ti}.
We denote the width of an interval a by w(a) = a−a. For f ∈ D0[0, 1], let wf : [0, 1]→

R be given by wf (x) = w(f({x}). From Equation 9 we get:

wfs(t2) ≤ wfs(t1) + (t2 − t1)wgs([t1, t2]). (10)

Let S be the set of all finite increasing sequences

p = {t0, t1, t2, · · · , tn | t0 < t1 < t2 < .. < tn = t}.
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We have from Equation 10:

wfs(t) ≤ wfs(t0) +
∑
i=1,n

wgs([ti−1, ti])(ti − ti−1). (11)

For a given sequence p = {t0, t1, t2, . . . , tn|t0 < t1 < t2 < .. < tn = t}, we denote by Θp

the classical step function defined, for u ∈ [t0, t] by Θp(u) = wgs([ti−1, ti]) if u ∈ (ti−1, ti)

and Θp(ti) = max(wgs([ti−1, ti]), wgs([ti, ti+1])). Equation 11 can be written as:

wfs(t) ≤ wfs(t0) +

∫ t

t0

Θp(u)du (12)

Consider the family of sequences (pk)k∈ω where

pk = {t0, t0 + 2−k[t− t0], t0 + 2 · 2−k[t− t0], t0 + 3 · 2−k[t− t0], ..., t0 + 2k · 2−k[t− t0]}.

The sequence Θpk is decreasing and converges pointwise to wgs , which is upper semi-

continuous. Hence, by the monotone convergence theorem, we have from Equation 12:

Proposition 7.9.

wfs(t) ≤ wfs(t0) +

∫ t

t0

wgs(u)du.

7.2. The Lipschitz case

Let (fs, gs) be the fix-point of the theorem, we have:

gs(u) = v(u, fs(u)) (13)

We assume now that v : I[0, 1]× IR→ IR satisfies a Lipschitz-like condition with con-

stant K with respect to its second argument uniformly in the maximal elements of

its first argument; in other words, for any maximal element (i.e. real) t, we assume:

w(v(t,X)) ≤ Kw(X). Equation 13 then gives: w(gs(u)) ≤ Kw(fs(u)), which, together

with Proposition 7.9 leads to

wfs(t) ≤ wfs(t0) +K

∫ t

t0

wfs(u)du.

A simple inductive proof shows that for each integer n ≥ 0:

wfs(t)

≤ wfs(t0)(1+K(t−t0)+· · ·+Kn(t−t0)n/n!+Kn

∫ t

t0

∫ u0

t0

· · ·
∫ un

tn

wfs(un)du0du1 · · · dun).

Since fs is bounded, we have a bound B on wfs(un) and the remainder is bounded by:

Kn

∫ t

t0

∫ u0

t0

· · ·
∫ un

tn

wfs(un)du0du1 · · · dun

≤ KnB

∫ t

t0

∫ u0

t0

· · ·
∫ un

tn

du0du1 · · · dun = Kn(t− t0)(n+1)/(n+ 1)!
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This remainder goes to 0 when n → ∞ for any fixed t. By taking the limit we obtain:

wfs(t) ≤ wfs(t0)eK(t−t0). Since, the same holds for t < t0, we conclude that:

Proposition 7.10.

wfs(t) ≤ wfs(t0)eK|t−t0|.

7.3. Picard’s theorem revisited

Proposition 7.11. If (Ti ↘ Xi)i∈I is a family of consistent step functions, then

(
⊔
i∈I

(Ti ↘ Xi), (ui∈ITi)↘ B)

is a strongly consistent pair iff Xi −Xj v (Ti − Tj)B for all i, j ∈ I.

Proof. First note that for i, j ∈ I we have Xi −Xj v (Ti − Tj)B iff, for each u ∈ B,

there exists a straight line with slope u which intersects the four vertical sides of the

rectangles (Ti, Xi) and (Tj , Xj) when i 6= j, or the two vertical sides of (Ti, Xi) when

i = j. The “only if part” then follows immediately. For the “if” part, fix u ∈ B. For

each unordered pair i, j ∈ I, consider the family Lij of parallel straight lines with slope

u, which intersect the four vertical sides of the rectangles (Ti, Xi) and (Tj , Xj) when

i 6= j, or the two vertical sides of (Ti, Xi) when i = j. For a given unordered pair

i, j ∈ I, let lij and gij be, respectively, the infimum and the supremum of the non-

empty set {L(0) |L ∈ Lij}. By assumption and the above observation the set of intervals

{[lij , gij ] | i, j ∈ I} have pairwise nonempty intersections. Hence, I =
⋂
i,j∈I [lij , gij ] 6= ∅

and any line with slope u passing through any point of I intersects the two vertical edges

of (Ti, Xi) for all i ∈ I.

Theorem 7.12. Let v : O → R be continuous in the open set O ⊆ R2 and (t0, x0) ∈ O.

If v is Lipschitz in its second argument uniformly in the first argument, then the solution

of the initial value problem ẋ = v(t, x) with x(t0) = x0 given by the classical Picard’s

theorem coincides with the domain-theoretic solution.

Proof. Let A ⊂ O be a compact rectangle with (t0, x0) ∈ A◦ such that, for some

M > 0, we have |v(t, x)| ≤ M for all (t, x) ∈ A. Let (Ti, Xi)i∈ω be any shrinking nested

sequence of compact rectangles such that:

— (Ti, Xi) ⊂ A◦ all i ∈ ω,

— (t0, x0) is the centre of (Ti, Xi) for all i ∈ ω,

— w(Xi) = Mw(Ti) for all i ∈ ω, and,

—
⊔
i(Ti, Xi) = ({t0}, {x0}).

We now consider the domain-theoretic Picard’s theorem for the canonical extension

Iv : IT0 × IR → IR. Let B = [−M,M ], then v satisfies: A↘ B v Iv. By Propo-

sition 7.11, (f0, g0) = (
⊔
i∈ω Ti ↘ Xi, T0 ↘ B) is strongly consistent. Furthermore, we

have HIv(f0) w g0 since, for any T ∈ IT0, we obtain

HIv(f0)(T ) = Iv(T, (
⊔
i∈ω

Ti ↘ Xi)(T )) w Iv(T,X0) w B w g0(T ).

Since fs({t0}) w f0({t0}) = {x0}, Proposition 7.10 implies that wfs = 0. Since Iv
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preserves maximal elements, it follows from gs = H(Iv, fs) that wgs = 0 and fs and gs
preserve maximal elements. Now, by Proposition 6.11, it follows that the induced maps

fs, gs : T0 → R satisfy f ′s = gs and hence f ′s(t) = v(t, fs(t)), by the fix-point equation for

gs.

See (Edalat et al., 2003) for an algorithmic framework for solving initial value problems

based on this method. Since the first version of the current work became available, a

simpler domain-theoretic approach to Picard’s theorem for solving initial value problems

has been developed in (Edalat and Pattinson, 2003).

8. Implicit function theorem

As explained in the Introduction, a main application of the domain-theoretic model for

differential calculus is to obtain piecewise smooth finitary approximations of curves and

surfaces which are defined implicitly by, say, f(~x) = 0 where f : [0, 1]n → R is a Ck

function of n variables.

For functions of a single variable, which is the object of this paper, the implicit function

theorem takes a very simple form: if f ∈ C1[0, 1] and f(x0) = 0 with f ′(x0) > 0 for some

x0 ∈ (0, 1), then x0 is an isolated root of f(x) = 0. Suppose now that f and f ′ are

computable maps in the sense of classical recursion theory (Pour-El and Richards, 1988).

Then If and If ′ are computable (Edalat and Sünderhauf, 1998) and can be approximated

effectively by an increasing sequence of step functions f =
⊔
i∈ω fi and g =

⊔
i∈ω gi. Since

(If, If ′) ∈ Cons, it follows that (fi, gi) ∈ Cons for all i ∈ ω. From f ′(x0) > 0 it follows

that for some i ∈ ω we have gi({x0}) > 0 and thus the piecewise linear (or piecewise

rational or semi-rational polynomial) functions s(fi, gi) and t(fi, gi) are both strictly

increasing in a small neighbourhood of x0. Therefore, they have computable roots vi and

wi respectively with x0 ∈ [wi, vi]. In the limit we have {x0} =
⋂
i∈ω[wi, vi]. This then

gives us an algorithm to compute x0 up to any desired accuracy.

9. Conclusion

We have developed the two notions of the set of primitive maps and the derivative of a

Scott continuous map and have shown that they are dually related similar to the duality

of differentiation and integration in the fundamental theorem of calculus. In the case

of locally Lipschitz maps, the domain-theoretic derivative coincides with the Clarke’s

derivative. We have also constructed a domain-theoretic data type for C1 functions in

differential calculus, which extends the applications of domain theory and type theory

to smooth mathematics. This domain also provides us with a model for the differential

properties of piecewise C1 functions, locally Lipschitz functions and, more generally, con-

tinuous functions. A domain-theoretic generalization of Picard’s theorem in this frame-

work allows us to solve for the solution of differential equations in such a way that at

each stage of computation the approximation is bounded from below and above by two

piecewise polynomial functions.

The domain construction for C1 functions and some other results in this paper can be

generalized to Ck and C∞ functions. It can be shown that consistency of the basis
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elements for the domain of C2 functions is decidable, but for Ck, with k ≥ 3, the

decidability of consistency is an open question.

We are also developing and implementing the algorithmic framework for solving dif-

ferential equations using the domain-theoretic version of Picard’s theorem as formulated

algorithmically in the followup papers (Edalat et al., 2003) and (Edalat and Pattinson,

2003).

Since the first version of this paper was produced, the domain-theoretic framework

for differential calculus has been extended to functions of several variables in (Edalat

et al., 2004). This extension will allow us to develop domain-theoretic effective version

of the inverse and implicit functions theorem which are the building blocks of multi-

dimensional differential calculus with, in particular, applications to approximation of

curves and surfaces.
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