Complex Systems- Exercises 1

Exercises marked with * are more challenging and are designed for students with more mathematical background.

1. Find the dominant term and the smallest big O complexity of the following expressions as $x \to \infty$:

- $98x \log x 23x^{1.1}$.
- $7x^2 \frac{4x^3}{\log x}$.
- $3\log_4 x + 2\log\log x$.

(*)
$$-x^{-0.2} + (x+2)^{\sin x}$$
.

2. Decide whether each statement below is true or false as $x \to \infty$ and prove your assertion:

- $-5x^2 + 3x + 2 = O(x^2)$.
- $e^x/100 = O(2^x)$.
- $(x^5 + 12x^4 3x + 2)/(3 + x^5) = o(1).$
- $3x^2 4x + 5 \sim x^2$.
- $x^{-1.2} 5x^{-2} \sim x^{-1.2}$.
- $f_1 = O(g_1)$ and $f_2 = O(g_2) \Rightarrow f_1 + f_2 = O(g_1 + g_2)$. (This one is tricky!)
- $f_1 = O(g_1)$ and $f_2 = O(g_2) \Rightarrow f_1 f_2 = O(g_1 g_2).$
- f = O(g) and $g = O(h) \Rightarrow f = O(h)$.
- $f_1 = o(g)$ and $f_2 = o(g) \Rightarrow f_1 + f_2 = o(g)$ and $f_1 f_2 = o(g)$.

3. Determine the type of the fixed points of the map $F : \mathbb{R} \to \mathbb{R}$ with F(x) = x(1-x) and sketch its phase portraits.

4. Find all fixed points of $F : \mathbb{R} \to \mathbb{R}$ with $F(x) = x^3 - \frac{7}{9}x$ and determine whether they are attracting, repelling or neither. Sketch the phase portrait of the map.