
Complex Systems- Exercises 2 (solutions)

1. Find all fixed points of F : R → R with F (x) = x3 − 2x and determine
their nature. Show that F has a period orbit {1,−1} of period 2. What is
the type of this periodic orbit?

Solution: There are three fixed points at x = 0, x = ±
√

3 which are all
repelling (|F ′(0)| = | − 2| = 2 > 1, |F ′(±

√
3)| = 7 > 1). The pair of points 1

and −1 are mapped to each other, so they form a periodic orbit of period 2,
which is non-hyperbolic since by the chain rule: (F 2)′(1) = F ′(F (1))F ′(1) =
F ′(−1)F ′(1) = 1× 1 = 1. This periodic orbit is however weakly attracting
on both sides. This can be seen by graphical analysis near 1 and −1.

Alternative, put G = F ◦F which will satisfy G(1) = 1, G(−1) = −1 and
G′(1) = G′(−1) = 1 and obtain the first non-zero higher derivative of G at
1: We have G(x) = (x3 − 2x)3 − 2(x3 − 2x) = x9 − 6x7 + 12x5 − 10x3 + 4x
and thus G′(x) = 9x8 − 42x6 + 60x4 − 30x2 + 4 with G′(1) = G′(−1) = 1
and G′′(x) = 72x7− 252x5 + 240x3− 60x with G′′(1) = G′′(−1) = 0. Finally,
G′′′(x) = 7×72x6−5×252x4+3×240x2−60 with G′′′(1) = G′′′(−1) = −96 <
0. Therefore, the Taylor series expansion near 1 gives: G(1+δ) ≈ 1+δ−96δ3

which shows that 1 (and −1) are attracting fixed points of G, and thus the
orbit {1,−1} is attracting.

2. Find the explicit form of

(i) the maps f1, f2, f3 in the generation of the Sierpinky triangle, and

(ii) the maps f1, f2, f3, f4 in the generation of the Koch curve.

Solution: (i) An easy way to do these two problems is to note that in the
complex plane z = x+ iy (i =

√
−1),
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• scaling by factor r > 0 is given by z 7→ rz

• rotation by θ is given by z 7→ eiθz and

• translation by a = a1 + ia2 is given by z 7→ z + a.

In both cases (i) and (ii), each fn is a composition of a scaling, a rotation
and a translation:

For (i), we get f1(z) = z/2, f2(z) = z/2 + 1/2 and f3(z) = z/2 + 1
4

+
√
3i
4

.
For (ii), we get f1(z) = z/3, f2(z) = eπi/3z/3+1/3, f3(z) = e−πi/3z/3+1/2+√

3i/6 and f4(z) = z/3 + 2/3.

3. Find the fixed points of each of the maps f1, f2, f3, f4 in the generation of
the Koch curve. What points of {1, 2, 3, 4}N correspond to these points? Do
the same for the Sierpinski triangle and the Cantor set.

Solution: Use the solution above. For example, for the Koch curve, the
fixed point of f2 : z 7→ z

3
ei
π
3 + 1

3
is obtained by solving f2(z) = z which has

unique solution z = 1
3−eiπ/3 . The fixed point of fk (k = 1, 2, 3, 4) corresponds

to kω. For the Sierpinski triangle, the three fixed points are the three vertices
of the triangle. For the Cantor set, they are 0 and 1.

4. Consider the Cantor set C and its generating sequence 〈In〉n≥0. Find
dH(In, C) in P(R).

Solution: The point of I0 with the supremum distance from C is its mid-
point 1/2; it has equal distance from the points 1/3 and 2/3 of C (the ones
on either side of the large gap in the middle), namely 1/2 − 1/3 = 1/6 =
dH(I0, C). The points of I1 with the supremum distance from C are the
midpoints of the two parts of I1; their distance from C is 1/3× 1/6 = 1/18
because of the scaling factor 1/3. Thus, the general value is dH(In, C) = 1

6×3n .

5. Find the attractor of the IFS {f1, f2} in R, where, for x ∈ R, f1(x) = ax
and f2(x) = (1− a)x+ a, with 0 < a < 1.
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Solution: The fixed points of f1 and f2 are respectively at 0 and 1. In
fact, [0, 1] is a trapping region for both f1 and f2 and a simple check show
that [0, 1] itself is the unique fixed point of f , the attractor of the IFS.

6. Repeat question 5 with f1, f2 given by f1(x) = 0 and f2(x) = 2
3
x+ 1

3
.

Solution: The fixed points of f1 and f2 are again respectively at 0 and
1. The interval [0, 1] is a trapping region. Iteration of f on [0, 1] gives:

f([0, 1]) = {0} ∪ [1
3
, 1]

f({0} ∪ [1
3
, 1]) = {0} ∪ {1

3
} ∪ [5

9
, 1]

f({0, 1
3
} ∪ [5

9
, 1]) = {0, 1

3
, 5
9
} ∪ [19

27
, 1]

Note that 0 = 1−1, 1
3

= 1− 2
3
, 5
9

= 1− 4
9
, and 19

27
= 1− 8

27
. Thus, the general

term is
fn([0, 1]) = {1− (2

3
)0, . . . , 1− (2

3
)n−1} ∪ [1− (2

3
)n, 1]

which can be verified by induction. The intersection of all the sets fn([0, 1])
is

{1− (2
3
)n | n ≥ 0} ∪ {1},

7. Describe the attractor of the IFS, f0, f1, f2 : R → R with fj 7→ x
4

+ 3j
8

(j = 1, 2, 3) and find its similarity dimension.

Solution: The attractor is a Cantor set obtained by: (i) start from [0, 1],
(ii) remove two symmetrically placed subintervals of length equal to 1/8 of
the original interval, and (ii) repeat the removing scheme for each remaining
subinterval for ever. The attractor is strictly self-similar: made up of 3 copies
of itself scaled by 1/4. so its similarity dimension is log 3/ log 4.
8.

(i) Show that if g : Rm → Rm has contracting factor s < 1, then the closed
ball with centre u ∈ Rm and of radius ‖u− g(u)‖/(1− s) is a trapping
region for g, i.e., is mapped by g into itself.

(ii) Given an IFS, f1, f2, . . . , fN : Rm → Rm such that fi has contractivity
factor si, find a closed ball centred at u which is mapped by f into
itself, where f : P(Rm)→ P(Rm) : A 7→

⋃N
i=1 fi[A].
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(iii)* When m = 2, N = 2, and the maps fi : R2 → R2 (1 ≤ i ≤ 2) are both
affine, explain how you would find u ∈ R2 and R ≥ 0 such that the
closed ball C(u,R) is the smallest trapping disk for f?

Solution:
(i) Suppose ‖x − u‖ ≤ (‖u − g(u)‖)/(1 − s). Then by the triangular

inequality:
|g(x)− u‖ ≤ ‖g(x)− g(u)‖+ ‖g(u)− u‖

≤ s‖x− u‖+ ‖g(u)− u‖ ≤ s

1− s
‖g(u)− u‖+ ‖g(u)− u‖

= (‖u− g(u)‖)/(1− s).

(ii) Put R(u) = max1≤0≤N Ri(u) where Ri(u) = (‖u− fi(u)‖)/(1− si).
(iii)* First note that the contractivity factor s of a map g : X → X of a

metric space is s = inf{t : d(g(x), g(y)) ≤ td(x, y)}. The contractivity factor
of an affine map is the contractivity factor of its linear part, which is equal
to the `2 norm of the matrix representing this linear part in the standard
coordinates, i.e., the largest singular value of the matrix representing the
linear part in the standard coordinates. (Recall that the singular values of a
matrix A are the positive square roots of the eigenvalues of AAT where AT

is the transpose of A.)
Now, suppose for i = 1, 2, the map fi : R2 → R2 has, in matrix notation

in the standard coordinates, the following action:(
x
y

)
7→
(
ai bi
ci di

)(
x
y

)
+

(
ki
li

)
.

We compute the contractivity factors si of fi using the above method.
Then for a point u = (x, y), we compute

R2
i (x, y) = (‖u−fi(u)‖2)/(1−si)2 =

(aix+ biy + ki − x)2 + (cix+ diy + li − y)2

(1− si)2

We need to find max{R2
i (x, y) : x, y ∈ R2 and i = 1, 2} and the values of

x and y where this max is attained. This we can do using the Lagrange’s
multiplier method by finding the minimum value of

z(x, y, λ) = R2
1(x, y) + λ(R2

2(x, y)−R2
1(x, y)),
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for x, y, λ. Geometrically, zi(x, y) = R2
i (x, y) is an elliptic cone with vertex

at the fixed point of fi on the (x, y)-plane for each i = 1, 2. The two cones
z1 and z2 intersect at a curve and the minimum value R is obtained where
this curve is a minimum.

9*. Show that if F : [a, b]→ R is differentiable and its derivative F ′ is contin-
uous at a fixed point x0 of F , then x0 is attracting (repelling) if |F ′(x0)| < 1
(|F ′(x0)| > 1).

Solution: Assume first that |F ′(x0)| < 1. The continuity of F ′ at x0
implies that there exists some δ > 0 such that |F ′(x)| < k for x0 − δ <
x < x0 + δ where k = (|F ′(x0)| + 1)/2 (simply put ε = (1 − |F ′(x0)|)/2 in
the definition of continuity of F ′ at x0). Now, by the mean value theorem
applied to [x0, x] (or to [x, x0]) where |x0 − x| < δ, there exists x∗ ∈ (x0, x)
(or x∗ ∈ (x, x0)) such that F (x)−F (x0) = F ′(x∗)(x−x0). Thus, since k < 1,
we obtain:

|F (x)− F (x0)| = |F ′(x∗)||x− x0| < kδ < δ.

Remembering that F (x0) = x0, we get:

|F (x)− x0| < kδ < δ.

Thus, we can recursively replace x with F (x) to obtain for any positive integer
n:

|F n(x)− x0| < knδ < δ,

which shows that F n(x) → x0 as n → ∞ for x ∈ (x0 − δ, x0 + δ), since
0 < k < 1.

In case, |F ′(x0)| > 1, we obtain for any x 6= x0 with |x− x0| < δ:

|F n(x)− x0| > kn|x− x0|,

if F n−1(x) ∈ (x0− δ, x0 + δ). So F n(x) /∈ (x0− δ, x0 + δ) for the least n with
kn|x− x0| > δ, i.e., for

n = d log(δ/|x− x0|)
log k

e.
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