Complex Systems- Exercises 3
Attractors and Chaos

1. Show that the tail map sends open balls to open balls, i.e. show that for any
 \(x \in \Sigma^N\) and any integer \(n \geq 1\), we have:
 \[\sigma[O(x, 1/2^n)] = O(\sigma x, 1/2^{n-1}).\]

2. Check that the tail map is continuous. (Hint: Show that the pre-image of any
 open ball is an open set.)

3. Check that the tail map satisfies the following:
 - Sensitive to initial conditions (with \(\delta = 1/2\)).
 - Topologically transitive (show that \(\forall\) open \(U \neq \emptyset, \exists n. \sigma^n(U) = \Sigma^N\)).
 - Its periodic orbits are dense in \(\Sigma^N\).
 - It has a dense orbit.

4. Suppose \(g : Y \rightarrow Y\) is a dynamical system with a semi-conjugacy:

 \[
 \begin{array}{ccc}
 \Sigma^N & \xrightarrow{\sigma} & \Sigma^N \\
 h & \downarrow & h \\
 Y & \xrightarrow{g} & Y
 \end{array}
 \]

 From such a semi-conjugacy, show that we can deduce the following results
 about \(g\) from the corresponding properties of \(\sigma\):
(i) g is topologically transitive.

(ii) Periodic orbits of g are dense.

(iii) g has a dense orbit.

(*) 5. Consider $Q_d : \mathbb{R} \to \mathbb{R} : x \mapsto x^2 + d$ Show that for $d < 1/4$, the map Q_d is conjugate via a linear map of type $L : x \mapsto \alpha x + \beta$ to $F_c : \mathbb{R} \to \mathbb{R} : x \mapsto cx(1-x)$ for a unique $c > 1$.

Hint: Find α, β, c in terms of d such that:

$$F_c \circ L = L \circ Q_d$$