Dynamical Systems and Deep Learning -Exercises 3

- 1. 1. Suppose $P \in \mathbb{R}^{n \times n}$ is a stochastic matrix.
 - (i) Show that the 2-step transition matrix $P^{(2)} = P \circ P = P^2$ is a stochastic matrix.
 - (ii) By using induction, show that P^n is a stochastic matrix for any positive integer n.
- 2. Find the communicating classes of the stochastic matrix

$$P = \begin{pmatrix} 1/2 & 1/2 & 0 & 0\\ 1/2 & 1/2 & 0 & 0\\ 1/3 & 1/6 & 1/6 & 1/3\\ 0 & 0 & 0 & 1 \end{pmatrix}$$
(1)

on the set of states $\{1, 2, 3, 4\}$ and decide if P is irreducible or not.

3. Suppose 0 < p, q < 1 and consider

$$P = \begin{pmatrix} p & 1-p \\ 1-q & q \end{pmatrix}$$
(2)

- Check that P has an eigenvalue 1 and an eigenvalue λ with $|\lambda| < 1$. Determine the stationary distribution π of P.
- By taking the two left eigenvectors of P as the new basis of ℝ², show that given any initial probability vector p we have lim_{n→∞} pPⁿ = π.

4. Show that $\pi P = \pi \iff \pi(aI + (1 - a)P) = \pi$, for 0 < a < 1, where $I \in \mathbb{R}^{n \times n}$ is the identity matrix.

5. Show that if π satisfies the detailed balanced condition for a stochastic matrix P, then it is a stationary distribution.

6. Rewrite the stochastic updating rule for the stochastic Hopfield network to obtain the probability of flipping:

$$\Pr(x_i \to -x_i) = \frac{1}{1 + \exp(\Delta E/T)},\tag{3}$$

where $\Delta E = E' - E$ is the change in energy.

7. Show that, with respect to the transition matrix for flipping nodes in a stochastic Hopfield network, the distribution

$$\Pr(x) = \frac{\exp(-E(x)/T)}{Z},\tag{4}$$

satisfies the detailed balanced condition.

8. Suppose we have a stochastic Hopfield network with N nodes and q is the uniform distribution on the nodes, i.e., q(i) = 1/N for $1 \le i \le N$. Check that the following probabilistic transition rule is an example of Gibbs sampling:

- At each point in time, select a node i with probability q(i);
- flip the value x_i of i with probability:

$$\Pr(x_i \to -x_i) = \frac{1}{1 + \exp(\Delta E/T)},$$

where $\Delta E = E' - E$ is the change in energy.