Complex Systems- Exercises 3 (solutions)

1. 1. Suppose P € R™*" is a stochastic matrix.

(1) Show that the 2-step transition matrix P® = po P = P?is a stochastic
matrix.

(i) By using induction, show that P" is a stochastic matrix for any positive
integer n.

Solution: (i) We need to check that all entries of P? are non-negative and the sum
of all entries in every row is 1. Since all entries of P are non-negative we have
(P%);j = > p_, PiPsj > 0. Also for every row with index i:

n n

> (P = zn: Z”: PPy = Z(i Bi Prj)

J=1 j=1 k=1 k=1 j=1
Y (Pu) Py)=) (Pu-1)=) Pyp=1.
k=1 j=1 k=1 k=1

(ii) We need to check that if P* for a positive integer k is stochastic, so is P**+1.
Let Q = P*. Then P**! = () o P and the proof follows exactly as in (i) with the
first instance of P in P? = P o P replaced with Q.

2. Find the communicating classes of the stochastic matrix

1/2 1/2 0 0
1/2 1/2 0 0
1/3 1/6 1/6 1/3
0o 0 0 1

on the set of states {1, 2, 3,4} and decide if P is irreducible or not.

P = (1)

Solution: The communicating classes are the following sets:

e {1,2}, since 1 and 2 communicate with each other but no other state can be
accessed from them,



e {3}, since 3 cannot be accessed from any other state, and,

e {4}, since no other state can be accessed from 4.

Thus, P is not irreducible since it has more than one communicating class.

3. Suppose 0 < p,q < 1 and consider

p 1-=p
P= 2
( 1—q g ) (2)
e Check that P has an eigenvalue 1 and an eigenvalue A with |A| < 1. Deter-
mine the stationary distribution 7 of P.

e By taking the two left eigenvectors of P as the new basis of R?, show that
given any initial probability vector p we have lim,,_,, pP" = 7.

Solution: (i) The solution of det(P — AI) = 0 leadsto \> — A(p+q) + p +
g —1 = 0. Clearly 1 is an eigenvalue corresponding to left eigenvector 7 with
7P = r,ie., P'rT = 7T, A simple calculation shows that

m = y
2—-p—q 2—-p—q

which is the stationary distribution. The other eigenvalue is A = p + ¢ — 1 since
the product of the two eigenvalues is the constant term in the discriminant. By
summing the two inequalities 0 < p < land 0 < ¢ < 1 and subtracting 1 from all
sides we get —1 < A < 1.

(ii) Let x = (1, —1) be the eigenvector corresponding to A = p + ¢ — 1. Then we
can write p = a7 + bx where a, b are real numbers. Then we have

pP" = (am + bx)P" = anP" + b P" = arw + b\"x
as n — 0o, we have A — 0. Thus we get

lim pP" = ar
n—oo

Since pP" is a probability vector for all n € N, it follows that @ = 1 as required.
Alternatively, we can argue as follows. Since 7 and p are both probability vectors,



the sum of the two components of p — 7 is zero and thus p — 7 = ¢(1, —1) = cx
for some real number c. Therefore,

pP" —m=(p—nm)P" =cxP" =c\'x — 0,

as n — oo.

4. Show that 7P = 7 <= w(al + (1 —a)P) = m, for 0 < a < 1, where
I € R™™" is the identity matrix.

Solution: Let 7° = 7. Then,

m(al+(1—a)P)=arn+(1—a)rP=ar+ (1 —a)m = .
On the other hand, if 7(al 4+ (1—a)P) = =, then rewriting the equation we obtain:
ar+ (1 —a)tP=m = (1—a)mr=(1—a)rP,
from which the result follows after diving by 1 — a > 0.

5. Show that if 7 satisfies the detailed balanced condition for a stochastic matrix
P, then it is a stationary distribution.

Solution: Suppose
mi Py = Py, for1 <i,j <N

Then . . .
(WP)i = Z%‘sz‘ = Zﬂ'ipij = Wizpij =Ty
j=1 j=1 Jj=1

6. Rewrite the stochastic updating rule for the stochastic Hopfield network to
obtain the probability of flipping:
1

Pr(z; = —2i) = 77 exp(AE/T)’ 3)

where AE = E' — E is the change in energy.
Solution: We have:

1
P i) —
@) 1 + exp(—2h;z;/T)

3



Note also from Exercise 2(ii) in sheet 2 that when z; — —x;, we have:
AE =FE — E = 2h;x;
Thus, when we have x; — —uz;
Pr(z; — —x;) = Pr(—x;|z;) = Pr(—z;|AE = 2h;x;)
1 1
T 14+ exp(2hii/T) apogpe 1+ exp(AE/T)

7. Show that, with respect to the transition matrix for flipping nodes in a stochastic
Hopfield network, the distribution

exp(—E(x)/T)
7 ,

m(x) =Pr(z) = 4)

satisfies the detailed balanced condition.
Solution: Assume F(z;) and E'(—x;) denote the energies of the network when

node ¢ has values x; and —z; respectively while all other nodes keep their values
unchanged. Then, using the result of Exercise 5, we have:

B/ 1
Pr(z;)Pr(z; = —2i) = ———1 T eB(—w)—B(@))/T
' . o E(-2)/T 1
— EGE(xL)/t n eE(—xi)/T = A 1 T e(E(xl)—E(—l‘z))/T = Pr(_x’L)Pr<_xz — a?z)

8. Suppose we have a stochastic Hopfield network with N nodes and ¢ is the
uniform distribution on the nodes, i.e., (i) = 1/N for 1 <1 < N. Check that the
following probabilistic transition rule is an example of Gibbs sampling:

e At each point in time, select a node 7 with probability ¢(i);
o flip the value z; of ¢ with probability:

1
Pr(z; ) —
M@ = =) = T AR T

where AE = E' — E is the change in energy.

Solution: By Exercise 7, we know that m(x) = MZ(@/T) is the stationary

distribution of the stochastic network and the conditional probability distribution
for flipping a node is as given in the present problem. Therefore, by the definition
of Gibbs sampling we indeed have an example of it here.
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