
Complex Systems- Exercises 3 (solutions)

1. 1. Suppose P ∈ Rn×n is a stochastic matrix.

(i) Show that the 2-step transition matrix P (2) = P ◦ P = P 2 is a stochastic
matrix.

(ii) By using induction, show that P n is a stochastic matrix for any positive
integer n.

Solution: (i) We need to check that all entries of P 2 are non-negative and the sum
of all entries in every row is 1. Since all entries of P are non-negative we have
(P 2)ij =

∑n
k=1 PikPkj ≥ 0. Also for every row with index i:

n∑
j=1

(P 2)ij =
n∑

j=1

n∑
k=1

PikPkj =
n∑

k=1

(
n∑

j=1

PikPkj)

n∑
k=1

(Pik

n∑
j=1

Pkj) =
n∑

k=1

(Pik · 1) =
n∑

k=1

Pik = 1.

(ii) We need to check that if P k for a positive integer k is stochastic, so is P k+1.
Let Q = P k. Then P k+1 = Q ◦ P and the proof follows exactly as in (i) with the
first instance of P in P 2 = P ◦ P replaced with Q.
2. Find the communicating classes of the stochastic matrix

P =


1/2 1/2 0 0
1/2 1/2 0 0
1/3 1/6 1/6 1/3
0 0 0 1

 (1)

on the set of states {1, 2, 3, 4} and decide if P is irreducible or not.

Solution: The communicating classes are the following sets:

• {1, 2}, since 1 and 2 communicate with each other but no other state can be
accessed from them,
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• {3}, since 3 cannot be accessed from any other state, and,

• {4}, since no other state can be accessed from 4.

Thus, P is not irreducible since it has more than one communicating class.

3. Suppose 0 < p, q < 1 and consider

P =

(
p 1− p

1− q q

)
(2)

• Check that P has an eigenvalue 1 and an eigenvalue λ with |λ| < 1. Deter-
mine the stationary distribution π of P .

• By taking the two left eigenvectors of P as the new basis of R2, show that
given any initial probability vector p we have limn→∞ pP

n = π.

Solution: (i) The solution of det(P − λI) = 0 leads to λ2 − λ(p + q) + p +
q − 1 = 0. Clearly 1 is an eigenvalue corresponding to left eigenvector π with
πP = π, i.e., P TπT = πT . A simple calculation shows that

π =

(
1− q

2− p− q
,

1− p
2− p− q

)
which is the stationary distribution. The other eigenvalue is λ = p + q − 1 since
the product of the two eigenvalues is the constant term in the discriminant. By
summing the two inequalities 0 < p < 1and 0 < q < 1 and subtracting 1 from all
sides we get −1 < λ < 1.
(ii) Let x = (1,−1) be the eigenvector corresponding to λ = p+ q − 1. Then we
can write p = aπ + bx where a, b are real numbers. Then we have

pP n = (aπ + bx)P n = aπP n + bxP n = aπ + bλnx

as n→∞, we have λn → 0. Thus we get

lim
n→∞

pP n = aπ

Since pP n is a probability vector for all n ∈ N, it follows that a = 1 as required.
Alternatively, we can argue as follows. Since π and p are both probability vectors,
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the sum of the two components of p− π is zero and thus p− π = c(1,−1) = cx
for some real number c. Therefore,

pP n − π = (p− π)P n = cxP n = cλnx→ 0,

as n→∞.
4. Show that πP = π ⇐⇒ π(aI + (1 − a)P ) = π, for 0 < a < 1, where
I ∈ Rn×n is the identity matrix.
Solution: Let πP = π. Then,

π(aI + (1− a)P ) = aπ + (1− a)πP = aπ + (1− a)π = π.

On the other hand, if π(aI+(1−a)P ) = π, then rewriting the equation we obtain:

aπ + (1− a)πP = π ⇒ (1− a)π = (1− a)πP,

from which the result follows after diving by 1− a > 0.

5. Show that if π satisfies the detailed balanced condition for a stochastic matrix
P , then it is a stationary distribution.

Solution: Suppose

πiPij = πjPji, for 1 ≤ i, j ≤ N

Then

(πP )i =
n∑

j=1

πjPji =
n∑

j=1

πiPij = πi

n∑
j=1

Pij = πi

6. Rewrite the stochastic updating rule for the stochastic Hopfield network to
obtain the probability of flipping:

Pr(xi → −xi) =
1

1 + exp(∆E/T )
, (3)

where ∆E = E ′ − E is the change in energy.

Solution: We have:

Pr(xi) =
1

1 + exp(−2hixi/T )
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Note also from Exercise 2(ii) in sheet 2 that when xi → −xi, we have:

∆E = E ′ − E = 2hixi

Thus, when we have xi → −xi
Pr(xi → −xi) = Pr(−xi|xi) = Pr(−xi|∆E = 2hixi)

=
1

1 + exp(2hixi/T ) �∆E=2hixi

=
1

1 + exp(∆E/T )

7. Show that, with respect to the transition matrix for flipping nodes in a stochastic
Hopfield network, the distribution

π(x) = Pr(x) =
exp(−E(x)/T )

Z
, (4)

satisfies the detailed balanced condition.

Solution: AssumeE(xi) andE(−xi) denote the energies of the network when
node i has values xi and −xi respectively while all other nodes keep their values
unchanged. Then, using the result of Exercise 5, we have:

Pr(xi)Pr(xi → −xi) =
e−E(xi)/T

Z

1

1 + e(E(−xi)−E(xi))/T

=
1

Z
· 1

eE(xi)/t + eE(−xi)/T
=
e−E(−xi)/T

Z

1

1 + e(E(xi)−E(−xi))/T
= Pr(−xi)Pr(−xi → xi).

8. Suppose we have a stochastic Hopfield network with N nodes and q is the
uniform distribution on the nodes, i.e., q(i) = 1/N for 1 ≤ i ≤ N . Check that the
following probabilistic transition rule is an example of Gibbs sampling:

• At each point in time, select a node i with probability q(i);

• flip the value xi of i with probability:

Pr(xi → −xi) =
1

1 + exp(∆E/T )
,

where ∆E = E ′ − E is the change in energy.

Solution: By Exercise 7, we know that π(x) = exp(−E(x)/T )
Z

is the stationary
distribution of the stochastic network and the conditional probability distribution
for flipping a node is as given in the present problem. Therefore, by the definition
of Gibbs sampling we indeed have an example of it here.
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