Complex Systems- Exercises 4 (solutions)

1. Show that the clustering coefficient for a one dimensional lattice with periodic boundary condition (i.e., a circle), as for example in the figure below, can be computed to be

\[C = \frac{3(z-2)}{4(z-1)} \]

which tends to \(3/4\) as \(z \to \infty\). (Here, \(z \ll N\) and \(z\) is assumed to be even so that every vertex has \(z/2\) connections with its neighbours on one side and \(z/2\) connections on the other side.)

Solution: Let \(z = 2k\). Consider a vertex \(A\) placed say at the origin \(0\). It is connected with its neighbours at \(-k, -k + 1, \ldots, -2, -1, 1, 2, \ldots, k - 1, k\). There are a total of \(2k(2k - 1)/2 = k(2k - 1)\) pairs of such neighbours. We now count the connections between these neighbours starting from \(-k\) on the left and moving one vertex at a time to the right. Each vertex \(-k, -(k - 1), \ldots, -2, -1, 1\) (i.e., a total of \(k + 1\) vertices) is connected to \(k - 1\) neighbours of \(A\) (remember that in this count \(A\) itself is excluded). This gives \((k + 1)(k - 1)\) edges. Vertices starting from 2 and moving to rightward to \(k\) will have, in addition to those already counted, respectively, \(k - 2, k - 3, \ldots, 1, 0\) other connections, i.e,

\[\sum_{n=0}^{k-2} n = (k - 2)(k - 1)/2. \]
Therefore there are a total of
\[(k + 1)(k - 1) + (k - 2)(k - 1)/2 = (k - 1)(2k + 2 + k - 2)/2 = 3k(k - 1)/2\]
connections between A's neighbours.

Thus, the clustering coefficient is
\[C = \frac{3k(k-1)/2}{k(2k-1)} = \frac{3(k-1)}{2(2k-1)} = \frac{3(z-2)}{4(z-1)}.\]

2. Find the average distance in a (non-periodic) one dimensional lattice of length \(\ell\) with \(z = 2\) and obtain its asymptotic behaviour as \(\ell \to \infty\).

Solution: Let the lattice be represented by the points 0, 1, 2, \ldots, \(\ell - 1\), \(\ell\) on the real line. The number of unordered pairs of points is \(N = \ell(\ell+1)/2\). Considering these pairs in their order from left to right as

\[(0, 1), (0, 2), \ldots, (0, \ell), (1, 2), (1, 3), \ldots, (1, \ell), (2, 3), (2, 4), \ldots, (2, \ell),\]
\[(3, 4), \ldots, (3, \ell), \ldots, \ldots, (\ell - 1, \ell).\]

The length of the edges with these pairs of vertices in the above order is

\[1, 2, \ldots, \ell, 1, 2, \ldots, \ell - 1, 1, 2, \ldots, \ell - 2, \ldots, \ldots, 1.\]

Therefore, the sum of the lengths of these edges is

\[S = \sum_{n=1}^{\ell} \frac{n(n + 1)}{2} = \frac{1}{2} \left(\sum_{n=1}^{\ell} n + n^2 \right) = \frac{1}{2} \left(\frac{\ell(\ell + 1)}{2} + \frac{\ell(\ell + 1)(2\ell + 1)}{6} \right) = \frac{\ell(\ell + 1)(\ell + 2)}{6}.\]

The average length is thus

\[\frac{S}{N} = \frac{(\ell(\ell + 1)(\ell + 2)/6) / (\ell(\ell + 1)/2)}{(\ell(\ell + 1)/2)} = (\ell + 2)/3 \sim \ell/3,\]
as \(\ell \to \infty\).

3. We can equivalently define a random graph by its size \(N\) and its total number of edges \(n\).

(i) What is the total number of possible graphs with this specification?
(ii) Find \(z \) and \(p \) (as defined in the notes) in terms of \(N \) and \(n \).

(iii) Starting with the definition of a random network as in the notes, find the expected value \(\langle n \rangle \) of the number of edges \(n \).

Solution: (i) There are \(\frac{N(N - 1)}{2} \) possible edges if we have \(N \) vertices, so the answer is:

\[
\binom{N(N - 1)/2}{n} = \frac{M!}{n!(M - n)!},
\]

where \(M = \frac{N(N - 1)}{2} \).

(ii) Since there are \(2n \) end-points for \(n \) edges, we have: \(z = \frac{2n}{N} \). On the other hand, there are \(\frac{N(N - 1)}{2} \) pairs of distinct vertices, so \(p = \frac{n}{\frac{N(N - 1)}{2}} = \frac{2n}{N(N - 1)} \).

(iii) The probability of an edge between two vertices is \(p = \frac{z}{(N - 1)} \). Thus, \(\langle n \rangle = p\langle N(N - 1)/2 \rangle = Nz/2 \).

4. Find the expected value and the second moment of the degree of vertices

\[
\langle k \rangle = \sum_{k=1}^{\infty} kP(k) = \sum_{k=1}^{\infty} k2^{-k},
\]

\[
\langle k^2 \rangle = \sum_{k=1}^{\infty} k^2 P(k) = \sum_{k=1}^{\infty} k^2 2^{-k},
\]

for the random growing network, where \(P(k) = 2^{-k} \). Hence, find \(\frac{z_2}{z_1} \) and discuss percolation transition for this network.

Hint: Evaluate \(\langle k \rangle = 2\langle k \rangle - \langle k \rangle \) and \(\langle k^2 \rangle = 2\langle k^2 \rangle - \langle k^2 \rangle \).

Solution:

\[
\langle k \rangle = 2\langle k \rangle - \langle k \rangle = \sum_{k=1}^{\infty} k2^{-(k-1)} - \sum_{k=1}^{\infty} k2^{-k}
\]

\[
= \sum_{k=0}^{\infty} (k + 1)2^{-k} - \sum_{k=1}^{\infty} k2^{-k} = \sum_{k=0}^{\infty} 2^{-k} = 2.
\]
\[\langle k^2 \rangle = 2\langle k^2 \rangle - \langle k^2 \rangle = \sum_{k=1}^{\infty} k^2 2^{-(k-1)} - \sum_{k=1}^{\infty} k^2 2^{-k} \]

\[= \sum_{k=0}^{\infty} (k + 1)^2 2^{-k} - \sum_{k=1}^{\infty} k^2 2^{-k} = \sum_{k=0}^{\infty} (2k + 1)2^{-k} = 2 \sum_{k=1}^{\infty} k2^{-k} + \sum_{k=0}^{\infty} 2^{-k} \]

\[= 2\langle k \rangle + 2 = 2 \times 2 + 2 = 6. \]

Thus,

\[\frac{z_2}{z_1} = \frac{\langle k^2 \rangle}{\langle k \rangle} - 1 = \frac{6}{2} - 1 = 2 > 1. \]

It follows, as we had clearly expected, that we are above the percolation threshold and thus there will be a giant cluster.