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Abstract— We study the notion of a strong attractor of
a Hopfield neural model as a pattern that has been stored
multiple times in the network, and examine its properties
using basic mathematical techniques as well as a variety of
simulations. It is proposed that strong attractors can be used
to model attachment types in developmental psychology as well
as behavioural patterns in psychology and psychotherapy. We
study the stability and basins of attraction of strong attractors
in the presence of other simple attractors and show that they are
indeed more stable with a larger basin of attraction compared
with simple attractors. We also show that the perturbation
of a strong attractor by random noise results in a cluster of
attractors near the original strong attractor measured by the
Hamming distance. We investigate the stability and basins of
attraction of such clusters as the noise increases and establish
that the unfolding of the strong attractor, leading to its break-
up, goes through three different stages. Finally the relation
between strong attractors of different multiplicity and their
influence on each other are studied and we show how the impact
of a strong attractor can be replaced with that of a new strong
attractor. This retraining of the network is proposed as a model
of how attachment types and behavioural patterns can undergo
change.

I. INTRODUCTION

The Hopfield model introduced in [1] was the result of a
long term quest to develop an artificial neural network for
content addressable memory drawn by the notion of Hebbian
rule for learning [2]. This rule which was hypothesised in
the middle of the last century found experimental support by
the mechanism of Long Term Potentiation in early 1970’s.
The Hopfield model very quickly attracted interest among
researchers in various fields because of the simple form of its
unsupervised learning and updating rule, and its applications
in pattern recognition and solving optimisation problems. It
was also particularly appealing because the stored patterns
in the network give rise to attractors of a dynamical system
governed by an energy function which always decreases with
any random asynchronous rule of updating. The Hopfield
model and its stochastic extension to the Boltzmann machine
had been inspired by and closely resemble the Ising model
of ferromagnetism in statistical physics. This allowed long
established and powerful mathematical techniques to be used
in the analysis of the model [3]. Since the Hopfield network
has a low capacity relative to its size and induces the so-
called “spurious patterns” different from the stored patterns,
most research for technological applications in this area has
been focused on improving this relative capacity for random
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or correlated patterns [4], [S], [6] and unlearning the spurious
patterns [7].

An entirely different type of application of the Hopfield
network, one that is related to our work, was sought by
biologists, psychologists, psychiatrists and sociologists, who
tried to use it to obtain a simple conceptual brain model
which is based on the Hebbian rule. In this context the size
of the capacity of the network is not a crucial issue.

In [8], Francis Crick, the co-discoverer of the DNA and
Graeme Mitchison postulated that the function of dream
sleep is to remove some undesirable patterns in the brain
network and proposed to use Hopfield like networks to ex-
amine this hypothesis. The psychiatrist Ralph Hoffman in [9]
proposed that the two basic psychotic disorders of the brain
namely mania and schizophrenia can be modelled using the
Hopfield network. According to this hypothesis mania results
from increased random activity in the brain that corresponds
to temperature increase in the model whereas schizophrenia
results from an overload in memory, misconception and loose
associations that corresponds with the spurious states in an
overloaded Hopfield network. Attractor neural networks were
proposed by the psychiatrist Avi Peled in [10] as the basis
for developing a new diagnostic system for mental illness.
More generally, these networks have shown to be a useful
conceptual tool in understanding brain functions including in
the limbic system [11].

Our focus of application here is attachment types and
behavioural patterns. Attachment theory, considered today
as a main scientific paradigm in developmental psychology,
was introduced by John Bowlby [12]. It classifies the quality
and dynamics of the relationship of a child with his/her
parent into four kinds: secure attachment and three kinds of
insecure attachments, namely, avoidant attachment, anxious
attachment and disorganised attachments. The particular type
of attachment depends crucially on the kind of response by
the parent to the child’s needs, which is repeated thousands
of times during the infant’s development. The attachment
type will then strongly impact on the emotional, cognitive
and social development of the child into adulthood by de-
termining the individual’s “working model” of relationships.
The theory has been corroborated by the so-called strange
situation experiment developed by Mary Ainsworth [13] and
has also been supported by the findings in developmental
neuroscience in the past twenty years. According to Allan
Schore, an academic psychotherapist and a leading researcher
in neuropsychology, the orbitofrontal areas of the prefrontal
cortex, which are densely connected to the limbic system
and develop on the basis of the type of interaction infants



have with their primary care-givers, are critically involved in
the attachment processes in the first two years of life [14,
page 14]. The same paradigm has been emphasised by
Louis Cozolino, a clinical psychologist with research interest
in neuroscience: “[A]ttachment schemas are a category of
implicit social memory that reflects our early experience with
care takers. Our best guess is that these schemas reflect the
learning histories that shape experience-dependent networks
connecting the orbital frontal cortex, the amygdala, and their
many connections that regulate arousal, affect and emotion.
It is within these neural networks that interactions with
caretakers are paired with feelings of safety and warmth or
anxiety and fear.” [15, page 139].

Attachment Theory has influenced nearly all forms of psy-
chotherapy including psychoanalysis and psycho-dynamic
therapy [16], and its impact on Cognitive Behavioural Ther-
apy, as the most widely used type of therapy today, has led
to Schema Therapy [17].

Attachment Theory has been studied in computer science
and Artificial Intelligence by Dean Peters and his collab-
orators; in particular in [18] a reactive agent architecture
has been designed to model attachment types. Very recently,
in [19], the Hopfield model with a variation of the local and
iterative learning rule proposed in [4] has been used to design
an attachment model for robots.

In their influential and highly praised interdisciplinary
book [20, pages 132-144], the three academic psychiatrists
Lewis, Amini and Lannon have used artificial neural net-
works to point out, in a non-technical language, that our
attachment types and key emotional attitudes in relation to
others are sculpted by limbic attractors as a result of repeated
exposure to similar patterns of interactions in childhood,
which will then profoundly impact our emotional world for
the rest of our lives.

A similar argument about repetition of a pattern has been
implicitly made by three sociologists, Smith, Stevens and
Caldwell in [21, page 222], who proposed the Hopfield
network to model behavioural prototypes, including any kind
of addictions, and working models in attachment theory.
Cognitive and behaviourally patterns (including for example
substance abuse, habitual physical exercise, gambling and
eating) control the neurophysiology underlying feelings asso-
ciated with distress and can be considered as: “prototypes—
deeply learned patterns of thought and social activity. In
the sense developed by cognitive psychologists, prototypes
are cognitive structures that preserve in memory common
or typical features of a person’s experience. By matching
perceptions and thoughts in prototypes stored in memory,
persons categorize and identify objects, form inferences and
expectations, and construct predictions about the future.
Prototypes thus serve an orienting function, since persons use
them to guide their behaviour. In general, a person seeks the
closest possible match between ongoing experience and these
prototype patterns. When confronted with the unfamiliar,
a person will search for the closest match to a learned
prototype.”’[21, page 214].

We now ask the following fundamental question. How can
we model repeated exposure to similar patterns or deeply
learned patterns is the Hopfield network as a rudimentary
model for learning and retrieval of patterns in the brain?

In this paper, we propose the notion of a strong pattern of a
Hopfield network, namely one that has been multiply stored,
to model attachment types and behavioural patterns. The
Hebbian learning paradigm in Hopfield networks provides
a biologically somewhat plausible and a mathematically
simple rule amongst other choices (see for example [5],
[22]). We thus consider a Hopfield network with a training
set of random patterns except that some of these patterns
are multiply stored while others, called simple patterns,
are stored once as usual. We show both mathematically
and with our simulations that in this setting strong patterns
give rise to strongly stable attractors, which we call strong
attractors, with a large basin of attraction compared with
simple patterns. The strong stability of strong patterns and
their large basins of attraction matches the robustness of
attachment type in children after the first few years of their
development and with its long term persistence and impact
throughout adulthood. In the same way that the implicit
memory of a child affects and to a large extent determines
his/her affective and emotional perception of any interaction
with other individuals and defines the prism through which
the world is observed, the training of a Hopfield network
with a strong pattern builds a strong bias for the retrieval of
any random pattern towards the strong pattern.

Another main objective in this paper is to model change of
attachment types or behavioural prototypes, for example in
the case of a child as a result of change of environment
and a different kind of parenting, or in the case of an
adult after a successful course of psychotherapy or self-help
therapy, or an addict after undergoing rehabilitation. In terms
of neuroscience this change is made possible thanks to the
neuroplasticity of the human brain, which can in a process
of learning develop new neural circuits connecting the pre-
frontal cortex to the limbic system that can regulate strong
emotions [23], [24]. After such a retraining, an emotionally
significant event will more likely be perceived, interpreted
and responded to according to the dynamics of the new
circuits rather than the old ones.

Here, a new attachment type is modelled by the creation of
a new strong pattern which is strengthened with higher and
higher multiplicity to progressively challenge and weaken the
old strong pattern by competing more and more effectively
for a bigger basin of attraction. Consequently, exposure to
a random pattern will more likely retrieve the new stronger
attractor rather than the old, as in the case of successful
psychotherapy.

In this context we study, both mathematically and by
computer simulations, the impact of an increasingly stronger
pattern on another fixed strong pattern and also the weaken-
ing of a strong attractor as induced by a random perturbation,
which unfolds the strong pattern into a number of patterns
Hamming-close to it.



We show that when a Hopfield network is trained with
these perturbed patterns then with high probability any
pattern close enough to the strong pattern becomes a fixed
point of the network. This provides a cluster of new attractors
near the strong pattern, which in classical Hopfield network
would be regarded as “spurious” since they do not correspond
to stored patterns. However, in the context of applications to
attachment types and behavioural patterns, these are natural
extensions of the perturbed strong pattern. We call them
generalised stored patterns, similar to the designation used
by Hoffman in the above cited work for a fixed point close
but not identical to a stored pattern, and we call the union
of their basins the generalised basin of the perturbed strong
pattern. We show that for small noise the generalised basin is
still relatively large, but increasingly smaller than the basin
of attraction of the strong attractor as the noise is increased,
and eventually the generalised basin breaks up as the level
of noise produces random patterns for the perturbed strong
pattern.

The basic mathematical properties of the classical Hopfield
network is based on the assumption that the stored patterns
are random with respect to each other. This allows the use
of the partition function in statistical physics and the Central
Limit Theorem in probability theory to deduce results about
the storage capacity of the network [3, pages 17-20 and
chapter 10]. In the presence of strong patterns or perturbed
strong patterns, these mathematical tools can no longer be
used. Our mathematical results in particular use a theorem
of Lyapunov which provides, subject to what is now called
the Lyapunov condition, a generalisation of the Central Limit
Theorem to a triangular array of random variables that are
random with respect to each other but are not identically
distributed [25, pages 368-371].

II. STRONG PATTERNS AND STRONG ATTRACTORS

Assume we have a Hopfield network with N neurons
i =1,...,N with values S; = +1 and p stored patterns
&+, with 1 < p < p, each given by its components &!* for
1 =1,...,N. We use the generalized Hebbian rule for the
synaptic couplings:

1 <,
wi = > &S, (1)
pn=1

for i # j with wy;; =0 for 1 < 4,57 < N.

In this paper, we assume we have the deterministic updat-
ing rule (i.e., with temperature 7" = 0) and zero bias in the
local field:

If h; > 0 then 1 < S; otherwise — 1 <« S;

where h; = Zjvzl w;;S; is the local field at 7. The updating
is implemented asynchronously in a random way.

We assume that a given pattern £# can be multiply stored
or imprinted in the network and we write its multiplicity or
more briefly its degree, which is a positive integer, as d,, > 1.
This means that there are d,, patterns that are identical with

&F among the p patterns, in other words £* occurs exactly
d, times in the set of p patterns. If d,, > 1, we say £ is a
strong pattern and call the corresponding attractor that can
be produced in the network as a strong attractor. If d,, = 1,
we refer to £# as a simple pattern and call the corresponding
attractor a simple attractor.

III. STABILITY OF STRONG ATTRACTORS

Assume that we have n patterns &1,..., " with degrees
di,...,d, > 1 respectively and that the remaining p —

Z:l di > 0 patterns are simple, i.e., each has degree
one. Let A denote the set of all patterns and note that by
our assumptions A has py = p+n — Y._, di elements.
We assume that the patterns in A are all independent and
identically distributed with equal probability +1 for each
node.

We compute below the local field for ¢! at node i by
arranging the contributions from the stored patterns £ € A
in three different groups: () p =1, () p=kfor2 <k <n
and (iii) pu > n.

hi = Zj#i wijfjl-
= % Zj;ﬁi Z,uEA dufz‘ufffgl‘
= gl 5 i (X G EE
1 3
Similar to the standard treatment of the Hopfield model (see,
e.g., [3]), we consider the negation C} (N) of the overlap of
& with h! — X1d,&! and swap the order of the above two

terms to obtain the following sequence of random variables
given in terms of the network size N:

Ci(N)

—&i (b} — TFtdag})
= =N Y EENED) 2)
— % (Chea Ak (X E1ENER)

In the first term, there are (p—n) (/N —1) random variables
of the form

1 lepep el
—yéeee 3)
which we denote as Yy, with 1 < ¢ < (p —n)(N — 1).
In the second term, for each kK = 2,...,n, we have N — 1
random variables of the form
1
GGG @

which we denote by Yy with 2 < k <nand 1 <t <
N — 1. Thus,

(p—n)(N-1) n N-1
CIN)= > Yvu+>. ) Yo )
t=1 k=2 t=1

The random variables Yy1; for 1 <¢ < (p —n)(N — 1)
and Yyi: for 2 < k <nand 1 <t < N — 1 are clearly
not identically distributed and therefore the Central Limit
Theorem cannot be used as in the classical treatment of the



Hopfield model in [1] to deduce that C}(N) has a normal
distribution as N — co. However all these random variables
are independent, and thus C}(N) forms a triangular array
of random variables and we can check if the Lyapunov
condition holds (for § = 1), which will guarantee that the
sequence C} (N) converges to a normal distribution (see [25,
pages 368-371]).

We have:
E(Yn1:) =0 1<t<(p—m)(N-1)
E(Ynie) =0 2<k<n 1<t<N-1
of =E(Y§y,) =1/N*  1<t<(p-n)(N-1)
o2 =EB(YZ,,)=di/N? 2<k<nl<t<N-1
(6)
The sum of all the variances is given by:
—n)(N—
s3 =yt S ITED DN Sriirer s oW
p—n)(N—1 (N—-1)d?
— (f ])\;2 )+Zk:2 N k (7)
=t (p—n+Xidi).

Now put p1 =p—n+ > ,_,d; so that sy ~ \/p1/N as
N — oc0. Since E(|Y32 ;) = 1/N3 and E(|Y3,,|) = d3 /N3,
we have:

{ lmy oo = T Ekt (1Ynke|?)
~limy e (p— 1+ Sy d3) /(0 V)

First consider the basic case that p, n and the dj’s (and hence
p1) are all independent of N. Then, the above limit is O as
N — oo and the Lyapunov condition holds. It follows from
Lyapunov’s theorem that

®)

*C( ) ~N(0,1)
SN

as N — oo, where A (0,1) is the normal distribution with
mean 0 and variance 1; thus for large V:

Ci ~N(0,p1/N). 9)

Note that when dj, = 1 for all 1 < k < n, we obtain p; = p
and the above distribution is precisely the distribution we
obtain for the standard Hopfield network [3, page 18].

Suppose now d; > 1 and di, = 1 for 2 < k < n which
imply p; = p — 1. Then the probability Pr., of error, i.e.,
for fil to change, can be obtained in terms of the normal
distribution in Equation 9 or the error function erf as follows.

Theorem 1: (Stability of strong attractors) The error
probability in the stability of a single strong attractor with
degree di, as N — oo, is given by:

Pr.,. = \/N/(Qﬂ'pl)/ e—Nxz/(zpl) dzx
dy
=1 (1 — erf(di/N/2(p — 1)) O

Note that, for a given p/N, this gives a sharp drop in
the probability that &} is changed even for small values of
d; > 1 when compared to d; = 1. In fact, by Equation 10,

(10)

even if p is of order of N, so that the classical storage
capacity is greatly exceeded, the strong pattern &' would
with high probability be stable if d; is large enough. Our
first simulation presented in Section VI-B.1 verifies this fact,
which shows the strong stability of a single strong attractor
is the presence of random attractors. More generally, as long
as ZZ:Q di is not too large compared with p then any strong
pattern £ with d; > 1 will be strongly stable. For example,
if p; = 2p then:

Pr., — + (1 ~erf(d \/W) a1

On the other hand, we can examine the impact of the
presence of stored strong patterns on the stability of a simple
stored pattern. For this, we put d; = 1 with dj > 1 for one
or more k > 1 so that p; > p. Then, the stability of the
simple pattern ¢! is compromised as

Pr., — % (1 — erf(\/N/Qpl) ; (1 — erf(«/N/2p) .
(12)
Finally, consider the case that p, n and the dj’s do actually
depend on N. In this case, the limit in Equation 8 will still
be 0 if for example

p—n+Zd3 =o(VN
k=2

as NV — oo and we can again estimate the error probability
in the stability of the patterns.

For the rest of this paper, however, we will always assume
for simplicity that p, n and the dj’s are constant, independent
of N.

IV. BASIN OF ATTRACTION

Recall that the Hopfield network has an energy function
which in a given state S € {—1,1}" has the value

1
S) = —5 ZwijSiSj
i#]
With the asynchronous updating rule, the energy will always
decrease until the network comes to a fixed state at a local
minimum of the energy function.

Assume the same network as in Section III. Then, expand-
ing the value of the matrix w;; and organising the terms into
three groups (u =1, p =k for 2 < k < mn, and p > n) as
in Equation 1, the energy level for pattern &' is given by:

{ HE) = =BG = Y X sa 866
_ﬁ /c:Qdk(Zi;éj gffjkng])

13)

(14)
The two sums have terms similar to Equation 3, denoted by
Yn1t, and Equation 4, denoted by Yy with 2 < k£ < n,
respectively; however the number of terms in each sum is
now multiplied by N. Thus, we have:

(p—n)N(N-1) n N(N-1)
HEY+d (N -1)/2= Y YNU+Z Z Yivhe
t=1

15)



We again have a triangular array of random variables each
with mean zero. This time the sum of variances yieldS'

—n)N(N— N(N—
{ sy = 21521) ( 01t + D hmg Dore ( Okt
= Ngljxle)pl'\‘pl/‘l
(16)

as N — oo, where as before p; = p—n+ > ,_, ds and

we have put 0%, = E(Y%;,) and 0%, = E(Y2,,) for
2 < k < n. The Lyapunov condition for § = 1 can be easily
checked to hold when p, n and dj’s are independent of V.
We thus obtain:

Theorem 2: (Energy distribution of attractors) The
probability distribution of the energy H (&) of a strong
attractor with degree d;, as N — oo, is given by

HEY+ N N D

Therefore, for large N, the energy level of a strong pattern
is on average lower than that of a simple pattern by a
multiplicative factor d, the degree of the strong pattern. We
can now show that the strongest strong pattern (i.e., one with
the highest degree) gives rise to a large basin of attraction
for the induced strong attractor.

Assume dj’s are in descending order of magnitude with
dy > dy > .... Given a pattern £* and a positive probability
q < 1, we say £° is a random perturbation of £* by q if
Pr(¢) # &) = g (and thus Pr(&) = ¢) = 1 — ) for each
¢t = 1,...,N. Note that on average the Hamming distance
between &* and £° (i.e., the number of nodes with different
values in the two) is Nq. We call £* the root pattern for £9;
we will extensively use these notions in the next section as
well.

Assume £ is a random perturbation of the strong pattern
£ by g < 1. We will show that ¢° is, with high probability,
in the basin of attraction of & L For this, we compute the
energy function at the configuration £° and, as before, split
the terms into three groups:

a7

HE) = iz EHE1E0ED

_ﬁ Zi;ﬁj Z;L>n ffﬁff?ﬁ?

2y AEEEREOE0
Consider the first sum. For ¢ # j, the two random variables

£€) and £]¢) are independent with equal distribution given

(18)

by
Pr(¢fe) =1)=1—¢
{ Pr€led = —1) = g 4
We thus have:
0 _ _ — _
{(55) (1—q)—q= 12q' 00
E(&/6)¢;€)) = (1 —2q)* for i # j.

We subtract the sum of the means of the terms in the first
sum from both sides of Equation 18 and, as in Equation 5,
rewrite the terms of the three sums as:

2 _
{ H(gY) + WDA020" _ N1y

(21)
U D UNEREE TR SIS DAL 2y¥

D eleleded +

where Yyo; for each t is of the form —3

2
%. The required expected values relating to the three

sums in Equation 21 for checking the Lyapunov condition
(for § = 1) are given by:

E(YNOt) = O E(YNlt) == O, E(Yth) == 0
E(YRo) =
E(|Yxoi*) = O(5z), E

This gives as N — oo

1 n
s~ a(l=a)di + 7 ((p —n)+ kzzdi> (22)
It is easily checked that

1
= ZE(|Yth|3) =
N Lt

Thus the Lyapunov condition holds and for large N we have:

Theorem 3: (Energy of perturbations of attractors) The
probability distribution of the energy H(£°) of a random
perturbation £° by ¢ of a strong attractor with degree d;, as
N — o0, is given by:

2
dlq(l 2) E(Yl%lt> = ﬁv E(Yﬁkt) = fﬁ

3
(IYn1e?) = gy E(Yvrel?) = 525

O(1/N).

N(0, p2/4), (23)

where
p2 = 4q(1 - q)d; +

Now if ¢ is small enough so that ((1 — 2¢)%d; > da, then

— |(d1(1 = 20)% = o) N/(v/P1 + V/p2)]
is positive and is large for large N. It also follows that

GU-2PN B BT N

2 2 2 2

Note that E(H(£2)) = —daN/2 by Equation 17 with d;
replaced with dy, whereas E(H (£Y)) = —d;(1 — 2¢)2N/2
by Equation 23. Therefore, by the above two Equations, we
deduce that the energy of a random perturbation £° of ¢! by
q is less than the energy of &2 and thus that of any other
stored patterns with probability at least

Pr(H(€%) < E(H(£)) +m(y/P2/2)) X
Pr(H(£?) = B(H(£?) — m(/p1/2))

2
_ (ﬁ Jm et dm) = 1(1 + erf(m/V/2))?

Since the energy of any state decreases at each step of
updating, we conclude that with at least the above probability
€0 is in the basin of attraction of ¢1. Putting £ = [ Nq/|, we
deduce:

Corollary 4: (Size of basin of attraction) The size of the
basin of the strong pattern & 1 as N — oo, is at least

()
r )
r=1
with probability at least (1 + erf(m/v/2))2. O

(24)

(25)

(26)




V. CLUSTER OF ATTRACTORS

We now consider the random perturbation of a strong
pattern and show how this gives rise to a cluster of attractors
close to the strong pattern with respect to the Hamming
distance.

We assume initially there are p + 1 — d random patterns
such that one is a single strong pattern £* with degree d > 1
and the other p — d patterns are all simple, i.e., n = 1 in
the setting of Section III. Consider d independent random
perturbations of £* by ¢ < 1 which, by relabelling we denote
by &# with 1 < i < d. These d simple patterns form a cluster
of patterns near the root of the cluster which is the strong
pattern £*. The Hopfield network is trained with the simple
patterns in this cluster as well as the other original p — d
simple patterns which are labelled as £* for d+1 < pu < p.
Our objective is to study in this trained network the stability
of any random perturbation £° of £* by ¢y < 1.

We evaluate the overlap h?¢? where hY is the local field
at node i for £° and and separate the contributions of the
perturbed patterns £# with 1 < p < d in the synaptic
couplings w;; from the rest:

h2&) =305 v (o €161)E5E0
= % Zi:l Z];ﬁz(&ff?)(ff&?)
v i s a N EED)
= S Y+ P vy,
For each j and 1 < p < d, using the identity
{ PrEIEY =1) = Pr(Ehe) = 1)g) = DPr(E) = )+
Pr(¢¢) = 11¢; = —1Pr(¢; = 1),

27)

(28)
we can easily deduce that
{ Pr(¢fe) =1) =qq0 + (1 = ¢)(1 — qo) 29)
Pr(&fed = —1) = q(1 —q0) + (1 — )0
Thus, we have
E(Ere)) = qa+(1—-q)(1—q)
—(q(1 = q0) + (1 — q)qo0) (30)

(1 - 2q)(1 - 2QO)1

which by the independence of the random variables E;-L f;? for
different j’s, implies

E(gjeed) = (1-29)°(1 — 2q0)*.

Thus, the variance is given by:

E(&)&7e ) — (B(ggjele))? =1-(1-29)* (1~ 2q0)".

€1y

(32)
We can now compute the sum of variances in Equation 27:
s ~p3/N, (33)

where

ps =d(1—(1—2¢)*1 —2¢)*) +p—d.

It follows that the Lyapunov condition (with 6 = 1) holds
again as:

1 d(N-1) (p—d)(N—-1)
5 ; E([Ynue>+ ; E([Yna]?)) = O(N~1/2)

We conclude that

Theorem 5: (Fixed points near perturbed attractors)
The error probability of stability of a random perturbation
€% by qo of a strong pattern with degree d when the pattern
is replaced with d independent random perturbations of it by
q is, as N — oo, given by:

hE) — (1 —2¢)%(1 — 290)*d ~ N'(0,p3/N) O (34)

Assume now that ¢, ¢y < 1 so that we have:
hP€) — (1= 4(q+qo))d ~ N(0, ((p —8d(q+qo)/N). (35)

The random perturbation £° will be a fixed point if A2¢) > 0
which holds with a high probability even for small values of
d > 1. For example if ¢ + go = 1/8 then even with d = 2
we obtain

W) — 1~ N(0,(p—2)/N) (36)

and from the classical Hopfield model we know that £° will
be a fixed point with high probability if p/N < 0.13. This
probability increases sharply for higher values of d.

How many fixed points £° do we obtain with high proba-
bility as random perturbations by gy of £* for a given value
of ¢ < 1? For any ¢y < ¢, on average £° will differ from
&* by Ngo nodes. Thus if £ = |Ng| then the number of
random perturbations is again given by Equation 26, showing
that we indeed have a cluster of attractors near the perturbed
strong attractor. We call these attractors generalised stored
patterns, following a similar designation in [9], and we call
the union of the basins of these attractors the generalised
basin of the perturbed strong pattern £*. As pointed out
in the Introduction, for applications in attachment theory
and behavioural patterns these generalised memory states are
quite natural.

Our result in this section can be extended to a general
Hopfield network that has both a number of strong attractors
and a number of clusters of attractors each being a random
perturbation of a different strong attractor. Due to space
limitation here, this is done in the full version of the paper.

VI. SIMULATIONS

In this section we give a description of the simulations
carried out during our study. Our experiments involve Hop-
field networks with asynchronous updating rule that we train
with both simple and strong attractors, perturbed as well as
unperturbed.

A. Methodology

All our simulations were performed using custom software
written in MATLAB!.

IMATLAB R2012b (The MathWorks)



In all simulations, we introduce a variable number of
simple attractors, which we specify individually. This is to
underline that all results on strong attractors are resilient to
the introduction of other random patterns in the network. We
can see how the presence of random simple attractors affects
strong attractors in the simulation presented in Fig. 1.

The networks we use for our simulations consist of 500
units. There is no specific pattern we choose as the root for
a strong attractor: roots are always random binary strings.
When we have two strong attractors stored in our network,
we choose one to be random and the other one to have a cer-
tain hamming distance from the first (in all our simulations,
the roots differ in 150 random locations).

In the section devoted to competing strong attractors, we
look at the recalled pattern (the pattern the network converges
to) and take its Hamming distance from the root of two
strong attractors; in doing this we start the network from
a random initial configuration and then take the average
distance recorded over 10 trials.

The details for each simulation are given in each individual
description.

B. One strong attractor

1) Basin size for strong attractors: The basin size for a
single strong attractor rises very steeply even in the presence
of other random patterns in the network. In this first simula-
tion we trace the dependency between the degree of a strong
attractor and its basin size, that is, the size of the basin of
attraction of the root pattern . We use an increasing number
of simple, random patterns (namely, 200, 400, 800 and 1600)
showing that even in the presence of a very large number of
other random attractors, strong attractors with a large enough
degree can still be learnt (Fig. 1). This is in accordance
with our mathematical results in section III, where we prove
the stability of strong attractors in the presence of simple
attractors. The details of the simulation in Fig. 1 are as
follows:

(i) For all d values in {1, 2, ...,40}
(ii) For r = {200,400, 800, 1600}
(iii) Train the network with a strong attractor with degree d,
and a fixed number r of random simple attractors
(iv) Measure the size of the basin of attraction for the strong
attractor

2) Basin size for perturbed strong attractors: Recall that
a strong attractor of degree d is perturbed when each node in
each of its d identical copies is flipped with some probability
q (noise). We consider values of probabilities ranging from
q = 0, equivalent to an unperturbed strong attractor, to ¢ =
0.5, where patterns become random.

The simulation in Fig. 2 was carried out as follows:

(i) For all d values in {1,2, ..., 15}
(ii) For all ¢ values from 0 to 0.5, with a step size of 0.025
(iii) Train the network with a strong attractor with degree d,
perturbed with noise ¢, and a fixed number of random
simple attractors (100 for this simulation)
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Fig. 1. Basin size for a strong attractor in presence of other random

patterns We show the basin size for a strong attractor in presence of a
variable number of random simple attractors drawn in four different colours.
Strong attractors can always be learnt, provided they have a large enough
degree, even in the presence of very high number of random patterns.

(iv) Take the average size of the basin of attraction for all
patterns belonging to the strong attractor.

The simulation shows a sharp decrease in the basin size
when g > 0, due to the strong disruptive interference arising
among very similar patterns. However, this does not tell us
anything about the number of generalised stored patterns that
are Hamming-close to the root and are stored in our network.
These patterns may have a very low basin size, but they
are quite a few. In fact, when we start the network from
a random initial configuration, the recalled pattern will be,
with high probability, very close to the root (figure 5). This
is in accordance with the result shown in Section V.

After shrinking to small values, the basins start broadening
again around ¢ ~ 0.3. This is because the patterns belonging
to the strong attractor interfere with each other less and less
as the value of ¢ builds up, and thus the network offers more
space for their basins. However, as ¢ increases, the strong
attractor starts losing its “identity” , that is the Hamming
distance of the patterns from the root pattern starts being
considerably high (figure 2).

C. Two strong attractors

In this section we explore the dynamics of a network
storing two competing strong attractors. We will see that both
the degrees and the values of noise affect the dominance of
a strong attractor over another.

1) Competing for basin size - the role of degrees: When
two strong attractors are stored, their degrees play a major
role in the size of their basins of attraction. As intuition
suggests, in the absence of noise, the greater the degree the
larger the basin size. The simulation carried out confirms
this statement (Fig. 3). The details are the same as for
simulation 1, except for the presence of two strong attractors
with degrees in {1,2,...20} and a fixed number of random
patterns (100).
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Fig. 2. Basin size for a perturbed strong attractor in the presence of other
random patterns We show the basin size for a perturbed strong attractor in
the presence of a variable number of random simple attractors with varying
degrees. A perturbed strong attractor has a very low basin size, but as we
will see, this does not compromise its retrieval. Notice how the average
basin size is lower for an unfolded strong attractor with higher degree, and
how when the degree equals 1 the noise does not affect basin size. The
reader is invited to consult the colour scale placed above when inspecting
this and the remaining plots.

In the case of strong attractors, a larger size of the basin of
attraction ensures that the network will generally converge to
a pattern close to the root (Fig. 4, the details of the simulation
follow).

(i) For all dy values in {1,2,...,20} and d2 values in
{1,2,...,20}

(i) Train the network with two strong attractors with de-
grees d1 and d2 plus a fixed number of random simple
attractors (100 for this simulation)

(iii) Measure the Hamming distance between the recalled
pattern and the root of both strong attractors, when the
network is started with a random configuration. Repeat
for 10 runs, and take the average.

2) Perturbed strong attractors - how noise affects basin
size and recalled pattern: When a Hopfield network learns
two strong attractors, it will favour the one with higher
degree, or when the degree is the same, the one endowed
with a lower value of noise g. This means that starting with
a random initial configuration and over a sufficiently large
amount of trials, the network will converge to a pattern that is
closer to the root of the less noisy perturbed strong attractor.
This can be seen through our simulations in Fig. 4 and Fig. 5.
It does not matter, as expected, that the basins of the strong
attractors are very small. The simulation shows that when
the network is bombarded with random patterns, it will still
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Fig. 3.  The role of degrees in competing strong attractors. The higher
degree provides a larger basin size. On both figures, dI and d2 are the
respective degrees of the two strong attractors. The z axis indicates, for the
top figure, the basin size of cluster 2, while for the bottom Fig. the basin
size of cluster 1.

converge to a pattern that is close to the root of the less noisy
perturbed strong attractor. The details of the simulation in
Fig. 5 are as follows:

(i) For all g; values in {0,0.01,...,0.5} and g5 values in
{0,0.01,...,0.5} with d; = 30, and dy = 30

(i1) Train the network with two strong attractors with degree
dl and d2, perturbed with values ¢; and ¢o, plus a
fixed number of random simple attractors (100 for this
simulation)

(iii) Measure the Hamming distance between the recalled
pattern and the root of both strong attractors, when the
network is started from a random configuration. Repeat
for 10 runs and take the mean

D. Unfolding phases of a strong attractor

From Fig. 2 we observe that, when the network learns a
strong pattern, the basin size of the strong attractor is very
high. On the other hand, when it learns a cluster of patterns
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Fig. 4.

The role of degrees in competing strong attractors. The multiply
stored pattern with higher degree will win the competition. On both figures,
dI and d2 are the degrees of the two strong attractors. The z axis indicates,
for the top figure, the distance from 2, the root of cluster 2, while for the
bottom figure it gives the distance from r1, the root of cluster 1.

that are random perturbations of a strong pattern with a value
of ¢ that is comprised between 0 and a value vy (between
0.25 and ~ 0.375 depending on the degree of the strong
attractor, see Fig. 2) it will in fact learn a significant number
of generalised stored patterns that are very close to the strong
attractor’s root. So we have three phases for the unfolding of
a strong attractor in the presence of other random patterns:

(i) When ¢ = 0. The basin size of the strong attractor
is very large (depending on how many other random
patterns or strong patterns are stored).

(i) When 0 < g < ~. The basin size of each perturbed
pattern stored collapses to a small value, but we have
a multitude of basins of generalised stored states which
guarantees that a pattern Hamming-close to the strong

Distance of recalled pattern from r2

Distance of recalled pattern from r1

Fig. 5. Competition between perturbed strong attractors. The multiply
stored pattern with lower value of ¢ will win the competition. On both
figures, g/ and g2 are the noise values for the two strong attractors. The z
axis indicates, for the top figure, the distance from 72, the root of cluster 2,
while for the bottom figure it gives the distance from r1, the root of cluster
1. Note the steeper transition from one strong attractor to the other (yellow
to blue), with respect to the transition for varying degrees (Fig. 4).

pattern will be retrieved. The number « depends on the
degree of the strong attractor, and on how many simple
random patterns are stored in the network.

(iii)) When v < ¢ < 0.5. The basin size of each perturbed
pattern stored starts getting larger on average but the
pattern recalled when the network is exposed to random
patterns will have further and further Hamming distance
from the root be the strong pattern is weaker and the
generalised basin eventually breaks up completely (at
q = 0.95).



E. Discussion

Past studies on Hopfield models using Hebbian learning
have shown how networks with correlated patterns provide
less capacity (see for example, [26]). In this study we have
pointed that when strong patterns are perturbed with low
values of ¢, the network forms a multitude of generalised
stored patterns that are very Hamming-close to the patterns
presented in the learning phase. These are recalled with
high probability when the network is initialised in a random
configuration, confirming the results of Section V.

This can be inferred by combining the results shown in
Fig. 2 and in Fig. 5. The first figure gives us the basin size
for a strong attractor with low ¢ values and the second shows
that, when exposed to random patterns, the network recalls,
with a very high probability, a pattern very near the root of
the strong attractor with the lower value of q.

VII. CONCLUSION

We have shown, by deriving some simple mathematical
properties and running various computer simulations, that the
notion of strong attractors and their random perturbations
in Hopfield neural networks can be employed as a useful
conceptual tool to model attachment types and behavioural
patterns as well as to model changes that they can experience.

For future work, we will examine the variance of the
size of basins of attraction of the generalised stored patterns
when a strong pattern is perturbed by small noise. This
information will provide us more understanding of how
strong attractors unfold as a result of random perturbation.
Another essential task is to consider the properties of strong
patterns and their random perturbations in sparse networks
with low level of neural activity as in [27], which is more
biologically realistic, and where the basins of attractors have
very different shapes [28]. We will also extend our results
to stochastic Hopfield networks and Boltzmann machines.
One area for further work is to examine the impact of strong
attractors in the Boltzmann machine developed in [29] to
model neuroses. A more challenging task is to integrate
these conceptual tools with the current work on modelling
cognitive-emotional decision making using attractor neural
networks as in [30].
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