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1 Introduction

A hybrid automaton [16,2] is a digital, real-time system that interacts with an
analogue environment. Hybrid automata are ubiquitous in all areas of modern
engineering and technology. For example, the (digital) height control of an
automobile chassis depends on and influences the (continuous) driving condi-
tions of the vehicle [22]. Hybrid automata typically operate in safety critical
areas, such as the highway control systems [25,21] and air traffic control [24].
They combine a finite set of control states with continuous dynamics. In ev-
ery control state, the continuous variables evolve according to an ordinary
differential equation (or, more generally, differential inclusion [4]), and the
system changes control states if the continuous variables reach certain thresh-
olds; every such state change can involve non-continuous re-assignment of the
continuous variables.

One of the key concerns in the theory of hybrid automata is the algorithmic
verification of safety critical properties. This problem is well understood for
linear systems, where the trajectories of the continuous variables are linear
functions [3] and implemented in the model checker HyTech [17]. The situa-
tion for non-linear systems is, not surprisingly, much less satisfactory. While
the approximation of non-linear hybrid automata by linear systems is asymp-
totically complete [18], it results in a huge blow-up in the number of discrete
control states and associated state transitions, which limits the possibilities of
algorithmic analysis.

This paper presents an alternative approach. Conceptually, we regard a hybrid
automaton as the integration of two different types of systems: the evolution
of a family of continuous systems, governed by differential equations, and the
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dynamics of a discrete system given by a generalised iterated function sys-
tem (IFS), see [20]. We synthesise the domain-theoretic approach to solving
differential equations [9,11,13] and the domain-theoretic approach to obtain
the attractor of an iterated function system [8] to develop a domain-theoretic
semantics for general hybrid automata. The denotational semantics assigns to
every time point t the set JHK(t) of states that the automaton H can reach
at time t, starting from one of its initial states. The semantic function JHK
is obtained as the least fixpoint in the (continuous) domain of compact-set
valued functions of a real variable. Our first main results are correctness and
computational adequacy of this denotational semantics w.r.t. the operational
semantics, given in terms of a labelled transition system. While this provides
a mathematical representation of the states visited at each particular point in
time, we can now moreover use standard techniques of domain theory to actu-
ally compute this function. The implications are twofold: first, we obtain new
results on the computability of trajectories based on the domain theoretic
model of computation. Second, our analysis gives rise to a directly imple-
mentable algorithm that computes approximations to the semantic function
JHK up to an arbitrary degree of accuracy, and hence gives approximations to
the set of reachable states up to an arbitrary error bound. As the algorithms
induced by our method work on bases of the involved domains, which can be
defined in terms of either the rational or the dyadic numbers, this property is
moreover guaranteed for implementations of our technique, as with rational
arithmetic no rounding of real numbers is required.

Technically, the paper is divided in two parts. In the first part, we focus
on flow automata, where the behaviour of the continuous variables in every
discrete control state is governed by flow functions, which behave like the
solutions of ordinary differential equations. In this setup, we formulate an
operator on the domain of compact-set valued functions of a real variable
that precisely captures the reachable states at any particular point in time.
We impose two conditions on the automata under scrutiny: first, we require
that the ingredients of the automaton, i.e. the flow and transition functions,
give rise to Scott continuous functions on the respective domains. In order
to show that the least fixpoint precisely captures the reachable states, we
assume that the automaton is separated, i.e. has no transient states which
the automaton can leave immediately (after 0 time units) after entering. We
discuss these restrictions by means of examples, and show that the semantic
function associated with a flow automaton cannot be computable in absence
of these properties.

In the second part of the paper, we transfer the results obtained to hybrid
automata, where the trajectories of the continuous variables are given by an
ordinary differential equation. By instantiating earlier results on domain the-
oretic solutions of initial value problems [9,11,13] we show that we can effec-
tively obtain the associated flows, thus reducing the problem of computing the
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semantic function of a hybrid automaton to that of a flow automaton. Taken
together, the domain theoretic approach provides a new computational model
for the analysis of hybrid systems, and gives rise to both new computability
results, and directly implementable data types and algorithms for the analysis
of non-linear systems. Apart from providing algorithms that are guaranteed
to capture the set of reachable states at any particular point in time, the se-
mantic function associated with a hybrid automaton contains many further
items of information, as it allows us for example to compute the first point in
time where the system can enter into a particular control state; this will be
exploited in further work.

Related Work. We have already mentioned symbolic techniques for the anal-
ysis of linear hybrid automata [3] and their implementation in the HyTech
model checker [17]. Approximating non-linear systems by linear hybrid au-
tomata, while being asymptotically complete, results in an explosion of the
number of discrete control states and the associated state transition functions
[18], which is avoided by the domain theoretic approach. The domain theo-
retic approach of this paper is related to the interval analysis approach of [19],
where interval numerical methods are used to compute over-approximations
of the set of reachable states. In contrast to loc.cit., where outward rounding is
required if the result of an arithmetic operation is not machine representable,
the domain theoretic model of computation actually allows to compute the
semantic function up to an arbitrary degree of accuracy.

2 Preliminaries and Notation

We use basic notions of domain theory, see e.g. [1,15]. In particular, our anal-
ysis employs the following domains defined over the real numbers: the domain
of n-dimensional compact rectangles extended with a least element

IR
n = {a ⊆ R

n | a nonempty compact rectangle} ∪ {R
n},

ordered by reverse inclusion, and the upper space

UR
n = {c ⊆ R

n | c nonempty and compact} ∪ {R
n}

of nonempty compact subsets of R
n, also ordered by reverse inclusion [7]. A

closed semi rectangle in R
n is of the form a1×· · ·×an, where the ai are closed

(not necessarily bounded) intervals in R. If A is a semi-rectangle, we write
IA = {A∩ r | r ∈ IR

n} and UA = {A∩ c | c ∈ UR
n} for the sub-domain of all

elements above A. In particular, we will consider the domain I[0,∞), whose
bottom element is ⊥= [0,∞).

We denote the extension of UA (resp. IA) with a top element ⊤ = ∅ as U
⊤A

3



(resp. I
⊤A) and refer to them as the extended upper space (resp. the extended

interval domain).

For a semi rectangle A, IA and U are continuous Scott domains and and U
⊤A

and I
⊤
A are continuous lattices. We often consider IA ⊆ U

⊤
A as a sub-domain

without making this explicit; similarly, we identify x ∈ R
n with the degenerate

hyper-rectangle {x} ∈ IR
n ⊆ U

⊤
R

n. We write ⊥ = A for the least element of
both IA and UA, and ⊤ = ∅ for the top element of U

⊤A and I
⊤A. Note that

the way-below relation in UA and IA and their extensions U
⊤A and I

⊤A is
given by a≪ b iff b ⊆ ao, where ao is the interior of a.

If (Ci)i∈I is a family of compact subsets Ci ⊆ R
ni , we identify (xi)i∈I ∈

∏

i∈I U
⊤Ci with the set {(i, y) | i ∈ I, y ∈ xi} for convenience of notation.

Note that this induces a membership predicate and subset relation, which are
explicitly given by

(j, z) ∈ (xi)i∈I ⇐⇒ z ∈ xj , (xi)i∈I ⊆ (yi)i∈I ⇐⇒ ∀i ∈ I.xi ⊆ yi

where (xi)i∈I and (yi)i∈I ∈
∏

i∈I U
⊤Ci, j ∈ I and z ∈ Cj. Moreover, we obtain

two continuous maps ∩,∪, whose explicit definition reads

3 : (
∏

i∈I

U
⊤Ci)

2 →
∏

i∈I

U
⊤Ci, ((xi)i∈I , (yi)i∈I) 7→ (xi3yi)i∈I

where 3 ∈ {∩,∪}. Note that, domain theoretically, ∩ is the least upper bound
and ∪ gives us the greatest lower bound of two elements of

∏

i∈I U
⊤Ci. We al-

ways consider sub-domains of the extended upper space or the interval domain
equipped with the Scott topology.

The symbol ⇒ is used for the continuous function space. In particular, for semi
rectangles A,B, we consider the set (A ⇒ U

⊤B) of functions f : A → U
⊤B

which are continuous with respect to the Euclidean topology on A and the
Scott topology on B. Similarly, (U⊤A ⇒ U

⊤B) denotes the set of functions
that are continuous w.r.t. the Scott topology on U

⊤A and U
⊤B; the same

conventions apply to the interval domain.

We extend the ordinary arithmetical operations to the extended upper space
without further mention. In particular, we write a3b = {x3y | x ∈ a, y ∈ b},
where 3 ∈ {+,−, ∗, /} and a, b ∈ U

⊤
R

n. (We adopt the standard convention
that a/b =⊥ if 0 ∈ b.)

It is a straightforward exercise to see that Scott continuous functions of type
A → U

⊤B are precisely the semi continuous functions of set-valued analysis
[4]. More concretely, we have that f : A → U

⊤B is Scott continuous, iff

∀x ∈ A∀ǫ > 0∃δ > 0∀x′ ∈ Bδ(x).f(x′) ⊆ f(x) +Bǫ
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where Bǫ(x) = {x′ ∈ A | ‖x − x′‖ < ǫ} and Bδ = Bδ(0). Note that we have
the Scott continuous extension mapping

E : (A⇒ U
⊤
B) → (U⊤

A ⇒ U
⊤
B), f 7→ λx.

l

y∈x

f(y),

and it is an easy exercise to show that this greatest lower bound is actually
given by direct image, i.e. E(f)(x) =

⋃

{f(y) | y ∈ x}.

3 Flows and Flow Automata

We begin our study of hybrid automata by first discussing flow automata,
where the continuous evolution in every control state is an explicitly given
flow function. This will subsequently be shown to be equivalent to the case
that the continuous evolution is specified by a vector field in Section 6. For
flow automata, every discrete control state comes with a flow function that
behaves like the solution of an initial value problem and governs the evolution
of the continuous variables in that state. We restrict attention to flows take
values in a regular closed set C (i.e. a closed set which is equal to the closure
of its interior) that will later correspond to the invariant sets associated with
the discrete control states of an automaton.

Definition 1 If D ⊆ R
n × [0,∞) is a subset, then the support of a vector

x ∈ R
n is the set Dx = {t ∈ [0,∞) | (x, t) ∈ D}. A flow on a regular closed

subset C ⊆ R
n is a continuous function f : D → C defined on a regular closed

set D with C × {0} ⊆ D ⊆ C × [0,∞) such that for all s, t ≥ 0 and all x ∈ C

(1) s+t ∈ Dx iff s ∈ Dx and t ∈ Df(x,s). In this case f(x, s+t) = f(f(x, s), t).
(2) the function f(·, t) is injective for all t ∈ R.
(3) the partial derivative ∂f

∂t
: Do → R

n exists in the interior Do of D and
can be continuously extended to the whole of D.

In the following, we will identify ∂f
∂t

with its continuous extension to D.

That is, a flow f : D ⊆ R
n × [0,∞) → C on C ⊆ R

n behaves like the solution
of an initial value problem ḟ(t) = v(f(t)), f(0) = x defined on the support
Dx of x, where v is defined on a subset of Euclidean space R

n. We briefly
summarise some of the well known properties of flow functions that we will
use later.

Proposition 2 Suppose f : D → C is a flow on C ⊆ R
n.

(1) the support Dx = {t ∈ [0,∞) | (x, t) ∈ D} is a closed interval for every
x ∈ C.
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(2) f(x, 0) = x for all x ∈ C
(3) ∂f

∂t
(f(x, t), 0) = ∂f

∂t
(x, t) whenever x ∈ R

n and t ∈ Dx

(4) The function fx = λt.f(x, t) : Dx → R
n solves the initial value problem

ḟx(t) = ∂f
∂t

(fx(t), 0) with initial condition fx(0) = x, where ḟx denotes
taking derivative (w.r.t. time).

For later reference, we note the following corollary, which ensures boundedness
of flows on compact rectangles.

Corollary 3 Suppose R ⊆ R
n is regular compact and f : D ⊆ R×[0,∞) → R

is a flow on R. Then there exists K > 0 s.t. ‖∂f
∂t

(x, t)‖ ≤ K for all (x, t) ∈ D.

PROOF. Continuity of ∂f
∂t

and compactness ofR implies thatK = sup{∂f
∂t

(x, 0) |
x ∈ R} <∞. By Proposition 2, for all x ∈ R, the function g = f(x, ·) satisfies
ġ(t) = ∂f

∂t
(g(t), 0), hence ‖ġ(t)‖ ≤ K for all t ∈ [0,∞). But by definition of g,

we have ġ(t) = ∂f
∂t

(x, t) and the result follows, as x was arbitrary.

Flows arise as solutions of initial value problems. In the light of the later
developments, we focus on (locally) Lipschitz vector fields defined on a com-
pact subset of R

n; note that every locally Lipschitz vector field defined on a
compact space is automatically globally Lipschitz.

Lemma 4 Suppose v : C → R
n is a locally Lipschitz vector field defined on a

regular compact subset C ⊆ R
n. If f(x, ·) denotes the maximal solution of the

initial value problem f(x, t) = v(f(x, t)), f(x, 0) = x, then f is a flow. We say
that f is the flow induced by v.

PROOF. Follows from the continuous dependence of the solution of an initial
value problem on the initial condition and the continuation theorem, see e.g.
[5].

We now introduce continuous flow automata.

Definition 5 A flow automaton in R
n is a tuple F = (Q, inv, flow, res, init)

where

• Q is a finite set of discrete control states
• inv = (inv(q))q∈Q is a family of state invariants where inv(q) ⊆ R

n is a
regular closed set

• flow = (flow(q))q∈Q is a family of flow functions where flow(q) : D(q) ⊆
inv(q) × [0,∞) → inv(q) is a flow on inv(q)
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• res = (res(p, q))p,q∈Q is a family of reset relations with res(p, q) : inv(p) →
P(inv(q))

• init = (init(q))q∈Q is a family of initial states with init(q) ⊆ inv(q)

for all q ∈ Q, resp. (p, q) ∈ Q × Q. We call a flow automaton compact, if
inv(q), init(q) ∈ U

⊤
R

n are compact for all q ∈ Q and res(p, q)(x) ∈ U
⊤inv(q)

is a compact subset of inv(q) for all p, q ∈ Q and all x ∈ inv(q). A state
of a flow automaton is a tuple (q, x) with q ∈ Q and x ∈ inv(q). We write
SF = {(q, x) | q ∈ Q, x ∈ inv(q)} for the state space of F and iF = {(q, x) ∈
S | x ∈ init(q)} for the set of initial states.

Remark 6 The above definition of flow automata, though slightly different,
is equivalent to the standard definition given e.g. in [3]. While our control
states are in one-to-one correspondence to the control locations of loc.cit., the
transitions between control states are modelled in terms of a finite multiset
V ⊆ Q × Q of transitions, and an action predicate act(v) ⊆ R

n × R
n is

assigned to every transition v ∈ V . In this terminology, the automaton can
change its state, say from state (q, x) to state (q′, x′) iff there exists a transition
(q, q′) ∈ V with (x, x′) ∈ act(v). In our terminology, this can be modelled by
the reset relation res(q, q′) = λx.{y ∈ inv(q) | ∃(q, q′) ∈ V.(x, y) ∈ act(q, q′)}.

For the remainder of the paper, we assume that all flow automata are compact.
Our main interest lies in the comparison of the denotational semantics and
the operational semantics of a flow automaton. The latter is given in terms
of a labelled transition system, where a label is either a positive real numbers
that signifies the duration of a continuous transition or 0, indicating that the
automaton is changing its discrete control state.

Definition 7 Suppose F = (Q, inv, flow, res, init) is a flow automaton and let
Σ = [0,∞). The transition system TF associated with F is the tuple (SF ,→),
where SF is the state space of F and →⊆ S×Σ×S is defined by the following
two clauses:

flow transitions (q, x) →t (q′, x′) iff q = q′, t ∈ D(q)x and flow(q)(x, t) = x′

for t > 0
jump transitions (q, x) →0 (q′, x′) iff x′ ∈ res(q, q′)(x);

For states s, s′ ∈ S, we write s →t
∗ s

′ if there is a finite sequence of states
s1, . . . , sk with s →t1 s1 →

t2 · · · →tk sk = s′ with t1, . . . , tk ∈ Σ and
∑k

i=1 tk =
t. We write init →t

∗ s iff there exists i ∈ iF with i→t
∗ s.

An F -trajectory is a finite or infinite sequence (ti, qi, fi)i<N where N ∈ N ∪
{∞} such that (ti)i<N is non-decreasing in [0,∞), (qi)i<N is a sequence in Q
and fi : [ti−1, ti] → inv(q) is a function (we use the convention that t−1 = 0)
that, for all i < N , satisfies
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• f0(t−1) ∈ init(q0) and (qi, fi(ti−1)) →
t (qi, fi(ti−1 + t)) for all t ∈ [ti−1, ti]

• (qi, fi(ti)) →
0 (qi+1, fi+1(ti)).

We denote the set of possible states of the automaton F at time t by RF (t) and
the set of all states the automaton can visit up to time t by VF (t), formally
defined by

RF (t) = {s ∈ SF | init →t
∗ s} and VF (t) =

⋃

{RF (s) | s ≤ t}

where t ∈ [0,∞).

Note that by assumption, flow(qi)(fi(ti−1), t) = fi(ti−1 + t). Compared with
the definition of trajectories in [2], it is straightforward to verify that, under
the correspondence outlined in Remark 6, our definition of trajectories gives
rise to the same semantics.

We now turn to the main issue of the present paper and describe the necessary
ingredients needed to perform domain theoretic analysis of a flow automaton
F . Our main goal is to define a domain theoretic semantic function JF K :
[0,∞) →

∏

q∈Q U
⊤inv(q), where, for a closed semi rectangle R ⊆ R

k, U
⊤R

is the extended upper space associated with R, that is the dcpo of compact
subsets of R, ordered by reverse inclusion. The function JF K associates to
every time point t ∈ [0,∞) an element of

∏

q∈Q U
⊤inv(q). That is, to every

point in time t we associate a family (sq)q∈Q, with sq ⊆ inv(q), of compact
sets such that {(q, x) | x ∈ sq} = RF (t). Having computed RF , it is easy to
derive a mechanism for computing the possibly visited states VF (t) at time t
by unfolding the definition of VF . We demonstrate later that it is also possible
to obtain VF directly as a fixed point.

The goal of the construction is to give a continuous semantics of flow au-
tomata: if the automaton is effectively given, i.e. both flow and res arise
as limits of sequences of finitary approximations with flow =

⊔

k∈N fk and
res =

⊔

k∈N rk, then we can effectively obtain σk : [0,∞) →
∏

q∈Q inv(q) such
that JF K =

⊔

k∈N σk. This provides us with three important properties:

(1) The function σk is a conservative approximation of the semantics of F ,
for all k ≥ 0

(2) The semantics of F can be computed up to an arbitrary degree of accuracy
(3) The algorithm for computing σk can be implemented on a digital com-

puter without loss of precision

Clearly, continuity of the semantics mapping J·K can only be achieved if we
restrict attention to flow automata whose components are continuous. This
motivates the next definition.

Definition 8 A flow automaton F = (Q, inv, flow, res, inv) is continuous, if
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res(p, q) : inv(p) → U
⊤inv(q) is Scott continuous for all p, q ∈ Q. We say that

F is separated, if

• x ∈ res(p, q)(y) implies that res(q, r)(x) = ∅ for all p, q, r ∈ Q and y ∈ inv(p)
• x ∈ init(q) implies that res(q, r)(x) = ∅ for all q, r ∈ Q

While the continuity condition on res is clearly enforced by our goal to be able
to approximate the semantics of flow automata, the separation condition tells
us that there are no transient states, i.e. the automaton cannot perform state
changes from q0 to q1, and subsequently from q1 to q2 without remaining in
state q1 for a non-zero amount of time.

We will see later that separation and continuity imply that the automaton
under scrutiny is non-zeno. While we believe that all of our results can be
established even for non-separated automata under the additional assumption
that the automata are non-zeno, the main benefit of the separation property
is that it is very easy to verify.

For a continuous flow automaton, the family res(p, q)p,q∈Q induces a gener-
alised IFS on the extended upper spaces of inv(p), for p ∈ Q, as we will see
in Definition 15 later on. The following example discusses the requirements
introduced in Definition 8.

Example 9 We consider the following variant F of a thermostat automaton,
see e.g. [18]. Let Q = {on, off} with inv(q) = [1, 3] for q = on, off. The flow
functions are given by the differential equations flow(on)(x0, ·) = the unique
solution of ẋ = −x+ 5, x(0) = x0, and similarly, flow(off)(x0, ·) = the unique
solution of ẋ = −x, x(0) = x0, with initial state (on, 2). We fix two subsets
φ, ψ ⊆ [1, 3] and let res(on, off)(x) = {x}∩φ. The function res(off, on) is given
by x 7→ ψ, if x ∈ [0, 1], and x 7→ ∅ otherwise. Graphically, the automaton can
be displayed as follows, where x′ denotes the value of x after the change of
control states.

x=2 // �~}|xyz{
(on)

ẋ = −x+ 5
x ∈ [1, 3]

x ∈ φ

x′ = x
//

�~}|xyz{
(off)
ẋ = −x
x ∈ [1, 3]

x ∈ [0, 1]

x′ ∈ ψ
oo

We now discuss several alternatives for the sets φ and ψ, and relate them to
continuity of the induced automaton.

(1) Suppose ψ = (1, 2). Then res(off, on) does not take values in U
⊤[1, 3], as

(1, 2) is not compact, hence res(off, on) is not a well defined function of
type [1, 3] → U

⊤[1, 3].
(2) Suppose φ = (2, 3]. Then the F is not continuous, as for x = 2 and
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ǫ > 0, we fail to find δ s.t. for all x′ ∈ Bδ(x) we have res(on, off)(x′) ∈
res(on, off)(x) +Bǫ.

(3) If both φ and ψ are compact, then F is continuous.
(4) We have that F is separated, iff φ ∩ [0, 1] = φ ∩ ψ = ∅ and φ ∩ {2} = ∅.

To verify continuity of the reset functions in practise, note that Scott conti-
nuity is preserved by function composition, hence all combinations of Scott
continuous functions will be Scott continuous. In particular, we note that the
following functions are Scott continuous, and thus can be used as building
blocks for reset functions.

Proposition 10 Suppose A,B ∈ U
⊤

R
n.

(1) All step functions

aց b : A → U
⊤
B, x 7→







b x ∈ ao

⊥ otherwise

are continuous for a ∈ U
⊤A, b ∈ U

⊤B, where ao denotes the interior of a.
(2) All co-step functions

aտ b : A → U
⊤
B, x 7→







b x ∈ a

⊤ otherwise

are continuous for a ∈ U
⊤A, b ∈ U

⊤B.
(3) All functions

⊲⊳ b : A → U
⊤
B, x 7→ {x} ∩ b

are continuous for b ∈ U
⊤B

(4) If f1, f2 : A → U
⊤B are continuous, then so is f1 ∪ f2 : A → U

⊤B, x 7→
f1(x) ∪ f2(x).

(5) If (fi)i∈I is directed (w.r.t. the pointwise ordering), then
⊔

i∈I fi : A →
U

⊤B, x 7→
⊔

i∈I fi(x) is continuous.

PROOF. Item (3) follows from continuity of the binary join operation on
bounded complete domains, for (2) see [14]. All remaining items are standard,
see e.g. [15].

The previous proposition gives some general construction principles for con-
tinuous hybrid automata, and can be applied to show that a large class of flow
automata are actually continuous. We now turn to the separation property.
The following example, which is a variation of the bouncing ball automaton
[23] shows that the separation property is vital for the computability of the
semantic function associated with a flow automaton.
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Example 11 Consider the automaton F = (Q, init, flow, res, inv) with

• Q = {q}
• inv(q) = [−1, 1]
• flow(r, t) = r + a · t
• res(x) = {2x,−2x} ∩ [0, 1]
• init(q) = {0}

x=0 // wvutpqrs
q

ẋ = a
x ∈ [0, 1]ABC

FED
x′∈{2x,−2x}∩[0,1]

����

where a ∈ [−1, 1] is a computable real number, as depicted on the right above.
Suppose we can effectively find a sequence of functions Rk : [0, 1] → U

⊤[0, 1]
such that

⊔

k∈NRk = RF . Then clearly R(1) = {0} iff a = 0, and R(1) ∩
[1/2, 1] 6= ∅ iff a 6= 0. As R(1) =

⋂

k∈NRk(1), this implies that we can semi-
decide whether a = 0. Together with a semi decision procedure for a 6= 0, we
arrive at a decision procedure for a = 0, which is impossible, see e.g. [26].

Recall that a flow automaton is zeno, if it admits a trajectory (ti, qi, fi)i<∞ with
supi<∞ ti < ∞. The key consequence of separation, which makes it possible
to compute the semantic function associated with a flow automaton, is that
separated automata are non-zeno. This follows from the next proposition.

Proposition 12 Suppose F is separated and continuous. Then there exists
ǫ > 0 such that ti − ti−1 ≥ ǫ for all F -trajectories (ti, qi, fi)i<N and all 0 ≤ i <
N .

PROOF. We assume F = (Q, inv, flow, res, init). For all p, q ∈ Q, the sets

postp,q = {x ∈ inv(q) | ∃y ∈ inv(p).x ∈ res(p, q)(y)}

and
prep,q = res(p, q)−1({x ∈ U

⊤inv(q) | x 6= ⊤})

are closed, hence compact by boundedness of invp, invq. Therefore the sets

inp =
⋃

q∈Q

postq,p ∪ initp and outp =
⋃

q∈Q

prep,q

are compact for all p ∈ Q. As F is separated, inp ∩ outp = ∅ for all p ∈ Q.

Therefore, there exists δ > 0, such that for all q ∈ Q and all x, y ∈ inq × outq

one has ‖x− y‖ ≥ δ.

By Corollary 3, there exists K > 0 such that ∂flow(q)
∂t

(r, x) ≤ K for all q ∈ Q and
all (r, x) ∈ inv(q)× [0,∞)∩O(q). Put ǫ = δ/K and suppose ρ = (ti, qi, fi)i<N

is an F -trajectory with t−1 = 0, as usual. Then, for all i ≥ 0, we have that
fi(ti−1) ∈ inqi

and fi(ti) ∈ outqi
. Hence we have ti > ti−1 and

δ ≤ ‖fi(ti−1) − fi(ti)‖ ≤ K‖ti−1 − ti‖ ≤ K · (ti − ti−1)

11



as the function flow(qi) is uniformly Lipschitz in t. Therefore ti − ti−1 ≥ ǫ as
claimed.

As an immediate corollary, we obtain an easy-to-check sufficient condition for
a flow automaton to be non-zeno.

Corollary 13 Suppose F is separated and continuous. Then F is non zeno.

PROOF. If F were zeno, then F would have a trajectory (ti, qi, fi)i<∞ where
supi ti <∞, which is impossible, as ti − ti−1 ≥ ǫ with ǫ as in Proposition 12.

Remark 14 While the fact that an automaton is separated is sufficient for it
being non-zeno, the separation property is not necessary. Consider for example
the automaton

�~}|xyz{
(up)
ẋ = 1

x ∈ [−1, 1]
x = 1 // �~}|xyz{

(trans)
ẋ = 1

x ∈ [−1, 1]
x = 1 // �~}|xyz{

(down)
ẋ = −1

x ∈ [−1, 1]

x = −1

yy

with reset relations res(up, trans) = res(trans, down) = λx.{x} ∩ {1} and
res(down, up) = λx.{x} ∩ {−1} and initial state (up, 0). Then clearly F is
non-zeno, but F is not separated. This suggests that the separation prop-
erty can be relaxed, and one just needs to require that there is no finite loop
(q0, x0), (q1, x1), . . . , (ql, xl) with xi+1 ∈ resqi,qi+1

(xi) and x0 ∈ resql,q0
(xl), but

we refrain from doing so, as the technical complications would obscure the
techniques at the heart of our analysis.

4 Denotational Semantics of Continuous and Separated Automata

We now turn to the main objective of the present paper and describe a com-
putational method for obtaining the reachable states RF for a continuous and
separated flow automaton F . Our technique will compute the function RF as
least fixpoint of a functional of type ([0,∞) ⇒ U) → ([0,∞) ⇒ U), where
U =

∏

q∈Q U
⊤inv(q). We first introduce some terminology to make the notation

more readable.

Definition 15 Suppose F = (Q, inv, flow, res, init) is a flow automaton. The

12



function

fF : U × [0,∞) → U ,

((xq)q∈Q, t) 7→ {flow(q)(yq, t) | yq ∈ xq, t ∈ D(q)yq
}

is called the extended flow function, and

rF : U → U , (xq)q∈Q 7→ (
⋃

p∈Q

E(res(p, q))(xp))q∈Q

is the extended reset function with E as defined at the end of Section 2. If the
automaton F is clear from the context, we omit the corresponding subscript.

Both the extended flow function and the extended reset function collect all
flow and reset functions associated with a flow automaton in a single map. It
is easy to see that both the extended flow function, and the extended reset
function are Scott continuous.

Lemma 16 If F is a continuous flow automaton, then both fF and rF are
Scott continuous.

PROOF. Both are straightforward calculations and follow from the Scott-
continuity of the extension mapping, discussed at the end of Section 2. For
continuity of the extended reset function, one furthermore needs that of set-
theoretic union.

With this notation, we are now ready to introduce the key concept of the
present paper: the forward action associated with a flow automaton. As we
will see later, the least fixpoint of this operator captures the set of of states the
automaton can engage in at time t and, moreover, can be effectively computed.

Definition 17 Suppose F is a flow automaton. The operator

ΦF : ([0,∞) ⇒ U) → ([0,∞) ⇒ U), ρ 7→ λt.fF (iF , t) ∪
⋃

s≤t

fF (rF (ρ(s)), t− s)

is called the forward action associated with F .

The forward action combines the discrete action and the continuous flow, and
can be seen as a generalisation of the fixpoint operator associated with an
IFS [8]. Our goal is to show that the least fixpoint of the forward action is
precisely the function RF that computes reachable states. In order to compute
this fixpoint effectively, we first have to ensure that ΦF is compatible with
approximations, i.e. ΦF is well-defined and Scott continuous.

13



Lemma 18 Suppose ρ : [0,∞) → U . Then ΦF (ρ) : [0,∞) → U is well defined
and Scott continuous.

PROOF. For well definedness, we have to show that ΦF (ρ) actually takes
values in U , that is compact sets. This, and continuity of ΦF , will follow by
representing ΦF as composition of well-defined and continuous functions.

Now let ρ ∈ ([0,∞) ⇒ U) and consider gρ : [0,∞)2 → U , defined by gρ(s, t) =
fF (rF (ρ(s)), t−s). Then gρ is continuous by the continuity of composition and
subtraction. Therefore, also the canonical extension of gρ, E(gρ) : U⊤[0,∞)2 →
U , S 7→

⋃

(s,t)∈S gρ(s, t) is well defined and Scott continuous. Now consider the
continuous function h : [0,∞) → U

⊤[0,∞)2, given by h(t) = {(s, t) ∈ [0,∞)2 |
s ≤ t}. It is easy to see that ΦF (ρ) = E(gρ) ◦ h, which shows that ΦF (ρ) is
well defined and continuous.

Lemma 19 The operator ΦF : ([0,∞) ⇒ U) → ([0,∞) ⇒ U) is continuous.

PROOF. Suppose ρ =
⊔

k∈N ρk : [0,∞) → U . Take gρ (resp. gρk
) as in the

proof of Lemma 18. An easy analysis, using continuity of fF and rF , shows
that gρ =

⊔

k∈N gρk
. The claim now follows from continuity of the extension

function E : ([0,∞)2 ⇒ U) → (U⊤[0,∞)2 ⇒ U) and the continuity of h.

Continuity of ΦF now guarantees the existence of a least fixpoint of ΦF , which
we denote by JF K throughout. We now examine this fixpoint and show that
it precisely captures the set of all F -trajectories.

In order to show soundness, it is convenient to formulate trajectories as maps
into the upper space. In order to turn the trajectories into Scott continu-
ous functions, we let the induced function take a non-singleton set as value
whenever the discrete control state changes.

Lemma 20 Suppose f : [−1, 0] → R and g : [0, 1] → R are continuous. Then
the function f ⊕ g : [−1, 1] → U

⊤
R, with

f ⊕ g : t 7→















{f(t)} if t < 0

{f(0), g(0)} if t = 0

{g(t)} if t > 0

is Scott continuous.

PROOF. Follows immediately from the ǫ-δ characterisation of continuity of
maps into the extended upper space.

14
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Figure 1. The function ρ
♯

For F -trajectories, we have the following corollary. Note that the condition on
trajectories is automatic for continuous and separated automata.

Corollary 21 Suppose F is a flow automaton and ρ = (ti, qi, fi)i<N is a F -
trajectory with supi ti = ∞ in case N = ∞. Then

ρ♯ : [0,∞) → U , t 7→ {(qi, fi(t)) | i < N, t ∈ [ti−1, ti]}

is Scott-continuous. Moreover, RF (t) =
⋃

{ρ♯(t) | ρ is an F − trajectory}, if F
is a flow automaton.

The function ρ♯ is visualised in Figure 1. The next statement is a stepping
stone for proving the soundness of our approach. We begin by noting that
every fixpoint of ΦF is an over-approximation of the set of all trajectories.

Lemma 22 Suppose F is separated and continuous, ρ is an F -trajectory and
σ = ΦF (σ) is a fixpoint of ΦF . Then ΦF (σ) ⊑ ρ♯.

PROOF. Suppose that ρ = (ti, qi, fi)i<N for some N ∈ N ∪ {∞}. We show
by induction on i that ρ♯ ↾ [0, ti] ⊒ ΦF (σ) ↾ [0, ti]. Recall our convention
that t−1 = 0 and note that, by Proposition 12, we have that t0 > 0, hence
ρ♯(0) = {(q0, f0(0))} ∈ iF ⊆ fF (iF , 0) ⊆ ΦF (σ)(0) = σ(0). Now suppose
i ≥ −1 and let t ∈ [ti, ti+1]. We show that ΦF (σ)(t) ↾ [0, ti+1] ⊑ ρ♯(t) ↾ [0, ti+1],
i.e. (qi+1, fi+1(t)) ∈ ΦF (σ)(t) for all t ∈ [ti, ti+1]. By induction hypothesis, we
have

(qi, fi(ti)) ∈ σ(ti) (1)

and the definition of F -trajectories gives

fi+1(ti) ∈ res(qi, qi+1)(fi(ti)) fi+1(t) = flow(qi+1)(fi+1(ti), t− ti) (2)

for all t ∈ [t, ti+1]. Taken together, Equation (1), combined with the left hand
part of (2) give

(qi+1, fi+1(ti)) ∈ rF (σ(ti)). (3)

In combination with the right hand part of (2) this yields

(qi+1, fi+1(t)) ∈ fF (rF (σ(ti)), t− ti) ⊆ ΦF (σ)(t) = σ(t)

which concludes the proof.
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Note that the proof of the previous theorem relies on separatedness, as oth-
erwise even the base case of the induction would not work. Using the above
result, soundness of the fixpoint construction is immediate:

Corollary 23 (Correctness) Suppose F is continuous and separated. Then
s ∈ JF K(t) if init →t

∗ s for all s ∈ SF and all t ∈ [0,∞).

PROOF. Let s ∈ SF and assume that init →t
∗ s. Then there exists an F -

trajectory ρ such that s ∈ ρ♯(t) ⊆ JF K as JF K is a fixpoint of ΦF .

While the previous result can be read as asserting soundness, we now turn to
computational adequacy of the construction, that is we show that RF = JF K,
where JF K is the least fixpoint of ΦF . Moreover, our analysis entails that JF K is
the unique fixpoint of ΦF . Both facts are consequences of the following lemma.

Lemma 24 Suppose σ is a fixpoint of ΦF . Then σ(t) ⊆ RF (t) for all t ∈
[0,∞).

PROOF. We define, for q ∈ Q, the sets inq and outq as in the proof of
Proposition 12, and similarly pick δ and K such that for all q ∈ Q

∂flow(q)

∂t
(r, t) ≤ K and inf{‖x− y‖ | (x, y) ∈ inq × outq} ≥ δ

for all r ∈ inv(q) and all t ∈ [0,∞) that satisfy (r, t) ∈ O(q).

Suppose for a contradiction that there exists t ∈ [0,∞) such that σ(t) 6⊆ RF (t).
Let

t0 = inf{t ∈ T | σ(t) 6⊆ RF (t)}.

Let ǫ = δ
K

. By definition of t0, we can find t1 ∈ [t0, t0 + ǫ) such that σ(t1) 6=
RF (t1). Let (q1, x1) ∈ σ(t1) \ RF (t1). Then, by definition of ΦF , and the fact
that (q1, x1) /∈ RF (t1), we have that

(q1, x1) ∈
⋃

s∈[t0,t1]

fF (rF (σ(s)), t1 − s).

Hence we find s1 ∈ [t0, t1] and (r1, y1) ∈ σ(s1) together with z1 ∈ res(r1, q1)(y1)
such that (q1, x1) ∈ fF ((q1, z1), t1 − s1), i.e. x1 = flow(q1)(z1, t1 − s1). Now
(r1, y1) /∈ RF (s1), for otherwise we could construct an F -trajectory that wit-
nesses (q1, x1) ∈ RF (t1). By repeating the same argument, we find s2 ∈ [t0, s1]
and (r2, y2) ∈ σ(s2), together with z2 ∈ res(r2, r1)(y2) such that (r1, y1) ∈
fF ((r1, z1), s1 − s2), i.e. y1 = flow(r1)(z2, s1 − s2). Summing up, we have
|s1 − s2| < ǫ and
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• (r2, y2) ∈ σ(s2)
• z2 ∈ res(r2, r1)(y2)

• y1 = flow(r1)(z2, s1 − s2)
• z1 ∈ res(r1, q1)(y1)

Note that in particular, z2 ∈ inr1
and y1 ∈ outr1

, where in and out are as in
the proof of Proposition 12. Using the bound K on the derivative of flow(q)
w.r.t. time, we have

δ ≤ ‖y1 − z2‖ ≤ K|s1 − s2|

which implies that ǫ > |s1 − s2| ≥
δ
K

, contradicting our choice of ǫ.

This immediately gives computational adequacy:

Theorem 25 (Computational Adequacy) Suppose F is separated and con-
tinuous. Then s ∈ JF K(t) iff init →t

∗ s for all s ∈ SF and all t ≥ 0.

PROOF. From Corollary 23 we already have RF (t) ⊆ JF K(t) for all t ≥ 0,
and an application of Lemma 24 yields the converse inclusion.

The proof of the theorem in fact demonstrates that any function ρ ∈ ([0,∞) ⇒
U) with ρ ⊑ JF K which does not arise as an F -trajectory, necessarily leads to
a violation of the separatedness property. As it turns out, the least fixpoint
JF K of ΦF is actually unique.

Corollary 26 The operator ΦF has a unique fixpoint.

PROOF. Suppose σ : [0,∞) → U is a fixpoint of ΦF . As JF K is the least
such, we have JF K ⊑ σ. Together with Lemma 24, this implies

σ(t) ⊆ JF K(t) = RF (t) ⊆ σ(t)

for all t ∈ [0,∞), hence σ = JF K.

Unfolding the definition of VF , we also obtain computational means to obtain
the states of a flow automaton F that can be visited up to time t in terms of
the least fixpoint JF K of the forward action ΦF associated with F . This then
gives VF (t) =

⋃

s≤tRF (s). However, we can also obtain VF as a fixpoint of an
operator in its own right.

Definition 27 The operator

ΨF : ([0,∞) ⇒ U) → ([0,∞) ⇒ U), ρ 7→ fF (init, [0, t])∪
⋃

s≤t

fF (rF (ρ(s)), [0, t−s])
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where fF : U × I[0,∞) → U , (x, α) 7→
d

t∈α fF (x, t) is the canonical extension
of fF to time intervals, is the visited states operator associated with F .

The properties of ΨF are similar to those of ΦF , in particular, ΨF is Scott
continuous, and the least fixpoint captures the set of visited states.

Theorem 28 Suppose ρ : [0,∞) → U is the least fixpoint of ΨF . Then ρ =
VF .

PROOF. Similar to the proof of Lemma 18 and Lemma 19, one checks that
ΨF (ρ), for ρ : [0,∞) → U , and ΨF itself, are Scott continuous. Lemma 22
remains valid, if we replace ΦF by ΨF , and ρ♯ by ρ♭, where ρ♭(t) =

⋃

s≤t ρ
♯(s).

Note that ρ♭ can be formulated in terms of the extension function E , and
is hence Scott continuous. Finally, the proof of Theorem 25 can be repeated
almost verbatim.

While Theorem 25 and Theorem 28 are important on their own, as they allow
us to obtain the semantics of hybrid automata as a least fixpoint in a suitable
function space, they also allow us to derive new results about the function
RF that yields the states reachable at time t for continuous and separated
automata:

Corollary 29 (1) RF (t) and VF (t) are compact for every t ∈ [0,∞).
(2) RF and VF are Scott continuous.

PROOF. This is because both RF and VF arise as least fixpoints of a Scott
continuous functional that takes only takes compact sets as values.

5 Approximation of Flow Automata

In the previous section, we have seen that the semantics JF K : [0,∞) → U
of a flow automaton F can be computed as the least fixpoint of a functional
on ([0,∞) ⇒ U). While this gives a mathematical means of understanding
the semantics, we now show that this also induces a method to compute the
semantics up to an arbitrary degree of accuracy.

To do this, we restrict attention to countable bases of the involved domains,
that is to finitely representable objects that generate all of the involved do-
mains by means of directed suprema. We show, that we can effectively compute
the least fixpoint of the functional up to an arbitrary degree of accuracy, if
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we approximate all continuous ingredients of the automaton. We begin by in-
troducing the bases of the domains we are interested in. For the remainder
of the section, we fix a countable dense ordered subring D = {d0, d1, . . . }
with decidable equality and order and computable ring operations. We put
Dk = {d0, . . . , dk}. We only treat the case of computing RF as a least fix-
point; the setup can be easily adapted to accommodate also VF .

Definition 30 We let, for an arbitrary set S ⊆ R, IR
n
S = {[a1, b1] × · · · ×

[an, bn] ∈ IR
n | a1, . . . , an, b1, . . . , bn ∈ S} ∪ {R} denote the set of rectangles

with endpoints in S, augmented with the least element R. If A ⊆ R
n is a semi

rectangle, then IAS = {A ∩ b | b ∈ IR
n
S} denotes the set of rectangles R ∈ IR

n

that are contained in A and have corners in S, again with a bottom element.
We distinguish two different kinds of step functions:

aցi b : A → B, x 7→







b x ∈ ao

⊥ otherwise,
and aց b : A → B, x 7→







b a≪ x

⊥ otherwise

where B is a dcpo with b ∈ B in both cases; A ⊆ R
n is a semi rectangle with

a ∈ IA in the case of a ցi b, and A is a dcpo with a ∈ A for a ց b. We use
the following bases:

(1) If A ⊆ R
n is a semi-rectangle with corners in D∪{±∞}, then the set IAD

of rectangles contained in A having corners in D together with A itself, is
called the standard base of IA; the standard base of I

⊤A is IAD ∪ {⊤}.
(2) If A ∈ IR

n
D, then the set U

⊤AD = {∪1≤i≤kDi | i ∈ N, Di ∈ IAD} of finite
unions of rectangles with corners in D is the rectangular base of U

⊤A.
(3) If AD and BD are bases of the dcpos A and B, respectively, then (A ⇒

B)D = {
⊔

i≤i≤k ai ց bi ∈ (A ⇒ B) | a1, . . . , ak ∈ AD, b1, . . . bk ∈ BD} is
the induced base of (A ⇒ B).

(4) Finally, if A ⊆ R
n is a semi rectangle with corners in D∪{±∞} and BD

is a base of the dcpo B, then (A ⇒ B)D = {
⊔

1≤i≤k ai ց
i bi ∈ (A ⇒ B) |

a1, . . . , ak ∈ IAD, b1, . . . , bk ∈ BD is the induced base of of (A ⇒ B)

where we indicate by
⊔

1≤i≤k ai ց bi ∈ (A ⇒ B) that we consider only consider
consistent step functions [10, Section 2], similarly for

⊔

1≤i≤k ai ց
i bi.

In words, if A,B ⊆ R
n are semi-rectangles, IAD is the set of rectangles con-

tained in A with corners in D and U
⊤
AD is the set of finite unions of rectangles

with corners in D. For the function space, (A ⇒ U
⊤B)D is the induced base

of the space of functions of one or more real variables; (U⊤A ⇒ U
⊤B)D is the

induced base of the function space of a compact set valued variable.

It is easy to see that the sets introduced above are indeed bases of the corre-
sponding domain. We now use these bases to show that the fixpoint operator
ΦF associated to a flow automaton can be effectively computed, given approx-
imations of the components of the automaton. In order to make assertions
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about the computability of functions in the domain theoretic model of com-
putation, we have to fix an enumeration of the base of the involved domains.
We do not do this explicitly here, but instead assume that all of the bases (·)D

above come with an effective enumeration ι : N → (·)D, which we fix through-
out the discussion. In particular, the enumeration gives rise to a notion of
effective sequence: If A is a dcpo whose base is enumerated via ι : N → AD,
then a sequence (ak)k∈N in AD is effective, if ak = ι(f(k)) for some total
recursive function f .

First, note that composition of base functions yields a base function, and that
the extension function is effectively computable.

Lemma 31 Suppose f ∈ (A ⇒ U
⊤B)D and g ∈ (U⊤B ⇒ U

⊤C)D. Then

(1) g ◦ f ∈ (A ⇒ U
⊤C)D and g ◦ f is effectively computable.

(2) E(f) ∈ (U⊤
A ⇒ U

⊤
B)D and E(f) is effectively computable.

PROOF. The first item is straightforward, as

(
⊔

i∈I

ai ց bi) ◦ (
⊔

j∈J

cj ց dj) =
⊔

{(
⊔

h∈H

ch) ց bi | H ⊆ I finite,
⊔

h∈H

dh ≪ ai}.

The second item is as in [10, Section 2].

The next lemma gives a basis representation of subtraction, which is needed in
the definition of the fixpoint functional ΦF associated with F , see Definition
17.

Lemma 32 The functions Mk : [0,∞)2 → I[0,∞), defined by Mk =
⊔

{a ×
bց b− a | a, b ∈ I[0,∞)Dk

} satisfy Mk ∈ ([0,∞)2 ⇒ I[0,∞))D for all k ∈ N,
and

⊔

k∈N Mk = λ(x, y).y − x.

Building on these basic facts, we can now show that the least fixpoint of the
operator ΦF associated with a flow automaton is effectively computable. This
of course hinges on the fact that the automaton is effectively given. In this
context, we identify an interval valued function f : D → IC defined on a closed
set D ⊆ R

m that takes values in a compact set C ⊆ R
n with the function

f̄ : R
n → I

⊤C, x 7→







f(x) x ∈ D

⊤ = ∅ x /∈ D

that takes values in the extended interval domain I
⊤C = IC ∪ {∅}. The next

lemma justifies this identification.
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Lemma 33 Suppose D ⊆ R
n is closed and f : D → IC is continuous. Then

so is f .

The proof uses the fact that D is closed, and is straightforward. In particular,
this allows us to view a flow on a compact set C that is defined on a regular
closed subset of R

n × [0,∞) as a function of type R
n × [0,∞) → I

⊤C. We can
now define effectively given flow automata as follows.

Definition 34 Suppose F = (Q, init, flow, res, inv) is a flow automaton. We
say that F is effectively given if inv(q) ∈ IR

n
D for all q ∈ Q and F comes with

• an effective sequence (iqk)k∈N in (U⊤inv(q))D with
⊔

k∈N i
q
k = init(q)

• an effective sequence (f q
k )k∈N in (Rn×[0,∞) → I

⊤(inv(q)) such that
⊔

k∈N f
q
k =

flow(q)
• an effective sequence (rp,q

k )k∈N in (inv(p) ⇒ U
⊤inv(q))D with

⊔

k r
p,q
k =

res(p, q)

for all q ∈ Q, resp. all (p, q) ∈ Q2. The family of sequences (f q
k)k∈N, (Oq

k)k∈N,
(iqk)k∈N (where q ∈ Q) and (rp,q

k )k∈N (where (p, q) ∈ Q2) are called an effective
presentation of F .

That is to say that, for an effectively given flow automaton, the initial states,
the flow functions and the reset functions are computable. It is easy to see that
every effectively given flow automaton induces a computable extended flow
function, and a computable extended reset function. Since the forward action
associated with a flow automaton computes differences of time points, which
– at each finite step of the computation – are only known approximatively,
we need to extend the type of the approximating flow function in such a way
that it accepts interval values in the second clause below.

Lemma 35 Suppose F is an effectively given flow automaton.

(1) We can effectively construct an increasing sequence (̂ik) ∈ UD with
⊔

k∈N îk =
iF .

(2) We can effectively construct an increasing sequence (f̂k) ∈ (U×I[0,∞) ⇒
U)D with

⊔

k∈N f̂k(x, {t}) = fF (x, t) for all x ∈ U and all t ∈ [0,∞).
(3) We can effectively construct an increasing sequence (r̂k) ∈ (

∏

q∈Q U
⊤inv(q) ⇒

∏

q∈Q U
⊤inv(q))D with

⊔

k∈N r̂k = rF .

PROOF. The first claim is immediate, the second and the third are an ap-
plication of Lemma 31.

Lemma 36 Suppose F is effectively given, (̂ik), (r̂k) and (f̂k) are as in Lemma
35 and ρk = λt.f̂k (̂ik, t). Then ρk ∈ ([0,∞) ⇒ U)D is effectively computable
and

⊔

k∈N ρk = λt.flow(init, t).
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PROOF. Suppose that f̂k =
⊔

i∈I ai × bi ց ci. We know that f̂k is effectively
computable by Lemma 35. Then ρk =

⊔

{bi ց ci | i ∈ I, ai ≪ îk}.

We now turn to the second part of the fixpoint functional.

Lemma 37 Suppose F is effectively given and take (f̂k) and (r̂k) as in Lemma
35. If ρ ∈ ([0,∞) ⇒ U)D and

∆k(ρ) = λ(s, t).f̂k(r̂k(ρ(s),Mk(s, t))) and Σk(ρ) = λt.E(∆k)({t}, [0, t]),

where Mk is defined as in Lemma 32, then both Σk(ρ) and ∆k(ρ) are effectively
computable, and Σk(ρ) ∈ ([0,∞) ⇒ U)D.

PROOF. Computability of ∆k follows from Lemma 31. Now suppose that
∆k(ρ) =

⊔

i∈I ai × bi ց ci. Then Σk(ρ) =
⊔

{ai ց ci | bi ≪ [0, ai]}, where
ai = [ai, ai].

We can now compute JF K as
⊔

k σk by putting σ0 = λt.⊥, where ⊥ is the least
element of U , and σk+1 = λt.ρk(t) ∪ Σk(σk)(t), where ρk is as in Lemma 36.
This is the content of the following theorem.

Theorem 38 Suppose F is an effectively given flow automaton. Then we can
effectively obtain a sequence (σk) with

⊔

k∈N σk = JF K.

PROOF. We put σ0 = λt.⊥, where ⊥ is the least element of U , and

σk+1 = λt.ρk(t) ∪ Σk(σk)(t)

where ρk is as in Lemma 36. Then σk+1 can be effectively obtained from σk

by Lemma 36 and Lemma 37. We still have to show that JF K =
⊔

k∈N σk.
By definition of ΦF , we have, by the domain theoretic fixpoint theorem that
JF K =

⊔

k∈N Φk
F (λt.⊥). Recall that

ΦF (ρ) = λt.fF (iF , t) ∪ E(λ(s, t).fF (rF (ρ(s), t− s))({t}, [0, t]).

Using the fact that iF , fF and rF are effectively approximated by (̂ik), (f̂k)
and (r̂k), respectively, the above can be re-written as

ΦF (ρ) = λt.(
⊔

k

f̂k (̂ik, t) ∪ E(λ(s, t).
⊔

k

f̂k(r̂k(ρ(s),Mk(t, s)))({t}, [0, t]),

which, by continuity, amounts to ΦF =
⊔

k∈N Φk, where

Φk(ρ) = λt.fk (̂ik, t) ∪ E(λ(s, t).f̂k(r̂k(ρ(s),Mk(t, s)))({t}, [0, t]).
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But this just means that σ0 = ⊥ and σk+1 = Φk(σk), which implies, again by
continuity, that JF K =

⊔

k σk, which was what we had to show.

While this puts us into a position to effectively compute an increasing sequence
of sets converging to the reachable states of a flow automaton at any time
point, the following example shows that the convergence is not effective in
general in a natural metric.

Example 39 This example shows that, for an effectively given flow automa-
ton F , the convergence JF K(t) =

⊔

k∈N σk(t) is not effective in general if we
measure the convergence speed in the Hausdorff metric, given by

dH(C,D) = max{sup
c∈C

inf
d∈D

‖c− d‖, sup
d∈D

inf
c∈C

‖c− d‖}

for two compact sets C,D ⊆ R
n, where dH(∅, ∅) = 0 and dH(C,D) = ∞ if

either C or D (but not both) are empty. Alternatively, the Hausdorff distance
between two compact subsets of R

n is characterised by

dH(C,D) = max{ǫ ≥ 0 | Be(C) ⊆ D and Bǫ(D) ⊆ C}

where the ǫ-ball around a compact set C is given by Bǫ(C) = {x ∈ R
n | ∃y ∈

C.‖x − y‖ ≤ ǫ}. Now consider the following automaton, where a ∈ [0, 2] is a
computable real number:

x=0 // �~}|xyz{
q

ẋ = a
x ∈ [−2, 2]ABC

FED
x≥1

x′=−2

��

Theorem 38 provides us with computable sequence (Rk)k∈N such that
⊔

k∈NRk =
R(1) equals the set of reachable states at time t = 1. It is straightforward to
verify that a ≥ 1 ⇐⇒ −1 ∈ R(1). If the convergence R(1) =

⊔

k∈NRk

were effective in the Hausdorff metric on the space U = U
⊤[−2, 2], we could

computably determine k ∈ N such that dH(R(1), Rk) ≤
1
2
. We obtain

a ≥ 1 ⇐⇒ −1 ∈ R(1) ⇐⇒ −1 ∈ Rk

and, since −1 ∈ Rk can be effectively determined, a decision procedure for
a ≥ 1. By the dual construction, we can decide a ≤ 1, resulting in a decision
procedure for a = 1, which is impossible, see for example [26].

In other words, we cannot effectively determine the convergence speed, and
hence the complexity, of the algorithm underlying Theorem 38.
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6 Hybrid Automata

In this section, we transfer our results on flow automata to hybrid systems,
where the continuous behaviour of the system in every given control state
is described by a vector field. This is achieved by associating the equivalent
flow automaton to the hybrid automaton under consideration. If the hybrid
automaton is effectively given, we show that the same also holds for the in-
duced flow automaton. We thus obtain an effective framework for the analysis
of hybrid automata. The following is a variant of the standard definition of a
hybrid automaton [16,2].

Definition 40 A hybrid automaton is a tuple H = (Q, inv, vect, res, init)
where Q, inv, res, init are as in Definition 5, and vect = (vectq)q∈Q is a family
of vector fields vect(q) : inv(q) ⊆ R

n → R
n where each vect(q) is locally

Lipschitz, i.e. every z ∈ inv(q) has a neighbourhood N ⊆ V (q) such that
‖vect(q)(x) − vect(q)(y)‖ ≤ L‖x− y‖, for all x, y ∈ N and some L ∈ R.

In contrast to the standard definition, the trajectories of the real variables
are described by a differential equation rather than differential inclusion. We
require this restriction in view of the domain theoretic treatment of differen-
tial equations [12], which in general gives a strict over-approximation to the
solution of a differential inclusion.

We recall from Lemma 4 that every Lipschitz vector field v : C → R
n defined

on a regular compact subset C ⊆ R
n induces a flow function f : O ⊆ C ×

[0,∞) → R
n. Replacing the vector field by the induced flow function, every

hybrid automaton H induces a flow automaton F ; in this case, we write JHK
for JF K.

Definition 41 Suppose H = (Q, inv, vect, res, init) is a hybrid automaton and
flow(q) is the flow induced by vect(q). The automaton F = (Q, inv, flow, res, init)
is called the flow automaton induced by H. We say that H is continuous (resp.
separated), if the induced flow automaton is continuous (resp. separated). We
say that H is effectively given if it comes with

• an effective sequence (iqk)k∈N in (U⊤inv(q))D with
⊔

k∈N i
q
k = init(q)

• an effective sequence (vq
k)k∈N in (inv(q) ⇒ IR

n)D with
⊔

k∈N v
q
k = vect(q)

• an effective sequence (rp,q
k )k∈N in (inv(p) ⇒ U

⊤inv(q))D with
⊔

k r
p,q
k =

res(p, q)

for all q ∈ Q, resp. all (p, q) ∈ Q2 and inv(q) ∈ U
⊤
R

n
D for all q ∈ Q. The family

of sequences (iqk)k∈N, (vq
k)k∈N (where q ∈ Q) and (rp,q

k )k∈N (where (p, q) ∈ Q2)
are called an effective presentation of H.
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We have seen in Theorem 38 that the function JF K associated with a flow
automaton, which captures the states reachable by F at time t ∈ [0,∞),
is effectively computable, if F is effectively given. In order to associate an
effectively given flow automaton to an effectively given hybrid automaton, we
therefore have to produce approximations fk ∈ (

∏

q∈Q inv(q) × [0,∞) ⇒ U)
of the flow function induced by a hybrid automaton. In other words, we have
to solve the initial value problems defined by the vector field that defines
the hybrid automation. This is achieved by instantiating results from [12,13],
where it is shown how to solve initial value problems in a domain theoretic
framework; however, we have to adapt these results to deal with the upper
space. We recall the main result on domain theoretic solutions of initial value
problems, formulated for (globally) Lipschitz vector fields defined on the whole
of R

n that we will adapt to the present setting later.

As before, D ⊆ R is a dense subring with effective ring operations and decid-
able ordering.

Theorem 42 For every given u ∈ (IRn → IR
n)D, we can effectively compute

yu ∈ ([0,∞) ⇒ IR
n)D such that the following holds: If u =

⊔

k∈N uk is an
extension of a real valued and Lipschitz vector field v : R

n → R
n, then y =

⊔

k∈N y
uk is real valued and satisfies ẏ = v(y), y(0) = 0.

Note that the restriction on the initial value y(0) is not essential, as every
initial value problem with initial condition y(0) = c can be translated into
an equivalent problem with initial condition y(0) = 0. Using this translation
technique, we can now show that the flow function associated with a Lipschitz
vector field is computable. This generalises the corresponding result in [9] to
dimension n > 1. In a nutshell, the next proposition shows that the domain
theoretic solution of initial value problems also puts us into the position to
construct the flows induced by the vector fields. Notationally, we use currying
for convenience, i.e. if f =

⊔

j∈J aj ցi bj : [0,∞) → IR
n is a step function,

we write c ցi f for the function
⊔

j∈J c × aj ցi bj . Recall that we use the
pointwise extension of arithmetical operations to elements of IRn, in particular
c+ d = {x+ y | (x, y) ∈ c× d} for c, d ∈ IR

n.

Proposition 43 Suppose u =
⊔

k∈N uk is an extension of a Lipschitz vector
field v : R

n → R
n. Then

f =
⊔

k∈N

fk with fk =
⊔

c∈(IRn)Dk

cցi yuk(·+c) + c : R
n × [0,∞) → IR

n

with y(·) as in Theorem 42 is real valued and equals the flow associated with
v. Moreover, if (uk) is an effective sequence, then so is (fk).
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PROOF. Clearly (fk) is monotone, and it will follow from showing that f =
⊔

k∈N fk equals the flow associated with v that the fk are actually well defined.

First suppose that f is the flow associated with v. We show that cցi yuk(·+c)+
c ⊑ f for any c ∈ IR

n; this will establish
⊔

k∈N fk ⊑ f . Let r ∈ R
n and

t ≥ 0. The case r /∈ co is trivial, as c ցi yuk(·+c) + c(r)(t) = ⊥ ⊑ f(r, t),
so assume r ∈ co. Pick an increasing sequence (ck) ∈ IR

n with r =
⊔

k∈N ck
and c0 = c. Then

⊔

k∈N uk(· + ck) = v(· + r), hence y =
⊔

k∈N y
uk(·+ck) is real

valued and satisfies ẏ = v(y + c) and y(0) = 0, whence z = y + r satisfies
z = f(r, ·), where we recall that f denotes the flow associated with v. Now
yuk(·+c) + c ⊑ y + r ⊑ f(r, ·) as claimed.

We now show that
⊔

k∈N fk is real valued. Together with f ⊑
⊔

k∈N fk this will
imply the overall claim, as f only takes real values. Let c ∈ R

n and let k0 ≥ 0
be big enough so that c ∈ do for some d ∈ IR

n
Dk

. Pick a sequence (ck)k≥k0

such that ck ∈ IR
n
Dk

and
⊔

k∈N ck = c. Then
⊔

k≥k0
uk(· + ck) = v(· + c), hence

⊔

k≥k0
yuk(·+ck) +ck ⊑

⊔

k≥k0
fk(c, ·) and the claim follows, as

⊔

k≥k0
yuk(·+ck) +ck

is real valued by construction.

That is to say, if a vector field is effectively given, so is the induced flow. We
now adapt this result to vector fields defined on a compact subset of R

n that
will later be instantiated with the (compact) invariant set inv(q) obtained
from a hybrid automaton.

Proposition 44 Suppose C ⊆ R
n is compact and v : C → R

n is a Lipschitz
vector field. If (uk)k∈N is an effective sequence in (C ⇒ IR

n) with v =
⊔

k∈N uk

then we can construct an effective sequence (uk)k∈N in (Rn ⇒ IR
n) such that

⊔

k∈N uk = v for an extension v : R
n → R

n of v that is globally Lipschitz.

PROOF. We adapt the classical extension theorem for Lipschitz functions
[6] to the interval valued setting. If L is the Lipschitz constant of v, we can
extend every function w : C → IR

n with w ⊑ v the function w : R → IR
n

whose i-th component is given by

wi : R
n → IR, x 7→ [sup

y∈C
u−i (y) − L‖x− y‖, inf

y∈C
u+

i (y) + L‖x− y‖]

where ui = [u−i , u
+
i ]. It follows from [6] that v is a Lipschitz extension of v to

R
n and it is easy to see that for w ⊑ v we have w ⊑ v so w is well defined.

We show that w is Scott-continuous for w ⊑ v, which will amounts to showing
that wi

+ (resp. wi
−) is upper (resp. lower) semi-continuous. Let ǫ > 0 and

x1 ∈ R
n. We can find y ∈ C such that wi

+(x1) ≥ w+
i (y)+L‖x1 −y‖− ǫ. Then

wi
+(x1) − wi

+(x2) ≤ L‖x1 − x2‖ + ǫ which implies upper semi-continuity of
wi

+; the case of wi
− is analogous. Similarly one shows that

⊔

k∈N uk = v; if
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inv(q)

flow(q)

Figure 2. Restriction of the global flow function

w ∈ (C → IR
n)D then the sup taken in the definition of w ranges over a finite

set which implies that the construction of (uk)k∈N can be made effective.

We are now in the position to turn an effective presentation of a hybrid au-
tomaton into an effective presentation of the associated flow automaton, which
amounts to computing the maximally defined solution of the initial value prob-
lem associated with a vector field v defined on a compact subset C ⊆ R

n. This
is achieved in two steps: first, we compute an everywhere defined solution of
the initial value problem given by the Lipschitz extension v : R

n → R
n and

then restrict the ensuing flow to values in C. Graphically speaking, we need
to cut out those portions of the flows that leave or re-enter a state invariant
so that we are left with the shaded area in Figure 2

Theorem 45 Suppose H is an effectively given Hybrid automaton. Then so
is the associated flow automaton F . Moreover, we can construct an effective
presentation of F from an effective presentation of H.

PROOF. We only have to show that we can effectively construct the flow
functions. So suppose C ∈ (U⊤

R
n)D, v : C → R

n is a Lipschitz vector field and
(vk)k∈N is an effective sequence in (C ⇒ IR) with

⊔

k∈N vk = v. We are going
to construct an effective sequence (fk)k∈N such that fk ∈ (C × [0,∞) ⇒ I

⊤C)
with

⊔

k∈N fk = f where f is the flow induced by v; note that this employs
extending f to a function of type C × [0,∞) → I

⊤C as described in Lemma
33.

Proposition 44 allows us to obtain an effective sequence (uk)k∈N in (Rn ⇒ IR
n)

such that
⊔

k∈N uk is a Lipschitz extension of v to the whole of R
n. Hence we

can apply Proposition 43 to the sequence of maximal extensions of the uk

to obtain an effective sequence (fk)k∈N so that each fk and the supremum
f =

⊔

k∈N fk have type R
n × [0,∞) → IR

n. Let Dk = {(x, t) ∈ C × [0,∞) |
fk(x, t) ∩C 6= ∅ for all 0 ≤ s ≤ t}. Since fk ∈ (Rn × [0,∞) ⇒ IR

n)D is a step
function, Dk can be effectively obtained, and moreover monotonicity of the fk
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imply that the Dk are decreasing w.r.t ⊆. Now define

gk : C × [0,∞) → I
⊤C, x 7→







fk(x) ∩ C x ∈ Dk

∅ otherwise

It follows that f =
⊔

k∈N fk is the flow associated with the vector field v.

Together with Theorem 38, we have now shown that the semantic function
JHK, associated with an effectively given hybrid automaton, is computable.

Theorem 46 Suppose H is effectively given, continuous and separated. Then
the function JHK : [0,∞) → U is effectively computable.

Moreover, as all our constructions are based on bases of the domains involved,
the algorithms underlying Theorems 46 and 38 are based on proper data types,
and can be directly implemented on a digital computer: we choose the dyadic
(or rational) numbers for D, and then define data types that directly rep-
resent the bases [0,∞)D and UD, as well as the bases of the function space
([0,∞) ⇒ U)D. Computing with dyadic (or rational) numbers then allows us
to manipulate elements of the data types without any loss of arithmetical pre-
cision. Moreover, we have shown that the fixpoint operator that gives rise to
the semantic function JHK of a hybrid automaton, can be effectively computed
on the described data types.

7 Conclusions and Future Work.

Of course, much remains to be done. While the presentation in this paper is
geared towards demonstrating that domain theory can be used to facilitate the
algorithmic analysis of hybrid automata, we anticipate that major improve-
ments will be made on the efficiency of the involved algorithms. In particular,
we are working towards conditions that ensure effective convergence and esti-
mates of the convergence speed and the complexity of the described fixpoint
algorithms in terms of the Hausdorff distance in U .

For now, we have concentrated on computing the semantic function JHK as-
sociated with a hybrid automaton. Future work will bring a framework for
computing the set of reachable states of a hybrid automaton, and a real time
logic with associated model checking procedure for the automated verification
of hybrid automata.
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