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Overview

• Floating Point Computation
• Exact Real Arithmetic
• Solid Modelling & Computational Geometry
• A New Integration
• The Moral of Our Story

• The Story of the Decimal System



  

Decimal System

• Foundation of our computer revolution.
• Imagine computing in the Roman system 

CCXXXII times XLVIII, i.e. 232 ×  48.
• Zero was invented by Indian 

mathematicians, who were inspired by the 
Babylonian and the Chinese number 
systems, particularly as used in abacuses.
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The Discovery of  Decimal Fractions

• They discovered the rules for basic 
arithmetic operations that we now 
learn in school.

• Persians and Arabs invented the 
representation of  decimal fractions 
that we use today:
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The Long Journey

Diophantus
3rdc. AD

Brahmagupta, 598 AD
Sridhara, 850 AD

Adelard
 1080 AD

House of Wisdom
9thc. AD

Khwarizmi
780 AD

Kashani
1380 AD



  

Khwarizmi (780 – 850)

• Settled in the House of Wisdom 
(Baghdad).

• Wrote three books:
– Hindu Arithmetic
– Al-jabr va Al-Moghabela
– Astronomical Tables

• The established words:
“Algorithm” from “Al-Khwarizmi
and “Algebra” from “Al-jabr”
testify to his fundamental
contribution to human thought.
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Adelard of Bath (1080 – 1160)
• First English Scientist.
• Translated from Arabic to 

Latin Khwarizmi’s 
astronomical tables with their 
use of zero.

• After a long rivalry between 
Algorists and abacists, the 
decimal system replaced the 
abacus.
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Kashani (1380 – 1429)
• Developed arithmetic algorithms 

for fractions, that we use today.

• Computed         up to 16 decimals.1sin
368 306 80523 28 =×=n• He used  

2 793 589 653 592 141.3=π
• Computed π  up to 16 decimal 

places:

• Took the unit circle.
• The circumferences of the 

inscribed and circumscribed 
polygons with n sides give lower 
and upper bounds for 2π .

• Took the unit circle.
• The circumferences of the 

inscribed and circumscribed 
polygons with n sides give lower 
and upper bounds for 2π .

• Took the unit circle.



  

• Kashani invented the first 
mechanical special purpose 
computers:
– to find when the planets are 

closest,
– to calculate longitudes of 

planets,
– to predict lunar eclipses.

Kashani (1380 – 1429)



  

Kashani’s Planetarium



  

Mechanical Computers in Europe

Leibniz
(1646 –1716)

Pascal
(1632 – 1662)

Napier
(1550-1617)

Oughtred
(1575 – 1660)

Babbage
(1792 – 1871)



  

Modern Computers: Floating Point Numbers

• Any other number like π  is rounded or 
approximated to a close floating point number.

5110    817310.    ×±

• Represents only a finite collection of numbers.
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Floating Point Arithmetic is not sound

• A simple calculation shows:

• But using IEEE’s standard precision,
  we get three different results,
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• But using IEEE’s standard precision,
  we get three different results, all  wrong.



  

Failure of Floating Point Computation

0 102558961 5.41869520

1 159018721 64919121   

21

21

=−
=−

xx

xx

• Double precision floating-point arithmetic 
gives: 5.41869520~    102558961~

21 == xx

• The correct solution is:

83739041    205117922 21 == xx



  

• Depending on the floating point format, 
the sequence tends to 1 or 2 or 3 or 4.

• In reality, it oscillates about 1.51 and 2.37.

Failure of Floating Point Computation
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Failure of Floating Point Computation

• In any floating point format, the 
sequence converges to 100.

• In reality, it converges to 6.
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Floating Point Exact Arithmetic

5.6334313 =a 5.6334313 =a



  

Failure of Floating Point Computation

• In any floating point format, the 
sequence converges to 100.

• In reality, it converges to 6.
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Floating Point Exact Arithmetic

6.56399413 =a 5.91452513 =a

68.46342415 =a 5.93905015 =a



  

Failure of Floating Point Computation

• In any floating point format, the 
sequence converges to 100.

• In reality, it converges to 6.
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Floating Point Exact Arithmetic
99.99996420 =a 5.97457920 =a
100.00000040 =a 5.99932040 =a

5.99999980 =a100.00000080 =a



  

• The client will invest £e, 
i.e. £2.71828...

• Initially, there is a bank 
fee of £1.

Banker’s Example

• A banker offers a 
client a 25 year 
investment scheme.



  

• After 1 year, the money 
is multiplied by 1, and £1 
bank fee is subtracted.

Banker’s Example



  

• After 2 years, the money 
is multiplied by 2, and £1 
bank fee is subtracted.

Banker’s Example



  

• After 3 years, the money 
is multiplied by 3, and £1 
bank fee is subtracted.

• And so on . . .

Banker’s Example



  

• Finally, after 25 years, the 
money is multiplied by 25, and £1 
bank fee is subtracted. The final 
balance is returned to the client.

Banker’s Example



  

-££££
• He finds out that he would 

have an overdraft of 
      £2,000,000,000.00 !!

Banker’s Example
• The client calculates his final 

balance after 25 year

   with floating point numbers on 
his computer.
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+££££

• Suspicious about this 
astonishing result, he buys a 
better computer.

Banker’s Example

• This time he calculates
that after 25 years he 
would have a credit of 
£4,000,000,000.00 !!



  

• The client’s balance is:

• He is delighted and  
makes the investment.

4p

Banker’s Example

)
!25

1
.......

!3

1

!2

1
11(!25 −−−−−−e

• 25 years later, the 
banker,  using correct 
arithmetic, computes 
the value of 



  

Pilot’s dilemma
Left, right 

or straight?

On February 25, 1991, during the Gulf War, an American 
Patriot Missile battery in Dharan, Saudi Arabia, failed to 
intercept an incoming Iraqi Scud missile, due to failure of 
floating point computation. The Scud missile struck an 
American Army barracks and killed 28 soldiers.



  

• Evaluate numerical expressions correctly 
up to any given number of decimal places.

Exact Real Arithmetic

π
3 4

• Real numbers have in general an infinite 
decimal expansion.

∀ π =3.1415 . . . gives a shrinking sequence of 
rational intervals.



  

Exact Real Arithmetic

π
1.3 2.3

• Evaluate numerical expressions correctly 
up to any given number of decimal places.

• Real numbers have in general an infinite 
decimal expansion.

∀ π =3.1415 . . . gives a shrinking sequence of 
rational intervals.



  

Exact Real Arithmetic

π
14.3 15.3

• Evaluate numerical expressions correctly 
up to any given number of decimal places.

• Real numbers have in general an infinite 
decimal expansion.

∀ π =3.1415 . . . gives a shrinking sequence of 
rational intervals.



  

• A computation is possible only if any 
output digit can be calculated from a 
finite number of the input digits.

Exact Real Arithmetic

−−−−
−−−−

.1

.0

   Conclusion: Multiplication is not 
computable in the decimal system.

3333.0

output input

Multiply
by 3



  

The Signed Decimal System

9} 8, 7, 6, 5, 4, 3, 2, 1, 0, 1,- 2,- 3,- 4,- 5,- 6,- 7,- 8,- {-9,



  

The Signed Decimal System

• Gives a redundant representation.
44.83    

100

6

10

5
3)20(100    65.321 =





−+++−+=

9} 8, 7, 6, 5, 4, 3, 2, 1, 0, ,1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9 {

1000.1 33332.0Multiply
by 3

• We can now compute:



  

Numbers as  Sequences of Operations

• Signed binary system:

−−−.0
1− 1

−−1.0

1] 1,- [  Interval Base      

2Base     1} 0, ,1 {Digits

=
==



  

−−−.0
1− 1

Numbers as  Sequences of Operations

−−0.0

• Signed binary system:

1] 1,- [  Interval Base      

2Base     1} 0, ,1 {Digits

=
==



  

Numbers as  Sequences of Operations

• Signed binary system:

−−−.0
1− 1

1] 1,- [  Interval Base      

2Base     1} 0, ,1 {Digits

=
==

−−1.0



  

Numbers as  Sequences of Operations

• A number such as
corresponds to:

.0

      =Left half        =Middle half      =Right halfL M R

1 1 0 101
R R ML M L




1− 10



  

Numbers as  Sequences of Operations

.0

L M R

1 1 0 101
R R ML M L




      =Left half        =Middle half      =Right half

1− 10

• A number such as
corresponds to:



  

Numbers as  Sequences of Operations
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• A number such as
corresponds to:



  

Numbers as  Sequences of Operations

.0
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• A number such as
corresponds to:



  

Numbers as  Sequences of Operations

2

1
:         

2
:        

2

1
:   

+− x
xR

x
xM

x
xL Ð

• Mathematically:
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1 1 0 101
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1− 10

• A number such as
corresponds to:



  

Numbers as  Sequences of Operations

•             are affine maps, special case of 
linear fractional transformations of the 
form:

represented by:  

dbx

cax
x

+
+�
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• Sequences of these operations give a 
general representation for numbers.

RML ,,



  

Numbers as  Sequences of Operations
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Numbers as  Sequences of Operations
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Numbers as  Sequences of Operations
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Numbers as  Sequences of Operations
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Numbers as  Sequences of Operations






 −−
153

135





 −−
40

31





−
10

22=π π



  

Numbers as  Sequences of Operations
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Numbers as  Sequences of Operations
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Numbers as  Sequences of Operations
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Numbers as  Sequences of Operations
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Numbers as  Sequences of Operations
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Numbers as  Sequences of Operations
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Numbers as  Sequences of Operations
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Basic Arithmetic Operations
• Use linear fractional transformations with 

two entries

represented by:

hfydxbxy

geycxaxy
yx

+++
+++÷),(







hfdb

geca

• For example, addition                           uses:
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Addition

=+ eπ 





1000

0110

eπ

e+π



  

=+ eπ 





1000

0110






−
10

22






 −−
153

135






 −−
40

31







11

31







101

10







61

10

e+π

Addition



  

=+ eπ 





1000

0110






−
10

22






 −−
153

135






 −−
40

31







11

31







101

10







61

10

2

e+π

Addition



  

=+ eπ 





1000

0110






−
10

22






 −−
153

135






 −−
40

31







11

31







101

10







61

10

666.5
3

17 ≈

75.6
4

27 =

e+π

Addition



  

=+ eπ 





1000

0110






−
10

22






 −−
153

135






 −−
40

31







11

31







101

10







61

10

e+π
717.5

39

223 ≈

885.5
96

565 ≈

Addition



  

• sin x, cos x, tan x, ex, log x, etc.

Elementary Functions

• A C-library for computing 
elementary functions is on the 
WWW.

• Each of them is computed by a 
composition of Linear Fractional 
Transformations presented as a 
binary tree.



  

Elementary Functions
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Elementary Functions
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Elementary Functions
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Elementary Functions
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Domain of Intervals

• Dana Scott introduced domain theory in 
1970 as a mathematical model of 
programming languages.

• Domain theory found applications in 
numerical computation in 1990’s.

⊥=− ]1 ,1[

1− 10 π
1

More information 



  

• Correct geometric 
algorithms become 
unreliable when 
implemented in floating 
point.

Solid Modelling / Computational Geometry

• Manufactured objects are 
generally modelled with 
CAD, a package for solid 
and geometric modelling.



  

1L

2L
P

• With floating point arithmetic, find the point P 
of the intersection of L1  and L2. Then:

              minimum_distance(P, L1) > 0
                 minimum_distance(P, L2) > 0

Solid Modelling / Computational Geometry



  

The Convex Hull Algorithm
 A, B & C nearly collinear A

B

C

With floating point 
we can get: 



  

 A, B & C nearly collinear

The Convex Hull Algorithm
A

B

C

With floating point 
we can get: 

(i)       AC, or



  

 A, B & C nearly collinear

The Convex Hull Algorithm
A

B

C

With floating point 
we can get: 

(i)       AC, or
(ii)  just AB, or



  

 A, B & C nearly collinear

The Convex Hull Algorithm
A

B

C

With floating point 
we can get: 

(i)       AC, or
(ii)  just AB, or
(iii) just BC, or



  

 A, B & C nearly collinear

With floating point 
we can get: 

(i)       AC, or
(ii)  just AB, or
(iii) just BC, or
(iv)  none of them.

The quest for robust algorithms is the most 
fundamental unresolved problem in solid modelling 
and computational geometry.

The Convex Hull Algorithm
A

B

C



  

• The basic building blocks of classical 
geometry are not continuous and hence not 
computable.

A Fundamental Problem

True

x

• Example: The point x is in the box.



  

x

False

• The basic building blocks of classical 
geometry are not continuous and hence not 
computable.

A Fundamental Problem

• Example: The point x is in the box.



  

• There is a discontinuity 
if x goes through the 
boundary. x

A Fundamental Problem

• This predicate is not 
computable:

x   If x is on the boundary, 
we cannot determine if it 
is in or out at any finite 
stage.

FalseTrue



  

Intersection of Two Cubes



  

Intersection of Two Cubes



  

• Topology and geometry have been  developed 
to study continuous functions and 
transformations on spaces.

This is Really Ironical !

• The membership predicate and the 
intersection operation are the fundamental 
building blocks of topology and geometry.

• Yet, these basic elements are not continuous 
in classical topology and geometry.



  

Foundation of a Computable Geometry

• Reconsider the membership predicate:







⊥ box   theofboundary  on the is   if

box      theofexterior  in the is   ifFalse

box      theofinterior  in the is   ifTrue

x

x

x

x  

True False⊥ ⊥



  

A Three-Valued Logic

True False

⊥

• A domain 
observable observable

not observable

It is called ⊥B   with its Scott topology. 



  

Computing a Solid Object
• In this model, a solid 

object is represented by 
its interior and exterior,

• Mathematically, a solid 
object is given by a 
continuous function from 
the Euclidean space to        
                   

⊥B

   each approximated by a 
nested sequence of 
rational polyhedra.



  

Computing a Solid Object
• Kashani’s computation of π



  

Computable Predicates & Operations

• This gives a model for geometry and 
topology in which all the basic building 
blocks (membership, intersection, union) 
are continuous and computable.

• In practice, a geometric object is 
approximated by two rational polyhedra, 
one inside and one outside, so that the 
area between them is as small as desired.



  

The Convex Hull Algorithm



  

The Convex Hull Algorithm



  

The Convex Hull Algorithm



  

The Convex Hull Algorithm

The inner and outer convex hulls can be computed  by a robust Nlog N algorithm 
i.e. with the same complexity as the non-robust classical algorithms. 



  

Calculating the Number of Holes
• For a computable solid with computable volume, 

one can calculate the number of holes with 
volume greater than any desired value. 

• In mathematical terms, this model enables us to 
study the computability or decidability of 
various homotopic properties of solids.

1 hole 19 holes2 holes



  

The Riemann Integral

0 1

Integral = Area



  

0 1

The Riemann Integral



  

0 1

The Riemann Integral



  

0 1

The Riemann Integral



  

0 1

This method can be extended using 
domain theory to more general 
distributions on more general spaces.

The Riemann Integral



  

The Generalized Riemann Integral
• The generalized Riemann integral has been applied 

to compute physical quantities in chaotic systems:

• The physical quantities of the 1-dimensional random 
field Ising model.

• Feigenbaum map on the route to chaos:

cxx +2a

2− 25.0− 25.0

c

attractor

∞c



  

The Real 
and Solid 

People



  

The Long Journey

Diophantus
3rdc. AD

Brahmagupta, 598 AD
Sridhara, 850 AD

Adelard
 1080 AD

House of Wisdom
9thc. AD

Khwarizmi
780 AD

Kashani
1380 AD



  

The Moral of Our Story

• The ever increasing power of computer technology 
enables us to perform exact computation efficiently, in 
the spirit of Kashani.

• People from many nations have contributed to the 
present achievements of science and technology.

• History has imposed a reversal of fortune: Nations who 
developed the foundation of our present computer 
revolution in the very dark ages of Europe, later 
experienced a much stifled development.

• The Internet can be a global equaliser if, and only if, 
we make it available to the youth of the developing 
countries. 



  

Empowering the Youth in the Developing World 

•  Science and Arts Foundation was launched in March
   1999 at Imperial College:

• To provide Computer/Internet Sites for school
    children and students in the Developing World .
• To establish Internet incubators.



  

THE END
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