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Abstrat

\Information systems" have been introdued by Dana Sott

as a onvenient means of presenting a ertain lass of domains

of omputation, usually known as Sott domains. Essentially the

same idea has been developed, if less systematially, by various

authors in onnetion with other lasses of domains. In previous

work, the present authors introdued the notion of an I-ategory

as an abstration and enhanement of this idea, with emphasis on

the solution of domain equations of the form D

�

=

F (D), with F

a funtor. An important feature of the work is that we are not

on�ned to domains of omputation as usually understood; other

lasses of spaes, more familiar to mathematiians in general,

beome also aessible. Here we present the idea in terms of what

we all information ategories, whih are onrete I-ategories in

whih the objets are strutured sets of \tokens" and morphisms

are relations between tokens. This is more in the spirit of

information system work, and enables more spei� results to be

obtained. Following an aount of the general theory, several

examples are disussed in some detail: Stone spaes (as an

\ordinary" mathematial example), Sott domains, SFP domains,

and ontinuous bounded omplete domains.

1 Introdution

In [So82℄, Dana Sott introdued a ertain ategory of \information

systems", as a onvenient means of presenting a well-known lass of

domains of omputation (\Sott domains"). In this paper we are
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onerned with the problem of haraterizing ategories of information

systems in general, so as to obtain a uniform treatment of many lasses

of domains and, indeed, of various lasses of spaes that are not usually

onsidered as domains of omputation. In previous work [ES91a℄ we

have arried out this program in terms of an abstrat notion of of

I-ategory. Here we present it in terms of what we all information

ategories, whih are onrete I-ategories in whih the objets are

strutured sets of \tokens" and morphisms are relations between tokens.

This is more in the spirit of information system work, and enables more

spei� results to be obtained. Several new examples are disussed. We

have tried to make the paper reasonably self-ontained; it is hoped that

the informal disussion in the remainder of this introdution will helpful.

Some bakground in domain theory ideas are desirable, however. For an

elementary aount one might onsult [DP90, Ten91℄. (Comprehensive

textbooks of domain theory are not yet available.)

An information system, in the sense we intend, is a primitive logi

with whih to represent, or speify, the elements of a domain of

omputation. As de�ned by Sott in [So82℄, an information system

has the following ingredients: a set L of tokens, or propositions; a

distinguished member � of L (the least informative member); a

olletion Con of �nite subsets of L (the onsistent sets of propositions);

and a binary relation ` � Con � L (the entailment relation). The

onsisteny prediate must satisfy

(i) any subset of a onsistent set is onsistent,

(ii) every singleton is onsistent,

(iii) u [ fAg is onsistent whenever u entails A.

Conerning `, we have the usual onditions of reexivity and transitivity

for an entailment (or onsequene) relation, and also: � is entailed by

anything.

As to the spei�ation of domain elements, we ould proeed by

postulating a relation of satisfation between tokens and elements. Given

some minimal assumptions about this relation, we should �nd that the

set of tokens (propositions) true of a partiular element is a onsistent

theory, that is, a set whih is losed under entailment and is suh that

eah �nite subset is a member of Con. Moreover, we should �nd that

elements are partially ordered by the information ordering:

x v y () every proposition true of x is true of y.
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Alternatively| and more typially| we just de�ne the domain D(I)

assoiated with an information system, I, to be the set of onsistent

theories of I ordered by inlusion. Notie that the least element, ?, of

D(I), is the losure under entailment of ; (equally, of �).

One may ask: What domains, exatly, an be onstruted, or

represented, by information systems? The answer is well known. It is

useful to reall some of the basi de�nitions onerning Sott's domains.

A po is a partial order having a least element and having lubs (least

upper bounds) of inreasing sequenes of elements. Note that we allow

a partial order to be large i.e. its arrier to be a proper lass. An

element a of a po D is ompat if a v

F

i

x

i

) a v x

i

for some i. A

po D is !-algebrai if the set K

D

of ompat elements of D is (at

most) ountable and every element of D is the lub of an inreasing

sequene in K

D

. A poset P is bounded-omplete if every subset of P

that is bounded above has a lub. A Sott domain is a bounded-omplete

!-algebrai po. The Sott topology of an !-algebrai po D is the

topology having as subbase the olletion of sets "a = fx j a v xg for

a ompat; notie that this subbase is a base in ase D is a Sott

domain. The Lawson topology of D is the least topology �ner than the

Sott topology in whih the sets D � "a (a ompat) are also open.

When the topology is not spei�ed, the Sott topology is assumed. It

is easy to show that the domains assoiated with information systems

having ountably many tokens an be haraterised as the Sott domains

(the ountability restrition may be dispensed with, but are natural in

the ontext of omputing). Moreover, the propositions of a system I

diretly determine the topology of D(I): for eah proposition (token)

a, we have the (sub)basi open set of all the onsistent theories whih

ontain a.

Sine almost every logial system has notions of entailment

and onsisteny satisfying the above onditions (there are signi�ant

exeptions, suh as relevane logi and linear logi), the examples are

legion. We onsider just a few simple examples of information systems

relevant to omputing:

Example 1.1 Logi programs. A pure logi program P is a set of

program lauses, that is, of Horn lauses having exatly one positive

literal (see, for example, [Llo87℄). Take L (the tokens) to be the set of

ground atoms, and let Con be the olletion of all �nite subsets of L.

We want to regard a program lause ontaining only ground literals as

saying that its head is entailed by its body. Thus, we take ` to be
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the least entailment relation whih ontains all the ground substitution

instanes of the lauses of P . (Conretely, ` is the \reexive transitive

losure " of the set of ground instanes of the lauses.) Identifying the

Herbrand models of a logi program with the subsets of the Herbrand

base, in the usual way, we see that the domain D assoiated with

the information system just de�ned has for its elements the Herbrand

models of P . Usually in logi programming one works just with ?

D

(

the least Herbrand model). But D as a whole is ertainly of interest as

well, though one may want to onsider it under its Lawson rather than

its Sott topology (see [BV89℄).

Example 1.2 Binary trees. A binary tree is given by the set of its

nodes, regarded as strings in 0; 1. Thus we an take L to be f0; 1g

�

,

Con to be P

f

(L) (that is, every �nite set of tokens is onsistent), and

` to be the least entailment ontaining the instanes of:

x0 ` x ; x1 ` x:

Example 1.3 Labelled binary trees. Let A be a set of atoms

(labels). We want to de�ne the \data type" of binary trees over A,

understood as inluding both partial and in�nite trees. The type would

typially be de�ned reursively by means of a \domain equation" suh

as:

Btree

�

=

(A� Btree� Btree)

�

:

Informally, a binary tree onsists of a root whih is an atom and a

left tree and a right tree, or is unde�ned. The systemati solution of

suh domain equations is one of the main objets of our work, although

treated only briey in the present paper. Here we just note that a

straightforward approah to the solution yields an indutive de�nition

of an information system, as follows:

L : � 2 L;

a2A b;2L

ha;b;i2L

Con :

a2A fb

1

;���;b

n

g2Con f

1

;���;

n

g2Con

fha;b

i

;

i

i j 1�i�ng2Con

` :

a2A b

1

`b

2



1

`

2

ha;b

1

;

1

i`ha;b

2

;

2

i

Note that we have omitted various lauses whih hold automatially,

suh as fbg 2 Con, and C ` �(C 2 Con).
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Of the preeding, Example 1.1 is the least typial and Example 1.3

the most typial as illustrations of what is usually done with information

systems, in the way of onstruting domains of omputation.

Several variations on the de�nition of an information system are

possible. For example, one may, like Larsen and Winskel in [LW84℄,

dispense with � (in Example 1.1 above we did not bother to speify �).

A more signi�ant tehnial simpli�ation an be ahieved by requiring,

in e�et, that every ompat element of a domain be represented by

a token. We arrive at the (inhabited) \propositional languages" of

Fourman and Grayson (see [FG82℄):

De�nition 1.4 A propositional language is given by:

� a set L of tokens

� a distinguished element � 2 L

� a pre-order ` over L

� a partial binary operation onjuntion ^ over L, satisfying:

1.  ` � for all  2 L;

2.  ` a ^ b ()  ` a&  ` b.

Clause (2) of the de�nition is to be interpreted as implying that

a ^ b exists if and only if, for some ,  ` a and  ` b. Evidently

the onjuntion is a meet (greatest lower bound) with respet to

the entailment pre-order. The elements (or points, or models) of a

propositional language P are �lters of P , where a �lter is a subset x of

P satisfying:

� � 2 x

� a 2 x & a ` b) b 2 x

� a 2 x & b 2 x) a ^ b 2 x.

Propositional languages are ompletely equivalent to the information

systems de�ned above as means of representing domains. (For detailed

omparison: a �nite onsistent set of tokens of a Sott information system

is in e�et being taken as a single token of a propositional language.)

Propositional languages are our preferred notion of information systems,

later to be generalised in various ways, and we will sometimes all

them bounded omplete information systems, or even (in this setion)

information systems without quali�ation.
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The representation of ontinuous funtions between domains must

also be taken into aount. In fat, we have morphisms between

information systems given by:

De�nition 1.5 Let I = (L;`;^;�) and I

0

= (L

0

;`

0

;^

0

;�

0

) be bounded-

omplete information systems. An approximable mapping from I to I

0

is a relation f � L� L

0

satisfying:

1. �f�

0

2. afb

0

; af

0

) af(b

0

^ 

0

)

3. a ` b

0

; bfb

0

; b

0

`

0



0

) af

0

.

A pair (a; a

0

) 2 f may be regarded as a proposition asserting that, if

a is true of the argument, then a

0

is true of the result. This idea leads

to the onstrution of an information system for the \funtion spae"

[I ! I

0

℄, and indeed to the result that the ategory of (ountable)

information systems and approximable mappings is artesian losed. In

the present ontext, the following fats are partiularly relevant: the

olletion of approximable mappings from I to I

0

, ordered by inlusion,

is isomorphi with the po [D(I) ! D(I

0

)℄ of ontinuous maps from

D(I) to D(I

0

); and the ategory of (ountable) information systems

is equivalent to the ategory of Sott domains. These statements are

veri�ed by well-known methods.

From the preeding one might onlude that information systems

are only a matter of presentation (a way to present Sott domains)

and that there is little prospet of a distintive theory of information

systems. However, a di�erent onlusion begins to emerge when one

looks at information systems in a broader ontext. The broader ontext

is that of the presentation of topologial spaes by means of entailment

relations between open sets. The entailment relations need not be so

restrited in format as those onsidered above. A natural generalisation

is to allow entailments with several terms on the right:

a ` b

1

; � � � ; b

n

(1)

Here, the b

i

's are read disjuntively, and a \model" of (1) has to be

suh that if it satis�es a then it satis�es at least one b

i

. Adapting our

propositional languages to allow for suh entailments, we would modify

the seond lause in the de�nition of element to read:

a 2 x & a ` b

1

; � � � ; b

n

) b

i

2 x for some i:

The elements are now, in e�et, prime �lters.
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Example 1.6 Infinite binary strings. Let the tokens be the binary

strings, i.e. L = f0; 1g

�

. Let the entailments be generated from:

� a ` b if b is an initial segment of a;

� a ` a0; a1.

The onjuntion a ^ b exists i� either a ` b or b ` a, and is then the

longer of the two strings. Then the elements, or prime �lters, an be

identi�ed with the in�nite binary strings, and the topology is that of

Cantor spae.

A far-reahing development of these ideas is provided by Fourman

and Grayson [FG82℄. For our part, we will be ontent with entailments

in the simple form (one anteedent and one onsequent), while allowing

for disjuntion by having it as an operation on tokens. Thus, in the

wider ontext we will typially think of information systems as having

the struture of latties. They may, for example, be Boolean algebras,

representing Stone spaes. As a somewhat di�erent example, we may

hope to aommodate various kinds of event strutures (see [Win86℄),

representing (speies of) stable domains; see Setion 7 below.

These remarks may tend to suggest that the theory of information

systems should be assimilated to that of Stone-like dualities. However

this overlooks the most distintive feature of information systems,

as expounded already in [So82, LW84℄ and in the ontext of the

presentation of domains for sequentiality by \onrete data strutures"

in [BC81℄. We refer to the idea that the olletion of all information

systems (of a given variety) itself has an \information ordering". The

importane of this is that domain equations, of the form

D

�

=

F (D); (2)

for the reursive spei�ation of types, an then be handled very

simply. Indeed, given that F is at least a monotoni operator, ordinary

�xed point tehniques suÆe for the solution of (2). (Example 1.3

above an provide an illustration of this, if one reasts the indutive

de�nition given there as a least �xed point de�nition.) The ordering

of information systems is, typially, de�ned as follows. Let I; J be

information systems, with token sets L;L

0

. Then I E J i� L � L

0

and the operations and relations of L are the restritions to L of

those of L

0

. By requiring (as we may, without loss of generality) that

the tokens of information systems all be drawn from a ommon pool
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of tokens, we �nd typially that the olletion of information systems

under E is a po, even an !-algebrai po. How does this ompare

with more elaborate ategory-theory approahes, as in [SP82, MA86℄?

The answer seems lear: the ategorial approah gives us a valuable

haraterization of the intended solution as (usually) an initial algebra;

the simple order-theoreti method provides no suh information. This

gives the lue to what we have been aiming at in our work: to �nd

out what needs to be added to the information system method so as to

apture the advantages of the systemati ategory-theoreti approahes.

The key idea is that a global information ordering of morphisms E

m

,

is needed, in addition to (or, inluding) that for objets. Conretely,

we an de�ne:

(f : I

1

! I

2

) E

m

(g : J

1

! J

2

) if I

n

E J

n

(n = 1; 2) and f � g

(note that f; g are sets of pairs of tokens). All the required theory of

domain equations, at least as far as the (e�etive) initial algebra theorem,

an be developed in this general ontext (and indeed at the more

abstrat level of I-ategories [ES91a℄) and is then available to be applied

routinely to various onrete situations, suh as Sott domains, stable

domains, Stone spaes, and even metri spaes. Various onstrutions,

suh as the funtor ategory of two ategories of information systems,

an also be handled.

The remainder of the paper is organized as follows. In Setion 2,

we will reall the various notions of I-ategories from [ES91a℄. In

Setion 3, we present the general theory of information ategories. In

Setion 4, we show that the ategory of Boolean algebras and Boolean

homomorphisms is an instane of an information ategory in whih we

will solve a domain equation for Stone spaes whose solution is the

well known Cantor spae. In the subsequent setions we onstrut

information ategories, or in other words ategories of information

systems, equivalent to the ategories of Sott domains, SFP objets,

dI-domains and ontinuous bounded omplete domains; in eah ase we

will onstrut the funtion spae expliitly.

2 Preliminaries: I-ategories

An I-ategory (P; In;v;�) onsists of

� a ategory P with a partial order v

A;B

on eah homset hom(A;B),
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� a sublass In � Mor, alled the inlusion morphisms of P , suh

that in eah hom-set, hom(A;B), there is at most one inlusion

morphism whih we denote by in(A;B) or A� B,

� a distinguished objet � 2 Obj,

satisfying the following two axioms:

Axiom 1 (i) The lass of objets Obj and the inlusion morphisms

In form a partial order represented as a ategory.

(ii) in(�; A) exists, for all A 2 Obj and in(�; A) v f for all morphisms

f 2 hom(�; A).

(iii) f ; in(A;B) v g; in(A;B) ) f v g, for all f; g 2 Mor; in(A;B) 2

In, suh that the ompositions are de�ned.

Axiom 2 Composition of morphisms is monotone with respet to the

partial order on hom-sets, i.e.

f

1

v f

2

& g

1

v g

2

) f

1

; g

1

v f

2

; g

2

whenever the ompositions are de�ned.

The partial orders E on Obj

P

and E

m

on Mor

P

of an I-ategory

(P; In;v;�) are de�ned as follows:

� A E B if in(A;B) exists;

� f E

m

g if

(i) dom(f) E dom(g),

(ii) od(f) E od(g),

(iii) f ; in(od(f); od(g)) v in(dom(f);dom(g)); g.

Note that f E

m

g i� the diagram

dom(g)

g

-

od(g)

w

dom(f)

6

6

f

-

od(f)

6

6

weakly ommutes.

A omplete I-ategory further satis�es the following axioms:
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Axiom 3 (Mor;E

m

) is a po.

Axiom 4 (In;E

m

) is a subpo of (Mor;E

m

).

Axiom 5 Composition of morphisms is a ontinuous operation with

respet to E

m

, i.e.

F

i

(f

i

; g

i

) = (

F

i

f

i

); (

F

i

g

i

) whenever hf

i

i

i�0

and

hg

i

i

i�0

are inreasing hains in (Mor;E

m

) with od(f

i

) = dom(f

i

), for

all i � 0.

Finally, an !-algebrai I-ategory satis�es two more axioms:

Axiom 6 (Mor;E

m

) is !-algebrai.

Axiom 7 (i) f 2 (Mor;E

m

) is ompat ) od(f) 2 (Obj;E) is

ompat.

(ii) A;B 2 (Obj;E) are ompat with A E B ) in(A;B) 2 (Mor;E

m

)

is ompat.

(iii) The omposition of ompat morphisms is ompat.

Any (!-algebrai, omplete) partial order (Q;v) with least element

?, onsidered as a ategory in the usual way, is an example of an

(!-algebrai, omplete) I-ategory (Q; In;=;?) with In = Mor, the

disrete partial order = on the homsets and distinguished objet � = ?.

The ategory, Sets, of sets and funtions is in fat a omplete (large)

I-ategory (Sets; In;=; ;) where the inlusion morphisms are simply the

set inlusions; any full subategory whose objets have elements from

a ountable pool is in fat an !-algebrai I-ategory. In [ES91a℄, it is

shown that the ategory of Sott information systems and approximable

maps is also a omplete I-ategory whih like the ategory of sets has an

!-algebrai subategory. Further examples of I-ategories are presented

in the above paper. However, in order to apture the general framework

of all these examples we need to introdue information ategories in the

next setion.

3 Information ategories

In pratie, I-ategories are often onrete in the sense that their

objets are sets with some internal struture given by operations and

prediates de�ned on the elements of the sets or on their �nite subsets,
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i.e. they are weak seond strutures in the terminology of [Bar77℄; the

partial order on objets orrespond to the substruture relation between

objets; and morphisms are relations between elements or �nite subsets

of the arrier sets of objets. We will all these onrete I-ategories

information ategories, whih like the abstrat I-ategories an be

omplete or !-algebrai. In information ategories the partial order on

objets A E B orresponds to the notion that A is a substruture of

B; whereas the partial order on morphisms f E

m

g simply redues to

f � g i.e. the inlusion of relations. Similarly in omplete information

ategories the lub of a hain of objets will be the union of the hain

of strutures and the lub of a hain of morphisms will simply be

the set union of the relations representing the morphisms. Finally in

!-algebrai information ategories ompat objets will be preisely the

�nite objets i.e. objets with a �nite arrier set and the ompat

morphisms will be preisely the relations between �nite objets. These

features make information ategories oneptually simple, and easy to

handle; the task of verifying that a ertain ategory is an information

ategory and therefore an I-ategory beomes quite straightforward. As

a further justi�ation to introdue these information ategories we note

that all the basi examples of onrete I-ategories, treated later in this

setion or in future papers, are fully overed by these notions. We will

now formalise the de�nition of information ategories; we start with the

notion of a weak seond order struture.

De�nition 3.1 A weak seond order struture is a tuple

A = (jAj; T

i

; f

j

), where jAj is a set, and T

i

and f

j

(i 2 I; j 2 J , and

I and J are indexing sets) are respetively prediates and (partial or

total) operations on jAj or on P

f

(jAj).

One also has the notion of substrutures for weak seond order

strutures.

De�nition 3.2 Given two weak seond order strutures of the same

signature A = (jAj; T

i

A

; f

j

A

) and B = (jBj; T

i

B

; f

j

B

) (i 2 I and j 2 J),

we say that A is a substruture of B, denoted by A E B, if for all

i 2 I and j 2 J we have

(i) jAj � jBj;

(ii) T

i

A

(~x) () ~x 2

~

A

k

i

& T

i

B

(~x),

(where

~

A is jAj or P

f

(jAj) and k

i

is the arity of T

i

);
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(iv) f

j

A

(~x) exists in A i� f

j

B

(~x) exists in B, in whih ase:

y = f

j

A

(~x) () ~x 2

~

A

h

j

& y = f

j

B

(~x),

(where h

j

is the arity of f

j

).

In an information ategory the identity morphism, I, of an objet

must of ourse satisfy I; I = I, and hene, as a binary relation between

the elements or �nite subsets of the arrier set of that objet, it

must be a transitive and interpolative order (a relation R : A ! A

is transitive i� R;R � R, it is interpolative i� R � R;R). It is

therefore onvenient to assume that there is a distinguished transitive

and interpolative relation amongst the prediates of an objet of an

information ategory. Note that this relation is usually on the arrier

set itself and in many ases it turns out to be a pre-order or a partial

order and sometimes even the equality relation. We are now ready to

de�ne an information ategory.

De�nition 3.3 An information ategory, (C;<; T

i

; f

j

; In;�;�), (i 2 I,

j 2 J , where I; J are indexing sets), is a ategory C with the following

properties:

� Objets of C are weak seond order strutures of �xed signature

of the form A = (jAj; <

A

; T

i

A

; f

j

A

), where <

A

is a transitive-

interpolative relation on jAj (or P

f

(jAj)) and the elements of jAj

are from a �xed alphabet.

� Morphisms of C are relations between elements (or �nite sets) of

the objets with the usual omposition rule for relations, whih

satisfy the following:

C1 The relation <

A

is the identity morphism on A for all

A 2 Obj.

� The inlusion morphisms In � Mor, satisfy:

C2 Whenever an objet A is a substruture of an objet

B, the relation <

A

;<

B

� jAj � jBj, with a (<

A

;<

B

) b i�

9a

0

2 jAj: a <

A

a

0

& a

0

<

B

b, is a morphism and the unique

inlusion morphism in hom(A;B).

C3 For all objets A, in(�; A) exists and in(�; A) � f for all

f 2 hom(�; A).

� Hom-sets are partially ordered by subset inlusion �.

12



We will prove shortly that an information ategory as de�ned above

is in fat an I-ategory and that the partial order on morphisms

redues to set inlusion of relations. Before that however a ouple of

remarks on C2 are appropriate. First observe that the way inlusion

morphisms are de�ned implies that the partial order on objets indued

by inlusion morphisms oinides with the substruture relation between

weak seond order strutures and therefore the use of E for both

of these notions is onsistent. Also note that in any I-ategory

A E B implies that Id

A

E

m

in(A;B) E

m

Id

B

, whih in the ase of

information ategories redues to <

A

� in(A;B) � <

B

. We also have

<

A

� <

A

;<

B

� <

B

, whih therefore motivates the requirement in C2

that in(A;B) = <

A

;<

B

. Note that when the transitive-interpolative

orders in the objets are pre-orders, we have <

A

;<

B

= <

B

\(A � B),

as an be easily heked. We now have the expeted result:

Proposition 3.4 An information ategory is an I-ategory. Moreover,

the indued partial orders E and E

m

on Obj and Mor satisfy:

(f : A! B) E

m

(g : C ! D) i� A E C and B E D and f � g.

Proof First note that if A E B E C, we get

in(A;B); in(B;C) = <

A

;<

B

;<

B

;<

C

= <

A

;<

B

;<

C

= <

A

;<

C

= in(A;C);

from whih Axiom 1(i) follows. Next observe that for any morphism

f : A ! B and inlusion morphisms in(C;A) and in(B;D), it

follows from C1 and C2 that in(C;A); f = <

C

;<

A

; f = <

C

; f and

f ; in(B;D) = f ;<

B

;<

D

= f ;<

D

. To prove Axiom 1(iii), suppose

f ; in(B;D) � g; in(B;D). Then f ;<

D

� g;<

D

and we have

afb ) 9b

0

2 jBj: afb

0

<

B

b ) afb

0

<

D

b) a(f ;<

D

)b ) a(g;<

D

)b ) agb:

To prove the seond part, suppose f ; in(B;D) � in(A;C); g, i.e.

f ;<

D

� <

A

; g, then

afb ) 9b

0

2 jBj: afb

0

<

B

b ) afb

0

<

D

b ) a(f ;<

D

)b ) a(<

A

; g)b ) agb:

Suppose next that f � g, then

a(f ;<

D

)d ) 9a

0

2 jAj 9b 2 B: a <

A

a

0

fb <

D

d ) a <

A

a

0

gb <

D

d ) a <

A

a

0

gd )

a(<

A

; g)d:

This ompletes the proof. �
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Example 3.5 The ategory Sets is an information ategory, whereas a

partial order is an example of an I-ategory whih is not an information

ategory.

In order to de�ne a omplete information ategory, we �rst need to

de�ne the union of a hain of strutures.

De�nition 3.6 Let hA

k

i

k�0

with A

k

= (jA

k

j; T

i

A

k

; f

j

A

k

) be an inreasing

hain of weak seond order strutures; then the union of the hain is

the struture given by

S

k

A

k

= (

S

k

jA

k

j;

S

k

T

i

k

;

S

k

f

j

k

), where, for all

i 2 I, j 2 J ,

� (

S

k

T

i

k

)(~x) () 9k: ~x 2

~

A

l

i

& T

i

k

(~x)

(where

~

A is jAj or P

f

(jAj) and l

i

is the arity of T

i

);

� y =

S

k

f

j

k

(~x) () 9k: ~x 2

~

A

h

j

& y = f

j

k

(~x)

(where h

j

is the arity of f

j

).

De�nition 3.7 An information ategory is omplete if:

C4 (Obj;E) and (Mor;E

m

) are omplete in the sense that

(i) whenever hA

k

i

k�0

is a hain of objets of C then

S

k

A

k

is

also an objet;

(ii) whenever hg

k

i

k�0

is an inreasing hain of morphisms of C

with dom(g

k

) = A

k

and od(g

k

) = B

k

then

S

k

g

k

is also a

morphism, where

� dom(

S

g

k

) =

S

dom(A

k

) od(

S

g

k

) =

S

od(B

k

);

� (8a 2

S

A

k

)(8b 2

S

B

k

)[a(

S

g

k

)b () 9k: ag

k

b℄.

Proposition 3.8 A omplete information ategory is a omplete I-

ategory.

Proof It is lear that an inreasing hain of morphisms hg

i

i

i�0

in

a omplete information ategory has lub

S

g

i

as de�ned in C4(ii)

above. Therefore, Mor is a po. Given an inreasing hain of inlusion

morphisms hin(A

i

; B

i

)i

i�0

, one readily �nds by C2 and C4(i) that

in(

S

A

i

;

S

B

i

) exists; it is indeed the lub of the hain sine:

a(

S

in(A

i

; B

i

))b () 9i � 0: a(in(A

i

; B

i

))b ()

9i � 0: a(<

A

i

;<

B

i

)b () 9i � 09a

0

2 jA

i

j : a <

A

i

a

0

<

B

i

b ()

9i � 0 :a(<

S

A

i

;<

S

B

i

)b () a(in(

S

A

i

;

S

B

i

))b:

This shows that In is a subpo of Mor. Finally, if h(f

i

: A

i

! B

i

)i

i�0

and h(g

i

: B

i

! C

i

)i

i�0

are two inreasing hains of morphisms whose

14



elements are pairwise omposable, then

S

f

i

and

S

g

i

are omposable as

the mappings dom and od are ontinuous by C4. Moreover, putting

A =

S

A

i

; B =

S

B

i

and C =

S

C

i

, we have for all a 2 A and  2 C:

a(

S

(f

i

; g

i

)) () 9i � 0: a(f

i

; g

i

) ()

9i � 09b 2 B: af

i

b & bg

i

 () 9b 2 B: a(

S

f

i

)b & b(

S

g

i

) ()

a((

S

f

i

); (

S

g

i

)):

We onlude that omposition of morphisms is a ontinuous operation

and the proof is omplete.�

When the transitive and interpolative relation in eah objet of an

information ategory is in fat a pre-order, we have an information

ategory with pre-ordered objets. We will de�ne the notion of

!-algebraiity for suh ategories.

De�nition 3.9 A omplete information ategory with pre-ordered

objets, where the pre-order is denoted by ., is !-algebrai if it satis�es:

C5 Every morphism is the union of a ountable hain of morphisms

between �nite objets (i.e. objets with �nite arrier sets).

C6 For all objets A and all elements a 2 A the set

E

A

(a) = fx 2 A j x �

A

ag is �nite and E

A

(a) = E

B

(a)

whenever A E B. (x �

A

a means x .

A

a and a .

A

x.)

Condition C6 ensures that in�nite objets, i.e. objets with in�nite

arrier sets, do represent in�nite information and it exludes, for

example, an in�nite objet with all its elements equivalent to eah

other. This ondition is trivially satis�ed when the pre-order is in fat

a partial order. For this reason it is onvenient to use partial orders

in the onstrution of !-algebrai information ategories and this is

what we will do in all the examples in this paper, although equivalent

ategories with pre-orders satisfying C6 an also be onstruted. We,

again, have the expeted result:

Proposition 3.10 An !-algebrai information ategory with pre-ordered

objets is an !-algebrai I-ategory.

Proof Consider an !-algebrai information ategory. We must show

that (Mor;E

m

) is !-algebrai and that Axiom 7 holds. We laim

that a morphism is ompat i� its domain and odomain are �nite

15



objets. Suppose then that f 2 Mor is ompat. By C5, f is the

lub of an inreasing hain of morphisms between �nite objets. But

by ompatness, f must itself be equal to one of these morphisms

and hene have a �nite domain and a �nite odomain. Conversely,

let (f : A ! B) be a morphism with �nite objets A and B, and

suppose (f : A ! B) E

m

S

(f

i

: A

i

! B

i

) then by Proposition 3.4 and

the ontinuity of dom and od we get: A �

S

A

i

, B �

S

B

i

and

f �

S

f

i

. Sine A, B and, onsequently, f (whih is a subset of

A�B) are all �nite sets, we an �nd i � 0 with A � A

i

, B � B

i

and

f � f

i

, i.e. f E

m

f

i

and hene f is ompat. This proves our laim.

Sine objets of the ategory are sets from a ountable alphabet, the

�nite objets and, hene, the morphisms between them, i.e. the ompat

morphisms, are ountable. This together with C5 shows that (Mor;E

m

)

is !-algebrai. Axiom 7 follows immediately from the laim. �

3.1 Completeness and !-algebraiity

In pratie, in order to verify that a ategory is an !-algebrai

information ategory, the ompleteness ondition (C4) and the !-

algebraiity ondition (C5) are the only non-trivial onditions to hek

. We will now show that in onrete ases these two onditions an

be veri�ed by quite general methods. Assume that the objets and

morphisms of an information ategory are models of a weak seond

order theory, i.e. they are given by a �nite number of weak seond

order axioms where quanti�ation an be arried out both over the

elements and over the �nite subsets of the arrier sets of the objets.

In this ontext, two objets A and B satisfy A E B i� A is a submodel

of B i� A is a model of the theory and also a substruture of B. We

now disuss the question of ompleteness and !-algebraiity separately.

Completeness: We present some simple model-theoreti results

onerning the type of axioms for the objets and morphisms of an

information ategory with whih the ompleteness ondition C4 will

be guaranteed to hold. Reall that in �rst order i.e. ordinary model

theory, where all prediates and operations are de�ned on the elements

of the arrier sets of models, a �rst order axiom satis�ed by all the

models of a hain is preserved in the union of the hain if and only

if the axiom is equivalent to a universal-existential (u.e.) axiom, i.e.

one whih in prenex normal form has preisely a number of universal

quanti�ers followed by a number of existential quanti�ers. See, for

example, [Gra79℄. We would like to extend this result to information
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ategories where the prediates and operations in an objet are de�ned

on the elements or the �nite subsets of the arrier set of that objet, i.e.

to extend the result from �rst order to weak seond order model theory.

For onveniene, we use small letters for quanti�ation over elements

and apital letters for quanti�ation over �nite subsets. We have a

distinguished prediate of mixed argument namely 2� A�P

f

(jAj) suh

that (a; S) is in 2 i� a 2 S; we also have, in all objets A, a onstant

; 2 P

f

(jAj), whih satis�es 8a::(a 2 ;).

It an be easily shown by extending the proof in the ase of �rst

order model theory that in weak seond order theory a u.e. axiom,

where eah quanti�ation is now over A or P

f

(A), is preserved in the

union of a hain. We onlude that any formula whih is equivalent

to a u.e. formula will be preserved in the union. The argument

an be extended to morphisms as follows. A morphism f : A ! B

in an information ategory an be regarded as a weak seond order

model with two basi sorts A and B, and two distinguished prediates

9

A

� A � P

f

(A) and 9

B

� B � P

f

(B). This model is haraterised

by weak seond order axioms for the objets A and B, and also for

the relation f . If all these axioms are equivalent to u.e. axioms,

then the ategory ontains all unions of hains of morphisms, i.e. the

ompleteness ondition C4 will be satis�ed.

!-algebraiity: The onditions for !-algebraiity (C5) an be redued

to a simple riterion. We say that a weak seond order model is

loally �nite if any �nite subset of the arrier set of the model is

ontained in the arrier set of a �nite submodel of that model; we

also say that a omplete information ategory with pre-ordered objets

is loally �nite if its morphisms (and hene its objets) are loally

�nite as weak seond order models. Now suppose we have a omplete

information ategory P with pre-ordered objets whih satis�es C6

and whose objets have their elements from a ountable pool. We

laim that P is !-algebrai i� it is loally �nite. For assume that

P is !-algebrai and let f : A ! B be any morphism of P with

A

0

2 P

f

(A), B

0

2 P

f

(B) and f

0

� f \ (A

0

� B

0

). Then by C5 there

exist morphisms f

i

between �nite objets A

i

and B

i

(i � 1) suh that

f =

S

i

(f

i

: A

i

! B

i

). We an now �nd i � 1 with A

0

� A

i

and

B

0

� B

i

whih implies that f

0

� f

i

. Hene P is loally �nite. In the

other diretion assume that P is loally �nite and let f : A! B be any

morphism of P . Sine the arrier sets jAj and jBj are both ountable,

we an hoose �nite sets M

i

and N

i

(i � 1) with jAj =

S

M

i

and

jBj =

S

N

i

and put g

i

= f \ (M

i

�N

i

). De�ne f

i

: A

i

! B

i

indutively
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as follows: Let f

1

: A

1

! B

1

be a �nite submodel of f : A ! B with

g

1

� f

1

, M

1

� jA

1

j and N

1

� jB

1

j. Assuming f

i

: A

i

! B

i

has been

de�ned, let f

i+1

: A

i+1

! B

i+1

be a �nite submodel of f : A! B with

(f

i

[ g

i+1

) � f , (jA

i

j [M

i+1

) � jA

i+1

j, and (jB

i

j [ N

i+1

) � jB

i+1

j.

Then f =

S

f

i

and hene P is !-algebrai. This proves the laim.

Finally we make the following simple remark. Let us say that an

information ategory is �nitary if its objets are all �nite. Then it is

lear that the hain ompletion of any �nitary information ategory, by

simply adding the lubs of inreasing hains of objets and morphisms

to the ategory, gives rise to an !-algebrai information ategory, and,

onversely, every !-algebrai information ategory an be obtained by

taking the hain ompletion of the (full) subategory of its �nite objets.

3.2 The Initial Algebra Theorem

Given an endofuntor F : C ! C on a ategory C, the ategory

of F -algebras has as objets the pairs (A; f), with A 2 Obj

C

and

f 2 hom(F (A); A), and as morphisms, between objets (A; f) and (B; g),

those h 2 hom(A;B) for whih the following diagram:

A

�

f

F (A)

B

h

?

�

g

F (B)

F (h)

?

ommutes. An initial algebra of F is de�ned to be an initial objet, if

it exists, of the ategory of F -algebras; and we then say that F has an

initial algebra, or a least �xed point, in C. An initial F -algebra (A; f)

as above gives a anonial solution of the domain equation X

�

=

F (X);

hene its importane in omputing siene. (see, for example, [MA86℄

for details).

We now reall some de�nitions from [ES91a℄. A morphism f : A! B

of an I-ategory K is strit if in(�; A); f = in(�; B). We an immediately

see that � is an initial objet for the subategory of strit morphisms

K

s

. A funtor between I-ategories is standard if it preserves inlusion

morphisms; a funtor between omplete I-ategories is objet-ontinuous

(morphism-ontinuous) if the indued funtion on the po of objets

(morphisms) is ontinuous. In [ES91a℄, we showed that every standard

and morphism-ontinuous endofuntor on a omplete I-ategory K has
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an initial algebra in K

s

, and that for an e�etively given !-algebrai

I-ategory the initial algebra is e�etively given. In fat for the general

(i.e. non-e�etive) theory, we an do better using the following result

in [SP82℄, whih is known as the \basi lemma".

Lemma 3.11 Let K be a ategory with initial objet ? and let

F : K ! K be a funtor. De�ne the !-hain T to be

?

m

-

F (?)

F (m)

-

F

2

(?)

F

2

(m)

-

F

3

(?)

-

: : :

where m is the unique morphism from ? to F (?). Suppose that both

� : T ! A and F (�) : F (T ) ! F (A) are olimiting ones. Then the

initial F -algebra exists and is (A;�) where � : F (A)! A is the unique

mediating morphism from F (�) to �.

Theorem 3.12 A standard objet-ontinuous endofuntor F : K ! K

on a omplete I-ategory has an initial algebra in K

s

.

Proof Consider the hain T as in the basi lemma:

�

-
-

F (�)

-
-

F

2

(�)

-
-

F

3

(�)

-
-

: : :

By lemma 3.6 in [ES93b℄, the lub of any !-hain is a olimit in

K

s

. It follows that both � : T ! D and F (�) : F (T ) ! F (D),

where D =

F

i

F

i

(�) and �

i

= in(T

i

;D), are olimiting as F is

objet-ontinuous. Furthermore, � is an initial objet in K

s

. Therefore

the result follows by the basi lemma.�

For information ategories, we refer to standard funtors as monotoni

funtors; and there is a simple way of haraterizing objet-ontinuous

funtors whih generalizes a orresponding result in [LW84℄. We say

that a funtor F : K

1

! K

2

between omplete information ategories is

ontinuous on token sets if whenever hA

k

i

k�0

is an inreasing hain in

K

1

, then jF (

S

k

A

k

j = j

S

k

F (A

k

)j.

Lemma 3.13 A monotoni funtor of omplete information ategories

is objet-ontinuous i� it is ontinuous on the token sets.

Proof The \only if" part is evident. For the \if" part, note �rst from

De�nition 3.2 of the substruture relation E that A E B and jAj = jBj

implies A = B. Suppose now that F : K

1

! K

2

is a monotoni funtor
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ontinuous on token sets. If hA

k

i

k�0

is an inreasing hain of objets in

K

1

, then by monotoniity of F we have

S

k

F (A

k

) E F (

S

k

A

k

). Sine

these two objets have, by the ontinuity of F on token sets, the same

arrier sets, it follows by the above note that these are in fat the

same objets, i.e. F is objet-ontinuous.�

Combining the last two results with Proposition 3.8, we get:

Theorem 3.14 A monotoni endofuntor whih is ontinuous on the

token sets of a omplete information ategory has an initial algebra

in the subategory of strit morphisms. The initial algebra is obtained

by taking the union of the hain of iterates of the funtor on the

distinguished objet �.

4 Stone Spaes

In this setion we onstrut an information ategory, denoted by

Bool-ISys, for presenting the ategory of Stone spaes and ontinuous

funtions. This is based on Stone duality, but the extra struture in

the information ategory enables domain equations to be solved in a

straightforward manner. Objets of Bool-ISys are Boolean algebras

of the form (A;^;_;:;?;>) where A is the arrier set with elements

from a ountable pool, ^, _ and : are the Boolean operations and

?;> 2 A are respetively the least and the greatest elements of the

algebra. It is easy for the reader to hek that the axioms satis�ed by

the Boolean operations are all of universal-existential form. Also an

regard a Boolean homomorphism between two objets A and B as a

relation f : A! B de�ned by u.e. (89) axioms as follows:

� 8a9b: afb afb & afb

0

) b = b

0

� ?f? >f>

� afb & a

0

fb

0

) (a ^ a

0

)f(b ^ b

0

) afb & a

0

fb

0

)

(a _ a

0

)f(b _ b

0

).

Given objets A and B, the substruture relation A E B means that A

is a Boolean subalgebra of B and the inlusion morphism is simply the

Boolean inlusion. The distinguished objet � is the trivial Boolean

algebra onsisting of the two elements ? and >. We therefore obtain

an information ategory (Bool-ISys ; ^;_;: ; In ; = ; �) whih is
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omplete, sine all the axioms of the ategory are easily seen to be of

u.e. (89) type. Furthermore, the ategory is learly loally �nite and

therefore !-algebrai.

By Stone duality, Bool-ISys is dual to the ategory of ountably

based Stone spaes [Hal63℄. It is instrutive to solve a domain equation

in Bool-ISys, whose solution represents a well known Stone spae. For

this, onsider the domain equation X

�

=

A�X = G(X) in the ategory

of Stone spaes and ontinuous funtions, where A is the two element

set with the disrete topology and � � � represents the produt of

two Stone spaes with the produt topology. In the dual ategory

Bool-ISys, the dual equation is Y

�

=

B + Y = F (Y ), say, where B is

the four element Boolean algebra onsisting of ?;>; 0; 1, say, and �+�

represents the oprodut of two Boolean algebras de�ned as follows. The

oprodut B + Y is the algebra generated by the union of the two sets

f`g � B n f?;>g and frg � Y n f?;>g subjet to the relations inherited

form B and Y . The initial algebra of the funtor F is obtained by

taking the union of the hain � E F (�) E F

2

(�) E F

3

(�) : : :, i.e.

� E B +� E B + (B +�) E B + (B + (B +�)) E : : : :

These Boolean algebras are generated respetively by the following sets

;; f`0; `1g; f`0; `1; r`0; r`1g; f`0; `1; r`0; r`1; r

2

`0; r

2

`1g; : : : ;

where, for onveniene, we have dropped all brakets in representing

the tokens, e.g. r

2

`1 stands for (r; (r; (`; 1))). Notie that eah set of

generators is a subset of the next. In general, F

n

(�) is generated by

the set

L

n

= f`0; `1; r`0; r`1; r

2

`0; r

2

`; : : : ; r

n�1

`0; r

n�1

`1g:

The initial algebra is obtained by taking the union D =

S

n�0

F

n

(�),

whih is generated by the set

S

n

L

n

. To appreiate what these tokens in

fat represent as open sets, we onstrut the Stone spaes orresponding

to the Boolean algebras in the hain. These �nite disrete spaes are

obtained below by the iteration of the ation of the funtor G on the

one point spae f�g, with the two element spae A onveniently taken

as f0; 1g:

f�g; f0�; 1�g; f00�; 01�; 10�; 11�g; f000�; 001�; 010�; 011�; 100�; 101�; 110�; 111�g; : : :

We an now easily identify the token r

k

`i (i = 0; 1; k � 0) in F

n

(�)

(n > k) or indeed in D as the set of all those elements having i as the
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k

th

entry. These tokens therefore represent a set of subbasi open sets

for the Cantor spae f0; 1g

!

whih provides the �nal o-algebra solution

of the original domain equation in the ategory of Stone spaes and

ontinuous funtions.

5 Sott information systems

We will onstrut two di�erent but of ourse equivalent omplete

information ategories for Sott domains. The �rst whih is given

in [DP90℄ uses the original presentation of these domains by Sott

himself in [So82℄ and later by Larsen and Winskel in [LW84℄, whereas

the seond is based on the presentation given by Gunter in [Gun87℄

whih in fat we have already mentioned in the introdution. We

will develop this seond presentation more elaborately to obtain an

!-algebrai information ategory.

5.1 ISys

In [LW84, So82℄, a (Sott) information system is de�ned as a struture

A = (jAj;`;Con), where

� jAj is a set of tokens from a �xed pool,

� Con is a non-null subset of P

f

(jAj) (the onsistent sets),

� ` is a subset of Con�A (the entailment relation).

Sine ` extends easily to a subset of Con � Con, it is onvenient to

assume from the start, as we do here, that ` is a binary relation on

P

f

(jAj). We therefore require the following axioms whih are equivalent

to those in the above papers:

(i) X � Y & Y 2 Con ) X 2 Con

(ii) a 2 jAj ) fag 2 Con

(iii) X ` Y ) X 2 Con

A

& Y 2 Con

B

(iv) X ` Y ) X [ Y 2 Con

B

(v) X 2 Con & Y � X ) X ` Y

(vi) X ` Y & Y ` Z ) X ` Z:

Note that by (v) we have X ` X and this together with (vi)

implies that ` is a pre-order on P

f

(jAj). A morphism, alled an
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approximable mapping, r : A ! B between two objets is a relation

r � P

f

(jAj) �P

f

(jBj) satisfying:

(i) XrY ) X 2 Con

A

& Y 2 Con

B

(ii) ;r;

(iii) XrY & XrY

0

) Xr(Y [ Y

0

)

(iv) X

0

`

A

X & XrY & Y `

B

Y

0

) X

0

rY

0

It is trivial to hek that `

A

is the identity morphism on A and that

whenever A is a substruture of B, `

B

restrited to P

f

(jAj) � P

f

(jBj)

is a morphism, i.e. the inlusion morphism in(A;B). Finally we put

� = (;; f(;; ;)g; f;g) whih is trivially an information system and for

any approximable mapping r : �! A, we have

in(�; A) = ; � r:

We now have an information ategory (ISys;`;Con; In;�;�), whih is

omplete sine all the axioms are of u.e. (89) type.

5.2 BC-ISys

We have already de�ned the ategory of bounded omplete information

systems in Setion 1 (see also [Gun87℄). Assuming that eah system has

the same distinguished token �, we denote this ategory by BC-ISys.

Then it an easily be shown that (BC-ISys;`; In;�;�) is a omplete

information ategory where the partial order (A;`

A

;^

A

) E (B;`

B

;^

B

)

is aptured by the approximable mapping R � A � B with aRb i�

a `

B

b, � is the inlusion for relations, and �, ambiguously, denotes the

trivial objet having f�g as set of tokens. In fat onditions C1-C3

are trivial to hek and C4 follows from the fat that all the axioms

de�ning objets and morphisms of BC-ISys are of universal (8) type.

To obtain an !-algebrai information ategory onsider the full

subategory BC-ISys* of BC-ISys onsisting of all objets A with

elements of jAj from a �xed ountable pool and with `

A

a partial

order. These two ategories are equivalent sine every objet (A;`;^)

is isomorphi to its Lindenbaum algebra (A

=

�

;`

=

�

;^

=

�

) whih is an

objet of BC-ISys*. We make a slight hange of notation and write

the partial order `

I

of an objet I of BC-ISys* as �

I

with a �

I

b i�

a `

I

b. We now laim that (BC-ISys*;�; In;�;�) is an !-algebrai

information ategory. The ompleteness axiom C4 holds as before.
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Furthermore BC-ISys* is loally �nite: Given an objet I and a �nite

subset S of jIj, the set of onjuntions of all onsistent subsets of S

is �nite and hene gives rise to a �nite submodel of I. This proves

that our ategory is loally �nite and therefore !-algebrai. It is also

well known that BC-ISys, and therefore BC-ISys* is equivalent to

the ategory of Sott domains and ontinuous funtions; details an be

found in [ES93b℄.

5.3 Funtion spae onstrutor

All the usual onstrutors on Sott domains have their ounterparts as

onstrutors on BC-ISys*. We will present just the funtion spae

onstrutor here. Reall that the initial algebra theorem holds for

ovariant funtors, but the general funtion spae onstrutor

(�)! (�) : BC-ISys*

op

�BC-ISys*! BC-ISys*

is ontravariant in its �rst argument. However if we restrit to the

subategory of inlusion morphisms denoted by BC-ISys*

E

, we an

obtain a ovariant funtor

(�)!

E

(�) : BC-ISys*

E

�BC-ISys*

E

! BC-ISys

E

:

(This is of ourse a standard tehnique of domain theory �rst formulated

in [So72℄. For a general formulation in the ontext of ategories with

ordered hom-sets, see [SP82℄.) We will now desribe the ation of

(�) !

E

(�) on objets and inlusion morphisms. For onveniene we

will drop the supersript E.

Given objets I and J of BC-ISys*, I ! J is de�ned as follows.

� jI ! J j onsists of �nite sets f of pairs of elements of I and J ,

i.e. f = f(a

k

; b

k

)ja

k

2 I; b

k

2 J n f�g; k 2 K;K �nite g satisfying

the following onditions:

H(i) whenever L � K and fa

l

jl 2 Lg is bounded, we have

V

l2L

a

l

= a

k

for some k 2 K;

H(ii) whenever (a; b); (a

0

; b

0

) 2 f and a � a

0

, we have b � b

0

;

H(iii) whenever (a; b); (a; b

0

) 2 f , we have b = b

0

.

� f

1

�

I!J

f

2

i� for all (a; b) 2 f

2

there exists (a

0

; b

0

) 2 f

1

with a � a

0

and b

0

� b.
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� Given bounded f

1

; f

2

2 jI ! J j, i.e. f � f

1

and f � f

2

for some

f 2 jI ! J j, f

1

^ f

2

= l(f

1

[ f

2

), where l(f

1

[ f

2

) is the losure

of f

1

[ f

2

under the H onditions above. This losure is obtained

from f

1

[ f

2

by the following two steps:

l(i) We start with f

1

[ f

2

and for any of its subsets

f(a

l

; b

l

)jl 2 Lg with fa

l

jl 2 Lg bounded below, we add

the pair (

V

l2L

a

l

;

V

l2L

b

l

) to it. (Note that

V

l2L

b

l

exists

sine f satis�es H(i).)

l(ii) We now remove redundanies by imposing H(ii) and H(iii).

� � = ;

It is routine to hek that I ! J is an objet of BC-ISys*. As we

will see later, onditions H(i)-(iii) ensure that a ompat element of the

funtion spae of two Sott domains has a unique representation in the

funtion spae of the orresponding information systems and hene the

latter spae is in fat a partial order and not simply a pre-order.

The funtor (�) ! (�) ats on inlusion morphisms as follows. If

I E I

0

and J E J

0

, it is readily seen that (I ! J) E (I

0

! J

0

). We

therefore de�ne

(in(I; I

0

)! in(J; J

0

)) = in((I ! J); (I

0

! J

0

));

whih makes the funtor (�) ! (�) ovariant in both arguments and

standard as desired.

We must verify that our onstrution does apture the intended

meaning of funtion spae of Sott information systems. To make our

notations lear, we denote the funtion spae onstrutor in the ategory

of domains by (�)!

d

(�).

Proposition 5.1 Given Sott domains A and B, the information system

F (A!

d

B) is isomorphi to F (A)! F (B) in BC-ISys*.

Proof It is suÆient to prove that they are isomorphi as posets. For

this we need to identify the ompat elements of A ! B in terms of

step funtions a & b, whih for elements a 2 A and b 2 B are de�ned

by:

a& b : A �! B

x 7�!

�

b if a v x

? otherwise.

Step funtions de�ned by a pair of ompat elements are themselves

ompat and any ompat element of A ! B an then be expressed
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in terms of suh step funtions as follows. Consider a �nite olletion

of pairs f = f(a

k

; b

k

)ja

k

2 K

A

; b

k

2 K

B

; k 2 K;Kis �niteg satisfying the

following onditions whih are the same as the H onditions with the

ordering reversed:

H

0

(i) whenever L � K and fa

l

jl 2 Lg is bounded, we have

F

l2L

a

l

= a

k

for some k 2 K;

H

0

(ii) whenever (a; b); (a

0

; b

0

) 2 f and a

0

v a, we have b

0

v b;

H

0

(iii) whenever (a; b); (a; b

0

) 2 f , we have b = b

0

.

This de�nes a ompat element

^

f of the funtion spae by

^

f =

F

k2K

(a

k

& b

k

). In fat any ompat element of the funtion

spae an be uniquely expressed as

^

f for some f satisfying the

above onditions. H

0

(i) is a ompleteness ondition; whereas H

0

(ii)-(iii)

eliminate all redundant step funtions in the de�nition of

^

f . The

mapping h : (F (A) ! F (B)) ! F (A !

d

B) given by f 7�!

^

f now

establishes the required isomorphism. �

It remains to verify that the funtion spae onstrutor is

morphism-ontinuous.

Proposition 5.2 The funtor

(�)!

E

(�) : BC-ISys*

E

�BC-ISys*

E

! BC-ISys

E

is morphism-ontinuous.

Proof First we show that it is ontinuous on objets. We simply

hek that it is ontinuous in eah argument separately. Let hI

i

i

i�0

be an inreasing hain of objets and J a �xed objet of BC-ISys*.

Sine (�) ! J is standard, i.e. monotoni, we already know that

S

i

(I

i

! J) � (

S

I

i

) ! J . To show the onverse let f 2 ((

S

I

i

) ! J).

Sine f is a �nite set of pairs of elements of

S

I

i

and J satisfying

onditions (i) and (ii) and sine � and ^ are preserved in a hain,

it follows that f belongs to I

i

! J for some i � 0 and hene to

S

i

(I

i

! J). Therefore (�)! (�) is ontinuous in its �rst argument on

objets. Similarly it is ontinuous in the seond argument on objets.

Now we assume that he

i

: A

i

� B

i

i

i�0

and he

0

i

: A

0

i

� B

0

i

i

i�0

are two
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inreasing hains of inlusion morphisms and alulate

S

(e

i

! e

0

i

) =

S

in(A

i

! A

0

i

; B

i

! B

0

i

)

= in(

S

(A

i

! A

0

i

) ;

S

(B

i

! B

0

i

))

= in(

S

A

i

!

S

A

0

i

;

S

B

i

!

S

B

0

i

)

=

S

e

i

!

S

e

0

i

:

This proves the ontinuity of (�)!

E

(�).�

Other onstrutors, inluding various power domain funtors, an be

similarly treated.

6 SFP information systems

The ategory of SFP domains with ontinuous mappings, denoted by

SFP, is the largest artesian losed full subategory of the ategory

of !-algebrai po's with ontinuous mappings, and is losed under the

three main power funtors. See [Plo81, Smy83, Jun88℄. Reall that

an !-algebrai po, A, is

2

=

3

SFP if for every �nite S � K

A

, the

set of minimal upperbounds of S, denoted by Mub(S), is �nite and

omplete in the sense that for every upperbound x of S, there exists

some y 2 Mub(S) with y v x. Furthermore, A is SFP if, in addition,

for every �nite S � K

A

, U

�

(S) is �nite where

U

�

(S) =

S

k2!

U

k

(S)

U

0

(S) = S

U

k+1

(S) =

S

fMub(T )jT � U

k

(S)g

SFP is the ategory of SFP domains with ontinuous mappings; it is

the largest artesian losed full subategory of !-ALG, the ategory

of !-algebrai po's with ontinuous mappings, and is losed under the

three main power funtors.

We will use the above de�nition to onstrut a ategory of information

systems SFP-ISys equivalent to SFP. The objets of this ategory,

alled SFP information systems, are given by tuples (A;`;Mlb; V;�)

where (A;`) is, as before, a pre-order, � a distinguished token implied

by all tokens in all objets and Mlb and V are unary operations on
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P

f

(A), satisfying the following axioms:

S(i) x 2 Mlb(T ) ) x ` T:

S(ii) x 2 Mlb(T ) & x ` y & y ` T ) x � y:

S(iii) x ` T ) 9y: y 2 Mlb(T ) & x ` y:

S(iv) T � V (T ):

S(v) T

0

� V (T ) ) Mlb(T

0

) � V (T ):

S(vi) T � T

0

) V (T ) � V (T

0

):

S(vii) V (V (T )) � V (T ):

Here x ` T means x ` t for all t 2 T . The �rst three axioms say

that for every �nite S � A, Mlb(S) is a omplete set of maximal lower

bounds of S with respet to `. Axioms S(iv)-(v) say that every �nite

subset T of A is ontained in a �nite subset V (T ) whih is losed under

Mlb. Axioms S(vi)-(vii) ensure loal �niteness and are only needed, as

we will see later, for onstruting an !-algebrai information ategory

and not for a omplete information ategory. A morphism, f , between

SFP information systems A and B is an approximable mapping, i.e. a

relation f � A�B satisfying

� �f�.

� a ` a

0

fb

0

` b ) afb:

� afb

1

& afb

2

) 9b: b 2 Mlbfb

1

; b

2

g & afb:

Given objets A and B we de�ne two approximable mappings:

in(A;B) : A! B with a(in(A;B))b () a `

B

b

pr(B;A) : B ! A with b(pr(B;A))a () b `

B

a:

It an be easily heked that these are in fat approximable mappings

satisfying in(A;B); pr(B;A) = Id(A) and pr(B;A); in(A;B) � Id(B).

We hek that (SFP-ISys;`;Mlb; V; In;�;�) is a omplete information

ategory: In fat onditions C1-C3 are straightforward to verify; and all

our axioms are of u.e. (89) type whih ensures ompleteness. In order

to obtain an !-algebrai information ategory, we do exatly as we did

with BC-ISys, and onsider the subategory SFP-ISys* of partially

ordered objets with elements from a ountable pool. SFP-ISys*

is loally �nite: Given an objet (A;�;Mlb; V ) of this ategory and
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a �nite subset T � A, we an easily see by the S axioms that

(V (T );�;Mlb; V ) (in whih the partial order and the two operations are

restrited to V (T )) is a �nite submodel of A. Therefore, SFP-ISys* is

an !-algebrai information ategory.

The equivalene of the ategory of SFP and SFP-ISys is given by

the funtors

SFP

�

G

F

-

SFP-ISys

as follows. Given an SFP domain (D;v), we put

F (D) = (K

D

;`;Mlb;U

�

) where ` is the inverse of v, and

Mlb=Mub (the maximal lower bounds wrt ` are the same as the

minimal upper bounds wrt v) and U

�

is as de�ned in the beginning

of this setion. It is easily seen that this is an objet of SFP-ISys

sine U

�

satis�es axioms (iv)-(vii) for V . Given a ontinuous map

f : D ! E between SFP domains, F (f) = R

f

with aR

f

b i� f(a) w b.

On the other hand, given an SFP-ISys objet (A;`;Mlb; V ), we put

G(A) = (Fil(A);�), the set of �lters of A ordered by inlusion. To

see that this is in fat SFP, note that the basis of this domain is

isomorphi to (A;v) where v is the inverse of `, and therefore Mlb

now gives the minimal upperbounds w.r.t. v, and S(iv)-(v) imply that

any �nite subset of A is ontained in a �nite set losed under the

minimal upperbound operation. (However note that for T �

f

A we

only have U

�

(T ) � V (T ); in order to obtain U

�

= V one has to add

further S axioms whih we prefer to avoid.) Given an approximable

mapping R : A! B between two objets in SFP-ISys objets, we de�ne

G(R) = f

R

with f

R

: Fil(A)! Fil(B) where f

R

(x) = fbj9a 2 x: aRbg. It

an be heked that this de�nes an equivalene of the two ategories

and that for SFP information systems A and B with A E B, the

approximable mappings in(A;B) and pr(B;A) are mapped by G to an

embedding projetion pair between the SFP domains (Fil(A);�) and

(Fil(B);�).

We will now expliitly de�ne the funtion spae onstrutor in

SFP-ISys*. Assume that A and B are objets of this ategory and

de�ne A! B by:

� jA ! Bj onsists of �nite sets of pairs of elements of A and B

of the form f = f(a

k

; b

k

)ja

k

2 A; b

k

2 B n f�g; k 2 K;K �niteg

satisfying:

T(i) fa

k

jk 2 Kg is losed under Mub on any of its subsets.
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T(ii) 8k; k

0

2 K:a

k

� a

k

0

) b

k

� b

k

0

.

T(iii) 8k; k

0

2 K:a

k

= a

k

0

) b

k

= b

k

0

.

� f

1

�

A!B

f

2

i� for all (a; b) 2 f

2

there exists (a

0

; b

0

) 2 f

1

with

a � a

0

and b

0

� b.

Compare the T onditions above with the H onditions in Setion 5.3.

We now show that A ! B has the required operations Mlb and V .

Assume that SFP objets D and E are suh that F (D)

�

=

A and

F (E)

�

=

B. Sine the funtion spae D !

d

E is SFP, F (D !

d

E)

is an SFP information system with the required operations Mlb and

V . Moreover, we an easily see that F (D !

d

E) and A ! B are

isomorphi as posets. We therefore onlude that A ! B has the

required operations Mlb and V as well.

The funtion spae onstrutor, as in the ase of BC-ISys*, gives

rise to a standard and morphism-ontinuous ovariant funtor on the

subategory of inlusion morphisms of SFP-ISys*.

7 Information systems for dI-domains

We now onsider dI-domains whih were introdued in [Ber78℄ in the

ontext of studying the full abstration problem for typed �-aluli.

Reall that a dI-domain is a bounded omplete (Sott) domain D whih

satis�es the following two onditions:

dI(i) for all x; y; z 2 D, if y " z then x u (y t z) = (x u y) t (x u z);

dI(ii) there are only a �nite number of elements below eah ompat

element.

A funtion f : D ! E between dI-domains is stable if it is ontinuous

and satis�es:

x " y ) f(x u y) = f(x) u f(y):

Given stable funtions f; g : D ! E, we say f is less than g in the

stable ordering, denoted by f v

s

g, if

8x 2 D: f(x) v g(x)

8x; y 2 D: x v y ) f(x) = f(y) u g(x):

A stable funtion f : D ! E is a rigid embedding if there exists a

stable funtion g : E ! D, alled a projetion with f ; g = Id(E) and

g; f v

s

Id(D).
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The ategory of dI-domains with stable funtions, denoted by DI,

is artesian losed, produts are formed as artesian produt ordered

pointwise and the funtion spae of dI-domains D and E onsists of

the stable funtions f : D ! E with the stable ordering. The ategory

is losed under diret limits with rigid embeddings, and a great deal

of denotational semantis an be done in this ategory inluding the

solving of reursive domain equations involving produt, sum, and

funtion spae. For more details see [CGW87℄.

Here, we will present a ategory of information systems for

dI-domains, whih we denote by DI-ISys. As in the previous examples,

we will represent a dI-domain by its ompat elements. We thereby

stress the fat that all domains of omputations an be represented bt

their ompat elements. A di�erent treatment of dI-domains is provided

by Zhang [Zha89℄ who uses the omplete prime elements of the domain

in its representation.

The objets of DI-ISys, alled dI-information systems, are tuples

(A;`;^;_; h;�), where (A;`;^;�) is a Sott information system, _ is

a (total) binary disjuntion and h : A ! P

f

(A) is an operation whih

satisfy:

D(i) � _� = �:

D(ii) x ` x _ y:

D(iii) y ` x _ y:

D(iv) x ` z & y ` z ) x _ y ` z:

D(v) x ` y ) 9y

0

: y

0

2 h(x) & y

0

� y:

D(vi) y 2 h(x) ) x ` y:

D(vii) u ` x & u ` y ) (z _ x) ^ (z _ y) ` z _ (x ^ y):

Note that axioms for h imply that the set of equivalent lasses of tokens

implied by a token is �nite, and for eah a, h(a) onsists of a �nite set

of tokens implied by a, whih is omplete in the sense that eah token

implied by a has an equivalent in h(a). Note also that D(vii) implies

that (z _ x) ^ (z _ y) � z _ (x ^ y), when x ^ y exists, sine the inverse

impliation always holds.

Morphisms of DI-ISys are alled traes and are de�ned as follows.

A trae R : A ! B of dI-information systems A and B is a relation
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R � A�B satisfying:

tr(i) �R�:

tr(ii) aRb & a

0

Rb &  ` a &  ` a

0

) a ` a

0

:

tr(iii) aRb & b ` b

0

) 9a

0

: a

0

2 h(a) & a

0

Rb

0

:

tr(iv) aRb & a

0

Rb

0

&  ` a &  ` a

0

) 9d: d ` b & d ` b

0

& (a ^ a

0

)R(b ^ b

0

):

tr(v) a � a

0

& b � b

0

& aRb ) a

0

Rb

0

:

The identity morphism Id(A) of A is the diagonal trae given by

(a; a

0

) 2 Id(A) () a � a

0

:

More generally, given objets A and B with A E B, we de�ne the

inlusion in(A;B) and the projetion pr(B;A) by

(a; b) 2 in(A;B) () a � b and (b; a) 2 pr(B;A) () b � a:

It is trivial to hek that these in fat de�ne traes with

in(A;B); pr(B;A) = Id(A) and pr(B;A); in(A;B) � Id(B).

We leave the proof of the following simple proposition to the reader.

Proposition 7.1 Any trae R : A ! B determines an approximable

mapping

�

R : A! B de�ned by a

�

Rb i� 9a

0

: a ` a

0

& a

0

Rb.

We now see that (DI-ISys ; � ; ` ; ^;_; h ; In ; � ; �) is a omplete

information ategory. (Notie that the order in eah objet induing

the inlusion morphisms is given here by � and not by ` as has

been the ase in the previous examples. See the de�nition of an

information ategory in 3.) Conditions C1-C3 are easy to hek and

the ompleteness ondition C4 follows from the fat that all the axioms

of DI-ISys are of u.e. (89) type.

To obtain an !-algebrai information ategory, we do as in the

previous ases and onsider the full subategory DI-ISys* of partially

ordered objets with elements from a ountable pool. We replae

` by � and write the objets of this subategory as (A;�;^;_; h).

Sine we have a partial order now, D(v) and D(vi) imply that

h(a) = "a = fxja � xg. DI-ISys* is learly equivalent to DI-ISys

and is a omplete information ategory. It is also loally �nite: Given

an objet (A;�;^;_; h) of DI-ISys* and a �nite subset T � A, onsider

the losure, S, of T under ^. Sine (A;�;^) is a Sott information

systems S is �nite. Therefore, "S =

S

f"xjx 2 Sg is also �nite. We
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an now see that the objet given by the set "S with the partial order

and the operations of A restrited to it is a �nite submodel of A. This

shows that DI-ISys* is !-algebrai, as required.

We will now de�ne funtors

DI

�

G

F

-

DI-ISys*

whih make an equivalene of two ategories. We start by de�ning

F . For an objet (D;v) of DI, we de�ne F

o

(A) = (K

D

;�;^;_; h;�)

where

� � is the inverse of v ;

� a

1

^ a

2

= a

1

t a

2

if this exists;

� a

1

_ a

2

= a

1

u a

2

;

1

� h(a) = #a = fxjx v ag;

� � = ?

It is readily seen on the basis of dI(i) and dI(ii) that F

o

(A) satis�es

D(i)-D(vii). Next onsider a stable mapping f : D ! E of dI-domains

and de�ne F

m

(f) = R

f

where R

f

� K

D

�K

E

is given by aR

f

b i� a is

a minimal element of f

�1

("b). Sine minimal elements of Sott open

sets are ompat and f

�1

("b) is open (f is ontinuous and "b is open

as b is ompat), this de�nition makes sense.

Proposition 7.2 R

f

is a trae.

Proof We show that R

f

satis�es tr(i)-tr(v), with ` and � replaed

by � and = respetively. Reall that � in F

o

(D) is the inverse of

v in D and for onveniene we shall refer to v in the following

proof. Sine ? is the least element of f

�1

(?) = D, we see that tr(i)

holds. To prove tr(ii), assume a and a

0

are bounded above (wrt

v) and are minimal elements of f

�1

("b). Sine f is stable we have

f(a u a

0

) = f(a) u f(a

0

) w b and therefore a = a

0

by the minimality

of a. Next to show tr(iii), assume a is a minimal element of f

�1

("b)

and b v b

0

. Then there is a minimal element a

0

of f

�1

("b

0

) below

a 2 f

�1

(b

0

). To show tr(iv), assume a and a

0

are bounded above and are

minimal elements of f

�1

("b) and f

�1

("b

0

) respetively. Then f(a) w b

1

Note that in a dI-domain a

1

u a

2

is ompat if a

1

and a

2

are ompat.
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and f(a

0

) w b

0

, and therefore b and b

0

are bounded above by f(a t a

0

).

Furthermore a t a

0

is a minimal element of f

�1

("(b t b

0

)): For suppose

x v a t a

0

and b t b

0

v f(x), then by the stability of f we have

f(x u a) = f(x) u f(a) w (b t b

0

) u b = b

and by minimality of a we get xu a = a, i.e. x w a. Similarly x w a

0

so

that x w at a

0

and therefore x = at a

0

, whih establishes tr(iv). Finally

note that beause we have a partial order tr(v) is now a tautology. �

We will now de�ne the funtor G : DI-ISys* ! DI. Given an

objet (A;�;^;_; "(�)) of DI-ISys*, G

o

(A) = (Fil(A);�) is the

set of �lters of A ordered by inlusion. This is a Sott domain

sine (A;�;^) is a Sott information system. The ompat elements

are the prinipal �lters "a = fa

0

j a � a

0

g for any a 2 A. For

x; y 2 (Fil(A);�), we have x u y = x \ y and, if x and y are bounded

above, xt y = fa^ b j a 2 x; b 2 yg. We show that this domain satis�es

the distributivity axiom dI(i) as follows. The basis of this domain is

isomorphi with the poset (A;v) where v is the inverse of �. By

D(vii), this poset satis�es dI(i) and therefore so does the basis of G

o

(A).

Sine the operations t and u are ontinuous operations in any po, it

follows that G

o

(A) itself satis�es dI(i). Furthermore, sine "a is �nite

in (A;�), it follows that #a is �nite in (A;v), i.e. dI(ii) holds as well.

Hene, G

o

(A) is an objet of DI as required.

Next, onsider a trae R : A ! B and put G

m

(R) = f

R

where

f

R

: (Fil(A);�) ! (Fil(B);�) is the ontinuous map orresponding to

the approximable mapping

�

R : A ! B (see Proposition 7.1). We will

prove that f

R

is a stable map using the following lemma.

Lemma 7.3 Let g : D ! E be a ontinuous map between dI-domains

D and E and let �g : (K

D

;�;^;_) ! (K

E

;�;^;_) be the approximable

mapping orresponding to g. Then g is stable if and only if �g satis�es

the following ondition:

a

1

#a

2

& a

1

�gb & a

2

�gb ) (a

1

_ a

2

)�gb:

Proof Sine g is ontinuous and u is a ontinuous operation we only
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need to onsider the stability ondition for ompat elements. Therefore,

g is stable i�

a

1

; a

2

2 K

D

& a

1

"a

2

) g(a

1

) u g(a

2

) v g(a

1

u a

2

) i�

(the reverse inequality always holds by monotoniity of g)

a

1

; a

2

2 K

D

& a

1

"a

2

& b 2 K

E

) (b v g(a

1

) u g(a

2

) ) b v g(a

1

u a

2

)) i�

a

1

; a

2

2 K

D

& a

1

"a

2

& b 2 K

E

) (b v g(a

1

) & b v g(a

2

) ) b v g(a

1

u a

2

)) i�

a

1

#a

2

& a

1

�gb & a

2

�gb ) (a

1

_ a

2

)�gb

(sine the ordering in the information system is reversed and a

1

Rb () b v g(a) ):

This ompletes the proof. �

Proposition 7.4 f

R

is stable.

Proof We only need to hek that the ondition in the lemma holds

for the approximable map

�

R : A! B. Suppose a

1

and a

2

are bounded

below in A and a

1

�

Rb and a

2

�

Rb. Then there exists a

0

1

� a

1

and a

0

2

� a

2

with a

0

1

Rb and a

0

2

Rb. Sine a

0

1

and a

0

2

are bounded below, tr(ii) implies

that a

0

1

= a

0

2

= a, say. Therefore, (a

1

_ a

2

) � aRb, and as

�

R is an

approximable mapping we �nally get (a

1

_ a

2

)

�

Rb. �

We have now ompletely de�ned the funtors

DI

�

G

F

-

DI-ISys*;

it is routine to verify that they indeed indue an equivalene of the two

ategories. We will now show that the stable ordering of morphisms is

aptured by the inlusion of traes.

Proposition 7.5 f v

s

g i� R

f

� R

g

.

Proof Assume f; g : D ! E with f v

s

g. Then we have

R

f

; R

g

: (K

D

;�;^;_)! (K

E

;�;^;_):

Let aR

f

b. Sine b v f(a) v g(a), there exists a

0

2 K

A

with a

0

v a and

a

0

R

g

b. By the stable order ondition however, f(a

0

) = f(a)u g(a

0

) w b

and hene a = a

0

, sine a is minimal. Therefore R

f

� R

g

. In the other

diretion assume R

f

� R

g

. By ontinuity, it is suÆient to prove the
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stable ordering onditions on the ompat elements of A. Let a 2 K

A

,

then for all b 2 K

B

we have

b v f(a) ) 9a

0

v a: a

0

R

f

b ) a

0

R

g

b ) b v g(a):

This implies f v g. Now let a

1

; a

2

2 K

A

with a

1

v a

2

and take any

b 2 K

B

with b v f(a

2

) u g(a

1

). Then b v f(a

2

) and b v g(a

1

) and

hene there exists a

0

1

v a

1

and a

0

2

v a

2

with a

2

R

f

b and a

1

R

g

b. By

tr(ii) we obtain a

0

1

= a

0

2

and therefore a

0

1

R

f

b whih implies b v f(a

1

).

This gives us f(a

1

) w f(a

2

) u g(a

1

). Sine the reverse inequality holds

by monotoniity of f and f v g, we obtain f v

s

g. �

Corollary 7.6 A pair of inlusion and projetion traes in DI-ISys*

represent a rigid embedding projetion pair in DI.

7.1 Funtion spae onstrutor

In this subsetion, we will de�ne the funtion spae onstrutor in

DI-ISys*. Given objets A and B of DI-ISys*, the funtion spae

A! B is de�ned as follows. jA! Bj onsists of �nite traes R : A! B,

i.e. �nite subsets of A�B satisfying tr(i)-tr(iv) with ` replaed by �.

(Reall that tr(v) is now redundant sine � is a partial order.) The

partial order on A! B is given by

R

2

� R

1

() R

1

� R

2

When R � R

1

and R � R

2

, we de�ne

R

1

^R

2

= f(a

1

^ a

2

; b

1

^ b

2

) j a

1

#a

2

; a

1

R

1

b

1

; a

2

R

2

b

2

g:

Note that in the above de�nition the existene of b

1

^ b

2

is ensured by

tr(iv) applied to R. As we will see in the next proposition, R

1

^R

2

is the

smallest trae ontaining R

1

and R

2

. In order to de�ne the operation _

in A! B, it is onvenient to put R

(a;b)

= f(a

0

; b

0

) 2 R j a � a

0

; b � b

0

g,

for eah R 2 jA! Bj and (a; b) 2 R. Now we de�ne

R

1

_R

2

= f(a; b) 2 R

1

\R

2

j R

(a;b)

1

= R

(a;b)

2

g:

We will see shortly that R

1

_R

2

is the largest trae ontained in both R

1

and R

2

. The ondition R

(a;b)

1

= R

(a;b)

2

is a rigidity ondition; it ensures

that we do in fat get a trae. Finally, we let h(R) = fR

0

j R

0

� Rg

and � = f(�;�)g.

36



Proposition 7.7 (jA! Bj;�;^;_; h;�) is a dI-information system.

Proof The image of h is learly �nite, and h satis�es axioms D(v)-D(vi).

We therefore need to show that the operations ^ and _ do indeed give

us elements of jA! Bj and that they satisfy the required axioms.

(i) We start with ^. Let R � R

1

and R � R

2

; we will verify

tr(i)-tr(iv) for R

1

^R

2

. Sine �R

1

� and �R

2

�, we have

(�;�) = (� ^�;� ^�) 2 R

1

^R

2

;

i.e. tr(i) holds. To show tr(ii), let a

1

^ a

2

; a

0

1

^ a

0

2

be bounded below and

assume we have (a

1

^a

2

; b

1

^ b

2

) 2 R

1

^R

2

and (a

0

1

^a

0

2

; b

1

^ b

2

) 2 R

1

^R

2

.

Then a

1

; a

0

1

will be bounded below as well and moreover we have

a

1

R

1

b

1

and a

0

1

R

1

b

1

. By tr(ii) applied to R

1

we get a

1

= a

0

1

. Similarly

a

2

= a

0

2

and hene a

1

^ a

2

= a

0

1

^ a

0

2

i.e. tr(ii) holds for R

1

^ R

2

. To

prove tr(iii), onsider (a

1

^ a

2

; b

1

^ b

2

) with a

1

R

1

b

1

and a

2

R

2

b

2

, and let

b

1

^ b

2

� b. Then

b = b _ (b

1

^ b

2

) = (b _ b

1

) ^ (b _ b

2

);

with b

i

� b _ b

i

; i = 1; 2. Hene, by tr(iii) applied to R

1

and R

2

, there

exists, for i = 1; 2, a

0

i

with a

i

� a

0

i

and a

0

i

R

i

(b _ b

i

). Therefore

(a

0

1

^ a

0

2

; (b _ b

1

) ^ (b _ b

2

)) 2 R

1

^R

2

:

Sine a

1

^ a

2

� a

0

1

^ a

0

2

and (b_ b

1

)^ (b_ b

2

) = b, we have veri�ed tr(iii).

Finally, to show tr(iv), onsider (a

1

^a

2

; b

1

^ b

2

) and (a

0

1

^a

0

2

; b

0

1

^ b

0

2

) with

a

i

R

i

b

i

; a

0

i

R

i

b

0

i

(i = 1; 2) and  � a

1

^ a

2

;  � a

0

1

^ a

0

2

. We get  � a

i

;  � a

0

i

(i = 1; 2) and hene by tr(iv) applied to R

i

we obtain (a

i

^ a

0

i

)R

i

(b

i

^ b

0

i

)

(i = 1; 2). Therefore,

((a

1

^ a

2

) ^ (a

0

1

^ a

0

2

); (b

1

^ b

2

) ^ (b

0

1

^ b

0

2

)) 2 R

1

^R

2

;

as required. We onlude that R

1

^ R

2

2 jA ! Bj. Now we

show that R

1

^ R

2

is in fat the onjuntion of R

1

and R

2

.

First we hek that R

1

^ R

2

� R

i

(i = 1; 2). Let (a; b) 2 R

1

,

then (a; b) = (a ^ �; b ^ �) 2 R

1

^ R

2

. Hene R

1

� R

1

^ R

2

, i.e.

R

1

^ R

2

� R

1

. Similarly R

1

^ R

2

� R

2

. Furthermore, R � R

1

^ R

2

,

for onsider (a

1

^ a

2

; b

1

^ b

2

) with a

i

R

i

b

i

(i = 1; 2). Then (a

i

; b

i

) 2 R

sine R � R

i

(i = 1; 2). Hene by tr(iv) applied to R we have

(a

1

^ a

2

; b

1

^ b

2

) 2 R as required.
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(ii) We now onsider _. To show that R

1

_R

2

is a trae, the only

non-trivial axiom to hek is tr(iii). Let (a; b) 2 R

1

_ R

2

and b � b

0

.

Then aR

1

b; aR

2

b and R

(a;b)

1

= R

(a;b)

2

. By tr(iii) applied to R

1

, there

exists a

0

with a � a

0

and a

0

R

1

b

0

. Now R

(a;b)

1

= R

(a;b)

2

implies that a

0

R

2

b

0

and hene (a

0

; b

0

) 2 R

1

_R

2

, sine R

(a

0

;b

0

)

1

= R

(a

0

;b

0

)

2

as a � a

0

and b � b

0

.

To show that _ satis�es the axioms of disjuntion, note �rst that sine

R

1

_ R

2

� R

i

we have R

i

� R

1

_ R

2

(i = 1; 2). Assume now that we

have R

1

� R;R

2

� R, and suppose (a; b) 2 R. Then (a; b) 2 R

1

\ R

2

.

To hek that R

(a;b)

1

= R

(a;b)

2

, assume (a

0

; b

0

) 2 R

(a;b)

1

. Sine b � b

0

,

tr(iii) applied to R implies that there exists a

00

2 A with a � a

00

and

a

00

Rb

0

. Hene we have a

0

R

1

b

0

and a

00

R

1

b

0

with a � a

0

and a � a

00

whih, by tr(ii) applied to R

1

, imply that a

0

= a

00

, i.e. a

0

Rb

0

and hene

a

0

R

2

b

0

. This shows that R

(a;b)

1

� R

(a;b)

2

and therefore by symmetry

R

(a;b)

1

= R

(a;b)

2

. We onlude that (a; b) 2 R

1

_R

2

, i.e. R

1

_R

2

� R.

(iii) It remains to hek the distributivity axiom D(vii) in A ! B.

Let R;S; T be elements of jA! Bj with S; T bounded below; we must

show that

R _ (S ^ T ) � (R _ S) ^ (R _ T ):

Let (a; b) 2 R_ (S^T ), then we have (a; b) 2 R\ (S^T ) and the rigidity

ondition R

(a;b)

= (S ^ T )

(a;b)

. By the de�nition of S ^ T , there exists

(a

0

; b

0

) 2 S and (a

00

; b

00

) 2 T with a = a

0

^ a

00

and b = b

0

^ b

00

. Sine

(a

0

; b

0

) = (a

0

^�; b

0

^�) 2 S ^ T and a

0

^ a

00

� a

0

; b

0

^ b

00

� b

0

, the rigidity

ondition implies that (a

0

; b

0

) 2 R, i.e. (a

0

; b

0

) 2 R \ S. Next we show

that R

(a

0

;b

0

)

= S

(a

0

;b

0

)

. Let (x; y) 2 S

(a

0

;b

0

)

, then a � a

0

� x, b � b

0

� y

and xSy. Hene (x; y) 2 S ^ T , and R

(a;b)

= (S ^ T )

(a;b)

implies that

xRy. Therefore S

(a

0

;b

0

)

� R

(a

0

;b

0

)

. To obtain the reverse inequality,

suppose that (x; y) 2 R

(a

0

;b

0

)

. Then a � a

0

� x; b � b

0

� y and xRy.

Clearly we have (x; y) 2 R

(a;b)

, and therefore by R

(a;b)

= (S ^ T )

(a;b)

,

we get (x; y) 2 S ^ T . On the other hand, sine a

0

Sb

0

and b

0

� y, there

exists x

0

with a

0

� x

0

and x

0

Sy, and hene (x

0

; y) 2 S ^ T . Now tr(ii)

applied to S ^ T gives x = x

0

. Hene xSy and we get R

(a

0

;b

0

)

� S

(a

0

;b

0

)

.

This establishes (a

0

; b

0

) 2 R _ S. Similarly (a

00

; b

00

) 2 R _ T . We onlude

that

(a; b) = (a

0

^ a

00

; b

0

^ b

00

) 2 (R _ S) ^ (R _ T );

as required. �
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8 Information systems for ontinuous domains

Semanti domains are most ommonly taken to be algebrai dpo's of

some kind. It is well known that a ategory P of algebrai domains

typially an be extended to a ategory of ontinuous domains, the

objets of whih may be onsidered as the retrats (or alternatively as

projetions) of the objets of P . Thus we have the ontinuous latties

as the retrats (or projetions) of the algebrai latties, the bounded

omplete ontinuous po's as the retrats of the Sott domains, and so

on.

Abstratly, the extension to the ategory of retrats may be onsidered

as the onstrution of the Karoubi envelope [AGV72, Fre64, LS86℄ of the

original ategory: if P is any ategory, the Karoubi envelope Kar(P )

of P has as objets the pairs (A; r) where A is an objet of P and

r : A ! A is a retration (that is, r; r = r), while a morphism from

(A; r) to (B; s) is a morphism f : A ! B of P suh that r; f ; s = f .

It should be lear that in the usual ases, where we are dealing with

ategories of spaes of some kind, Kar(P ) is equivalent to the ategory

of retrats of the objets of P . If r : A! A; s : B ! B are retrations

of the spaes A;B and h : A! B any ontinuous map, then r;h; s is in

e�et a map of the image r(A) into r(B); indeed there is an obvious one

to one orrespondene between the ontinuous maps from r(A) to s(B)

and the ontinuous maps from A to B of the form r;h; s (equivalently,

the maps f : A ! B suh that r; f ; s = f). In ategories having a

distinguished ordering of hom-sets, the same onstrution an be arried

out using projetions (retrations r : A! A suh that r � Id

A

) instead

of general retrations.

These onstrutions have been made in the ontext of the abstrat

I-ategories in [ES91a, ES93b℄. But they also make good sense in

the setting of information ategories. Sine now a morphism is a

relation over token sets, a Karoubi objet (A; r) is formed by adding a

relation, denoted by <, satisfying appropriate axioms, to the struture

A. Morphisms of the extended ategory have to satisfy some further

axioms, and the inlusion morphisms have to take aount of the

additional struture.

8.1 Continuous bounded omplete posets

We illustrate this by presenting information systems for ontinuous

bounded omplete posets [Smy77℄, i.e. the projetions (equivalently
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retrats) of the Sott domains. By the equivalene of the ategory of

Sott domains and that of the Sott information systems, a ategory of

information systems for ontinuous bounded omplete posets is obtained

simply by taking the Karoubi envelope of BC-ISsy.

An objet of this envelope takes the form (A;`;^;�; <), where

I = (A;`;^;�) is a Sott information system i.e. an objet of

BC-ISys, and < is a projetion (or retration) of I. To axiomatise

this, we must add to the axioms whih state that I is Sott information

system the following:

s(i) � < �:

s(ii) a ` b; b < ;  ` d ) a < d:

s(iii) a < b; a <  ) a < b ^ :

s(iv) a < b; b <  ) a < :

s(v) a <  ) 9b: a < b < :

s(vi) a < b ) a ` b:

Here, s(i)-s(iii) say that < is a Sott morphism, s(iv)-s(v) that this

morphism is a retration (<;< = <), and the (optional) s(vi) that this

retration is a projetion.

Next we onsider how to desribe morphisms. A morphism from

(I;<) to (I

0

; <

0

), where I = (A;`;^;�); I

0

= (A

0

;`

0

;^

0

;�) is a Sott

morphism f : I ! I

0

satisfying <; f ;<

0

= f . Thus, to the axioms for a

Sott morphism we add:

afa

0

) 9b; b

0

: a < b & bfb

0

& b

0

< a

0

:

Note that, in the presene of s(vi), the onverse of this axiom holds

automatially. If s(vi) is dispensed with, the onverse needs to be

added as an axiom. Suppose in partiular that (I;<) is a substruture

of (I

0

; <

0

), so that < is the restrition of <

0

to A�A

0

. Put e = <;<

0

.

It is easy to hek that e = <; i;<

0

, where

i = in(A;A

0

) = `

A

0

\(A�A

0

):

We also have

<; e;<

0

= <;<;<

0

;<

0

= <;<

0

= e;

so that e is a morphism; it is of ourse the inlusion morphism of

(I;<) in (I

0

; <

0

).
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We thus obtain an information ategory CS-ISsy having objets

(I;<) (with < as the distinguished transitive order) and morphisms as

desribed above. Sine the axioms, both for objets and morphisms

are of u.e. (89) form, CS-ISsy is omplete. As a ategory CS-ISsy

is equivalent to the ategory of bounded-omplete !-ontinuous po's

[Smy77℄.

8.2 Funtors

Funtors de�ned on a ategory P extend in a rather trivial way to

Kar(P ). Indeed, if F : P

1

! P

2

is a funtor from P

1

to P

2

, we have

the extension F

0

: Kar(P

1

) ! Kar(P

2

), where F

0

((A; r)) = (F (A); F (r))

and F

0

is de�ned on morphisms exatly as F . Obviously this extends

to funtors of several arguments. In suitable ases one may hek that

the extended funtor F

0

satis�es the \same" universal ondition as F :

for example, produts and oproduts in P go over to produts and

oproduts in Kar(P ) (this is an exerise in [Fre64℄). Furthermore, by a

theorem of Sott in [So80℄, Kar(P ) is artesian losed if P is artesian

losed.

Suppose now that P

1

and P

2

are omplete information ategories

and that F : P

1

! P

2

is an objet-ontinuous (morphism-ontinuous)

funtor. We will show that F

0

: Kar(P

1

) ! Kar(P

2

) is also ontinuous.

Let h(A

i

; r

i

)i

i�0

be an inreasing hain of objets in Kar(P

1

). Then we

have:

F

0

(

S

i

(A

i

; r

i

)) = F

0

((

S

i

A

i

;

S

i

r

i

))

= (F (

S

i

A

i

); F (

S

i

r

i

))

= (

S

i

F (A

i

);

S

i

F (r

i

))

=

S

i

F

0

((A

i

; r

i

))

so that F

0

is ontinuous on objets; ontinuity over morphisms is a

trivial extension of this.

Note, however that in the ontext of information ategories, e.g. in

CS-ISys, the notion of the substruture relation between objets i.e.

(I;<) E (I

0

; <

0

) i� I E I

0

& < = <

0

\(A�A)

is not ategorial and therefore we annot dedue by the usual

ategorial methods that standard funtors between two I-ategories give

rise to standard funtors between their Karoubi envelopes, i.e. annot

in general dedue that F (<) = F (<

0

) \ (F (A) � F (A)). Although it is

possible to impose some ategorial onditions whih would imply the
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above equation, we will not dwell on them and prefer to verify in eah

partiular ase that the usual funtors are standard. For ontinuous

Sott information systems, we will treat here the funtion spae whih

is the most subtle amongst the usual funtors.

8.3 Funtion spae onstrutor

We will onstrut (�)!



(�), the funtion spae funtor on CS-ISys*,

the Karoubi envelope of BC-ISys*, using (�) ! (�), the funtion

spae funtor on BC-ISys* (see Setion 5.3). Given objets (I;<) and

(I

0

; <

0

) of CS-ISys*, where < and <

0

are retrations on the bounded

omplete information systems I and I

0

respetively, we let

((I;<)!



(I

0

; <

0

)) = (I ! I

0

; <!<

0

);

where the approximable mapping

<!<

0

: (I ! I

0

)! (I ! I

0

)

is de�ned by f(<!<

0

)g i� g � <; f ;<

0

. It is easy to hek that

<!<

0

is a retration i.e. (I ! I

0

; <!<

0

) is an objet of CS-ISys*.

To prove that (�) !



(�) is standard, suppose (I;<

I

) E (J;<

J

) and

(I

0

; <

I

0

) E (J

0

; <

J

0

), i.e. I E J , <

I

= <

J

\(jIj � jIj), I

0

E J

0

, and

<

0

I

= <

0

J

\(jI

0

j � jI

0

j). We now have

(<

I

!<

I

0

) = (<

J

!<

J

0

) \ (jI ! I

0

j � jI ! I

0

j);

sine

f(<

I

!<

I

0

)g () g � <

I

; f ;<

I

0

() g � <

J

; f ;<

J

0

() f(<

J

!<

J

0

)g:

Therefore (�)!



(�) is standard and we de�ne

(in((I;<

I

); (J;<

J

))!



in((I

0

; <

I

0

); (J

0

; <

J

0

))) =

in((I ! I

0

; <

I

!<

I

0

); (J ! J

0

; <

J

!<

J

0

)):

It an be easily heked that our onstrution aptures the intended

meaning of the funtion spae; for details see [ES91b, page 49℄.
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9 Final remarks

As stated in the introdution, information systems were developed in

the ontext of domains for denotational semantis, as a means of

presenting suh domains. The majority of the examples presented above

are of this type; it is regretted that this has the onsequene that

they are unlikely to be familiar to most mathematiians. But as we

have seen in the ase of Boolean algebras/Stone spaes, the tehnique

may be available also for the types of spaes more usually studied by

mathematiians. The key to this is really very simple. In onstruting

the points (elements) of a domain, we in e�et use arbitrary �lters,

or onsistent theories, of the information system (see the disussion

of propositional languages in the introdution). However, with more

struture available in the information system, we have the possibility of

onstruting points in a more sophistiated way, for example via prime

�lters (as in Stone duality). As a more elaborate example one ould

ite the use of proximity latties to represent stably ompat spaes via

\proximal" �lters [Smy92℄. By adding metri struture to information

systems in an appropriate way, ertain lasses of metri spaes an be

aptured, via a notion of Cauhy �lter [ES93a℄. Thus the predominane

of speialized omputer siene examples may be seen as a historial

aident of the development of the tehnique, rather than as essential

to it.
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