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Dynamical Systems

The notion of a dynamical system includes the following:

I A phase or state space, which may be continuous, e.g.
the real line, or discrete, e.g. strings of bits 0 or 1, whose
elements represent the states of the system.

I Time, which may be discrete, e.g., recursive equations, or
continuous, e.g., differential or stochastic processes.

I At any given point in time, there is only one state.
I An evolution law that determines the state at time t from

the states at all previous times.
I This defines the orbit or the trajectory of a state in the

phase space.
I Interested in the long term behaviour of orbits of points.



Dynamical Systems: A simple example
I Let R be the state space.
I Let time be discrete t = 0,1,2, . . ..
I Q : R→ R with Q(x) = x2 the time independent law:
I If at any time t the state is x ∈ R, then at time t + 1 the

state will become Q(x) = x2 ∈ R.
I At time t = 0 start at state x0 ∈ R then the orbit of x0 is:

x0,Q(x0),Q(Q(x0)),Q(Q(Q(x0))), . . .Q(Q . . . (Q(x0)) . . .), . . .

also written as

x0,Q(x0),Q2(x0),Q3(x0), . . . ,Qn(x0), . . .

I What is the long term behaviour of such an orbit?
I If |x0| < 1 then Qn(x0)→ 0 as n→∞.
I If |x0| > 1 then Qn(x0)→∞ as n→∞.
I What happens when |x0| = 1?



Basic concepts in dynamical systems
I We study attractors, repellers, bifurcations etc.
I Bifurcation diagram of the quadratic family

Fc : x 7→ cx(1− x) : R→ R for 2.5 ≤ c ≤ 4.

I (i) Fix c and a random x0 ∈ [0,1].
(ii) Plot f n

c (x0) for 20 ≤ n ≤ 100.
I For c > 3.57, the map Fc can exhibit chaotic dynamics: the

orbit of a typical point in [0,1] wanders erratically in [0,1].



Koch curve: an example of a self-similar fractal
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Agent-Based Models

I Agent-based models are systems in which at any given
point in time there are many interacting agents present.

I They can be considered as dynamical systems with many
concurrent states.

I Agent Based Models deal directly with spatially distributed
agents such as neurons, animals or autonomous agents.
They can be used for learning.

I The actions and interactions of individual agents or units
are taken into account with a view of assessing their
effects on the system as a whole.

I We are interested to know the emerging patterns in the
long term evolution of the interacting agents.

I These long term emerging patterns cannot be deduced
using ordinary mathematical analysis applied to the local
rules for the interacting agents.



A simple deterministic example: Hopfield networks

I Hopfield networks: the first model of associative memory
in neural networks used for pattern recognition.

I N neurons with values ±1.
I The network has a connection or synaptic weight, a real

number, between any two neurons.
I The connection weights can be determined so as to store

images in the network memory.
I State of the network is given by values of its neurons.
I There is a time independent updating rule that updates

the values of each neuron either asynchronously or
synchronously using the network synaptic weights.

I With the asynchronous updating rule the orbit of any given
initial state converges to an attractor, the closest pattern in
the network memory to the initial state.



A simple stochastic example: Markov chains
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I Markov chains: Finite state space.
I E,g., a Markov chain with states labelled 1,2,3,4 as above.
I At time t there is a time independent probablity of transition

from any state to any other state.
I We are interested in the long term behaviour of the system.
I What can be said about orbits in the above example?



Other Agent-Based Models in this course

I Boltzmann Machines: stochastic extension of Hopfield
networks with hidden units. Learns probability distribution
associated with a data set. Very inefficient.

I Restricted Boltzmann Machines (RBM): have
connections only between any hidden unit and any visible
unit. A simple training algorithm has revolutionised
machine learning,

I Deep Belief Nets: are obtained by stacking RBM’s.
Consistently outperformed many rival techniques.

I Small World Networks: which model social and biological
networks, are distinguished by low average path length,
high clustering and scale-free properties.

I Kaufmann Networks: are Boolean networks which model
gene mutation and evolution.



Computational complexity: Big O Notation

I Let f (x) and g(x) be two real-valued functions defined on
some subset of R (e.g., N). One writes

f (x) = O(g(x)) or f (x) ∈ O(g(x))

as x →∞ if for sufficiently large values of x , the value f (x)
is at most a constant times g(x) in absolute value.

I That is, f (x) = O(g(x)) if there exists a positive real
number M and a real number x0 such that |f (x)| ≤ M|g(x)|
for all x > x0.

I Examples:
I −2x3 log x + x2(log x)4 − 4x = O(x3 log x).
I x4 + 6× 2x+7 − 3x−13 = O(3x).



Little o Notation and Equivalence ∼

I Given a real-valued function f defined on some subset of R
and a ∈ R, we say f (x)→ a as x →∞ if for any ε > 0
there exists K > 0 such that |f (x)− a| < ε for all x > K .

I Let f (x) and g(x) be two functions defined on some subset
of the real numbers. One writes

f (x) = o(g(x)) or f (x) ∈ o(g(x))

as x →∞ if f (x)/g(x)→ 0 as x →∞.
I So, in words, f (x) = o(g(x)) if f (x) is negligible compared

to g(x) for large enough x .
I We write f ∼ g (i.e., f and g are equivalent) as x →∞ if

f (x)/g(x)→ 1 as x →∞.



Examples

I (log x)n = o(xa) as x →∞ for any n > 0 and any a > 0.
I P(x) = o(2x) for any polynomial P as x →∞.
I sin(1/x) ∼ 1/x as x →∞.
I −3x4 + 10x3 + 8x2 ∼ −3x4 as x →∞.
I

x2 + 7× 2x

7x9 + 3x − 5x ∼ −7(2/5)x as x →∞.



Asymptotic behaviour

I We can use the Big O notation to describe the space
complexity (how the CPU or memory resources vary with
the algorithm’s input size) as well as time complexity
(how the time taken for the algorithm to complete varies
with its input size).

I We may be interested in the best, worst, and average
cases. By default it usually refers to the average case,
using random data.

I The frequently encountered O values are: constant O(1),
logarithmic O(log n), linear O(n), O(n log n), quadratic
O(n2), cubic O(n3), polynomial O(nd) for some d ∈ N.

I We also use the ∼ notation to describe the asymptotic
behaviour of characteristic quantities in dynamical and
complex systems.



Organisation

This course consists of

I 20 lectures;
I 8 tutorials;
I 2 assessed courseworks;
I Paragraphs, pages or subsections or exercises that are

labelled with (*) are non-examinable although they are
useful to know to follow the course.

I Some of the pictures in the notes have been reproduced
from the books listed as references.
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