
Imperial College London

Department of Computing

Modeling Associative Memory and
Strong Attractors with Restricted

Boltzmann Machines

Author:
Julian Varghese

Supervisor:
Prof. Abbas Edalat

Submitted in partial fulfilment of the requirements for the MSc Degree in Computing

Science / Artificial Intelligence of Imperial College London

September, 2013

Abstract

Childhood mental health disorders are becoming a growing issue in modern societies
causing several psychosocial problems, not only during childhood, but also at adulthood
without a proper treatment. A secure attachment type in developmental psychology is
an integral component of an individual’s psychological capability to cope successfully
with stress and to retain psychological resilience. Hence, enforcing secure attachment
types in children potentially reduces the risk of suffering from mental disorders. A new
neurocomputationally based psychotherapeutical method, that deals with attachment
theory is to retrain an individual’s associative memory with a secure attachment type
to reduce its associations with any potential insecure attachment types.
Several experiments have been carried over with Hopfield Networks to represent an in-
dividual’s associative memory, to show neurodynamical effects of retraining the memory
with different attachment types. In our report we represent the human’s associative
memory with a more elaborated network, the Restricted Boltzmann Machine (RBM).
RBMs have several advantages over Hopfield Networks in terms of representational power
as artificial neural networks that we will introduce. They consist of a visible layer and
an additional hidden layer to represent a memory part, which is accessible by senses and
another part which can be thought of a subconscious memory respectively. The RBM is
trained with Hinton’s training method, called Contrastive Divergence that approximates
a gradient descent learning very efficiently.
As a first part of our experiments we want to obtain an ideal topology of visible and
hidden units and an ideal Learning rate to obtain a network that is just capable of
supervised pattern recognition and learns training examples in the fastest way with a
sufficiently low error rate.
In the second and last part we will investigate the strengths of two competing Strong
Attractors which are referring to attachment types. Strong Attractors are generated
as binary pattern that are going to be learned multiple times. Generally, the neuro-
dynamical effects in any kind of artificial neural network of learning so called Strong
Attractors are surprisingly less frequently analyzed in published papers, though, from
a neurocognitive point of view, repetitive learning happens in everyday life. We will
analyze their effects by measuring their association strength in terms of Average Re-
call Probability, Basin of Attraction and Categorization Strength which makes
use of the subconscious part of the memory and will introduce a new term, called In-
vestment Dip that characterizes the dynamics of categorization with an RBM that
is trained with two Strong Attractors, one representing a secure attachment type, the
other one representing an insecure attachment type. As a conclusion of our experimental
results we can show a successful dominance of the secure attachment type in all three
measurements by retraining the network adequately.

3

Acknowledgments

I would like to give special thanks to:

• Professor Abbas Edalat, who supervised the whole progress of my project and
provided useful advices not only on the title and the main direction of this project
but also on how to solve particular problems we had to combat to get the results
of the report that we aimed to achieve.

• My daughter Evelyn, the thought of her reminds me every day of the beautiful
wonder of life, where every thought of her encourages me to carry my life on with
hope, pride and satisfaction.

• My mother Omana and my father Sabu, my brother Steve and my sister Lea
for their their faith in me and their support, both financially and emotionally.

• All the friends and acquaintances I have got to know during my stay in London.
Their accompaniment, both during my working time and leisure time , provided
a nice time which made it possible to enjoy the stay in a foreign country and to
enrich my overall abroad experience.

4

Contents

1 Introduction 7
1.1 Motivation . 7

1.2 Contribution . 11

1.3 Related Works . 12

2 Theoretical Background 14
2.1 The McCulloch-Pitts neuron in the Hopfield-Model 14

2.2 Representation of the Associative Memory 14

2.3 Learning patterns . 15

2.4 Energy function and attractors . 15

2.4.1 Spurious States . 16

2.5 Strong Attractors . 17

2.6 Stochastic Hopfield-Networks . 17

2.7 Boltzmann Machines . 19

2.8 Restricted Boltzmann Machines . 21

2.8.1 Learning with Contrastive Divergence 22

3 Experiment Design 23
3.1 Overview . 23

3.2 Model and Implementation subject to analysis 23

3.3 Input, Output and Parameters of the Model being evaluated 24

3.4 Effect of strong attractors . 25

3.5 Software and Hardware Environment . 26

4 Implementation 27

5 Experiment Results 33
5.1 Finding an ideal Learning rate and an ideal ratio of visible and hidden units 33

5.2 Effect of strong attractors . 41

5.2.1 Recall Probability of two strong attractors with incremental learning 41

5.2.2 Recall probabilities, Learning and forgetting 45

5.2.3 Basin of attraction . 47

5.2.4 Strength of categorization . 56

6 Evaluation 60

7 Conclusion and Future Work 61
7.1 Implications of the Experiment Results . 61

7.2 Future Work . 63

Index 64

5

References 66

6

1 Introduction

1.1 Motivation

Childhood mental health disorders are becoming a growing issue in modern societies with
a suggested prevalence rate of around 10 % among children aged 5-16 in UK according
to [Bradshaw, 2011] in 2004. This increases the risk of leading them into cheerlessness
and a general reduction of quality of life at their young age and later at their adulthood
leading to numerous long term absences from work without a curing or mitigating treat-
ment. A secure attachment type in developmental psychology is an integral component
of an indivual’s psychological capability to succesfully cope with stress and retaining
psychological resilience [Mikulincer M, 2007]. Therefore, enforcing secure attachment
types in children potentially reduces the risk of suffering from mental disorders at a
later time. A new psychotherapeutic approach based on attachment theory and with a
neurocomputational justification based on modeling the associative memory of an indi-
vidual is being developed under the direction of Prof. Abbas Edalat 1.
This project deals with a specific type of neural networks for modeling an individual’s
associative memory: The Restricted Boltzmann Machine (RBM) which is an exten-
sion of the Hopfield Network. Both Types of networks will be described in detail in
the following chapter. The Hopfield Network is a commonly used type of network to
represent the associative memory and it is an example of a wider class of dynami-
cal physical systems that may be thought of instantiating ”memories” as stable states
associated with minima of a suitably defined system energy [Gurney, 1997]. The learn-
ing impact on Hopfield Networks with so called Strong Attractors is studied in the
papers [Edalat and Mancinelli, 2013] and [Tucker, 2013]. Strong Attractors rep-
resent learned patterns which have been learned more than once, they are therefore
described by a positive integer d, which stands for the degree 2 to indicate how many
times that pattern had been learned. In the following subsection Related Works we
give a brief description on the works of [Edalat and Mancinelli, 2013] and [Tucker, 2013]
which indicate the success both mathematically and experimentally of retraining a Hop-
field Network towards a secure attachment type, when it was initially trained as an
insecure one. As a partial conclusion of our report results, we would like to show if we
can also apply this sort of successful retraining using the more elaborate RBM.
Compared to the Hopfield Network, Boltzmann Machines consists of a one extra hidden
layer. Visible units as the input/output layer interact with the environment. The under-
lying neurons are stochastic, that is, the firing states are calculated with a probability
distribution which is inspired by models of statistical mechanics. In this way, the state
of a neuron gets more uncertain the more a given temperature as an additional stress
factor is increased. This creates a non-deterministic behavior and is a key difference of
human brain-processes compared to deterministic computation. In this report we use
the temperature of 1 which has no unit of measurement, which is a comparably low

1Department of Computing, Imperial College London, UK
2also called multiplicity

7

temperature to provide little background noise for the evaluation of the units 3.
The term Restricted Boltzmann Machines (RBM) refers to a specific Boltzmann Machine
where the connections among the units are limited in the following way: There are only
connections between visible and hidden units allowed what makes computation much
more feasible since the number of connections between the units grow linearly instead
of growing exponentially if we add more units to the system.

Hence, the Learning algorithm for stored patterns terminates within practical calcu-
lation time4 and providing a network model elaborate enough to learn stored binary
patterns accurately.

In this thesis, the practical application of this model is to represent learned patterns as
attachment types. The term attachment5 within the scope of developmental psychology
was introduced by John Bowlby and it represents a mutual behavioral relationship of
an infant and its primary caregiver. Given different ways of emerging relationships in
childhood, children develop a certain type of attachment which can also be accompanied
by some other minor attachments . Attachment is relevant to cognitive, as well as emo-
tional, children’s development, since secure attachment enforces independence, leading
the child to explore its environment whereas insecure attachment rather suppresses this.
Based on the strange situation research, conducted by Mary Ainsworth which evaluates
the interaction between the infant, its caregiver and strangers, the infant’s attachment(s)
can be observed, categorizing attachments into a secure and an insecure one (Type B).
The insecure one is divided into three different subtypes (Insecure-avoidant: Type A,
Insecure resistant: Type C and Insecure disorganized: D) [Flanagan, 2008].
The Restricted Boltzmann Machine is the main model subject to the analysis of stored
patterns for representing psychological attachment types in an associative memory. That
is, we use this model for supervised pattern recognition with a training set. The visi-
ble units correspond to certain psychological attachment types which can be thought of
patterns that have been learned during childhood. So called Strong Attractors, which
are patterns that have been learned multiple times, stand for patterns learned with a
higher learning-intensity or exposition-intensity. Hence, one can simulate the learning
process of different evolving attachment types the whole network converges to by apply-
ing Restricted Boltzmann Machines and Strong attractors as the simulation framework.
By learning a new Strong Attractor that represent a different attachment type we can
analyze the effects of retraining the Network which can build the basis for Psychotherapy
for people with a pathological or so called insecure attachment type.
The motivation to extend the simplistic Hopfield network is derived by representing
the associative memory in a more sophisticated way with a higher neurophysiolog-
ical fidelity, since multi-layered networks are also inspired by Psychoanalysis where
one layer represents the basic Input and Output and another represents an important
inner representation of learned Inputs, e.g in terms of a conscious and unconscious
part [Wedemann et al., 2013]. A computationally relevant reason to extend the single

3Details in 2.6 and Equation 2.9
4using a an upper calculation time boundary of 30 seconds for learning a a whole training set
5see [Flanagan, 2008] for a more detailed explanation within development psychology

8

layer Hopfield network is the commonly known XOR-Problem in neural computation
[Hertz et al., 1991] where higher correlations amid the Input cannot be derived with a
single layer network.

We will also describe the so called spurious states in a Hopfield network. As a very
easy way to make a Hopfield network recall false patterns is just to inverse the input bits
of stably learned patterns. Applying a further hidden layer and extending the additive
delta-rule from Hopfield network to the Contrastive Divergence Learning algorithm,
inverse inputs will be handled as different inputs and will not be recalled6.

An RBM with Contrastive Divergence-Learning7 approximates gradient descent learn-
ing and acts a a practical learning algorithms with fast convergence. However there exists
only less knowledge on how to set or obtain values of relevant parameters of the model.
Those parameters are the learning-rate, the number hidden units given a number of vis-
ible units. Several systematic experimental simulations will determine ideal parameters
for the learning process and the topology of the network which can serve as an ideal im-
plementation model for future RBM-applications. Further simulations will illustrate the
competition between two strong attractors which will represent two different attachment
types.

By continuously increasing the multiplicity8 of the second attractor we will show that
after some time the second attractor gets dominant and supersedes the first strong
attractor in terms of average probability of retrieval, basin of attraction in a supervised
learning setting and categorization strength in an unsupervised learning setting. Thus,
a theoretical basis of psychotherapy is established, aiming to retrain a patient’s mind
suffering from an insecure attachment type towards a secure attachment type.
The basin of attraction declares the maximum degree of perturbation of an original
learned pattern that can be applied so that the network would still reconstruct original
pattern correctly. Hence the basin of attraction also represents a stress or noise factor
in the input-evaluation of one individuals memory which can be tolerated. Since it is
known, that in average the levels of Dopamine are lower of an individual with an insecure
attachment type [Strathearn, 2011] we can interpret the kind of noise caused by low
Dopamine levels within our model either by increasing or descreasing the multiplicity of
of an insecure attachment or secure attachment type respectively or by interpreting the
low Dopamine level as a cause that induces perturbation in the secure attachment type
and we can check by the basin of attraction of that secure attachment type whether an
individual is still able to converge to the original secure attachment type.

The categorization strength of a Strong Attractor S is the number of patterns in the
training set which will be classified in a unsupervised learning setting to the category of
S. The category of a pattern is determined by taking a trained RBM, loading the input
layer with that pattern and forward this pattern to the hidden layer, the values of the
hidden units finally define the category. Since we use the hidden layer for the assigning
of categories, categories can be thought of an inner representation of an individual’s

6that means: mostly not recalled, depending on the error-bounds of our learning loop, described in 4
7see [Hinton, 2002]
8in our context, multiplicity of a pattern is the number times that pattern occurs in the training set,

in some other literature also called degree or just d

9

associative memory that cannot be accessed directly to the environmental senses. The
neuropsychologically inspired equivalent for this hidden part of the memory can be seen
as a subconscious memory in our model, a memory which is not regarded in the single
layer Hopfield Network.

10

1.2 Contribution

Following realizations or results haven been worked out within the project on our own:

• An Implementation of a Restricted Boltzmann Machine (RBM) learning with Con-
trastive Divergence9, that is tested in a setting where we vary exhaustively the
numbers of visible and hidden units and the Learning rate to obtain an ideal topol-
ogy of a Restricted Boltzmann Machine and an ideal Learning rate. Ideal refers to
a Network setting which terminates its learning successfully10 as the fastest. An
interesting result that we have obtained is that given a number of visible units11

and an ideal Learning rate there exists an ideal number of hidden units, no matter
how many examples we have in our training set. It turned out that for the two
ideal Learning-rates that we have figured out, there exists an ideal ratio of the
number of hidden units over the number of visible units for a wide range of 100 to
1000 visible units.

• We test RBMs to analyze the strengths of two competing strong attractors for
binary pattern recognition and measure them in terms of:

– average recall probability

– average basin of attraction

– categorization strength, with observing and explaining a neurodynamical
phenomenon, that we call Investment Dip, which describes an initial loss
of categorization strength of a second attractor, after which categorization
strength increases and dominates the the categorization strength of the first
strong attractor.

• Hopfield networks learning with standard Hebbian learning suffer from so called
spurious inverse states leading them to achieve a maximum Basin of Attraction of
50%. We show that our RBM can reach larger Basins of Attraction for Strong
Attractors which have a degree that is high enough and can be learned in a feasible
time12

• Overfitting in RBMs: It is commonly known that artificial neural networks
tend to overfit the training set if its structure gets to complicated by adding to
many units or layers or by training the network with too many learning epochs.
Neurodynamical overfitting is a phenomenon in which the artificial neural network
fits the training data (almost) perfectly but get less accurate when it is applied

9This learning method is used for pattern recognition of binary patterns and was invented by
[Hinton, 2002] and will be described in detail in our theoretical background chapter

10Successfully means, the training set which contains simple, random and binary patterns has to be
recalled below a defined error-rate, details in 3

11Keep in mind that the number of visible units is depended on the input size
12For all our simulations we used a gradient descent approximating learning algorithm where a time

limit has to be defined within learning must be terminated, we set it at 30 seconds for a customary
laptop machine

11

on a test set that is not part of the training set. Within the analysis on the
basin of attraction we also measured a behaviour of overfitting using RBMs with
Contrastive Divergence Learning. Since our training patterns are all randomly
generated and strong attractors are assigned randomly as well, we cannot provide
a test set with real world data which contains the real classification of the data.
But what we can do to get a test set is to take the training set and add random
pertubations to the patterns of the training set and measure the basin of attraction.
We will see in our experiments that if we use many more hidden units than visible
units the basin of attraction decreases, the largest basin could be achieved by using
almost as many hidden units as visible units. This interferes the rule that we have
figured our in the first part, which stated that using around five times more hidden
units than visible units makes the network most efficient in terms of learning time.
Therefore, as a rule of thumb we stated that the ideal number of hidden units is
slightly more than the number of visible units which provides a good compromise
of aiming an efficiently learning network that is still resistant to random noise. It
has to be noted that for a RBM which is used for categorization the number of
hidden units is much less than visible units13.

1.3 Related Works

Two main works deal with Neural Computation on Hopfield Networks and the explicit
analysis of Strong Attractors

• Strong Attractors of Hopfield Neural Networks to Model Attachment
Types and Behavioural Patterns from [Edalat and Mancinelli, 2013]: One of
the first papers that defines Strong Attractors and their learning impact on Hop-
field Networks. Strong Attractors represent attachment types in developmental
psychology and behavioral patterns in psychology and psychotherapy. Higher Sta-
bility of Strong Attractors in Hopfield Networks in terms of Error Probability and
the size of the basin of attraction is proven mathematically and supported by
various simulations.

• Stochastic Hopfield Networks To Model Secure And Insecure Attach-
ment Types With Noise from [Tucker, 2013] is a B.Eng thesis which analyzes
the basin of attraction and spurious states among other findings of two competing
Strong Attractors in stochastic Hopfield Networks with increasing temperatures.
The dominance of a second Strong Attractor using high degrees, is shown by vari-
ous simulations which enforces the potential of success in psychotherapy based on
stochastic Hopfield Networks if we model Strong Attractors as attachment types.

• Restricted Boltzmann machines (RBMs) have diverse applications in which they
are successfully running as in classification, feature learning, collaborative filtering

13For the measuring of categorization strength of strong attractors in an RBM with 100 visible units, we
could achieve the highest categorization strength with 34 hidden units for a given strong attractor
with different multiplicities

12

and/or pattern recognition. In our report we focus on classification and pattern
recognition with Strong Attractors. [Ruslan Salakhutdinov, 2007] describes a suc-
cessful application of RBMs for collaborative filtering, such as representing user’s
rating of movies in a large data set of Netflix movies.

13

2 Theoretical Background

2.1 The McCulloch-Pitts neuron in the Hopfield-Model

Since we want to model neural networks inspired by neuroscience, where a neuron is a
unit in a network of 1011 neurons [Hertz et al., 1991, Chapter two] he have to define a
model of a neuron, that is its connections to other neurons (synapses) and the compu-
tation of input and output. A very simple approach is the neuron-representation of the
McCulloch-Pitts neuron where a neuron is called a unit. In the following we use the
mathematical terms adopted from [Hertz et al., 1991, Chapter two]. This neuron model
is illustrated in Figure 2.1, the unit fires if the weighted sum

∑
j wijnj of the inputs

reaches or exceeds the threshold µi

Figure 2.1: Schematic diagram of a McCulloch-Pitts neuron, from [Hertz et al., 1991,
Chapter two]

The state of a unit is either -1 (not-firing) and +1 (firing), which will be denoted by
Si for the ith unit. For mathematical convenience the the threshold is assumed to be 0.
Thus Si is defined as following ([Hertz et al., 1991, Chapter two]):

Si := sgn(
∑
j

wijSj) (2.1)

with sgn being the sign-function:

sgn(x) =

{
1 if x ≥ 0
−1 otherwise

(2.2)

Furthermore in the Hopfield-Model of this project there are no self-connections, which
means wii = 0

2.2 Representation of the Associative Memory

A set of patterns is defined by the expression ξµi , where every single point of one pat-
tern is represented by one unit in the Hopfield-Model. The patterns are labelled by

14

µ = 1, 2, ..., p, while the units of the network are labelled as i = 1,2,...,N. Hence, the As-
sociative Memory problem can be described as retrieving a stored or learned pattern µ
among all the other learned p patterns that most closely resembles an input-test-pattern
Ci. Both the stored patterns given through ξµi and the test pattern Ci representing
points, thus, they are 1 or -1 on each site i. Maybe add some information about the
distance-measurement, add the conceptual figure of attractors

2.3 Learning patterns

For the simple case where we consider just to learn one pattern ξi, following condition
must hold:

sgn(
∑
j

wijSj) = ξi (for all i) (2.3)

Since ξ2j = 1 rule 2.3 is true if we make

wij =
1

N
ξjξj (2.4)

where 1
N is used as a constant for proportionality.

A simple way to learn p different patterns is to to refine rule 2.4 according to the
Hebb rule:

wij =

p∑
µ=1

1

N
ξµj ξ

µ
j (2.5)

It has to be mentioned that this rules symmetric weights, wij = wji.

2.4 Energy function and attractors

A current state of a Hopfield network that is described by its current weights and different
unit-states Si can be defined by introducing the idea of an energy function H 14.:

H = −1

2

∑
ij

wijSiSj (2.6)

The most general term for H , from the theory of dynamical systems, is Lyapunov
function or Hamiltonian function in statistical mechanics and for a neural network in
general an energy function exists if the connection-weights are symmetric ([Hertz et al., 1991,
Chapter two]) which they are in our model. If an updated S′i remains the same, then the
energy function does not change as well. If S′i = −S′i then it easy to see from equation

14This is a simplified equation by omitting the terms for i=j since in our model wii = 0

15

2.6 that energy can only decrease. Thus the energy decreases or remains the same every
time an Si changes. If each state of a network, given by the values of all unit-states Si
(for all i(=), is assigned an energy-value according to 2.6 we will get an energy surface
as shown in figure 2.2. After a Hopfield network has learned some patterns, the local
minima of the energy surface represent these learned patterns. The dynamics can be
thought as a motion of a partical (which represents a current state of the network) on
this energy-surface. Under gravity-influence and friction, from any starting point of the
particle, the particle slides down until it comes to rest at one of those local minima.
Therefore, those local-minima (and thus the learned-patterns) are called attractors,
where each attractor represents a learned pattern unless it is an attractor representing
a spurious pattern which are defined in the next subsection.

Figure 2.2: Imagining the energy as a landscape, the z-axis as the height axis is the
energy and the 2N corners (for all possible states Si) are represented by the
xy-plane, from [Hertz et al., 1991, Chapter two]

The basins of attraction are the valleys or catchment areas around each attractor.
It is the Hamming-distance to the attractor. That is, if we have a basin of attraction
of 10 for one attractor, we can flip in average 10 bits of the attractor-pattern and the
network will successfully converge to the original attractor pattern.

2.4.1 Spurious States

With the Hebb-rule from equation 2.6 we get a dynamical system that has attractors.
But the learned patterns are not the only attractors. Trivially the reverse states −ξµi
of attractors lead to the same energy value which makes them as attractors as well.
Then, there are also so called mixture states −ξmixi which are not equal to any learned

16

patterns but it can be shown that they are linear combinations of an odd number of
patterns [Amit et al., 1985a]. Lastly, it has to be mentioned, that for large p (the number
of patterns to be learned) there are attractors that are not correlated with any finite
number of the p learned patterns, which are called spin-glass states due to a close
relation to spin glass models in statistical mechanics [Amit et al., 1985b].

2.5 Strong Attractors

Strong Attractors are learned patterns, that have been learned multiple times. Thus,
it is defined by a parameter that we will call d throughout this thesis. The parameter
d stores the number of times the pattern has been learned, it is also called the degree
or multiplicity of the attractor. One of the main goals in this project is to show the
strength of an attractor, that is with which probability the whole network recalls an
attractor varying the multiplicity of an attractor. Thus, the multiplicity d represents
the intensity a specific pattern has been learned which can simulate the way how adults
experienced behaviors in their childhood which assigns them to an attachment type in
terms of developmental psychology. By introducing new strong attractors that represent
a different attachment type we can analyze the effects of retraining the Network which
can represent the basis for Psychotherapy for people with a pathological or so called
insecure attachment type.

2.6 Stochastic Hopfield-Networks

Inspired by statistical mechanics for magnetic systems influenced by temperature (for
detailed description, see [Hertz et al., 1991, Chapter two]) we replace the previous dy-
namics of states in a Hopfield-network by a stochastic rule:

Si =

{
+1 with probability g(hi)
−1 with probability 1− g(hi)

(2.7)

This rule 2.7 is applied whenever unit-state Si is updated. Function g(hi) takes h as
an argument which represents the state of Si depending on the summed up weighted
contribution of the other units j described in the McCulloch-Pitts model, also called the
local field of unit i 15:

hi =
∑
j

wijSj (2.8)

The g-function represents a probability-value. Firstly, it should obviously increase if
the value hi, representing the votes of the other units, increases. Secondly, inspired by
temperature dynamics in magnets, where thermal fluctuations tend to flip the spins of
a magnet, the function g will also be influenced by adapting this phenomenon. That

15This is a simplified equation by omitting the threshold-value.

17

is, if the given parameter temperature increases, then the state of hi should also tend
to flip, making the temperature-parameter to a certain degree of noise in the states
of the network. These two influences are mathematically described in the following
way according to the Ising-model with Glauber dynamics [Glauber, 1963]to finally
define the g-function as sigmoid shaped function:

g(h) = fβ(h) =
1

1 + exp(−2βh)
(2.9)

Figure 2.3: the sigmoid-shaped probability function for g(h) for several β-values, from
[Hertz et al., 1991, Chapter two]

Figure 2.3 illustrates this sigmoid function by several values of β which is related to
the absolute temperature in Kelvin. This sigmoid function is also called the logistic
function in this context.

β =
1

kBT
(2.10)

where kB is the Boltzmann constant, which will be assumed to be 1 in our model for
mathematical convenience. Looking at the function-definition in 2.9 and the illustrated
figure 2.3 it is noteworthy that the temperature T in Kelvin, whose minimum is 0,
controls the steepness of the g-function near h = 0. With T getting very low, the
g-function becomes a step-function representing the previous McCulloch-Pitts model.
With incrementing T the sharp threshold-behavior is softened up in a probabilistic way.
Since the g-function is symmetric (1-g(h) = g(-h)) we can express the equation 2.9 as
follows:

Prob(Si = ±1) =
1

1 + exp(∓2βhi)
(2.11)

18

2.7 Boltzmann Machines

16 Boltzmann machines are an extension of the Hopfield-Networks, their units are di-
vided into two layers, one with visible units and another with hidden units. They are
called Boltzmann-machines because the probability of the states of all units is given by
the Boltzmann distribution of statistical mechanics [Hertz et al., 1991, Chapter seven].
The visible layer can represent the Input and Output of the network, while the hid-
den layer is connected to the visible layer but has no connections to the outside world
[Hertz et al., 1991, Chapter seven]. All units can be evaluated in the same stochastic
way as we did in the Hopfield network with equations for the local field hi(2.8) and the
g-function (2.9) and the whole network in a given state can be assigned an energy-value
H as defined in Equation 2.6. It has to be mentioned that the learning process described
in this subsection aims to change the weights such that a given desired probability distri-
bution over the input patterns will be learned. That is, after the process has successfully
terminated, the average retrieval-probability for a given input-pattern approximates a
given desired probability given through a probability distribution. However, using the
complex topology of Boltzmann Machines and a possible learning process we will in-
troduce appears to end in a very time-consuming application, which is the reason why
this thesis focuses on Restricted Boltzmann Machines and a Learning Process, called
Contrastive Divergence [Hinton, 2002]. As an additional theory-deepening a possible
learning process for non-restricted Boltzmann Machines is provided in the following.

All following mathematical equations in this section are (unless stated otherwise) from
[Hertz et al., 1991, Chapter seven]. Thus, the Boltzmann-Gibbs distribution is given by:

P{Si} =
e−βH{Si}

Z
(2.12)

With H{Si} being the energy of the system (as defined before) in configuration Si
and Z being the normalization factor to get a probability value between 0 and 1:

Z =
∑
{Si}

e−βH{Si} (2.13)

It has to be noted that the probability given through the Boltzmann-Gibbs distribution
is the given probability after an equilibrium has reached. To get a learning rule to
define the links involving the hidden units a new approach will be introduced, different
from the Hebbian learning rule. Let the states of the visible units be labeled with an
index α and the states of the hidden units be defined by the index β 17. Thus the
probability distribution Pαβ can be calculated using equation 2.12. Palpha is calculated
by marginalizing over the states of β:

16This subsection deals as an additional chapter for non-restricted Boltzmann Machines. Since the actual
neural model is implemented by restricted Boltzmann machines the reader may skip this subsection.
The project analysis and results will not make any use of it. However, it is exemplary to know what
the more general Boltzmann Machine is capable of if we derivate a learning rule and to understand
that computation gets very costly compared to the Restricted Boltzmann Machine

17beta as a constant is also defined as the inverse of the temperature in our terms, but as an index it
refers to the hidden units

19

Pα =
∑
β

e−βHαβ (2.14)

Let now Rα be the desired probabilities for the α-states, thus we can define the error
term E using the relative entropy of Rα and Pα:

E =
∑
α

Rαlog
Rα
Pα

(2.15)

Having defined an error term, we can minimize the error with gradient-descent method
as it is commonly known for learning in neural networks by adjusting the weights of the
net as follows:

∆wij = −η δE
δwij

= η
∑
α

Rα
Pα

Pα
δwij

(2.16)

where η is a constant defining the learning-rate. Using equation 2.15 for Pα we get out
of equation 2.16 the following equation which is the central learning rule for Boltzmann-
machines (details of the derivations are given in [Hertz et al., 1991, Chapter seven, p.
167]:

∆wij = −ηβ[
∑
αβ

RαPβ|αS
αβ
i Sαβj − < SiSj >] (2.17)

where the conditional probability is given through Bayes-Law through:

Pαβ = Pβ|αPα (2.18)

If we look at the first term of the square brackets in equation 2.17, one can think of
summed up value of < Si, Sj > when the visible units are bound or clamped in state α
and averaged over different αs with weight of Rα. We therefore, rewrite the equation in
a more convenient way:

∆wij = −ηβ[< Si, Sj >clamped− < SiSj >free] (2.19)

The clamped term of equation 2.19 represents the Hebbian learning while the second
term is called Hebbian unlearning with the system free running [Hertz et al., 1991,
Chapter seven, p. 167]. The intuition behind this is, that if the clamped states <

Sαβi Sjαβ > are heterogeneous compared to the free states < Si, Sj > the weight wij
will be non-zero in a way to reduce the error term in equation 2.16. Thus, the process
of adjusting the weights converges when clamped unit correlations < Si, Sj > are equal
to the free ones. For updating the weights one needs to determine the average values of
< Si, Sj > for the clamped and the free term. A state flip of Si is defined by following
probability which enforces the system to tend to to lower-energy states:

Prob(Si → −Si) =
1

1 + exp(β∆Hi)
(2.20)

20

The procedure of updating the weights is very time consuming and the systems gets
trapped into local minima of energy. A technique, called simulated annealing which
initially updates the units according to 2.20 with a high temperature that incorporates
more randomness and gradually decreases the temperature and then achieves equilibrium
at one working temperature much sooner [Hertz et al., 1991, Chapter seven, p. 168].

2.8 Restricted Boltzmann Machines

Restricted Boltzmann Machines (RBMs) prohibit connections within the hidden layer
and within the visible layer. Thus a visible unit can only be connected to a unit of
the hidden layer and vice versa, therefore it is a bipartite graph. As mentioned in
the introduction, the RBM is the neural model the whole experimental analysis and
experimental results will be based on. Unless otherwise stated, all equation appearing
in this subsection are taken from [Hinton, 2002].

Different from the Hopfield Network and the non-restricted Boltzmann Machines,
units in the following RBM represent binary values: 1,0 18. Let (v,h) be a current
configuration of an RBM, where v is a specific binary vector standing for the visible
units and h is a specific binary vector standing for the hidden units. The energy E(v,h)
of a given RBM is calculated as:

E(v, h) =
∑

i∈visible
aivi −

∑
j∈hidden

bjhj −
∑
i,j

vjhjwij (2.21)

with vi, hj representing the states of visible unit i and hidden unit j respectively, ai,
bj are their biases and wij is the weight between them.

Based on the energy function in 2.21 the probability distribution for an RBM in a
state (v,h) with v as a specific pattern for the visible units and h for the hidden units is
defined as:

p(v, h) =
1

Z
e−E(v,h) (2.22)

with Z being the normalizing partition function:

Z =
∑
v,h

e−E(v,h)
(2.23)

The probability of having the visible units in state v is obtained by marginalizing over
the hidden units:

p(v) =
1

Z

∑
h

e−E(v,h)
(2.24)

18This is mainly because recent applications and research ([Hinton, 2002]) dealing with Restricted Boltz-
mann machines use binary 0,1 inputs. The rest of the this thesis will keep using this convention

21

2.8.1 Learning with Contrastive Divergence

According to [Hinton, 2002] the derivative of the log-likelihood of training vector under
the RBM with respect to a weight is:

δlogp(v)

δwij
=< vihj >data − < vihj >model (2.25)

where < vihj >data is equal to the expectation under the data distribution, this
can be obtained simply by setting the input to the training vector and updating the
hidden units according to the mentioned activation function and initial random weights.
< vihj >model is equal to the expectation under the model distribution and can be
quickly approximated by reconstructing the visible units by updating the given states
of hidden units from < vihj >data . The number of reconstruction, is annotated as k.
It is proposed that using small number of k, or simply k=1, already approximates the
equation above well enough to provide a good learning [Hinton, 2002]. For a higher
precision level we apply a second reconstruction by updating again the hidden units and
then updating the visible units another last time, that is k=2. However for the problem
of using an RBM for the categorization of the input by reading out the hidden values,
we have figured out that k has to be set higher for getting higher categorization-strength
for strong attractors 19 Thus we obtain following weight-updating learning rule:

∆wij = ε < vihj >data − < vihj >model (2.26)

where ε is the learning rate. Finding an ideal learning rate and the ideal number of
hidden units given a number of input units is one of the main goals of our experiment
results which will be presented in the next chapter. Furthermore, we will make use of
following theorem, proven in [Roux and Bengio, 2007]:

Theorem 1. Any distribution over 0,n can be approximated arbitrarily well with an
RBM with k + 1 hidden units where k is the number of input vectors whose probability
is not 0.

19see Experiment Design, under 3.4 for details

22

3 Experiment Design

3.1 Overview

Given a RBM that learns with Contrastive Divergence20 which will be applied for binary
pattern recognition to represent humans associative memory there are 4 main properties
of the RBM that we would like to analyze and optimize:

• an ideal ratio of hidden units and visible units

• an ideal Learning rate

• effect of strong attractors in terms of recall probability and basin of attraction
while increasing the strength, that is the multiplicity of a strong pattern.

3.2 Model and Implementation subject to analysis

The experiments presented here will evaluate several simulations of an implemented
RBM that incorporates Contrastive Divergence as the learning algorithm which was
introduced in the previous chapter. Every RBM being tested in this thesis consists of a
visible layer and hidden layer where connections are first of all only existent between a
visible unit and a hidden unit. Furthermore we will make use of one bias unit for visible
layer and the hidden layer21. Bias units are generally in neural networks required for a
universal approximation of the output function22. The RBM has been implemented in
Matlab. Matlab provides a programming environment with a huge variety of mathemat-
ical tools and libraries being used by many research institutes with a large user base all
over the world. Furthermore it provides very efficient operators for matrix multiplica-
tions which is the main calculation type being used in training a network and recalling
a pattern from a network given a weight matrix. For the training process we initially
start with a random weight matrix that has random values around 0, that is uniformly
distributed between −1 and +1. The standard temperature is +1. For a better under-
standing of our applied model the implementation of the RBM will be listed in the next
chapter 4 with detailed comments and explanations. Since the Implementation of our
experiment scenarios is just trivially derivable from the following experiment description
and we do not want the reader to get lost in to many pages of code-details the experi-
mental tests and experiment results and the whole model are available in a compressed
zip archive to download on the web: to download all available Matlab code and data
from this link :

https://docs.google.com/file/d/0BxfnhHTIk8tqOWl5NTBNVFJWUmM/edit?usp=sharing

20[Hinton, 2002]
21Details of Model and Implementation in 4
22An easy example to understand the importance of bias units is to imagine what would happen when

all input units of a neural network are zero. In this case also the output will be zero

23

or accessible for markers under the folder Matlab-Implementation in the attachment
of the submitted report.

The whole implementation code is listed in the folder Matlab-Implementation, the file
readme.txt contains a brief description of all code files related to this report.

3.3 Input, Output and Parameters of the Model being evaluated

The input and output of the RBM is represented by the input layer of the RBM. We
use randomly generated binary patterns as input vectors23. For the scope of this project
an input pattern represents an attachment type of an individual and the state24 of the
currently trained RBM represents the current state of its associative memory. Initially
all patterns are randomly generated and distinct. Hence every pattern has the same
degree of d=1, which is called a simple pattern. Two relevant parameters of the model
subject are subject to the main analysis:

• an ideal ratio of hidden units and visible units

• Learning rate

We will observe different performances of the RBM if we vary the number of hidden
units given a number of visible units and the learning rate. Performance in this context
only refers to the learning times within the network converges with a high accuracy rate
of at least 95 percent. The accuracy will only be calculated over the training examples.
There is no test set being involved in this scenario. Hence, we are only interested in
the learning efficiency of explicitly given training examples. In the experiment setting
described in the next subsection 3.4, we will see that the problem of overfitting25 will
appear if we choose too many hidden units, though they might lead the network to a
better learning efficiency for the training examples. In the next subsection, we aim to
find a balance of high learning efficiency and finding as few hidden units as possible,
so that learned patterns with variable noise (basin of attraction) can be successfully
recalled.

Simulations will be carried over with different numbers of examples to get an overview
storage capacity of different networks. The time limit within the network has to converge
is set to 30 seconds. This is considered to be an affordable time a user can wait for running
an application, and during our simulations, it has been figured out to be a sufficiently
long time to obtain relevant results to obtain ideal values for the two main parameters.

23also called as learning or training examples
24That is determined by currently learned weights
25Overfitting is a common term in Machine Learning and is a behavior of a classifier or a learning system

in which the training examples will be perfectly classified but other examples being not part of the
training set are increasingly falsely classified.

24

3.4 Effect of strong attractors

After having found an ideal learning rate and an applicable capacity of training examples
we will focus the strength of Strong Attractors in an RBM of 100 visible units. Follow-
ing measurements will be calculated given two strong attractors and the rest of simple
patterns, where all patterns, both strong and simple patterns, are randomly generated.

• average recall probability of the two Strong Attractors of the RBM that is presented
to a random pattern

• average basin size of two Strong Attractors

• categorization strength of two Atrong Attractors

We will investigate these three characteristics of Strong Attractors where the degree
of the second Strong Attractor in a given training set will be continuously increased to
see whether the second Strong Attractor that represents a secure attachment type can
dominate the first strong attractor that represents the pathological insecure attachment
type. As RBMs can also be used for unsupervised categorization of the input if we
read out the states of the hidden units, we will measure the categorization strength of
a Strong Attractor. That is we count the total number of patterns in the training set
which are assigned to the category of the strong attractor. For determining the category
we take a trained RBM and forward the input to the hidden layer just by updating
the hidden layer. Using a large number of 100 visible units, even with very strong
attractors 26 every pattern will have its own category. This is due to the fact, that,
given a Strong Attractor, a simple pattern is in average 50 bits away from the strong
one. Small pertubations of more than 20 bits will already lead a trained RBM likely to
another inner representation in the hidden layer. However we have figured out that if the
we update the hidden layers multiple times by backwarding and forwarding the input
multiple times, which means we increase the k-value mentioned in 2.8 the hidden values
converge to values which provide higher categorization strength for Strong Attractors.
That is, a Strong Attractor is assigned to category where other simple patterns are also
assigned or attracted to.

A Strong Attractor is implemented by increasing its occurence, we do this by adding
the same pattern to the given training set. By doing this we repesent a model with
continuous learning capability, since the training set increases27.

26we have simulated degrees of 20 ¡d¡100 in an initial training set of 20 patterns
27that is, the stronger one attractor gets the larger will training set be, but the training set will never

exceed capacity of the network

25

3.5 Software and Hardware Environment

The experiments, described as above, were carried over on following two machine types
with following specifications:

1) Lab Computer at the ICL DOC, machine: project-01, HP Compaq dc8200

• Processor: Intel Core2 Duo E7400 2.80GHz

• Ram: 8 Gb

• Operating System: Linux version 3.6.0, gcc version 4.6.3 (Ubuntu/Linaro 4.6.3
-1ubuntu5)

• Matlab Version: R 2012 A, 64-Bit

2) Private Laptop, Model: Samsung 350V5c:

• Processor: Intel Quadcore: i3-3110M CPU 2.4 GHz

• Ram: 6 Gb

• Operating System: Windows 8 64 Bit

• Matlab Version: R 2012 A, 64-Bit

The first environment was the main one where all experiments and results published
in this thesis were run and obtained respectively. The second environment was used
firstly as a further coding platform possibility to work at home and secondly as a control
environment to check whether the result of the former environment are reproducible.
For example, initially, we figured out that an ideal ratio of hidden units over visible
units is around 5 for several different learning rates within a certain range of numbers of
visible units on both Hardware environments. Different Hardware environments might
lead to different learning times but the learning-time-ideal ratio of hidden units over
visible units remains the same. Our ratios were calculated on two different Hardware
Environments with the same result.

26

4 Implementation

The goal of the Implementation is to simulate a RBM that learns binary pattern with
Contrastive Divergence Learning28. However, there are some model-relevant parameters
that have to be defined and initialized results will be reproducible on other reimplemen-
tations. For the specifications of Matlab and the Hardware environment, see 3.5. All
model-relevant parameters are listed in the following:

• Network model: Restricted Boltzmann Machine with temperature-linked statistical
units29

• Network layers: Two layers: One layer as input and output and one hidden layer

• Learning-algorithm: Contrastive Divergence Learning with k=2 reconstructions30

• Learning rate:0.01, 0.05, 0.1, 0.2 subject to optimization

• Input/Output format: binary

• number of visible and hidden units: subject to optimization, testing range
15-3000 visible units, 10-100.000 hidden units

• Weight Matrix initialization: random uniform distribution in the interval [-1,+1]

• Learning timelimit: 30 seconds

• error-rate under which learning terminates: 0.05 (Hamming distance between
training examples and generated output

According to the definition of a RBM, our model consists of a visible layer and hidden
layer and connections in-between the units are only possible between a visible and a
hidden unit. Furthermore we use a bias unit for the visible and hidden layer. Image 4.1
illustrate the connection-settings in a more detailed way.

28[Hinton, 2002]
29see 2.6
30details will be explained in the following

27

Figure 4.1: Connections in an RBM with two hidden units and six visible units with a
bias unit connected to both layers, modified from [Chen, 2011]

28

Following code listings illustrate the initialization and the learning algorithm of the
RBM. Every comment line begins with the character ′%′.

Listing 1: file RBM.m, initialization of an RBM

1 % Constructs a hidden and a visible layer for a
2 % Restricted Boltzmann Machine.
3

4

5 % Specify number visible (Nv) and hidden units (Nh)
6 Network.Nv=Nv+1;
7 Network.Nh=Nh+1;
8 Network.Temperature=1;
9

10 % Create Connectivity matrix that defines random
11 % connection weights (interval [−1,1], with a uniform distribution)
12 % between visbible and hidden layers, note that first visible and
13 % first hidden unit represents the bias unit
14 Network.WeightMatrix = −1 + (2).∗rand(Nv+1,Nh+1);
15 Network.visible = zeros(1,Network.Nv);
16 Network.visible(1)=1; %bias unit for visible layer
17 Network.hidden = zeros(1,Network.Nh);
18 Network.hidden(1)=1; %bias unit for hidden layer

Listing 1, lines 6-8: The number of hidden and visible units will be varied in our
simulations where the variables Nv and Nh will be assigned real values. Our standard
temperature being used is 1. For getting an ideal topology of the network which is the
first main part of our simulations as mentioned in 3.3 the temperature will be fixed. As
described in 2.6 a low temperature like 1 leads the whole RBM to a very deterministic
behavior with less uncertainty.

Listing 2: file Learning2, Implementation of the learning algorithm

1 % This script is to learn all available training examples given in the
2 % matrix training by applying the method of
3 % contrastive divergence for Restricted Boltzmann Machines
4

5

6 %initialise
7 Rbm;
8

9 Learningrate=0.05;
10 lasterrors=0;
11 gooderrorrate=0;
12 epochnr=0;

29

13 timelimit reached=false;
14

15 timelimit=30;
16

17 %start measuring time
18 tic;
19

20 %The Positive and Negative Term which will be summed up to adjust
21 %the weights and correspond to the data distribution and model distribution
22 %Positive=zeros(Network.Nv,Network.Nh);
23 %Negative=zeros(Network.Nv,Network.Nh);
24 converged=false;
25

26

27 [rows, columns]=size(training);
28 if Network.Nv ˜= columns+1
29 disp(’training data does not match the input size of the Network’)
30 else
31 data =[ones(rows,1), training]; %add column of ones for the visible bias unit
32

33 while(converged==false && timelimit reached==false)
34

35 % First update of hidden units by take the training data
36 % as the input
37 hidden activation = data ∗ Network.WeightMatrix;
38 hidden probs = neuronstateprob matrix(hidden activation, Network.Temperature);
39 hidden states= neuronstates matrix(hidden activation, Network.Temperature);
40 Positive = transpose(data)∗hidden probs;
41

42 %Reconstruct the visible units
43 visible activation = hidden probs ∗ transpose(Network.WeightMatrix);
44 visible probs = neuronstateprob matrix(visible activation, Network.Temperature);
45 visible probs(:,1)=1;
46 visible states= neuronstates matrix(visible activation, Network.Temperature);
47 visible states(:,1)=1;
48

49 %Reconstruct the hidden units a second time
50 hidden activation = visible probs ∗Network.WeightMatrix;
51 hidden probs = neuronstateprob matrix(hidden activation, Network.Temperature);
52 hidden states= neuronstates matrix(hidden activation, Network.Temperature);
53

54 Negative = transpose(visible probs)∗ hidden probs;
55

56

30

57 Network.WeightMatrix = Network.WeightMatrix +
58 Learningrate∗((Positive − Negative)/rows);
59

60

61 %Update a second time the visible layer to check calculate errors
62 visible activation = hidden probs ∗ transpose(Network.WeightMatrix);
63 visible states= neuronstates matrix(visible activation, Network.Temperature);
64 visible states(:,1)=1;
65

66 %calculate error of network−learning
67 error=0;
68 for ex=1:rows
69 error= error + (pdist([visible states(ex,:);data(ex,:)],’hamming’))/rows;
70 end
71

72 % Stop converging process if error rate was 3 times smaller 0.05 in terms
73 % of Hamming distance
74 if (error < 0.05)
75 gooderrorrate=gooderrorrate+1;
76 end
77

78 if gooderrorrate==3
79 converged=true;
80 end
81 epochnr=epochnr+1;
82

83 if(toc>=timelimit)
84 timelimit reached=true;
85 end
86 end
87 end

31

Listing 2, lines 27-57: These codelines incorporate the Contrastive Divergence
learning algorithm described in 2.8.1. Training examples are listed row-wise in the
matrix variable training. From then the hidden units will be reconstructed two times
by using Matlabs fast matrix multiplication. The function call neuronstateprob matrix
will calculate the probabilities of a unit being on given it’s activation function, described
in 2.6 for the stochastical Hopfield network and the temperature of the model. Based
on the probability a binary state will be determined by neuronstateprob matrix. Both
function calls are taking input matrices hidden activation or visible activation that
contain activations of all units in the hidden or visible layer respectively. The output is
a matrix as well with values for every unit of the appropriate layer row-wise for every
training example. In Line 57 we have the central weight-updating learning rule,
described in equation 2.26, the two variables Positive and Negative correspond to the
data distribution and model distribution respectively.

Line 33: Learning iteration will stop when the error31 converges to a minimal error
or a given timelimit, which was specified as 30 seconds according to 3.

Line 68-75: The error of the currently learned network is the current error measured
in hamming distance between the training examples and the visible generated output.
An acceptable minimum error rate was taken as 0.05, since this means, that at least 95%
of the output units had the correct bit values. Furthermore we want to have the error
under 0.05 for two further iterations to make sure that current calculated error was not
calculated as a result of good luck.

31see following explanation on the error for code line 67

32

5 Experiment Results

5.1 Finding an ideal Learning rate and an ideal ratio of visible and
hidden units

Given a number of visible units which defines the dimension of the input and output
we can observe the network performance in terms of learning time and capacity while
increasing systematically the number of hidden units. As an overall result we could
figure out whatever visible layer size we used in the range of 15 and 3.000 units, the
network performance (learning time and capacity) improved. However, there exists in
ideal number of hidden units after which increasing the number of hidden units is not
beneficial anymore.

The figures 5.1 5.2, 5.3, 5.4 illustrate this for 400, 600, 1000 neurons with learning
rate 0.132 as a dip33 within the 3D-Plot where the x-axis going left in the horizontal
plane represents the number hidden units, y-axis going towards back in the horizontal
plane represents the number of training examples and the z-axis going upwards vertically
represents the learning time which determines the color on the surface plot just like on
a heat map.

32 We started our simulations with a learning rate of 0.1 which shows a stable behavior in terms of
an ideal ratio of hidden units over visible units over a wide range of visible units. Details about
simulation results with different learning rates will follow in this chapter

33the dip in the 3D surface plot is only slightly visible in the plot for 100 visible units as the darkest
blue surface for 500 hidden units. It is not clearly visible, because 100 visible units provide a low
calculation cost for for many hidden units, but the dip can be clearly deduced by comparing explicit
values of its plotmatrix in the file 100files 100vuLR0.1100.mat under variable ’Plotmatrix’

33

Figure 5.1: Learning Performance for 100 visible units, 100 visible units is the mainly
used network input format for the further analysis of Strong Attractors, note
that we still have learning times of less than 30 seconds using 100 hidden units
and a training set of 300 random patterns, see 3.5 for Hardware environment
details. Looking at the colours (dark blue marks lowest learning times) of
the surface plot and by reading out the explicit values of the plotmatrix we
can observe the fastest learning times for hidden units which is 5 times more
than the used number of visible units. Explicit values of the plotmatrix are
listed in the file 100files 100vuLR0.1100 .mat under the variable ’Plotmatrix’

34

Figure 5.2: Learning Performance for 400 visible units, the so called 3D-Dip is clearly
visible

Figure 5.3: Learning Performance for 600 visible units

35

Figure 5.4: Learning Performance for 1000 visible units

36

Looking at the figures 5.2 to 5.4 we always see a single dip in the 3D surface plots,
which means there is an ideal number of hidden units providing us with a minimum of
learning time till learning terminates for throughout every number of training examples
that have to be learned. A reason which accounts for this kind of phenomenon is to
think that the more hidden units we add, the more is our model capable of learning
more relations in between the input bits such that it fits the data-distribution in the
input much better. However, we also have to take into account that by adding further
hidden units the computational costs grow linearly. The dip in the plot represents a
network size which is poised between having enough hidden units to approach a desired
data distribution and having not to many hidden units which would slow down the
construction of the output. It is also noteworthy, that the dark red areas of the 3D-
Plot refer to times higher than the chosen time limit of 30 seconds. This means that
those areas represent network setting34 where the learning process had to be terminated
without knowing whether the network would ever have converged.

For 400, 600 and 1000 units we can observe this dip at 2000, 3000 and 5000 hidden
units respectively.

A remarkable observation is that those ideal ratios also indicate an ideal number of
hidden units providing the highest capacity of training examples that could be
learned with a low error-rate within our given time limit35, as one can see from the
figures 5.2 to 5.4 that the dip also represents the longest color-bar with non-critical
learning time values. E.g. in model with 400 visible units more than 4000 examples
could be learned with a low error rate within our given time limit. That’s more than
10 times more than visible input units we provide. Compared to Hopfield networks this
is a huge number where a critical number of patterns to learn is less than 0.2 times the
number of visible units [Hinton, 2002].

We repeated those simulations for visible units in the range of 15 to 3000 visible units
and with 4 different learning rates: 0.01, 0.05, 0.1, 0.2. The learning rate of 0.05
and 0.1 were proven to be the ones producing the fastest learning times throughout all
network topologies, that is, whatever number of visible and hidden units and number
training examples we have tested36. In the range of 15 and 500 visible units we obtain
faster Learning times with 0.1 as the Learningrate, using more than 500 units leads
to a faster Learning time if we set the Learning rate to 0.05. These fastest Learning
rates also provide us with a highest capacity of training examples that can be learned in
the given time limit.37 The more we differ from the Learning rate 0.05 and 0.1 we can
observe longer learning times.

37

Figure 5.5: Learning time optimal ratios for different numbers of visible units, after 100
units the ratio plateaus at around 5

The next figure 5.5 illustrates a 2D-Plot which shows the ideal ratio, that is the factor
of hidden units over visible units on the Y-axis versus the number of visible units in the
model. Again, ideal refers to the ratio providing the fastest Learning process termination.

The ideal ratio starts to be high being 15.5 for 15 visible units, decreases quickly the
more visible units we add to the model and reaches a plateau at 100+ units. From there
we have a wide range with an ideal ratio of approximately 4.6 38 The initial steep descent
of the ideal ratio in the beginning range of 15-100 visible units can be explained by the
fact, that with a few visible unitis we only have a small number of distinct patterns to
learn. Hence, feasibility remains low when we add more hidden units. However the more
visible visible we have in our model the number of distinct patterns increase exponentially
and any increase of the number of hidden units has to be taken more carefully, that’s
why we achieve a plateau of around 4.6 as the ideal ratio after 100+ visible units.

34a setting with a given number of visible units, hidden units, examples to learn
35For recall: a low error rate is less than 5% in Hamming distance, time limit is 30 seconds
36see 4 for test settings and parameter-ranges
37See variable plotmatrix containing all the learning time values for different network topologies and

different Learning rates in ”DiffVu-LR-XX.mat” where XX refers to the Learning rate.
38Value rounded to the first decimal place

38

Figure 5.6: Learning time optimal ratios for different numbers of visible units, non-
optimal Learning rate: 0.01

Bare in mind that for different Hardware environments we might obtain different
Learning times but the ratio of hidden units over visible units remains the same. Our
ratios were calculated on two different Hardware Environments (see 3.5) with the same
result. The figures 5.6 to 5.7 the ideal ratio for the slower working learning rates 0.01
and 0.1:

The learning time dynamics for the Learning rate 0.01 (figure 5.6) and Learning rate
0.1 (figure 5.7) are different from the learning time-optimal Learning rate 0.05 (figure
5.5). For the learning rates 0.01 and 0.1 we observe the known behavior of a steep descent
of the ideal ratios in the range of 15-100 visible units, but then we see a minimum ratio
of around 5 just like in the case of the optimal learning rate 0.05 but after about 600
visible units (in case of learning rate 0.01) or 1000 visible units (in case of learning rate
0.1) we see beginning increase of the ideal ratio (more than 5) but which steepness is
not as high as the initial descent in beginning range of 15-100 visible units.

39

Figure 5.7: Learning time optimal ratios for different numbers of visible units, non-
optimal Learning rate: 0.1

40

5.2 Effect of strong attractors

5.2.1 Recall Probability of two strong attractors with incremental learning

The recall probability of a pattern pat in a trained Rbm R is the average probability p
that R will output pat when we set a random pattern as an input. Thus, an intuitive
understanding of recall probability of pat is the strength with which pattern pat is
associated in our model.

Given the definition of the probability distribution in equations 2.21 to 2.24 that
is based on the energy of the RBM in the visible state that represents the pattern
whose recall-probability we want to calculate. If we look at the partition function of
the probability function one can easily see that we have to consider all possible binary
states of visible and hidden units leading to infeasible probability calculation if we have
an Rbm with many units.

In the following experiments we see the recall probabilities of two strong attractors in
a test setting with an Rbm with 6 visible units and 6 hidden units learning 20 patterns.
Two of the 20 patterns will become Strong Attractors, we will train the first Strong
Attractor up to a multiplicity of d=5 and then add the second Strong Attractor and
increase in every step its multiplicity one by one and observe the changes in recall
probabilities of the two strong attractors to see whether the second Strong Attractor can
dominate the first one. The second Strong Attractor’s multiplicity will be increased until
d=30. This is a learning scenario in which the RBM learns the pattern incrementally,
that is, for making a pattern a strong one we just add an identical pattern to the training
set without replacing any existing ones, and then retrain the whole network. Hence, the
training set size increments one by one. In a neurocognitive way this learning scenario
is inspired by the assumption that an individuals associative memory is amenable for
learning new patterns, enabling it for continuous learning by retraining the network once
we added a new pattern. Old patterns will not be replaced or ”forgotten”, the training
set keeps on growing but within a practical capacity39 of the network.

39a practical capacity is a training set size with which the network’s learning successfully terminates in
an applicable time as it was described in section 5.1. An RBM of 6 visible and 6 hidden units 100
examples could be learned in an acceptable learning time and error rate

41

Following setting description will give a detailed overview of the simulation scenario.
Test setting:

• Network: RBM with 6 visible units, 6 hidden units

• Initial training set: 20 simple patterns (every pattern has multiplicity d = 1)

• Training mode of Strong Attractors: Increasing multiplicity by simple adding
into the training set

– : Generate 20 samples to calculate average recall probabilities, every sample
will be generated as following:

∗ Select randomly two different patterns out of the 20 which are meannt to
be Strong Attractors, calculate their Recall probabilities

∗ Add multiplicity of first Strong Attractor up to d=5 by adding 4 more
identical examples of the Strong Attractor, after every adding, calculate
Recall probability of this Strong Attractor

∗ Now Add the multiplicity of second strong attractor up to d=30 and
calculate Recall probabilities of both Strong Attractors.

Figure 5.8 shows the Recall probabilities of the two competing Strong Attractors.
Looking at figure 5.8 we see that the first Strong Attractor obtains high probabilities as

we increase its multiplicity step by step up to 5. Then Second strong attractor increases
its multiplicity, when both have multiplicity of 5 both share a similar recall probability
of around 0.1. From there we keep on increasing only the multiplicity of the second
Strong Attractor and we observe higher probabilities of the second attractor, while the
recall probabilities of the first one slowly decreases though its multiplicity of 5 stays
the same. This is due to the increasing number of training examples, since we increase
the multiplicity of the second attractor, so that the multiplicity of 5 gets relatively 40

smaller the with every step we increase the multiplicity of the second attractor. At the
very right hand of the plot the second attractor has a multiplicity of 30, first one has
still 5 and we have the initially 18 simple patterns, hence the training set consists of 53
examples in the end. As an overall result derived from the plot one can see that the
second attractor dominates in terms of recall probability the first one once it reaches
at least the same multiplicity, furthermore it also weakens the first one by reducing its
recall probability. Figure 5.8 shows the results if we continue increasing the multiplicity
of the second attractor up to d=100. It shows that the recall probabilities, although not
linearly, keep on increasing as well while those of the first strong attractor decrease. The
progress of increasing and decreasing probabilities for both strong attractors gets slower
in the end41.

40the relative multiplicity is thought to be the current multiplicity of a pattern divided by the number
of patterns in the training set, keep in mind that the training set can contain duplicates

41E.g. we have an increase of 40 % for the second attractor in the multiplicity range from 1-30, this
increase slows down while rising the probabilities towards 100%

42

Figure 5.8: Recall probabilities in a competitive setting of two Strong Attractors, train-
ing mode: Increasing multiplicity by simple adding, see the text for details

43

Figure 5.9: continuation of figure 5.8 see the text for details

44

5.2.2 Recall probabilities, Learning and forgetting

In the following test setting we change the retraining procedure in a way that we will
keep the size of the training set steadily at 20. Whenever we add an identical pattern
to increase the multiplicity of a strong attractor we delete randomly an existing simple
pattern. This learning scenario is different from the previous one and brings in the
feature of forgetting simple patterns. That is an individual completely forgets a pattern
if it’s degree was only one, which generally means that patterns which are only less
frequently exposed to the individual tend to be forgotten completely.
Test setting:

• Network: RBM with 6 visible units, 6 hidden unitis

• Initial training set: 20 simple patterns (every pattern has multiplicity d = 1)

• Training mode of Strong attractors: Learning and forgetting

– : Generate 20 samples to calculate average recall probabilities, every sample
will be generated as following:

∗ Select randomly two different patterns out of the 20, calculate their Recall
probabilities

∗ Add multiplicity of first strong attractor up to d=5 by adding 4 more
identical examples of the strong attractor, after every adding calculate
Recall probability. With every adding a random simple pattern has to
be removed

∗ Now Add the multiplicity of second strong attractor up to d=15. For
every increase a simple pattern has to be removed to keep the training
set size at 20.

Figure 5.10 shows the recall probabilities in Learning and forgetting training mode.
Just like in the previous mode we see that the second Strong Attractor rules out the first
one but we see different details in the the dynamics of rising and falling probabilities.
Compared to the previous scenario with incremental learning the second Strong Attrac-
tor reaches already the peaking probability of around 45 % very early at a multiplicity of
10. Also the overall steepness of recall probabilities versus multiplicity is higher than in
the previous scenario, while decreasing steepness of the first Strong Attractor is very low
once the second one is involved. The dynamics is easy to understand since with every
adding of the second Strong Pattern another simple pattern is deleted, leading the rela-
tive multiplicity 42 of the second one to grow more quickly than in the previous scenario.
Since we do not delete any of the first Strong Attractor the relative multiplicity of the
first Strong Attractor remains the same 43 which explains why the recall probability of
the first Strong attractor remains almost the same once the Second Strong attractor is
involved. It is remarkable that the recall probability decreases at all though the relative
multiplicity stays the same. This behavior can be explained by imagining that the whole
energy surface of the RBM is attracted more and more to the second Strong Attractor
while it’s relative multiplicity increases which also effects, although slowly, the energy
surfaces of attractors whose relative multiplicity stay the same.

42again: the relative multiplicity is the current multiplicity of a pattern divided by the number of
patterns in the training set, keep in mind that the training set can contain duplicates

43That is 5/20 = 0.25 45

Figure 5.10: Recall probabilities in a competitive setting of two strong attractors, train-
ing mode: Learning and forgetting, see the text for details

46

For the next experiments we want to stick to the Learning model of Incremental
Learning, since it provides continuous learning since we have not a fixed example set
size and the neurodynamics of ruling out the first strong attractor as it was shown in
Figure 5.8 seems more reasonable because with higher multiplicities of the second Strong
Attractor the first Strong Attractor’s recall probability was more quickly reduced. To
put it in a more neurobiological and cognitive way: If a pattern P is recently learned
multiple times more then old patterns, then P should dominate the recall probabilities
of all learned patterns, that is, it increases its own recall probability while reducing
recall probabilities of other patterns. This kind of reducing is an implicit representation
of forgetting learned patterns which are not learned frequently enough, so that our
incremental learning model incorporates both, the dominance of Strong Attractors and
the weakening of non-dominant patterns which can be seen as ”forgetting” them.

5.2.3 Basin of attraction

For the analysis of the basin of attraction we can use a larger amount of visible units
than in the previous section, since we do not need to consider all possible unit state as in
equations 2.21 to 2.24. We will choose 100 visible units and will determine the number
of hidden units with a large basin of attraction 44 to make the network resistant to a
certain degree of noise.

Since we use patterns with 100 bits the generation of possible similar patterns in
terms of Hamming distance can lead to infeasible calculation of the basin of attraction.
Therefore we have worked out an algorithm that generates randomly different patterns
of a certain Hamming distance to the original attractor pattern, we sample this process
many times to calculate the average basin. Following listing-figure 5.11 shows the pseudo
code that we have worked out and applied to calculate the average basin of an attractor
pattern P :

44Description of basin of attraction is listed in 2, the basin of attraction is measured in Hamming-
distance. That is, if we have a basin of attraction of 5 for one attractor, we can flip in average 5 bits
of the attractor-pattern and the network will successfully recall the original attractor pattern.

47

Figure 5.11: calculating the average basin of attraction

48

Figure 5.12: Basins of attraction of a strong attractor with d=5, with a training set size
of 21 examples

The following Experiment results show the basins of attractions if we vary for our
100-visible-units RBM the number of hidden units in a range of 21 and 201 examples.45

The figure 5.12 shows the average basins of attraction of a Strong Attractor with
a multiplicity of d=546 for 21-201 hidden units with a training set of 21 examples.
There, the ideal number of hidden units leading to a maximum basin is 31.

45A wider range was simulated but the relevant results are distributed in the range of 21-201 we are
focusing on

46we repeated our simulations also for different degrees d=10,15,20 with the same results which are
presented for d=5 concerning the ideal number of hidden units

49

Figure 5.13: Ideal number of hidden units vs number of training examples, ideal means
a number of hidden units leading to the largest basin of attraction

Since the basin of attraction strongly depends on the size of the training set, we
repeated our simulations over different number of examples. Therefore, figure 5.13 shows
the ideal number of hidden units (for the largest basin) varying the number of examples
in the range of 21 - 201 47.

47Again, a wider range was simulated but the relevant results are distributed in the specified range

50

Referring to figure 5.13 we can see that for 21-81 examples the ideal48 number of
hidden units is around the number of training examples, but when we add more then
81 examples the ideal number of hidden units remains at 81. Also, the actual basin
of attraction (values annotated with a ’*’ in figure 5.13) decreases the more examples
we add. As an overall result we notice that the ideal number of hidden units is always
smaller then the number of visible units. According to 5.1 the ideal number of hidden
units referring to Learning time performance would be around 460. But according to
our simulation results we have stated that using more than 81 hidden units leads to a
lower basin of attraction, that is a lower resistance to noise. This reveals a classic and
common phenomenon in artificial neural networks, where the network tends to overfit
the training examples after a certain number of hidden units and/or hidden layers is
added. As we can see in table in figure 5.12 we see how the basin of attraction reduces
when we add more then 31 hidden units.

51

Figure 5.14: basin of attraction of two competing Strong Attractors, see Test setting for
details

52

However, using 100 visible units, a sufficient number of hidden units , at least 101,
is needed to make the RBM flexible enough to be capable of learning any arbitrary
probability distribution according to theorem 1. Using more than 101 hidden units
leads the network to recently observed overfitting behavior, with decreasing basins of
attraction. So using 100 visible, 101 hidden units and training set size of 100 patterns,
we still get an average basin of attraction of 16.2 for a strong attractor with multiplicity
d=5, which is still large enough. We will stick to this network topology (100 visible,
101 hidden units) in the following simulations to observe the basins of attraction in a
competitive setting of two Strong Attractors.
Test setting:

• Network: RBM with 100 visible units, 101 hidden units

• Initial training set: 20 simple patterns (every pattern has multiplicity d = 1)

• Training mode of Strong Attractors: Increasing multiplicity by simple adding
into training set

– : Generate 20 samples to calculate average recall probabilities, every sample
will be generated as follows:

∗ Select randomly two different patterns out of the 20 which are meant to
be the Strong Attractors, calculate their basins of attraction

∗ Add multiplicity of first Strong Attractor up to d=5 by adding 4 more
identical examples of the Strong Attractor, after every adding recalculate
its basin of attraction

∗ Add the multiplicity of second strong attractor up to d=35 and recal-
culate the basins of attraction of both Strong Attractors in every step
where multiplicity is added

Figure 5.14 shows the evolving basins of the two Strong Attractors during the simu-
lation of the previously described Test setting.

48remember, ideal refers to the number of hidden units leading to the largest basin of attraction, see
figure 5.12 how we obtained the larges basin

53

As in the experiments on the recall probabilities we see in figure 5.14 a similar behavior
where the second Strong Attractor overrules the first one once second one gets a stronger
multiplicity. An interesting phenomenon in this simulation is that the increase and
decrease of the basin of attraction of the two competing Strong Attractors is this time
nearly symmetric in the range of the multiplicities we have tested.
Maximum Basin of attraction
In Hopfield Networks with Hebbian Learning we have 50% in Hamming distance as
the maximum basin size of a Strong Attractor if we train this Strong Attractor with a
degree or multiplicity high enough. This is due to the fact, that the Hopfield Network
with Hebbian Learning suffers from the so called spurious inverse states that we have
mentioned in the introduction. Hence, any higher pertubation than 50% would let
the network converge towards the inverse pattern. Since our RBM with contrastive
divergence does not suffer from inverse states we would like to know whether it is basically
and practically possible in our simulations to get a larger basin than 50%. We take our
RBM with 100 visible units with 101 hidden units which provided in our simulations a
good resistance to noise, and as an extreme case to enforce a large basin, we will take
an initial training set with just two examples, one of them will be considered as the
Strong Attractor whose multiplicity we will largely increase and basin of attraction we
will measure.

Furthermore we will increase the k-value to k=10 which was defined in 2.8 as the
number of reconstructions the layers are updated by forwarding and backwarding the
input through the layers, which makes recalling of the RBM with gradient descent more
accurately. Apart from encountering the maximum basin of attraction and calculating
the categorization strength in the next section, we use k=1 which is still mentioned as
a good approximation of gradient descent according to [Hinton, 2002], higher k-values
make calculation less feasible. But just for the purpose of trying to calculate the max-
imum basin of attraction of one Strong Attractor and for a few different degrees, we
could increase the k-value up to 10 experiencing reasonable simulations times.
Figure 5.15 shows the Basins of attractions for strong attractors for 4 different degrees,
we could observe basins larger than 50 beginning with degrees of 10. It has to be noted,
that we can not simply increase the degree of the strong attractor endlessly since the
practical training set capacity is limited regarding figure 5.1 which shows the learning
times for different hidden units and training set sizes.

54

Figure 5.15: Basin of one strong attractors with different degrees, and k=10 reconstruc-
tions of the layers.

55

Figure 5.16: Categorization strength for an RBM with 100 visible units, 34 hidden units
scoring the strongest categorization strength within a training set of 20
examples

5.2.4 Strength of categorization

As mentioned in 3 the categorization strength of pattern P that has been assigned to
category Cat is the number of patterns of the training set that fall into that category
Cat.

For using the RBM as a tool which assigns every input to a category, which is a
learned representation given by the hidden units, we again need to find the ideal number
of hidden units, which provides a good degree of categorization. That is we would like
the RBM to be capable of learning few categories for a larger set of training examples,
and the categorization strength for a strong pattern should be obviously higher than
that of a simple pattern.

Knowing, that fewer hidden units than visible units are needed for categorization we
vary the number of hidden units in a range of 1-12049 to obtain an ideal number of hidden
units that provides the strongest categorization strength for a given strong pattern, d=5.

Test setting:

• Network: RBM with 100 visible units, number hidden units are varied in range of
1-120

• Initial training set: 20 simple patterns (every pattern has multiplicity d = 1)

• Training mode of one Strong Attractor with multiplicities 10,20,40: Incremental
Learning

• Show the categorization strength for different numbers of hidden units in the above
mentioned range.

Since we do not want to overload this report with to many tables of values 50 we want
to present the results briefly with the table in figure 5.16.

49though we noted, that we need fewer hidden units than visible units, we would like to confirm this in
our simulations, that’s why we take a bigger range up to more than 100 hidden units

50Categorization strengths are given in the file ”Categories-multi-100-20.mat” under the variable ”re-
sultsdiffhu ” using 100 visible units and 20 training patterns

56

The highest categorization strength was achieved by using around 34 hidden units,
using more or less hidden units strives the RBM to lower categorization strengths. Hence,
we take an RBM with 100 visible units and 34 hidden units as our learning model for
the analysis of of competing categorization strengths of two Strong Attractors.

Test setting:

• Network: RBM with 100 visible units, 34 hidden units

• Initial training set: 20 simple patterns (every pattern has multiplicity d = 1)

• Training mode of one Strong Attractor with multiplicities 10,20,40: Incremental
Learning

– : Generate 20 samples to calculate average categorization strengths of the
Strong Attractors, every sample will be generated as following:

∗ Select randomly two different patterns which are meant to be the strong
patterns

∗ Add the multiplicity of the first Strong Attractor up to d=10 by adding
9 more identical examples of the strong attractor, after every adding
calculate categorization strength

∗ Now Add the multiplicity of second strong attractor up to d=35. Af-
ter every adding, calculate categorization strength of both two Strong
Attractors.

57

Figure 5.17: Categorization strength of two competing Strong Attractors, note the char-
acteristic Investment Dip for the second attractor once its multiplicity is
getting increased, this dip is not a random dip, it is observed in every other
repeated simulation as well.

58

Figure 5.17 shows the results of the simulations from the previously described test
setting. Two characteristics referring to the development of the categorization strength
of the two Strong Attractors can be observed. Firstly, different from the increasing and
decreasing process 51 of the first attractor that we have observed for the recall probability
and basin of attraction, is that the categorization strength remains at the same level once
the second attractor is also added. Secondly, a phenomenon that could only be clearly
figured out after several repetitions of the simulations and a close look at the plotted
values, is that the categorization strength of the Second Attractor reduces always once
its multiplicity is increased from d=1 to d=2. After d=3,4... the categorization strength
tends to increase as expected . This is not a event of randomness, since all repeated
simulations showed the same result. The reason of the initial dip was figured out when
we looked at the explicit categories assigned to the second attractor during its increase of
multiplicity. In the state of d=1, where the second strong attractor is a simple pattern,
it was in some samples assigned to a category of the first Strong Attractor which is
already strong, in other words it was attracted to the category of the first one because
of the strength of the First Attractor. As this happened only in some cases within the
20 samples, the average categorization strength is increased initially to a value between
1 and 2. Once we increase the multiplicity of the second Strong Attractor to d= 2, the
second attractor aims to be assigned to an own category, which starts initially with
a low categorization strength and then slowly increases as we see it in the simulation
plot in figure 5.17. We call the dip of the categorization strength of the second Strong
Attractor as an Investment Dip, since it has to invest the cost of loosing categorization
strength first before it increases and pays off.

51remember, that the decrease of recall probability and basin of attraction happened to start once Second
Attractor was involved

59

6 Evaluation

We can confirm similar effects of Strong Attractors in terms of pattern retrieval probabil-
ity and the basin of attraction mentioned in the related works of [Edalat and Mancinelli, 2013]
and [Tucker, 2013] in the more elaborated RBM model. That is, for higher degrees of
patterns we could calculate in our simulations higher recall probabilities striving towards
1 and larger basins of attraction.

As shown in [Tucker, 2013] for stochastic Hopfield Networks, we see a similar behav-
ior of two competing Strong Attractors in the RBM model. That is, the second Strong
Attractor dominates a previously learned Strong Attractor as soon its degree exceeds
the degree of the previous Strong Attractor. As a main difference we see that the basin
of attraction continues to grow within a practical capacity for the training set and it can
also grow larger than 50% towards 100% in terms of Hamming distance, a fact which
is not possible via Hopfield Networks which suffers from misclassifying inverse states.
From a neurocognitive perspective it makes sense to provide larger basins than 50%,
that is to say, the more frequent an individual is exposed to the one and only input A,
the more his association is attracted to A, even if we pertubate input A with more than
50% of the bits if the degree of A is high enough.

Since the the RBM uses an extra layer we could extend our understanding of an
associative memory in such a way, that we see the visible layer as a part of a conscious
memory that is connected to senses from the environment and a hidden layer which is
not directly connected to the environment which makes it a representing candidate for
the subconscious part of associative memory. A part of our memory which cannot be
modeled by any kind of Hopfield Networks, since they only consist of one layer.
In a unsupervised learning setting the hidden layer is used to classify input patterns
to model a subconscious understanding or an inner representation of the patterns. We
introduced the term of categorization strength and could imply from our simulation
again the dominance of the second Strong Attractor over the first one as soon as the
degree exceeded the degree of the first Strong Attractor just as in the measurements for
recall probability and basin of attraction mentioned before, but with one conspicuous
difference. As soon as we increase the degree of the second Strong Attractor, an initial
loss of categorization strength is inevitable before it increases and finally exceeds the
categorization strength of the first Strong Attractor. This initial loss is the cost or
investment for aiming a separate category or inner representation for the second Strong
Attractor itself, a phenomenon that we call: Investment Dip.

60

7 Conclusion and Future Work

7.1 Implications of the Experiment Results

In the first part, we have implemented a Restricted Boltzmann machine that incorporates
the efficient gradient descent learning algorithm of Hinton, pubblished in [Hinton, 2002].
Through several simulations, measuring the Learning time, we could figure out that we
achieve the fastest learning RBMs as a pattern recognition tool by using many more
hidden units than given visible units. For the two fastest Learning rate 0.1 and 0.05,
we have a range between 100 and 1000 visible units where there is an ideal ratio of the
number of hidden units over the number of visible units. This ideal ratio is around 5 and
is independent from the size of the training set, as long the size is within the practical
network capacity52.

In the second and last part of the report we analyzed the strengths of two competing
Strong Attractors. In terms of average recall probability, basin of attraction and cate-
gorization strength we figured out that the second Strong Attractor started to dominate
the first Strong Attractor when the multiplicity of the second one went bigger than the
multiplicity of the first one.

Due to the RBM’s resistance of inverse states, which are misclassified in the Hopfield
NMtwork, we have shown in our simulations that an RBM can be trained with a Strong
Attractor that has a basin of attraction larger than 50%, what is already the maximum
for Hopfield Networks with Hebbian Learning.

The generally known phenomenon of overfitting in artificial neural networks could
also be shown for the RBM through the analysis of the basin of attraction of a Strong
Attractor. We figured out that using almost as many hidden units as visible units results
in a network providing the largest basin of attraction. This interferes with the rule that
we have figured out in the first part, which stated that using 5 times more hidden units
than visible units makes the network most efficient in terms of learning time. Therefore,
as a rule of thumb we stated that the ideal number of hidden units is slightly more than
the number of visible units which provides a good compromise of aiming an efficiently
learning network on the one hand and that is still resistant to random noise on the other
hand.

For the categorization strength, where we made use of reading out hidden unit val-
ues that represent the subconscious memory, we could first of all see that RBMs with
Contrastive Divergence Learning can also be applied for categorization of a given input.
There, we observed a so called Investment Dip for the second Strong Attractor, that is an
initial loss of categorization strength which is the cost for aiming an own category. After
increasing the multiplicity continuously, the categorization strength starts to increase as
expected. From a neurophysiological point of view this kind of Dip can be explained by
an initial confusion of an individual that tries to learn something new after it was ex-
posed to a single dominant Strong Attractor. However, sticking to continue learning the
Second Strong attractor, the individual learns to categorize the second Strong Attractor
with a higher strength than the first Strong Attractor.

52See chapter 3 for the description of practical network capacity

61

Our experiments indicate the effectivity for a psychotherapeutical treatment derived
from a neurocomputational basis. Thus, an individual needs to be retrained towards
a secure attachment type at least with the same time or intensity as it was exposed
to his environment that turned him to the insecure attachment type at the first place.
Therefore, it is strongly recommended to initiate a very early psychotherapy to get rid of
the insecure attachment type. It is a neurophysiological fact that in the early childhood
the learning process, that is the establishment of synapses in the child’s brain, is much
faster. This timely related neurodynamics was not considered in our Learning model
in which Learning is modeled as a constant and continious process with a constant
Learning rate. This is enforces furthermore the indication of a early psychotherapeutic
intervention striving for a secure attachment type.

62

7.2 Future Work

All our analysis of our experiments were carried over using an RBM using a fixed tem-
perature of 1 which only provided low noise or uncertainty for the evaluation of a unit
via the logistic function defined in equation 2.9. For a future analysis we are interested
in the neurodynamics of our experiments with increasing temperatures. In the work of
[Tucker, 2013] the effect of two competing Strong Attractors in a stochastic Network
under increasing temperatues were shown, it confirms the idea of temperature as a noise
factor which steadily increases uncertainty in the system the more we increase the tem-
perature. However, the learning rule of the Hopfield Network uses a simple additive
Hebbian Learning rule, while we incorparated Contrastive Divergence of [Hinton, 2002]
which approximates gradient descent learning.

That is, if we increase the temperature in a Hopfield Model the evaluation of every
unit gets more indeterministic, at some point it will be assigned a firing state probability
of 0.5. The same will happen to the evaluation of the units in our model but it also
effects our error term we have implemented in 4, leading the error to random fluctuation.
This means our Learning needs more learning epochs, to let the error converge under
the given limit, if it converges. But after learning is successfully terminated, an RBM
ran under higher temperature meets the same error requirements as any other RBM
that has finished its learning under a lower temperature, but the way how the weights
are updated is different, that is an RBM trained with higher temperature might fit the
training data better or not.

As another future work we are interested in, is the derivation of some mathematically
proved equations concerning the degree of a Strong Attractor and its unit state proba-
bility and basin of attraction, which was worked out in [Edalat and Mancinelli, 2013] for
the Hopfield Network at a fixed temperature of zero. A mathematical expression would
not only confirm our experimental results it would clearly define the exact relations of a
Strong Attractor’s degree and its effects on other simple patterns in an RBM. However
any approach into that direction will strongly depend on the learning mode of the RBM
and will be complex since we have to take an additional layer into account.

63

Index

A
Advantages of RBMs compared to Hopfield

Networks . 3
Attachment Types . 8

B
Basin of attraction 16, 48
Boltzmann Machines 19
Boltzmann-Gibbs Distribution 19

C
Categorization in RBMs 22
Categorization Strength 10
Contrastive Divergence Learning 21

E
Energy in Hopfield Networks 15
Energy in RBMs . 21

G
G-Function . 17
Gradient Descent Learning 21

H
Hardware Environment 25
Hopfield Learning . 15
Hopfield Model . 14

I
Implementation of RBM with Contrastive

Divergence Learning 27
Investment Dip . 11
Ising Model . 18

L
Logistic Function . 18

M
Machines used for experiments 25
Maximum Basin of Attraction in Hopfield

Networks . 51
McCulloch-Pitts neuron 14

O
Overfitting in RBMs 11

P
Probability Distribution in Boltzmann Ma-

chines . 19

R
RBM . 21
Recall Probability 19, 21
Recall Probability of Strong attractors 41
Restricted Boltzmann Machines 21

S
Stochastic Hopfield Networks 17
Strong Attractors . 17

T
Temperature . 18
Testing Environment 25

64

65

References

[Amit et al., 1985a] Amit, D., H., G., and Sompolinsky, H. (1985a). Spin-glass models
of neural networks. Physical Review, A(32):1007–1018.

[Amit et al., 1985b] Amit, D., H., G., and Sompolinsky, H. (1985b). Storing infinite
numbers of patterns in a spin-glass model of neural networks. Physical Review Letters,
Letter no(55):1530–1533.

[Bradshaw, 2011] Bradshaw, J. (2011). The Well-being of Children in the UK 3rd ed.
The Policy Press, Bristol.

[Chen, 2011] Chen, E. (2011). Website: Introduction to restricted boltzmann ma-
chines, url: http://blog.echen.me/2011/07/18/introduction-to-restricted-boltzmann-
machines/.

[Edalat and Mancinelli, 2013] Edalat, A. and Mancinelli, F. (2013). Strong attractors
of hopfield neural networks to model attachment types and behavioural patterns.
Proceedings of the International Joint Conference on Neural Networks (IJCNN).

[Flanagan, 2008] Flanagan, C. (2008). AQA Psychology, book-pages 52-58. Letts Edu-
cational.

[Glauber, 1963] Glauber, R. (1963). Time-dependent statistics of the ising model. Math-
ematical Physics, 4:294–307.

[Gurney, 1997] Gurney, K. (1997). An Introduction to Neural Networks, book-page 93.
UCL Press.

[Hertz et al., 1991] Hertz, J., Krogh, A., and Palmer, R. G. (1991). Introduction to the
Theory of Neural Computation. Addison-Wesley Publishing Company.

[Hinton, 2002] Hinton, R. (2002). Training products of experts by minimizing con-
trastive divergence. Neural Computation, 14(8):1711–1800.

[Mikulincer M, 2007] Mikulincer M, S. P. (2007). Attachment in adulthood: structure,
dynamics, and change. Guilford Press.

[Roux and Bengio, 2007] Roux, N. L. and Bengio, Y. (2007). Representational power
of restricted boltzmann machines and deep belief networks. Technical report, Dept.
IRO, Universite de Montreal.

[Ruslan Salakhutdinov, 2007] Ruslan Salakhutdinov, Andriy Mnih, G. H. (2007). Re-
stricted boltzmann machines for collaborative filtering. Proceedings of the 24th Inter-
national Conference on Machine Learning, Corvallis, OR, 2007.

[Strathearn, 2011] Strathearn, L. (2011). Maternal neglect: Oxytocin, dopamine and
the neurobiology of attachment. J Neuroendocrinol., 23(11):1054–1065.

[Tucker, 2013] Tucker, R. (2013). Stochastic Hopfield Networks To Model Secure And
Insecure Attachment Types With Noise. B.Eng Thesis, Imperial College London,
Department of Computing.

[Wedemann et al., 2013] Wedemann, R. S., Donangelo, R., and de Carvalho, L. A. V.
(2013). Strong attractors of hopfield neural networks to model attachment types and
behavioural patterns. Proceedings of the International Joint Conference on Neural
Networks (IJCNN).

66

	Introduction
	Motivation
	Contribution
	Related Works

	Theoretical Background
	The McCulloch-Pitts neuron in the Hopfield-Model
	Representation of the Associative Memory
	Learning patterns
	Energy function and attractors
	Spurious States

	Strong Attractors
	Stochastic Hopfield-Networks
	Boltzmann Machines
	Restricted Boltzmann Machines
	Learning with Contrastive Divergence

	Experiment Design
	Overview
	Model and Implementation subject to analysis
	Input, Output and Parameters of the Model being evaluated
	Effect of strong attractors
	Software and Hardware Environment

	Implementation
	Experiment Results
	Finding an ideal Learning rate and an ideal ratio of visible and hidden units
	Effect of strong attractors
	Recall Probability of two strong attractors with incremental learning
	Recall probabilities, Learning and forgetting
	Basin of attraction
	Strength of categorization

	Evaluation
	Conclusion and Future Work
	Implications of the Experiment Results
	Future Work

	Index
	References

