
Linear maps on Rn



Linear structure of Rn

I The vector space Rn has a linear structure with two
features:

I Vector addition: For all u, v ∈ Rn we have u + v ∈ Rn with
the components (u + v)i = ui + vi for 1 ≤ i ≤ n with
respect, say, to the standard basis vectors of Rn.

I Scalar multiplication: For all u ∈ Rn and all c ∈ R, we
have cu ∈ Rn with the components (cu)i = cui for
1 ≤ i ≤ n.

I Note that these two structures exist independent of any
particular basis we choose to represent the coordinates of
vectors.
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Convex combination of vectors
I The convex combination of any two vectors u, v ∈ R2 is the

line segment au + bv joining u and v , where 0 ≤ a ≤ 1,
0 ≤ b ≤ 1 and a + b = 1.
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I Similarly, the convex combination of three vectors
u, v ,w ∈ R3 is the triangle au + bv + cw with vertices u, v
and w , where 0 ≤ a,b, c ≤ 1 and a + b + c = 1.
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Scalar product of vectors
I Given two vectors u, v ∈ R3, with coordinates

u =

u1
u2
u3

 v =

v1
v2
v3


their scalar product is given by

u · v =
3∑

i=1

uivi = ‖u‖‖v‖ cos θ,

where ‖u‖ =
√

u2
1 + u2

2 + u2
3 and θ is the angle between u

and v . Check this formula in R2!
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Scalar product and coordinates

I Note that the lengths ‖u‖ and ‖v‖ as well as the angle θ
are independent of the three mutually perpendicular axes
used to determine the coordinates of u and v .

I It follows that if we move to another set of mutually
perpendicular axes with respect to which u and v have
coordinates

u =

u′1
u′2
u′3

 v =

v ′1
v ′2
v ′3

 ,
then, we have

u · v =
3∑

i=1

uivi = ‖u‖‖v‖ cos θ =
3∑

i=1

u′i v
′
i .



Linear maps
I A map f : Rn → Rm is called linear if it preserves the linear

structure, i.e., if it satisfies:
I ∀u, v ∈ Rn. f (u + v) = f (u) + f (v).
I ∀u ∈ Rn ∀c ∈ R. f (cu) = cf (u).
I We can write the two conditions as a single condition:
I ∀u, v ∈ Rn∀a,b ∈ R. f (au + bv) = af (u) + bf (v).
I Example. For a fixed u ∈ Rn, let fu : Rn → R be defined by

fu(v) = u · v
I It is easy to check that fu is a linear map.
I If ‖u‖ = 1, then fu(v) is the projection of v onto the

direction of u.
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Linear maps and basis
I Let f : Rn → Rm be a linear map.
I Assume e1,e2, . . . ,en form a basis of Rn and d1,d2, . . . ,dm

form a basis of Rm.
I By linearity, the action of f is completely determined by

knowing the vectors f (ej) ∈ Rm (j = 1, · · · n).
I Since d1, . . . ,dm form a basis of Rm, each vector

f (ej) ∈ Rm can be expressed as

f (ej) =
m∑

i=1

Aijdi ,

for some coefficients Aij ∈ R with i = 1, · · · ,m.
I Given any vector v =

∑n
j=1 vjej , we have by linearity:

f (v) = f (
n∑

j=1

vjej) =
n∑

j=1

vj f (ej) =
n∑

j=1

vj(
m∑

i=1

Aijdi)



Matrix representation of linear maps
I The m× n matrix matrix A = (Aij) with 1 ≤ i ≤ m,1 ≤ j ≤ n

is called the matrix representation of f with respect to
the basis e1, . . .en of Rn and the basis d1, . . . ,dm of Rm.

I Given any vector v =
∑n

j=1 vjej , we can compute the
vector representing f (v) ∈ Rm with respect to the basis
d1, . . . ,dm:

I

f (v) = f (
n∑

j=1

vjej) =
n∑

j=1

vj f (ej) =
n∑

j=1

vj(
m∑

i=1

Aijdi)

=
n∑

i=1

m∑
j=1

Aijvjdi =
m∑

i=1

n∑
j=1

Aijvjdi =
m∑

i=1

(Av)idi

I Thus, (Av)i is the coefficient of di in the expansion of f (v)
with respect to the basis d1, . . . ,dm, i.e,

I Av represents f (v) with respect to the basis d1, . . . ,dm.



Extension to Cn

I All the definitions and results for Rn we have seen here can
be extended to the vector space Cn, the complex vector
space of dimension n.

I For example, C2 has vectors of the form v = (v1, v2)
T with

v1, v2 ∈ C.
I The linear structure of Cn is like Rn, except that we can

now use scalar multiplication with complex numbers, i.e.,
for the vector v above: cv = (cv1, cv2)

T for c ∈ C.
I Interestingly, the standard basis for Rn can be interpreted

as a standard basis for Cn.
I Note that even when we deal with real matrices, we cannot

avoid using complex vectors.
I In fact, the eigenvalues of a real matrix can be complex

numbers, which means that the corresponding
eigenvectors would be complex vectors.



The inner product in Cn

I How about the dot product and the norm of a vector in Cn?
I If we simply copy the definition of the dot product from the

real case for complex vectors as well, then the dot product
of a complex vector with itself will not necessarily be a
non-negative number and thus cannot be used to define
the norm of the vector.

I For complex vectors v ,w ∈ Cn, we define the inner
product 〈v ,w〉 :=

∑n
i=1 v∗i wi .

I Recall that for c = c1 + ic2 ∈ C the complex conjugate of
c is given by c∗ = c1 − ic2.

I Note that c∗c = c2
1 + c2

2 ≥ 0 for any c = c1 + ic2 ∈ C.
I Observe that the inner product is not commutative:
〈v ,w〉 = 〈w , v〉∗.

I The norm of v ∈ Cn is defined as ‖v‖ :=
√
〈v , v〉.


	

