Linear maps on \mathbb{R}^n

<□ > < @ > < E > < E > E のQ @

Linear structure of \mathbb{R}^n

- ► The vector space ℝⁿ has a linear structure with two features:
- ▶ Vector addition: For all $u, v \in \mathbb{R}^n$ we have $u + v \in \mathbb{R}^n$ with the components $(u + v)_i = u_i + v_i$ for $1 \le i \le n$ with respect, say, to the standard basis vectors of \mathbb{R}^n .
- Scalar multiplication: For all *u* ∈ ℝⁿ and all *c* ∈ ℝ, we have *cu* ∈ ℝⁿ with the components (*cu*)_i = *cu*_i for 1 ≤ *i* ≤ *n*.
- Note that these two structures exist independent of any particular basis we choose to represent the coordinates of vectors.

Convex combination of vectors

The convex combination of any two vectors u, v ∈ ℝ² is the line segment au + bv joining u and v, where 0 ≤ a ≤ 1, 0 ≤ b ≤ 1 and a + b = 1.

Similarly, the convex combination of three vectors u, v, w ∈ ℝ³ is the triangle au + bv + cw with vertices u, v and w, where 0 ≤ a, b, c ≤ 1 and a + b + c = 1.

Scalar product of vectors

• Given two vectors $u, v \in \mathbb{R}^3$, with coordinates

$$u = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} \qquad v = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}$$

their scalar product is given by

$$u \cdot v = \sum_{i=1}^{3} u_i v_i = \|u\| \|v\| \cos \theta,$$

where $||u|| = \sqrt{u_1^2 + u_2^2 + u_3^2}$ and θ is the angle between u and v. Check this formula in \mathbb{R}^2 !

Scalar product and coordinates

- Note that the lengths ||u|| and ||v|| as well as the angle θ are independent of the three mutually perpendicular axes used to determine the coordinates of u and v.
- It follows that if we move to another set of mutually perpendicular axes with respect to which u and v have coordinates

$$u = \begin{bmatrix} u_1' \\ u_2' \\ u_3' \end{bmatrix} \qquad v = \begin{bmatrix} v_1' \\ v_2' \\ v_3' \end{bmatrix},$$

then, we have

$$u \cdot v = \sum_{i=1}^{3} u_i v_i = ||u|| ||v|| \cos \theta = \sum_{i=1}^{3} u'_i v'_i.$$

(ロ) (同) (三) (三) (三) (○) (○)

Linear maps

- A map f : ℝⁿ → ℝ^m is called **linear** if it preserves the linear structure, i.e., if it satisfies:
- $\lor \forall u, v \in \mathbb{R}^n. \ f(u+v) = f(u) + f(v).$
- $\forall u \in \mathbb{R}^n \, \forall c \in \mathbb{R}. \, f(cu) = cf(u).$
- We can write the two conditions as a single condition:
- ► $\forall u, v \in \mathbb{R}^n \forall a, b \in \mathbb{R}$. f(au + bv) = af(u) + bf(v).
- **Example.** For a fixed $u \in \mathbb{R}^n$, let $f_u : \mathbb{R}^n \to \mathbb{R}$ be defined by

$$f_u(v) = u \cdot v$$

- It is easy to check that f_u is a linear map.
- If ||u|| = 1, then f_u(v) is the projection of v onto the direction of u.

Linear maps and basis

- Let $f : \mathbb{R}^n \to \mathbb{R}^m$ be a linear map.
- ► Assume e₁, e₂,..., e_n form a basis of ℝⁿ and d₁, d₂,..., d_m form a basis of ℝ^m.
- By linearity, the action of *f* is completely determined by knowing the vectors *f*(*e_j*) ∈ ℝ^m (*j* = 1, · · · *n*).
- Since d₁,..., d_m form a basis of ℝ^m, each vector f(e_j) ∈ ℝ^m can be expressed as

$$f(e_j) = \sum_{i=1}^m A_{ij} d_i,$$

for some coefficients $A_{ij} \in \mathbb{R}$ with $i = 1, \cdots, m$.

• Given any vector $v = \sum_{j=1}^{n} v_j e_j$, we have by linearity:

$$f(v) = f(\sum_{j=1}^{n} v_j e_j) = \sum_{j=1}^{n} v_j f(e_j) = \sum_{j=1}^{n} v_j (\sum_{i=1}^{m} A_{ij} d_i)$$

Matrix representation of linear maps

- The *m*×*n* matrix matrix *A* = (*A_{ij}*) with 1 ≤ *i* ≤ *m*, 1 ≤ *j* ≤ *n* is called the matrix representation of *f* with respect to the basis *e*₁,..., *e_n* of ℝⁿ and the basis *d*₁,..., *d_m* of ℝ^m.
- Given any vector v = ∑_{j=1}ⁿ v_je_j, we can compute the vector representing f(v) ∈ ℝ^m with respect to the basis d₁,..., d_m:

$$f(v) = f(\sum_{j=1}^{n} v_j e_j) = \sum_{j=1}^{n} v_j f(e_j) = \sum_{j=1}^{n} v_j (\sum_{i=1}^{m} A_{ij} d_i)$$
$$= \sum_{i=1}^{n} \sum_{j=1}^{m} A_{ij} v_j d_i = \sum_{i=1}^{m} \sum_{j=1}^{n} A_{ij} v_j d_i = \sum_{i=1}^{m} (Av)_i d_i$$

- ► Thus, (Av)_i is the coefficient of d_i in the expansion of f(v) with respect to the basis d₁,..., d_m, i.e,
- Av represents f(v) with respect to the basis d_1, \ldots, d_m .

Extension to \mathbb{C}^n

- ► All the definitions and results for Rⁿ we have seen here can be extended to the vector space Cⁿ, the complex vector space of dimension n.
- ► For example, \mathbb{C}^2 has vectors of the form $v = (v_1, v_2)^T$ with $v_1, v_2 \in \mathbb{C}$.
- The linear structure of Cⁿ is like Rⁿ, except that we can now use scalar multiplication with complex numbers, i.e., for the vector v above: cv = (cv₁, cv₂)^T for c ∈ C.
- ► Interestingly, the standard basis for ℝⁿ can be interpreted as a standard basis for ℂⁿ.
- Note that even when we deal with real matrices, we cannot avoid using complex vectors.
- In fact, the eigenvalues of a real matrix can be complex numbers, which means that the corresponding eigenvectors would be complex vectors.

The inner product in \mathbb{C}^n

- ► How about the dot product and the norm of a vector in Cⁿ?
- If we simply copy the definition of the dot product from the real case for complex vectors as well, then the dot product of a complex vector with itself will not necessarily be a non-negative number and thus cannot be used to define the norm of the vector.
- For complex vectors v, w ∈ Cⁿ, we define the inner product ⟨v, w⟩ := ∑_{i=1}ⁿ v_i^{*}w_i.
- ► Recall that for c = c₁ + ic₂ ∈ C the complex conjugate of c is given by c^{*} = c₁ ic₂.
- ▶ Note that $c^*c = c_1^2 + c_2^2 \ge 0$ for any $c = c_1 + ic_2 \in \mathbb{C}$.
- Observe that the inner product is not commutative: $\langle v, w \rangle = \langle w, v \rangle^*$.
- The **norm** of $v \in \mathbb{C}^n$ is defined as $||v|| := \sqrt{\langle v, v \rangle}$.