Vector norms

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

The ℓ_p norms of a vector in \mathbb{R}^n

For p > 0, the ℓ_p norm of any vector $v \in \mathbb{R}^n$ is defined as

$$\|\boldsymbol{v}\|_{\boldsymbol{p}} = \left(\sum_{i=1}^{n} |\boldsymbol{v}_i|^{\boldsymbol{p}}\right)^{1/\boldsymbol{p}}$$

- $p = 1, \ell_1 \text{ norm:} \quad ||x||_1 = \sum_{i=1}^n |x_i|$
- ▶ $p = 2, \ell_2$ norm: $||x||_2 = \sqrt{\sum_{i=1}^n x_i^2}$
- ▶ $p = \infty$, ℓ_∞ norm: $\|x\|_\infty = \max_{1 \le i \le m} |x_i|$
- Note that $||x||_{\infty} \le ||x||_2 \le ||x||_1$.
- This follows from: $\max_{1 \le i \le n} |x_i|^2 \le \sum_{i=1}^n x_i^2$,
- and $\sum_{i=1}^{n} x_i^2 \le (\sum_{i=1}^{n} |x_i|)^2$.

The ℓ_{∞} norm

- As $p \to \infty$, we have $\|v\|_p \to \|v\|_\infty := \max_{1 \le i \le n} |v_i|$.
- If $v = \mathbf{0}$ then this is trivial, so assume $v \neq \mathbf{0}$.
- ▶ Let $m \in \{1, 2, 3, ..., n\}$ be such that $|v_m| = \max_{1 \le i \le n} |v_i|$.

$$\|v\|_{\rho} = |v_m| \left(\sum_{i=1}^n \frac{|v_i|^{\rho}}{|v_m|^{\rho}}\right)^{1/\rho}$$

- We have ^{|v_i|^p}/_{|v_m|^p} ≤ 1 for 1 ≤ i ≤ n and at least one of them is one, since ^{|v_m|^p}/_{|v_m|^p} = 1, i.e., the sum is between 1 and n.
- ► So, $|v_m| \le |v_m| \left(\sum_{i=1}^n \frac{|v_i|^p}{|v_m|^p} \right)^{\frac{1}{p}} \le |v_m|(n)^{\frac{1}{p}} \to |v_m|$ as $p \to \infty$, (since $n^{\frac{1}{p}} \to 1$ as $p \to \infty$).
- Thus, $\|v\|_p \to |v_m| = \|v\|_\infty$ as $p \to \infty$.

Cauchy-Schwartz inequality

For all $u, v \in \mathbb{R}^n$ we have

$$|u \cdot v|^2 \le (u \cdot u)(v \cdot v)$$
, i.e., $|u \cdot v| \le ||u||_2 ||v||_2$.

- For a proof, consider the vector $\lambda u + v$ for any $\lambda \in \mathbb{R}$.
- Since the length of any vector is nonnegative, we have:

$$\forall \lambda. \, \mathbf{0} \leq (\lambda u + v) \cdot (\lambda u + v) = (u \cdot u)\lambda^2 + 2(u \cdot v)\lambda + (v \cdot v)$$

Thus, the above quadratic aλ² + bλ + c in λ with the three coefficients a = u ⋅ u, b = 2(u ⋅ v) and c = v ⋅ v is always non-negative, i.e., it cannot have two distinct real roots.

So we must have:
$$b^2 - 4ac \le 0$$
.


```
► Thus, |u \cdot v|^2 \le (u \cdot u)(v \cdot v) as required.
```