Symmetric matrices

Properties of real symmetric matrices

- Recall that a matrix $A \in \mathbb{R}^{n \times n}$ is symmetric if $A^T = A$.
- For real symmetric matrices we have the following two crucial properties:
- All eigenvalues of a real symmetric matrix are real.
- Eigenvectors corresponding to distinct eigenvalues are orthogonal.
- ► To show these two properties, we need to consider complex matrices of type A ∈ C^{n×n}, where C is the set of complex numbers z = x + iy where x and y are the real and imaginary part of z and i = √-1.
- Cⁿ is the set of *n*-column vectors with components in C and similarly C^{n×n} is the set of n×n matrices with complex numbers as its entries.
- We write the complex conjugate of z as z* = x − iy. For u ∈ Cⁿ and A ∈ C^{n×n}, we denote by u* ∈ Cⁿ and A* ∈ C^{n×n}, their complex conjugates, obtained by taking the complex conjugate of each of their components.

Properties of real symmetric matrices

- We write the complex conjugate of *z* as $z^* = x iy$.
- For u ∈ Cⁿ, we denote by u^{*} ∈ Cⁿ its complex conjugate, obtained by taking the complex conjugate of each of its components, i.e., (u^{*})_i = (u_i)^{*}.
- Similarly, for A ∈ C^{n×n}, we denote by A^{*} ∈ C^{n×n}, the complex conjugate of A, obtained by taking the complex conjugate of each of its entries, i.e., (A^{*})_{ij} = (A_{ij})^{*}.
- ▶ Note that for complex numbers we have $z_1 = z_2$ iff $z_1^* = z_2^*$.
- This property clearly extends to complex vectors and matrices:
- ► For $u, v \in \mathbb{C}^n$ we have u = v iff $u^* = v^*$ and for $A, B \in \mathbb{C}^{n \times n}$, we have A = B iff $A^* = B^*$.
- Furthermore, $(Au)^* = A^*u^*$ and $(A^*)^T = (A^T)^*$.

Eigenvalues of a symmetric real matrix are real

Let λ ∈ C be an eigenvalue of a symmetric A ∈ ℝ^{n×n} and let u ∈ Cⁿ be a corresponding eigenvector:

$$Au = \lambda u. \tag{1}$$

Taking complex conjugates of both sides of (1), we obtain:

$$A^*u^* = \lambda^*u^*$$
, i.e., $Au^* = \lambda^*u^*$. (2)

Now, we pre-multiply (1) with $(u^*)^T$ to obtain:

$$\begin{array}{rcl} \lambda(u^*)^T u &=& (u^*)^T (Au) = ((u^*)^T A) u \\ &=& (A^T u^*)^T u & \text{since } (Bv)^T = v^T B^T \\ &=& (Au^*)^T u & \text{since } A^T = A \\ &=& (\lambda^* u^*)^T u = \lambda^* (u^*)^T u. & \text{using (2)} \end{array}$$

• Thus, $(\lambda - \lambda^*)(u^*)^T u = 0$.

But *u*, being an eigenvector is non-zero and
 (u*)^T u = ∑_{i=1}ⁿ u_i^{*} u_i > 0 since at least one of the components of *u* is non-zero and for any complex number *z* = *a* + *ib* we have *z***z* = *a*² + *b*² ≥ 0.
 Hence λ = λ*, i.e., λ and hence *u* are both real.

Eigenvectors of distinct eigenvalues of a symmetric real matrix are orthogonal

- Let *A* be a real symmetric matrix.
- ▶ Let $Au_1 = \lambda_1 u_1$ and $Au_2 = \lambda_2 u_2$ with u_1 and u_2 non-zero vectors in \mathbb{R}^n and $\lambda_1, \lambda_2 \in \mathbb{R}$.
- Pre-multiplying both sides of the first equation above with u_2^T , we get:

$$\lambda u_2^T u_1 = u_2^T (A u_1) = (u_2^T A) u_1 = (A^T u_2)^T u_1$$
$$= (A u_2)^T u_1 = \lambda_2 u_2^T u_1.$$

• Thus, $(\lambda_1 - \lambda_2)u_2^T u_1 = 0$.

- Therefore, $\lambda_1 \neq \lambda_2$ implies: $u_2^T u_1 = 0$ as required.
- If an eigenvalue λ has multiplicity m say then we can always find a set of m orthonormal eigenvectors for λ.
- ► We conclude that by normalizing the eigenvectors of A, we get an orthonormal set of vectors u₁, u₂,..., u_n.

Properties of positive definite symmetric matrices

Suppose $A \in \mathbb{R}^n$ is a symmetric positive definite matrix, i.e., $A = A^T$ and

$$\forall x \in \mathbb{R}^n \setminus \{0\}. \ x^T A x > 0.$$
(3)

- ► Then we can easily show the following properties of *A*.
- All diagonal elements are positive: In (3), put x with x_j = 1 for j = i and x_j = 0 for j ≠ i, to get A_{ii} > 0.
- The largest element in magnitude in the entire matrix occurs in the diagonal: Fix *i* ≠ *j* between 1 and *n*. In (3), put *x* with *x_k* = 1 for *k* = *i*, *x_k* = ±1 for *k* = *j* and *x_k* = 0 for *j* ≠ *k* ≠ *i*, to get |*A_{ij}*| < max(*A_{ii}*, *A_{jj}*).
- ► All leading principle minors (i.e., the 1 × 1, 2 × 2, 3 × 3, ..., *m* × *m* matrices in the upper left corner) are positive definite: In (3), put *x* with *x_k* = 0 for *k* > *m* to prove that the top left *m* × *m* matrix is positive definite.

Spectral decomposition

- We have seen in the previous pages and in lecture notes that if A ∈ ℝ^{n×n} is a symmetric matrix then it has an orthonormal set of eigenvectors u₁, u₂,..., u_n corresponding to (not necessarily distinct) eigenvalues λ₁, λ₂,..., λ_n, then we have:
- The spectral decomposition: $Q^T A Q = \Lambda$ where
- $Q = [u_1, u_2, ..., u_n]$ is an orthogonal matrix with $Q^{-1} = Q^T$ and $\Lambda = \text{diag}(\lambda_1, \lambda_2, ..., \lambda_n)$ is diagonal.
- Assume A ∈ ℝⁿ represents the linear map f : ℝⁿ → ℝⁿ in the standard basis of ℝⁿ.
- Then, the matrix S := Q⁻¹ ∈ ℝ^{n×n} is the matrix for the change of basis into one in which *f* is represented by B := Λ. More generally, B = SAS⁻¹:

Singular value decomposition (SVD) I

- Let $A \in \mathbb{R}^{m \times n}$ be an arbitrary matrix.
- ► Then $A^T A \in \mathbb{R}^{n \times n}$ and $AA^T \in \mathbb{R}^{m \times m}$ are symmetric matrices.
- ► They are also positive semi-definite since for example $x^T A^T A x = (Ax)^T (Ax) = (||Ax||_2)^2 \ge 0.$
- ▶ We will show that $A = USV^T$, called the SVD of A, where $V \in \mathbb{R}^{n \times n}$ and $U \in \mathbb{R}^{m \times m}$ are orthogonal matrices whereas the matrix $S = U^T AV \in \mathbb{R}^{m \times n}$ is diagonal with $S = \text{diag}(\sigma_1, \sigma_2, \sigma_3, \dots, \sigma_p)$ where $p = \min(m, n)$ and the non-negative numbers $\sigma_1 \ge \sigma_2 \ge \sigma_3 \ge \dots \ge \sigma_p \ge 0$ are the **singular values** of A.
- ▶ If *r* is the rank of *A* then *A* has exactly *r* positive singular values $\sigma_1 \ge \sigma_2 \ge \sigma_3 \ge \ldots \ge \sigma_r > 0$ with $\sigma_{r+1} = \sigma_{r+2} = \ldots = \sigma_p = 0$.

Singular value decomposition II

- ▶ Note that if the SVD for *A* as above exists then, since $U^T U = I_m$, we have $A^T A = VS^T U^T USV^T = VS^T SV^T$, where $S^T S = \text{diag}(\sigma_1^2, \sigma_2^2, \sigma_3^2, \dots, \sigma_p^2) \in \mathbb{R}^{n \times n}$ is a diagonal matrix, thus giving the spectral decomposition of the positive semi-definite matrix $A^T A$.
- This gives us a method to find the SVD of A.
- ► Obtain the eigenvalues σ₁² ≥ σ₂² ≥ σ₃² ≥ ... ≥ σ_p² ≥ 0 and the corresponding eigenvectors v₁,..., v_p of A^TA. If p < n, the other eigenvalues of A are zero with corresponding eigenvectors v_{p+1},..., v_n which make the orthogonal matrix V = [v₁,..., v_n].
- From the SVD we have AV = US, thus when $\sigma_i > 0$, i.e., for $1 \le i \le r$, we get $\frac{1}{\sigma_i}Av_i = u_i$.
- Extend the set u_1, \dots, u_r to an orthonormal basis $u_1, \dots, u_r, \dots u_m$ of \mathbb{R}^m which gives the orthogonal matrix $U = [u_1, \dots, u_m]$.

Singular value decomposition III

- Note the following useful facts.
- For 1 ≤ i ≤ r, the vector u_i is an eigenvector of AA^T with eigenvalue σ_i². Check!
- ► AA^T is similar to SS^T (with identical eigenvalues) and A^TA is similar to S^TS (with identical eigenvalues).
- The diagonal elements of the diagonal matrices S^TS ∈ ℝ^{n×n} and SS^T ∈ ℝ^{m×m} are σ²₁, σ²₂, σ²₃,..., σ²_p followed by n − p zeros and m − p zeros respectively.
- The singular values of A are the positive square roots of the eigenvalues of AA^T or A^TA.