
Symmetric matrices



Properties of real symmetric matrices
I Recall that a matrix A ∈ Rn×n is symmetric if AT = A.
I For real symmetric matrices we have the following two

crucial properties:
I All eigenvalues of a real symmetric matrix are real.
I Eigenvectors corresponding to distinct eigenvalues are

orthogonal.
I To show these two properties, we need to consider

complex matrices of type A ∈ Cn×n, where C is the set of
complex numbers z = x + iy where x and y are the real
and imaginary part of z and i =

√
−1.

I Cn is the set of n-column vectors with components in C
and similarly Cn×n is the set of n× n matrices with complex
numbers as its entries.

I We write the complex conjugate of z as z∗ = x − iy . For
u ∈ Cn and A ∈ Cn×n, we denote by u∗ ∈ Cn and
A∗ ∈ Cn×n, their complex conjugates, obtained by taking
the complex conjugate of each of their components.



Properties of real symmetric matrices

I We write the complex conjugate of z as z∗ = x − iy .
I For u ∈ Cn, we denote by u∗ ∈ Cn its complex conjugate,

obtained by taking the complex conjugate of each of its
components, i.e., (u∗)i = (ui)

∗.
I Similarly, for A ∈ Cn×n, we denote by A∗ ∈ Cn×n, the

complex conjugate of A, obtained by taking the complex
conjugate of each of its entries, i.e., (A∗)ij = (Aij)

∗.
I Note that for complex numbers we have z1 = z2 iff z∗

1 = z∗
2 .

I This property clearly extends to complex vectors and
matrices:

I For u, v ∈ Cn we have u = v iff u∗ = v∗ and for
A,B ∈ Cn×n, we have A = B iff A∗ = B∗.

I Furthermore, (Au)∗ = A∗u∗ and (A∗)T = (AT )∗.



Eigenvalues of a symmetric real matrix are real
I Let λ ∈ C be an eigenvalue of a symmetric A ∈ Rn×n and

let u ∈ Cn be a corresponding eigenvector:

Au = λu. (1)

I Taking complex conjugates of both sides of (1), we obtain:

A∗u∗ = λ∗u∗, i.e., Au∗ = λ∗u∗. (2)

I Now, we pre-multiply (1) with (u∗)T to obtain:

λ(u∗)T u = (u∗)T (Au) = ((u∗)T A)u
= (AT u∗)T u since (Bv)T = vT BT

= (Au∗)T u since AT = A
= (λ∗u∗)T u = λ∗(u∗)T u. using ( 2)

I Thus, (λ− λ∗)(u∗)T u = 0.
I But u, being an eigenvector is non-zero and

(u∗)T u =
∑n

i=1 u∗
i ui > 0 since at least one of the

components of u is non-zero and for any complex number
z = a + ib we have z∗z = a2 + b2 ≥ 0.

I Hence λ = λ∗, i.e., λ and hence u are both real.
I



Eigenvectors of distinct eigenvalues of a symmetric
real matrix are orthogonal

I Let A be a real symmetric matrix.
I Let Au1 = λ1u1 and Au2 = λ2u2 with u1 and u2 non-zero

vectors in Rn and λ1, λ2 ∈ R.
I Pre-multiplying both sides of the first equation above with

uT
2 , we get:

λuT
2 u1 = uT

2 (Au1) = (uT
2 A)u1 = (AT u2)T u1

= (Au2)T u1 = λ2uT
2 u1.

I Thus, (λ1 − λ2)uT
2 u1 = 0.

I Therefore, λ1 6= λ2 implies: uT
2 u1 = 0 as required.

I If an eigenvalue λ has multiplicity m say then we can
always find a set of m orthonormal eigenvectors for λ.

I We conclude that by normalizing the eigenvectors of A, we
get an orthonormal set of vectors u1,u2, . . . ,un.



Properties of positive definite symmetric matrices

I Suppose A ∈ Rn is a symmetric positive definite matrix,
i.e., A = AT and

∀x ∈ Rn \ {0}. xT Ax > 0. (3)

I Then we can easily show the following properties of A.
I All diagonal elements are positive: In (3), put x with xj = 1

for j = i and xj = 0 for j 6= i , to get Aii > 0.
I The largest element in magnitude in the entire matrix

occurs in the diagonal: Fix i 6= j between 1 and n. In (3),
put x with xk = 1 for k = i , xk = ±1 for k = j and xk = 0 for
j 6= k 6= i , to get |Aij | < max(Aii ,Ajj) .

I All leading principle minors (i.e., the 1× 1, 2× 2, 3× 3,
. . . ,m ×m matrices in the upper left corner) are positive
definite: In (3), put x with xk = 0 for k > m to prove that the
top left m ×m matrix is positive definite.



Spectral decomposition
I We have seen in the previous pages and in lecture notes

that if A ∈ Rn×n is a symmetric matrix then it has an
orthonormal set of eigenvectors u1,u2, . . . ,un
corresponding to (not necessarily distinct) eigenvalues
λ1, λ2, . . . , λn, then we have:

I The spectral decomposition: QT AQ = Λ where
I Q = [u1,u2, . . . ,un] is an orthogonal matrix with Q−1 = QT

and Λ = diag(λ1, λ2, . . . , λn) is diagonal.
I Assume A ∈ Rn reprsents the linear map f : Rn → Rn in

the standard basis of Rn.
I Then, the matrix S := Q−1 ∈ Rn×n is the matrix for the

change of basis into one in which f is reprsented by
B := Λ. More generally, B = SAS−1:

old coordinates

S
��

A // old coordinates

S
��

new coordinates
B // new coordinates



Singular value decomposition (SVD) I

I Let A ∈ Rm×n be an arbitrary matrix.
I Then AT A ∈ Rn×n and AAT ∈ Rm×m are symmetric

matrices.
I They are also positive semi-definite since for example

xT AT Ax = (Ax)T (Ax) = (‖Ax‖2)2 ≥ 0.
I We will show that A = USV T , called the SVD of A, where

V ∈ Rn×n and U ∈ Rm×m are orthogonal matrices whereas
the matrix S = UT AV ∈ Rm×n is diagonal with
S = diag(σ1, σ2, σ3, . . . , σp) where p = min(m,n) and the
non-negative numbers σ1 ≥ σ2 ≥ σ3 ≥ . . . ≥ σp ≥ 0 are the
singular values of A.

I If r is the rank of A then A has exactly r positive singular
values σ1 ≥ σ2 ≥ σ3 ≥ . . . ≥ σr > 0 with
σr+1 = σr+2 = . . . = σp = 0.



Singular value decomposition II
I Note that if the SVD for A as above exists then, since

UT U = Im, we have AT A = VST UT USV T = VST SV T ,
where ST S = diag(σ2

1, σ
2
2, σ

2
3, . . . , σ

2
p) ∈ Rn×n is a diagonal

matrix, thus giving the spectral decomposition of the
positive semi-definite matrix AT A.

I This gives us a method to find the SVD of A.
I Obtain the eigenvalues σ2

1 ≥ σ2
2 ≥ σ2

3 ≥ . . . ≥ σ2
p ≥ 0 and

the corresponding eigenvectors v1, · · · , vp of AT A. If p < n,
the other eigenvalues of A are zero with corresponding
eigenvectors vp+1, · · · , vn which make the orthogonal
matrix V = [v1, · · · , vn].

I From the SVD we have AV = US, thus when σi > 0, i.e.,
for 1 ≤ i ≤ r , we get 1

σi
Avi = ui .

I Extend the set u1, · · · ,ur to an orthonormal basis
u1, · · · ,ur , · · · um of Rm which gives the orthogonal matrix
U = [u1, · · · ,um].



Singular value decomposition III

I Note the following useful facts.
I For 1 ≤ i ≤ r , the vector ui is an eigenvector of AAT with

eigenvalue σ2
i . Check!

I AAT is similar to SST (with identical eigenvalues) and AT A
is similar to ST S (with identical eigenvalues).

I The diagonal elements of the diagonal matrices
ST S ∈ Rn×n and SST ∈ Rm×m are σ2

1, σ
2
2, σ

2
3, . . . , σ

2
p

followed by n − p zeros and m − p zeros respectively.
I The singular values of A are the positive square roots of

the eigenvalues of AAT or AT A.


	

