Symmetric matrices

Properties of real symmetric matrices

- Recall that a matrix $A \in \mathbb{R}^{n \times n}$ is symmetric if $A^{T}=A$.
- For real symmetric matrices we have the following two crucial properties:
- All eigenvalues of a real symmetric matrix are real.
- Eigenvectors corresponding to distinct eigenvalues are orthogonal.
- To show these two properties, we need to consider complex matrices of type $A \in \mathbb{C}^{n \times n}$, where \mathbb{C} is the set of complex numbers $z=x+i y$ where x and y are the real and imaginary part of z and $i=\sqrt{-1}$.
- \mathbb{C}^{n} is the set of n-column vectors with components in \mathbb{C} and similarly $\mathbb{C}^{n \times n}$ is the set of $n \times n$ matrices with complex numbers as its entries.
- We write the complex conjugate of z as $z^{*}=x-i y$. For $u \in \mathbb{C}^{n}$ and $A \in \mathbb{C}^{n \times n}$, we denote by $u^{*} \in \mathbb{C}^{n}$ and $A^{*} \in \mathbb{C}^{n \times n}$, their complex conjugates, obtained by taking the complex conjugate of each of their components.

Properties of real symmetric matrices

- We write the complex conjugate of z as $z^{*}=x$ - iy.
- For $u \in \mathbb{C}^{n}$, we denote by $u^{*} \in \mathbb{C}^{n}$ its complex conjugate, obtained by taking the complex conjugate of each of its components, i.e., $\left(u^{*}\right)_{i}=\left(u_{i}\right)^{*}$.
- Similarly, for $A \in \mathbb{C}^{n \times n}$, we denote by $A^{*} \in \mathbb{C}^{n \times n}$, the complex conjugate of A, obtained by taking the complex conjugate of each of its entries, i.e., $\left(A^{*}\right)_{i j}=\left(A_{i j}\right)^{*}$.
- Note that for complex numbers we have $z_{1}=z_{2}$ iff $z_{1}^{*}=z_{2}^{*}$.
- This property clearly extends to complex vectors and matrices:
- For $u, v \in \mathbb{C}^{n}$ we have $u=v$ iff $u^{*}=v^{*}$ and for $A, B \in \mathbb{C}^{n \times n}$, we have $A=B$ iff $A^{*}=B^{*}$.
- Furthermore, $(A u)^{*}=A^{*} u^{*}$ and $\left(A^{*}\right)^{T}=\left(A^{T}\right)^{*}$.

Eigenvalues of a symmetric real matrix are real

- Let $\lambda \in \mathbb{C}$ be an eigenvalue of a symmetric $A \in \mathbb{R}^{n \times n}$ and let $u \in \mathbb{C}^{n}$ be a corresponding eigenvector:

$$
\begin{equation*}
A u=\lambda u \tag{1}
\end{equation*}
$$

- Taking complex conjugates of both sides of (1), we obtain:

$$
\begin{equation*}
A^{*} u^{*}=\lambda^{*} u^{*} \text {, i.e., } A u^{*}=\lambda^{*} u^{*} \tag{2}
\end{equation*}
$$

- Now, we pre-multiply (1) with $\left(u^{*}\right)^{T}$ to obtain:

$$
\begin{array}{rlrl}
\lambda\left(u^{*}\right)^{T} u & =\left(u^{*}\right)^{T}(A u)=\left(\left(u^{*}\right)^{T} A\right) u & \\
& =\left(A^{T} u^{*}\right)^{T} u & & \text { since }(B v)^{T}=v^{T} B^{T} \\
& =\left(A u^{*}\right)^{T} u & \text { since } A^{T}=A \\
& =\left(\lambda^{*} u^{*}\right)^{T} u=\lambda^{*}\left(u^{*}\right)^{T} u . & \text { using }(2)
\end{array}
$$

- Thus, $\left(\lambda-\lambda^{*}\right)\left(u^{*}\right)^{T} u=0$.
- But u, being an eigenvector is non-zero and $\left(u^{*}\right)^{T} u=\sum_{i=1}^{n} u_{i}^{*} u_{i}>0$ since at least one of the components of u is non-zero and for any complex number $z=a+i b$ we have $z^{*} z=a^{2}+b^{2} \geq 0$.
- Hence $\lambda=\lambda^{*}$, i.e., λ and hence u are both real.

Eigenvectors of distinct eigenvalues of a symmetric real matrix are orthogonal

- Let A be a real symmetric matrix.
- Let $A u_{1}=\lambda_{1} u_{1}$ and $A u_{2}=\lambda_{2} u_{2}$ with u_{1} and u_{2} non-zero vectors in \mathbb{R}^{n} and $\lambda_{1}, \lambda_{2} \in \mathbb{R}$.
- Pre-multiplying both sides of the first equation above with u_{2}^{T}, we get:

$$
\begin{gathered}
\lambda u_{2}^{T} u_{1}=u_{2}^{T}\left(A u_{1}\right)=\left(u_{2}^{T} A\right) u_{1}=\left(A^{T} u_{2}\right)^{T} u_{1} \\
=\left(A u_{2}\right)^{T} u_{1}=\lambda_{2} u_{2}^{T} u_{1}
\end{gathered}
$$

- Thus, $\left(\lambda_{1}-\lambda_{2}\right) u_{2}^{T} u_{1}=0$.
- Therefore, $\lambda_{1} \neq \lambda_{2}$ implies: $u_{2}^{T} u_{1}=0$ as required.
- If an eigenvalue λ has multiplicity m say then we can always find a set of m orthonormal eigenvectors for λ.
- We conclude that by normalizing the eigenvectors of A, we get an orthonormal set of vectors $u_{1}, u_{2}, \ldots, u_{n}$.

Properties of positive definite symmetric matrices

- Suppose $A \in \mathbb{R}^{n}$ is a symmetric positive definite matrix, i.e., $A=A^{T}$ and

$$
\begin{equation*}
\forall x \in \mathbb{R}^{n} \backslash\{0\} \cdot x^{T} A x>0 \tag{3}
\end{equation*}
$$

- Then we can easily show the following properties of A.
- All diagonal elements are positive: In (3), put x with $x_{j}=1$ for $j=i$ and $x_{j}=0$ for $j \neq i$, to get $A_{i j}>0$.
- The largest element in magnitude in the entire matrix occurs in the diagonal: Fix $i \neq j$ between 1 and n. In (3), put x with $x_{k}=1$ for $k=i, x_{k}= \pm 1$ for $k=j$ and $x_{k}=0$ for $j \neq k \neq i$, to get $\left|A_{i j}\right|<\max \left(A_{i i}, A_{j j}\right)$.
- All leading principle minors (i.e., the $1 \times 1,2 \times 2,3 \times 3$, $\ldots, m \times m$ matrices in the upper left corner) are positive definite: $\ln (3)$, put x with $x_{k}=0$ for $k>m$ to prove that the top left $m \times m$ matrix is positive definite.

Spectral decomposition

- We have seen in the previous pages and in lecture notes that if $A \in \mathbb{R}^{n \times n}$ is a symmetric matrix then it has an orthonormal set of eigenvectors $u_{1}, u_{2}, \ldots, u_{n}$ corresponding to (not necessarily distinct) eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$, then we have:
- The spectral decomposition: $Q^{T} A Q=\Lambda$ where
- $Q=\left[u_{1}, u_{2}, \ldots, u_{n}\right]$ is an orthogonal matrix with $Q^{-1}=Q^{T}$ and $\Lambda=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$ is diagonal.
- Assume $A \in \mathbb{R}^{n}$ reprsents the linear map $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ in the standard basis of \mathbb{R}^{n}.
- Then, the matrix $S:=Q^{-1} \in \mathbb{R}^{n \times n}$ is the matrix for the change of basis into one in which f is reprsented by $B:=\Lambda$. More generally, $B=S A S^{-1}$:

Singular value decomposition (SVD) I

- Let $A \in \mathbb{R}^{m \times n}$ be an arbitrary matrix.
- Then $A^{T} A \in \mathbb{R}^{n \times n}$ and $A A^{T} \in \mathbb{R}^{m \times m}$ are symmetric matrices.
- They are also positive semi-definite since for example $x^{T} A^{T} A x=(A x)^{T}(A x)=\left(\|A x\|_{2}\right)^{2} \geq 0$.
- We will show that $A=U S V^{T}$, called the SVD of A, where $V \in \mathbb{R}^{n \times n}$ and $U \in \mathbb{R}^{m \times m}$ are orthogonal matrices whereas the matrix $S=U^{T} A V \in \mathbb{R}^{m \times n}$ is diagonal with $S=\operatorname{diag}\left(\sigma_{1}, \sigma_{2}, \sigma_{3}, \ldots, \sigma_{p}\right)$ where $p=\min (m, n)$ and the non-negative numbers $\sigma_{1} \geq \sigma_{2} \geq \sigma_{3} \geq \ldots \geq \sigma_{p} \geq 0$ are the singular values of A.
- If r is the rank of A then A has exactly r positive singular values $\sigma_{1} \geq \sigma_{2} \geq \sigma_{3} \geq \ldots \geq \sigma_{r}>0$ with
$\sigma_{r+1}=\sigma_{r+2}=\ldots=\sigma_{p}=0$.

Singular value decomposition II

- Note that if the SVD for A as above exists then, since $U^{T} U=I_{m}$, we have $A^{T} A=V S^{T} U^{T} U S V^{T}=V S^{T} S V^{T}$, where $S^{\top} S=\operatorname{diag}\left(\sigma_{1}^{2}, \sigma_{2}^{2}, \sigma_{3}^{2}, \ldots, \sigma_{p}^{2}\right) \in \mathbb{R}^{n \times n}$ is a diagonal matrix, thus giving the spectral decomposition of the positive semi-definite matrix $A^{T} A$.
- This gives us a method to find the SVD of A.
- Obtain the eigenvalues $\sigma_{1}^{2} \geq \sigma_{2}^{2} \geq \sigma_{3}^{2} \geq \ldots \geq \sigma_{p}^{2} \geq 0$ and the corresponding eigenvectors v_{1}, \cdots, v_{p} of $A^{T} A$. If $p<n$, the other eigenvalues of A are zero with corresponding eigenvectors v_{p+1}, \cdots, v_{n} which make the orthogonal matrix $V=\left[v_{1}, \cdots, v_{n}\right]$.
- From the SVD we have $A V=U S$, thus when $\sigma_{i}>0$, i.e., for $1 \leq i \leq r$, we get $\frac{1}{\sigma_{i}} A v_{i}=u_{i}$.
- Extend the set u_{1}, \cdots, u_{r} to an orthonormal basis $u_{1}, \cdots, u_{r}, \cdots u_{m}$ of \mathbb{R}^{m} which gives the orthogonal matrix $U=\left[u_{1}, \cdots, u_{m}\right]$.

Singular value decomposition III

- Note the following useful facts.
- For $1 \leq i \leq r$, the vector u_{i} is an eigenvector of $A A^{T}$ with eigenvalue σ_{i}^{2}. Check!
- $A A^{T}$ is similar to $S S^{T}$ (with identical eigenvalues) and $A^{T} A$ is similar to $S^{T} S$ (with identical eigenvalues).
- The diagonal elements of the diagonal matrices $S^{T} S \in \mathbb{R}^{n \times n}$ and $S S^{T} \in \mathbb{R}^{m \times m}$ are $\sigma_{1}^{2}, \sigma_{2}^{2}, \sigma_{3}^{2}, \ldots, \sigma_{p}^{2}$ followed by $n-p$ zeros and $m-p$ zeros respectively.
- The singular values of A are the positive square roots of the eigenvalues of $A A^{T}$ or $A^{T} A$.

