Least square method

Cholesky decomposition

- There are two versions of Cholesky decomposition theorem, one for positive semi-definite and one for positive definite symmetric matrices.
- Let $\mathbf{A} \in \mathbb{R}^{m \times m}$ be a symmetric matrix, i.e., $\mathbf{A} = \mathbf{A}^T$.
- ► The matrix A is positive semi-definite iff there exists a lower triangular matrix L such that A = LL^T.
- The matrix A is positive definite iff there exists a unique lower triangular matrix L with positive diagonal elements such that A = LL⁷.
- It follows that when we apply the procedure to obtain L for a symmetric matrix A there are three possibilities:
 - The procedure terminates and finds a matrix L whose diagonal elements are all positive. In this case A is positive definite.
 - The procedure terminates and finds a matrix L whose diagonal elements are not all positive. In this case A is positive semi-definite.
 - The procedure fails (because we get a complex number as an entry for L). In this case A is not positive semi-definite.

The least square method

- Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^{m}$.
- Suppose Ax = b has no solution for x ∈ ℝⁿ, i.e., b ∉ range(A).
- The least square method finds x ∈ ℝⁿ such that ||Ax − b||₂, or equivalently, ||Ax − b||₂² is minimized.
- Since range(A) + null(A^{T̄}) = ℝ^m and range(A) ⊥null(A^T) (i.e., are orthogonal subspaces), there is a unique decomposition:
- ▶ $\mathbf{b} = \mathbf{b}_r + \mathbf{b}_n$, where $\mathbf{b}_r \in \text{range}(\mathbf{A})$ and $\mathbf{b}_n \in \text{null}(\mathbf{A}^T)$.

Thus,

$$\|\mathbf{A}\mathbf{x} - \mathbf{b}\|_{2}^{2} = \|\mathbf{A}\mathbf{x} - \mathbf{b}_{r} - \mathbf{b}_{n}\|_{2}^{2}$$

= $(\mathbf{A}\mathbf{x} - \mathbf{b}_{r} - \mathbf{b}_{n}) \cdot (\mathbf{A}\mathbf{x} - \mathbf{b}_{r} - \mathbf{b}_{n})$
= $(\mathbf{A}\mathbf{x} - \mathbf{b}_{r}) \cdot (\mathbf{A}\mathbf{x} - \mathbf{b}_{r}) + (\mathbf{b}_{n}) \cdot (\mathbf{b}_{n})$
 $\|\mathbf{A}\mathbf{x} - \mathbf{b}_{r}\|_{2}^{2} + \|\mathbf{b}_{n}\|_{2}^{2} \ge \|\mathbf{b}_{n}\|_{2}^{2}.$

► Therefore, ||Ax - b||²₂ is minimised when ||Ax - b_r||²₂ = 0, i.e., if Ax = b_r.

Normal equations

- Claim: $Ax = b_r$ iff $A^T Ax = A^T b$.
- (i) Suppose $\mathbf{A}\mathbf{x} = \mathbf{b}_r$.
 - Then $\mathbf{A}^T \mathbf{A} \mathbf{x} = \mathbf{A}^T \mathbf{b}_r$ and since $\mathbf{A}^T \mathbf{b}_n = \mathbf{0}$ we have:

$$\mathbf{A}^T \mathbf{A} \mathbf{x} = \mathbf{A}^T (\mathbf{b}_r + \mathbf{b}_n) = \mathbf{A}^T (\mathbf{b}).$$

• (ii) Suppose $\mathbf{A}^T \mathbf{A} \mathbf{x} = \mathbf{A}^T \mathbf{b}$.

- ► Then, $\mathbf{A}^T(\mathbf{A}\mathbf{x} \mathbf{b}) = 0$ and thus, $\mathbf{A}^T(\mathbf{A}\mathbf{x} \mathbf{b}_r) = \mathbf{0}$ as $\mathbf{A}^T\mathbf{b}_n = \mathbf{0}$.
- It follows that $\mathbf{A}\mathbf{x} \mathbf{b}_r \in \text{null}(\mathbf{A}^T)$.
- ► Since we also have $A\mathbf{x} \mathbf{b}_r \in \text{range}(\mathbf{A})$ and because $\text{range}(\mathbf{A}) \cap \text{null}(\mathbf{A}^T) = \mathbf{0}$, we obtain:

$$\mathbf{A}\mathbf{x} - \mathbf{b}_r = \mathbf{0}.$$

- A^TAx = A^Tb is called the normal equations, whose solution gives the solution to the least square problem.
- Since A^TA is positive semi-definite, we can use Cholesky factorisation to get a lower triangular matrix L with A^TA = LL^T to solve the normal equations.