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Abstract—We introduce a logical theory of differentiation for a
real-valued function on a finite dimensional real Euclidean space.
A real-valued continuous function is represented by a localic ap-
proximable mapping between two semi-strong proximity lattices,
representing the two stably locally compact Euclidean spaces for
the domain and the range of the function. Similarly, the Clarke
subgradient, equivalently the L-derivative, of a locally Lipschitz
map, which is non-empty, compact and convex valued, is repre-
sented by an approximable mapping. Approximable mappings of
the latter type form a bounded complete domain isomorphic with
the function space of Scott continuous functions of a real variable
into the domain of non-empty compact and convex subsets of
the finite dimensional Euclidean space partially ordered with
reverse inclusion. Corresponding to the notion of a single-tie of
a locally Lipschitz function, used to derive the domain-theoretic
L-derivative of the function, we introduce the dual notion of
a single-knot of approximable mappings which gives rise to
Lipschitzian approximable mappings. We then develop the notion
of a strong single-tie and that of a strong knot leading to a
Stone duality result for locally Lipschitz maps and Lipschitzian
approximable mappings. The strong single-knots, in which a
Lipschitzian approximable mapping belongs, are employed to
define the Lipschitzian derivative of the approximable mapping.
The latter is dual to the Clarke subgradient of the corresponding
locally Lipschitz map defined domain-theoretically using strong
single-ties. A stricter notion of strong single-knots is subsequently
developed which captures approximable mappings of continu-
ously differentiable maps providing a gradient Stone duality
for these maps. Finally, we derive a calculus for Lipschitzian
derivative of approximable mapping for some basic constructors
and show that it is dual to the calculus satisfied by the Clarke
subgradient.

I. INTRODUCTION

Differentiation is one of the two pillars of Calculus and
thereby a fundamental basis of modern mathematics, science
and engineering. The derivative of a real-valued function of
a real variable and the gradient of a multivariate function
are used as basic tools in many areas of computer science
including Optimisation, Neural Networks, Machine Learning
and Robotics. The gradient descent algorithm, for example,
is at the very heart of these and other areas of computer
science which deal with optimisation and learning. There are
now tools for automatic differentiation [18], which is used
for example in the fundamental Backpropagation algorithm
in neural networks. A logical representation of differentiation
in the sense of programme logics is thus long overdue. We

address this task here.
There are two completely different threads in the back-

ground to the present work. The first thread is that of pro-
gramme logics. The study of properties of programmes was
pioneered by the work of Flyod [16], Hoare [19] and later
that of Dijkstra in his work on predicate transformers and the
weakest precondition for obtaining a given post-condition for a
programme [8]. In this same period, Scott introduced Domain
theory as a mathematical foundation of computation [24].
The seminal work of Johnstone on point free topology [20]
illustrated mathematically how, instead of working with points
and point maps as in classical mathematics, one can work
with the lattice of open sets of sober topological spaces,
i.e., spaces for which we can recover the points from the
lattice of open sets by taking completely prime filters of
open sets. Moreover, instead of working with point maps on
spaces, one can work with frame homomorphisms between
the complete lattices of open sets of these spaces, which
preserve finite intersections and arbitrary unions of open sets.
In Locale theory one considers the frame homomorphisms as
morphisms in the opposite direction, i.e., the same direction
as the point maps. This has extended the work of Stone
to far more general topological spaces than those generated
by Boolean algebras [28], providing a duality between the
category of sober topological spaces and spatial locales. Many
properties of topological spaces have their counterparts in
Locale theory [20].

In [25], Scott showed how, instead of the infinitary op-
erations required in the complete lattice of open sets, one
can develop finitary structures, called information systems
and approximable mappings respectively, to represent domains
of computation and maps between them respectively. Subse-
quently, Smyth [27] provided a topological view of predicate
transformers using topology and Domain Theory: open sets
represent properties of points of topological spaces, points of
the space represent logical theories and frame homomorphisms
correspond to predicate transformers. The underlying logic has
been called geometric logic; see Subsection I-A. The stage was
by now set for the application of Stone duality in Computer
Science, which has in particular been promoted in Vickers’
book [29].

In his elaborate work [1] in the framework of Locale the-
ory, Abramsky provided a comprehensive account of Domain
Theory in logical form for stably locally compact algebraic978-1-5090-3018-7/17/$31.00 c©2017 IEEE
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domains, which have a topological basis of compact-open sets.
Continuous domains, which can be used to represent classical
Hausdorff spaces, do not have such a basis. Smyth [26],
Abramsky and Jung [2] and Vickers [31] have extended the
notion of Scott’s information systems to continuous domains.
Jung and his collaborators have worked in the past two decades
to extend Abramsky’s Stone duality for stably locally compact
algebraic domains to the case of continuous domains in order
to obtain Stone duality for stably locally compact spaces,
defined as spaces which are locally compact and sober and in
which the intersection of two compact saturated sets (i.e., sets
that are the intersection of their open neighbourhoods) is com-
pact. See [21] for a historical account of this endeavour [22].
For developing a logical form of differentiation to represent
finite dimensional Euclidean spaces, we start with a weaker
notion of what was introduced by Jung and Sünderhauf [22]
and called strong proximity lattices. These lattices allow a
finitary representation of points by prime filters of open sets
instead of completely prime filters.

There is a completely different thread of research in the
background of this work however. Locally Lipschitz real-
valued functions on Rn form a useful class of functions that
have several desirable closure and extension properties. They
are closed under composition and contain the important class
of piecewise polynomial functions, which are widely used in
geometric modelling, approximation and interpolation and are
supported in MatLab [6]. They are uniformly continuous and
have much better invariant properties than differentiable maps,
in particular they are closed under the fundamental min and
max operations that are frequently used in optimisation and
control theory.

In 1970’s, Frank Clarke developed a set-valued derivative
for real-valued locally Lipschitz maps on Rn, which is now
called the Clarke subgradient and is a main tool in optimisation
theory and convex analysis. Clarke was motivated by applica-
tions in non-smooth analysis, where one deals with functions
that are locally Lipschitz but not necessarily differentiable. For
real-valued functions on finite dimensional Euclidean spaces,
the Clarke subgradient at any point is a non-empty compact
and convex subset of the Euclidean space. For example, the
absolute value function, which is not classically differentiable
at zero, is a Lipschitz map that has Clarke gradient [−1, 1]
at zero. A crucial property of the Clarke subgradient is that
it extends the classical gradient of continuously differentiable
functions to locally Lipschitz maps.

The key link with Domain Theory lies in the fact that the
Clarke subgradient is continuous with respect to the Scott
topology on the set of non-empty convex and compact subsets
of Rn partially ordered with reverse inclusion. In [11], a
domain-theoretic derivative was introduced for functions with
real interval input and output. This was later extended to
real-valued functions on Rn and shown to be mathematically
equivalent to the Clarke subgradient in this case [9], [12].
Whereas the Clarke subgradient of a Lipschitz map is defined
by using the generalized directional derivative based on taking
a double limsup of the rate of change of the function along
a given direction, the L-derivative is constructed by collecting
together some finitary generalized Lipschitz properties of

the map that allow a natural way of approximating the L-
derivative using domain theory. The L-derivative has been used
to develop an extension of Real PCF with a differentiation
operator so that both Lipschitz maps and their derivatives
can be numerically computed [7]. The L-derivative has also a
wider scope than real maps and has been extended to complex
Lipschitz maps [10].

In this paper, we aim to synthesise the above two different
threads and formulate a Stone duality for the Clarke sub-
gradient of locally Lipschitz maps and a Stone duality for
the gradient of a continuously differentiable function. This
amounts to a localic representations of the Clarke subgradient
and the classical gradient. The problem we solve in this paper
can be described non-technically as follows. Consider a real-
valued function f on Rn as a programme with input in Rn
and output in R. Then f can be represented via its predicate
transformer as a relation between properties (open sets) of
inputs in Rn which under f guarantee to satisfy a given
property of outputs in R. Given this relation which provides a
logical presentation of f , we show how we can construct the
corresponding relation between the properties of inputs and
those of the outputs for the Clarke subgradient or the classical
gradient of f . We envisage that this approach can be used in
automatic differentiation.

In [14], Ehrhard and Regnier have introduced the differential
lambda calculus which syntactically models the derivative
operation on power series in a typed lambda calculus or
a full linear logic. Differential lambda calculus proposes to
model smooth (infinitely differentiable) maps on non-normed
vector spaces [3], which is orthogonal to the work present in
this paper that addresses the classical derivative on Euclidean
spaces.

The rest of the paper is organised as follows. In the rest
of this section, we provide the basic elements, as we here
require, of geometric logic, domain theory and topological
notions, operations on convex open sets and the support
function of convex subsets in finite dimensional Euclidean
spaces. In Section II, the definition of the Clarke gradient with
its basic properties and those of the L-derivative and the ties of
functions are presented. In Section III, the category of semi-
strong proximity lattices and localic approximable mappings is
defined and is shown to be equivalent to the category of stably
locally compact spaces and continuous maps. In Section IV,
we construct a domain for localic approximable mappings. In
Section V, several constructors of approximable mappings are
derived. In Section VI, the notion of knots of Lipschitzian
approximable mappings is introduced which corresponds to
the ties of functions. In Section VII, the notions of strong
tie and strong knots are formulated and are shown to provide
a duality between Lipschitz maps and Lipschitzian approx-
imable mappings. In addition, the Lipschitzian derivative of a
Lipschitzian approximable mapping is defined and is shown
to be the approximable mapping of the Clarke gradient of the
Lipschitz map corresponding to the Lipschitzian approximable
mapping. In Section VIII, the strong ties and knots are further
refined to provide a duality between continuously differen-
tiable functions and their localic approximable mappings. In
Section IX, a calculus for the Lipschitzian derivative of the
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constructors of approximable mappings is developed which is
shown to be dual to the calculus of the Clarke gradient. Finally,
in Section X, we list a number of topics for further research.
All proofs in the article are given in the full version of the
paper [13].

A. Geometric logic

We present a brief account of geometric logic, also referred
to as the logic of finite observations, or equivalently as the
logic of semi-decidable properties. The idea is to use the open
sets of a topological space as propositions or semi-decidable
properties [26]. We will here use the notations in [30].

Let X be a topological space and Ω(X) be its lattice of open
sets. We define a propositional geometric theory as follows:
For every open set a ∈ Ω(X), we define a proposition Pa,
i.e., every open set of X provides a property or predicate.
For open sets a and b with a ⊆ b, we have an axiom: (i)
Pa ` Pb. For a family of open sets S, we have an axiom: (ii)
P∪S `

∨
a∈S Pa. For a finite family of open sets S, we have

an axiom: (iii)
∧
a∈S Pa ` P∩S . The converses of (ii) and (iii)

follow from (i). The nullary disjunction in (ii) is interpreted
as false and the nullary conjunction in the converse of (iii) is
interpreted as truth, i.e, P∅ ` false and PX ` truth.

Each point x ∈ X gives a model of the theory in which
Pa is interpreted as true iff x ∈ a, i.e, x |= a iff x ∈ a,
or, a point is a model of a proposition if it is in the open set
representing the proposition. In general, there is no negation
in propositional geometric logic as the complement of an open
set is not in general open. In addition, in general, it is possible
that different points give rise to the same model, i.e., satisfy
the same open sets, and it is also possible that a model does not
arise by points in X in this way. For so-called sober spaces, as
we will define below, we do have a one-to-one correspondence
between points and models.

Recall that for a set A with a transitive order ≺, a non-empty
subset F ⊂ A is a filter if (i) it is upwards closed, i.e., x ∈ F
and x ≺ y implies y ∈ F , and (ii) x, y ∈ F implies there
exists z ∈ F with z ≺ x, y. In a lattice L, a filter F is said
to be completely prime if F ∩

∨
M 6= ∅ implies F ∩M 6= ∅

for every subset M ⊂ L. For every point x ∈ X , the set of
its open neighbourhoods, i.e., the set of open sets containing
x, is a completely prime filter.

A frame is a complete lattice with the infinite distributive
law:

a ∧
∨
S =

∨
{a ∧ s|s ∈ S}

In particular, Ω(X) is a frame for any topological space X .
A frame homomorphism is map between two frames that
preserves finite meets and arbitrary joins. Frm denotes the cat-
egory whose objects are frames and its morphisms are frame
homomorphisms. If f : X1 → X2 is a continuous map of two
topological spaces then the map Ωf = f−1 : ΩX2 → ΩX1 is
a frame homomorphism. It is convenient to have a morphism
in the opposite direction i.e. ΩX1 → ΩX2. Thus, the category
Loc of locales is defined to be the opposite of the category of
Frm and Ω : Top → Loc defines a functor, where Top is
the category of topological spaces and continuous maps.

There is also a functor from Loc to Top. Given a frame
L, let pt(L) be the set of all completely prime filters of
L. Consider the map ηX : X → pt(Ω(X)) defined by
ηX(x) = Fx where Fx is the completely prime filter of open
neighborhoods of x.

Given a locale L, let Oa = {F ∈ pt(L)|a ∈ F} for every
a ∈ L. Then the collection {Oa : a ∈ L} forms a base for a
topology on pt(L). If h : L1 → L2 is a frame-homomorphism
then pt(h) : pt(L2) → pt(L1) with pt(h)(F ) = h−1(F ) is
well-defined, i.e., h−1(F ) ∈ pt(L1). It can also be easily
checked that pt(h) is a continuous map. Thus pt : Loc→ Top
is a functor.

A topological space is said to be sober if ηX is bijective. If
X is a sober space, then X is homeomorphic with pt(Ω(X)).

We can also define a frame homomorphism εL : L →
Ω(pt(L)), by εL(a) = Oa. A locale L is called spatial if
εL is bijective. Thus, a spatial locale L is a locale of open
sets of the topological space pt(L).

The functors pt and Ω establish an equivalence between the
category of sober spaces and the category of spatial locales.

B. Domain theory and topology notions

We assume the reader is essentially familiar with the very
basic elements of domain theory as introduced by Dana Scott
and developed in [2], [17]. We adopt the notion of a domain
and the notation for a single-step function as used in [17].
Thus, a domain is a continuous directed complete partial order.
Given an open set O ⊂ X of a topological space X and an
element b ∈ D in a domain D with bottom element ⊥, we
denote by bχO : X → D the single-step function with values
bχO(x) = b if x ∈ O and ⊥ otherwise.

Let U ⊂ Rn be a non-empty open subset with respect to the
Euclidean topology. The lattice of open sets of U is denoted
by Ω(U). We denote by C(Rn) the set of non-empty compact
and convex subsets of Rn ordered with reverse inclusion and
augmented with Rn as the bottom element. Then, C(Rn) is a
bounded complete domain with C1 � C2 iff C◦1 ⊃ C2, where
C◦ is the interior of a subset C. If (Ci)i∈I is a directed family
in C(Rn), then supi∈I Ci =

⋂
i∈I Ci. When n = 1, we have

C(R) = IR the domain of non-empty compact intervals of R.
The domain C(Rn) has a basis given by non-empty, convex
and compact sets with non-empty interior. The Scott topology
of a domain D is denoted by σD. A basic open set of the
Scott topology, equivalently the upper topology, for C(Rn) is
given by

�O = {C ∈ C(Rn) : C ⊂ O},

where O ⊂ Rn is an open set. The function space (U →
C(Rn)), the collection of Scott continuous maps of type
U → C(Rn) partially ordered by pointwise ordering induced
from C(Rn) is itself a bounded complete domain with a basis
consisting of step functions. For bχa, f ∈ (U → C(Rn)),
we have bχa � f iff a �Ω(U) f−1(↑↑b) [15, Proposition
5], where for any element x ∈ D of a domain D we write
↑↑x = {y ∈ D : x� y}.

The closure of a subset S ⊂ Rn is denoted by S. When S
is bounded, its diameter is denoted by diam(S). The convex
hull of S is denoted by conv(S). Given a map f : X → Y
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and a subset A ⊂ X , the forward image of A is written as
f [A]. For x ∈ R, we identify x with the singleton {x}. The
Euclidean norm of v ∈ Rn is denoted by ‖v‖. We use point-
wise extension of operations on real numbers and real vectors
to operations on sets of real numbers and vectors. For example,
the inner product of two open sets O1, O2 ⊂ Rn is given by

O1 ·O2 = {v · w : v ∈ O1, w ∈ O2}.

C. Basic operations on convex open sets

In this section, we look at the extension of the basic
operations of vector addition and inner product to convex open
sets in Rn and show that these extended operations are Scott
continuous on Ω(Rn).

Definition I.1. Suppose we have non-empty subsets A,B ⊂
Rn. The Minkowski sum of A and B is given by

A+B = {x+ y : x ∈ A, y ∈ B} ⊂ Rn.

The inner product of A and B is given by

A ·B = {x · y : x ∈ A, y ∈ B} ⊂ R.

For r ∈ R, scalar multiplication of A with r is given by

rA = {rx : x ∈ A} ⊂ Rn.

Note that subtraction A−B = A+ (−1)B can be defined
by composing addition with scalar multiplication by −1 on
the second argument. We show that these operations preserve
convex and open sets and give rise to Scott continuous maps
on the lattice Ω(Rn) of open sets of Rn.

Proposition I.2. The three maps
(i) (−) + (−) : Ω(Rn)× Ω(Rn)→ Ω(Rn),

(ii) (−) · (−) : Ω(Rn)× Ω(Rn)→ Ω(R) ,and,
(iii) r · (−) : Ω(Rn)→ Ω(Rn).
are well-defined, Scott continuous and preserve convex sets.

Note that for convex polytopes O1, O2 ⊂ Rn (each con-
sidered as an open set) with sets of vertices V1 and V2

respectively, we have O1+O2 = conv{x+y : x ∈ V1, y ∈ V2}
and O1 ·O2 = (m,M) with m = min{x ·y : x ∈ O1, y ∈ O2}
and M = max{x · y : x ∈ O1, y ∈ O2}, whereas
diam(O1) = max{‖x − y‖ : x, y ∈ V1}. These simple
expressions allow us to develop an effective structure for a
countable basis of the lattice Ω(Rn) of open sets of Rn as
explained in Subsection III-D.

D. Support function of convex sets

Given a non-empty and bounded convex set A ⊂ Rn, its
support function is defined as 1

SA : Rn → R
v 7→ sup{v · x : x ∈ A}

The support function has a number of key properties which
makes it an important tool in convex analysis.

1In optimisation theory the support function of A is usually denoted by
σA. This notation, however, clashes in domain theory with the use of σX for
the Scott topology of a partial order X .

Proposition I.3. [23, page 37]
(i) If A is a non-empty and compact convex set, then SA is

a real-valued continuous and convex function.
(ii) For A and B non-empty, compact and convex sets, A ⊂ B

iff SA ≤ SB .

Note that if O ⊂ Rn is a non-empty bounded and convex
open set, then from the definition we immediately obtain:
SO = SO. We will use the support function in some of the
proofs in the paper.

II. CLARKE’S SUBGRADIENT AND THE L-DERIVATIVE

In this section, we recall the definition and basic properties
of the Clarke subgradient and that of the L-derivative.

Let U ⊂ Rn be an open subset. First, recall that the Fréchet
derivative, also called the gradient, of a map f : U → R at
x ∈ U , when it exists, is a linear map T : Rn → R with

lim
‖x−y‖→0

|f(x)− f(y)− T (x− y)|
‖x− y‖

= 0.

As usual, given a basis of the vector space Rn, we identify
T = ∇f(x) as a vector in Rn, which is simply the n-tuple of
partial derivatives of f at x with respect to the n coordinates.

A. Clarke’s subgradient

Let f : U → R be locally Lipschitz, i.e., for each v ∈ U ,
there exists an open neighbourhood O of v and k ≥ 0 such
that |f(x)−f(y)| ≤ k‖x−y‖ for all x, y ∈ O. The generalized
directional derivative [4, Chapter 2] of f at x in the direction
of v is

f◦(x; v) = lim sup
y→x t↓0

f(y + tv)− f(y)

t
. (1)

The (Clarke) subgradient of f at x, denoted by ∂f(x) is the
subset of Rn given by

∂f(x) = {w ∈ Rn : f◦(x; v) ≥ w · v for all v ∈ Rn},

where w · v =
∑n
i=1 wivi is the inner product of w and v.

Example II.1. Let f : R→ R be the absolute value function
f(x) = |x|. Then

∂f(x) =

 [−1, 1] x = 0
{−1} x < 0
{1} x > 0

Let C1(U) be the set of continuously differentiable real-
valued functions.

Proposition II.2. [4, 2.1-2.3] Let f, g : U ⊂ Rn → R, where
U is an open set, be locally Lipschitz.
(i) ∂f(x) is a non-empty, convex, compact subset of Rn.

(ii) For v ∈ X , we have:

f◦(x; v) = sup{w · v : w ∈ ∂f(x)}. (2)

(iii) ∂f : U → C(Rn) is upper (or Scott) continuous.
(iv) If f ∈ C1(U) then ∂f(x) = {∇f(x)}.
(v) If ∂f(x) is a singleton for each x ∈ U , then f ∈ C1(U)

and ∂f(x) = {∇f(x)} for each x ∈ U .
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(vi) (Sum) ∂f(x) + ∂g(x) ⊃ ∂(f + g)(x).
(vii) (Product) ∂f(x) · g(x) + f(x) · ∂g(x) ⊃ ∂(f · g)(x).

(viii) (Chain rule) If h : U0 ⊂ R→ R is locally Lipschitz with
Im(f) ⊂ U0, then ∂h(f(x)) · ∂f(x) ⊃ ∂(h ◦ f)(x).

Moreover, in (vi) and (vii), if f or g is differentiable at x, then
we obtain equality. In (viii), if f is differentiable at x or if h
is differentiable at f(x), then we obtain equality.

There is an alternative characterization of the Clarke subgra-
dient. By Rademacher’s Theorem [5, page 148], if f : U → R
is Lipschitz, then it is differentiable almost everywhere with
respect to the Lebesgue measure. Suppose Ωf is the null set
where f fails to be differentiable. Then:

∂f(x) = conv{lim∇f(xi) : xi → x, xi /∈ Ωf}, (3)

where conv(S) is the convex hull of a subset S ⊂ Rn [4,
page 63]. The above expression is interpreted as follows.
Consider all sequences (xi)i≥0, with xi /∈ Ωf , for i ≥ 0,
which converge to x such that limi→∞∇f(xi) exists. Then
the generalized gradient is the convex hull of all such limits.

B. L-derivative

The L-derivative of a locally Lipschitz map f : U ⊂ Rn →
R provides a finitary representation of the Clarke subgradient.

Definition II.3. [9] The continuous function f : U → R has a
non-empty, convex and compact set-valued Lipschitz constant
b ∈ C(Rn) \ {⊥} in a non-empty convex open subset a ⊂ U
if for all x, y ∈ a we have: f(x) − f(y) ∈ b · (x − y). The
single-step tie δ(a, b) of a with b is the collection of all partial
functions f on U with a ⊂ dom(f) which have b as a non-
empty convex compact set-valued Lipschitz constant in a.

Note that we have used the extension of the inner product
to subsets of Rn.

To understand the definition, first note that if f ∈ δ(a, b),
then f is Lipschitz in a with Lipschitz constant ‖b‖ =
sup{‖v‖ : v ∈ b}. Next let n = 1. If f : U ⊂ R → R
has a Lipschitz constant k ≥ 0 in a ⊂ U , then we have
|f(x) − f(y)| ≤ k|x − y| or equivalently g ∈ δ(a, b) with
b = [−k, k]. By allowing b in Definition II.3 to be any non-
empty compact interval (and not just of the form [−k, k]), we
can collect all the locally differential properties of f expressed
in δ(a, b) and then construct its Clarke subgradient as we will
see below. First, we consider a simple example. Given an open
interval a ⊂ R, we write a = (a−, a+).

Example II.4. Let f : R→ R be the absolute value function
f(x) = |x|. If 0 ∈ a then f ∈ δ(a, b) iff [−1, 1] ⊆ b. If 0 ≤ a−
then f ∈ δ(a, b) iff 1 ∈ b. Finally, if a+ ≤ 0 then f ∈ δ(a, b)
iff −1 ∈ b.

Let f : U ⊂ Rn → R be a locally Lipschitz map. The set
of single-step functions {bχa : U → C(Rn) : f ∈ δ(a, b)} are
bounded above [9, Proposition 3.9]. Thus

Lf = sup{bχa : f ∈ δ(a, b)}

is a Scott continuous function of type U → C(Rn). Moreover:

Theorem II.5. [9, Corollary 8.2] If f : U ⊂ Rn → R is
locally Lipschitz, then:

Lf = ∂f

III. STABLY LOCALLY COMPACT SPACES

In this section, we explain the the first step for formulating a
theory of differentiation in logical form. Consider a continuous
function f of type U → R. Then its L-derivative Lf ,
developed domain-theoretically as described in Section II-B,
has type U → C(Rn) and is constructed as the supremum
of single-step functions bχa of type U → C(Rn). We will
likewise develop a logical characterisation of Lf as a localic
approximable mapping of type BU → BC(Rn) of semi-strong
proximity lattices.

We will deal with functions of two different types as
follows. We consider (Lipschitz) continuous functions of type
U ⊂ Rn → R and their Clarke subgradient, equivalently L-
derivative, of type U → C(Rn), and develop a logical charac-
terisation of their L-derivatives using approximable mappings.

The spaces we deal with namely U ⊂ Rn and C(Rn) are
basic examples of so-called stably locally compact spaces [17].
Recall that a topological space is stably locally compact if it
is sober, locally compact, and if the intersection of any two
compact saturated sets is compact. (A set is saturated if it is
the intersection of its open neighbourhoods.)

There is a simple characterisation of stably locally compact
spaces in terms of their lattice of open sets: A topological
space is stably locally compact if its lattice of open sets is a
distributive continuous lattice which is also arithmetic, i.e., its
way-below relation satisfies

O � O1, O2 ⇒ O � O1 ∧O2.

The way-below relation for the lattice Ω(U) of Euclidean
open sets of U is characterised by O1 � O2 iff O1 is compact
and O1 ⊂ O2, whereas that of the basic Scott open sets of
Ω(C(Rn)) is given by �O1 � �O2 iff O1 � O2.

Proposition III.1. The domain C(Rn) is a stably locally
compact space as is any open set U ⊂ Rn with its subspace
topology.

A. Semi-strong proximity lattices

We will represent the lattice of open sets Ω(U) and
Ω(C(U)) by proximity lattices [22]. Assume we have a basis
BU and BC(Rn) of the topologies of Ω(U) and Ω(C(Rn))
which are both closed under finite intersections. We will
discuss our particular choices for these bases later on in this
section. By considering these bases for Ω(U) and Ω(C(Rn))
and the restriction ≺ of the way-below relation to them, we
obtain a proximity lattice.

Definition III.2. A semi-strong proximity lattice denoted by
B = (B;∨,∧, 0, 1;≺) is given by a distributive lattice
(B;∨,∧, 0, 1) such that ≺ is a binary relation on B with
≺=≺ ◦ ≺ and satisfying:
O-1 ∀a ∈ B M ⊂f B.M ≺ a ⇐⇒

∨
M ≺ a.

O-2 ∀a ∈ B.a 6= 1⇒ a ≺ 1.
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O-3 ∀a, a1, a2 ∈ B.a ≺ a1, a2 ⇐⇒ a ≺ a1 ∧ a2.
O-4 ∀a, x, y ∈ B.a ≺ x ∨ y ⇒

∃x′, y′ ∈ B.x′ ≺ x& y′ ≺ y& a ≺ x′ ∨ y′.
Here, M ⊂f B means that M is a finite (possibly empty)
subset of B, and M ≺ a means that ∀m ∈M.m ≺ a.

This definition is the same as in [22, Definition 18] for
strong proximity lattice except for two differences.

The first difference, which is minor, is that we do not in
general require 1 ≺ 1 since we would like to represent stably
locally compact spaces such as R that are not compact. When
our stably locally compact space is actually compact, which
is the case with C(Rn), we will simply add the axiom 1 ≺ 1
to the axioms of a semi-strong proximity lattice.

The second difference, which is major, is that we do
not require an additional axiom dual to O-4 for ∧, which
was adopted in [22], and in later work by Jung and his
collaborators [21], in order to obtain a complete symmetry
between compact and open sets for representation of stably
locally compact spaces. The inclusion of this dual axiom
leads to an interesting framework in which both open and
compact sets are required for constructing points and thus for
representation of stably locally compact spaces. However, the
addition of this dual axiom in particular implies that standard
spaces like [0, 1] can no longer be represented in the usual
way by their open sets; see [22, Example 22]. In the current
work, in which for the first time a localic representation of
the gradient is aimed at, we adhere to the more traditional
approach to point free topology and although compact sets
do play a vital role in tandem with open sets in our setting,
representation of stably locally compact spaces is obtained by
working with open sets only. For this reason, we have not
included the dual of O-4 for ∧ and thus the notion of semi-
strong proximity lattice defined above is weaker than that of
strong proximity lattice.

If O-4 itself is removed, we have what is called a proximity
lattice, which satisfies the following properties, shared by
semi-strong proximity lattices as well.

Proposition III.3. [22, Lemma 7] Let (B;≺,∨,∧, 0, 1) be a
proximity lattice. We have:

1) ∀a ∈ B.0 ≺ a,
2) ∀a ∈ B.a 6= 1⇒ a ≺ 1,
3) ∀a, a1, a2 ∈ B.a1 ≺ a2 ⇒ a1 ≺ a2 ∨ a,
4) ∀a, a1, a2 ∈ B.a1 ≺ a2 ⇒ a1 ∧ a ≺ a2,
5) ∀a1, a2, a

′
1, a
′
2 ∈ B.a1 ≺ a2 & a′1 ≺ a′2 ⇒ a1 ∨ a′1 ≺

a2 ∨ a′2,
6) ∀a1, a2, a

′
1, a
′
2 ∈ B.a1 ≺ a2 & a′1 ≺ a′2 ⇒ a1 ∧ a′1 ≺

a2 ∧ a′2,.

B. Localic approximable mapping

Suppose two stably locally compact spaces X1 and X2 are
represented by the two semi-strong proximity lattices B1 and
B2. We represent a continuous map f : X1 → X2 by a
localic approximable mapping R : B1 → B2 as a relation
R ⊂ B1 × B2 as in [22, Definition 25]. We, however, write
the composition of relations in the same order as for maps,

i.e., if R : B1 → B2 and S : B2 → B3 are relations then their
composition is written as S ◦R : B1 → B3.

Definition III.4. The relation R ⊂ B1 × B2 is a localic
approximable mapping if it satisfies:
M-1 R ◦ ≺1= R
M-2 ≺2 ◦R = R.
M-3 ∀M ⊂f B1∀a′ ∈ B2.M Ra′ ⇐⇒

∨
M Ra′.

M-4 ∀a ∈ B1.a 6= 1⇒ aR 1.
M-5 ∀a ∈ B1∀a1, a2 ∈ B2.

aR a1 & aRa2 ⇐⇒ aRa1 ∧ a2.
M-6 ∀a ∈ B1∀M ⊂f B2.aR

∨
M ⇒

∃N ⊂f B1.a ≺1

∨
N &∀n ∈ N∃m ∈M.nRm.

The identity approximable mapping IdB : B → B on B is
the relation ≺, and composition of approximable mappings
corresponds to composition of relations as usual. We now
have two categories: the category of stably locally compact
spaces and continuous functions and the category of semi-
strong proximity lattices and approximable mappings.

C. Equivalence of two categories

Let SL−Compact denote the category of stably lo-
cally compact spaces with continuous functions and let
Semi-Strong PL denote the category of semi-strong proximity
lattices and localic approximable mappings. We will fol-
low [22] to define two functors between these two categories
which induce an equivalence between them:

A : SL-Compact→ Semi-Strong PL

G : Semi-Strong PL→ SL-Compact

with their actions on morphisms given by A(f) = Af
and G(R) = GR. (This notation reduces clutter in many
expressions in the rest of the paper.) The reader is referred
to the above paper for full details.

We first define the functor A. Given a stably locally compact
space X , we fix a basis B of its topology which is closed under
finite intersections and let A(X) be the semi-strong proximity
lattice represented by B. Next, suppose f : X1 → X2

is a continuous map of stably locally compact spaces X1

and X2 represented by semi-strong proximity lattices B1 and
B2, induced by two topological bases for X1 and X2 that
are closed under finite intersections. Then we have a localic
approximable mapping Af : B1 → B2 given by aAf a

′ iff
a� f−1(a′). It is simple to check that Af satisfies the axioms
in Definition III.4 and is thus a localic approximable mapping.

We need to do more work to define the functor G. Given
a semi-strong proximity lattice (B;∨,∧, 0, 1;≺), one obtains
a frame (Idl(B),⊂) where Idl(B) is the set of ideals of B
with respect to ≺. Recall that an ideal is the dual notion to
a filter, i.e., a non-empty subset S ⊂ B is an ideal if it is
downwards closed under ≺ and for any set of elements si ∈ S,
where i ∈ I with I finite, there exists s ∈ S with si ≺ s for
i ∈ I . Moreover, the map ↓(·) : B → (Idl(B),⊂), which takes
a ∈ B to the principal ideal ↓a = {a′ : a′ ≺ a}, preserves
binary suprema as well as finite infima and is hence a lattice
homomorphism. This essentially follows from [22, Proposition
17].
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However, since, in contrast to [22], we do not in general
assume that 1 ≺ 1, we need to check that ↓(·) indeed preserves
0-ary infima, i.e., that ↓1 is the largest ideal. If indeed 1 ≺ 1,
then clearly ↓1 = B is the largest ideal. Otherwise, if 1 ≺ 1
does not hold, then ↓1 = B \{1} by O-2. Thus, to verify that
↓ 1 is the largest ideal, we need to show that B itself is not
an ideal. Suppose B is an ideal. Then, since 1 ∈ B, by the
definition of an ideal, there is t ∈ B with 1 ≺ t. There are
now two possible cases: (i) either t = 1 in which case we get
1 ≺ 1, a contradiction, or (ii) t 6= 1, in which case t ≺ 1 and
1 ≺ t from which, by part (3) of Proposition III.3, we obtain
1 ≺ 1∨ t = 1, a contradiction. Thus ↓(·) indeed preserves all
infima.

The frame (Idl(B),⊂) is a distributive continuous lattice
which is arithmetic and thus represents the lattice of open sets
of a stably locally compact space. We can however obtain this
space by using a finitary construction as follows. Recall that
a filter in B is an ideal with respect to �. Let filt(B) be the
set of all filters of B and let spec(B) be the spectrum of B
consisting of all prime filters of B, i.e.,

spec(B) =

{F ∈ filt(B) : M ⊂f B&
∨
M ∈ F ⇒M ∩ F 6= ∅}

For x ∈ B let Ox = {F ∈ spec(B) : x ∈ F} and consider the
topology on spec(B) given by the open sets Ox for x ∈ B.
We have: Oa ∩ Ob = Oa∧b and Oa ∪ Ob = Oa∨b.

Consider now the Scott topology σ(Idl(B),⊂) of the contin-
uous lattice (Idl(B),⊂). Let the map ψ : spec(B) → σIdl(B)

be given by

ψ(F ) = {I ∈ Idl(B) : I ∩ F 6= ∅}.

Then, considering Idl(B) with subset inclusion, ψ(F ) is a
completely prime filter for any prime filter F and ψ establishes
a homeomorphism between spec(B) and pt(Idl(B)).

We can now define the functor

G : Semi-Strong PL→ SL-Compact

For a semi-strong proximity lattice B, we put G(B) =
spec(B) which, as we have seen, is a stably locally compact
space. Given a localic approximable mapping R : B1 → B2,
we obtain a map GR : spec(B1)→ spec(B2) by putting

GR(F ) = {b2 ∈ B2 : ∃b1 ∈ F. b1Rb2},

for F ∈ spec(B1). It follows from M-2 that GR(F ) ∈
spec(B2) is a filter. To see that it is a prime filter, let∨
M ∈ GR(F ). Thus, there exists b1 ∈ F with b1R

∨
M . By

O-4, there exists a finite set N ⊂ B1 such that b1 ≺
∨
N and

for all n ∈ N there exists m ∈M with nRm. Since
∨
N ∈ F

and F is a prime filter, there exists n ∈ N with n ∈ F . We
conclude that there exists m ∈ M be such that nRm, i.e.,
m ∈ GR(F ), or, GR(F ) ∈ spec(B2). It remains to check that
GR is a continuous function. Given any neighbourhood open
set Oy we have:

(GR)−1(Oy) = {F : GR(F ) ∈ Oy} = {F : y ∈ GR(F )}

= {F : ∃b ∈ F. bR y} =
⋃
bR y

Ob

establishing the continuity of GR.
The Stone duality theorem proved in [22, Theorem 21] also

applies to semi-strong proximity lattices.

Theorem III.5. [22, Theorem 26] We have the two identities
GAf

= f and AGR
= R, i.e., SL−Compact is equivalent

to Semi-Strong PL via the functors A and G.

D. Semi-strong proximity lattices for U ⊂ Rn, R and C(Rn)

Let’s now turn back to the type of spaces we deal with,
namely an open subset U ⊂ Rn, R and C(Rn). In view of
the linear structure of Rn, we can choose our basic open sets
to have an additional very useful property, namely that they be
convex. Let D be the basis consisting of all open convex sets in
Rn with compact closure, including the empty set. And let Dr
be the basis consisting of all open convex polytopes, including
the empty polytope, whose vertices have rational coordinates.
Since convex sets are closed under finite intersections, both
D and Dr are closed under finite intersections. We denote by
B0

R, respectively B0
U , any basis of R, respectively U , such as

D or Dr, that consists of convex open sets and is closed under
binary intersections. We then let BR, respectively BU , denote
the semi-strong proximity lattice generated by B0

R, respectively
B0
U . This means that every element of BR, respectively BU ,

is a finite join of elements of B0
R, respectively B0

U .
Recall that the way-below relation in Ω(Rn) is given by

O1 � O2 iff O1 is compact and O1 ⊂ O2. Since the elements
of D and Dr have compact closure, the restriction of the way-
below relation to them will simply be O1 � O2 iff O1 ⊂
O2. Moreover, for elements of Dr, the way-below relation
is decidable, which allows the semi-strong proximity lattice
generated by it to be given an effective structure.

Each of the two sets D and Dr induces a basis for the
bounded complete domain C(Rn) as follows. The set {a : a ∈
D, a 6= ∅} ⊂ C(Rn) and the countable set {a : a ∈ Dr, a 6=
∅} ⊂ C(Rn), both augmented with {⊥}, each provide a basis
with compact convex sets with non-empty interior for the
domain C(Rn). Similarly, the set D, respectively Dr, induces
a basis, respectively a countable basis, for the Scott topology
of C(Rn) as follows. The set DC(Rn) := {�a : a ∈ D} and
the countable set DrC(Rn) := {�a : a ∈ Dr} are two bases of
the Scott topology σC(Rn) of C(Rn). We let B0

C(Rn) be the
basis of the Scott topology σC(Rn) whose elements are of the
type �a where a ∈ B0

Rn , and we let BC(Rn) be the semi-strong
proximity lattice generated by B0

C(Rn). Thus, each element of
the semi-strong proximity lattice BC(Rn) is the finite join of
elements of B0

C(Rn).
The bases BR, BU and BC(Rn), when generated by D,

provide a general mathematical and logical theory of localic
differentiation. When these bases are instead generated by Dr,
they can be employed to develop a computability theory for
localic differentiation.

We also stress here that nearly all proofs in the paper use
both open sets and compact sets. For this reason, when proving
results related to one of the semi-strong proximity lattices, we
often implicitly use Stone duality to work in the stably locally
compact space dual to the semi-strong proximity lattice to
derive the proof. For example, this means that for elements
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a, a′ ∈ B with a ≺ a′ in a proximity lattice B, we work with
the open sets in the stably locally compact space X := G(B)
that a and a′ represent which we simply denote by a and a′

and will satisfy the relation a� a′ in the lattice of open sets
of X .

IV. DOMAIN OF APPROXIMABLE MAPPINGS

In this section, we will develop a logical characterisation of
Lf as a localic approximable mapping of type BU → BC(Rn)

of semi-strong proximity lattices, and show that these localic
approximable mappings form a domain. We will see that simi-
lar to the construction of the L-derivative Lf as the supremum
of single-step functions bχa of type U → C(Rn), the corre-
sponding localic approximable mapping can be constructed as
the supremum of single-step approximable mappings.

Our task then is now to consider the domain of approx-
imable mappings of type BU → BC(Rn) and derive the
corresponding properties. Consider the collection of Scott
continuous functions of type U ⊂ Rn → C(Rn) ordered with
pointwise ordering induced by C(Rn), i.e., superset pointwise
ordering.

Proposition IV.1. (i) For f1, f2 : U ⊂ Rn → C(Rn) we
have:

f1 v f2 ⇐⇒ Af1 ⊆ Af2
(ii) For R1, R2 : BU → BC(Rn) for U ⊂ Rn we have:

R1 ⊆ R2 ⇐⇒ GR1
v GR2

Definition IV.2. The partially ordered hom-set of localic
approximable mappings of type U → C(Rn) is denoted by
App(BU , BC(Rn)).

It is straightforward to check that App(BU , BC(Rn)) is
directed complete. The supremum of a directed set of approx-
imable mappings with respect to subset inclusion is simply
the union of the approximable mappings in the directed set:
supi∈I Ri =

⋃
i∈I Ri.

We now consider

A : (U → C(Rn))→ App(BU , BC(Rn))

G : App(BU , BC(Rn))→ (U → C(Rn))

given as before by A(f) = Af and G(R) = GR, as maps
between the partial orders.

Corollary IV.3. The function space (U → C(Rn)) is isomor-
phic to App(BU , BC(Rn)) via the maps A and G which are
inverses of each other.

Proposition IV.4. (i) If fi is a directed set in (U →
C(Rn)), with supremum f = supi∈I fi, then

⋃
i∈I Afi =

Af in App(BU , BC(Rn)).
(ii) If Ri for i ∈ I , is a directed set in App(BU , BC(Rn)),

then supi∈I GRi
= GR in (U → C(Rn)), where R =

supi∈I Ri.

The function space (U → C(Rn)) is a bounded complete
domain. Consider the space App(BU , BC(Rn)) of approx-
imable mappings of type U → C(Rn) ordered by subset
inclusion:

Corollary IV.5. The space of approximable mappings
App(BU , BC(Rn)) is a bounded complete domain with

R1 � R2 in App(BU , BC(Rn)) iff

GR1
� GR2

in (U → C(Rn)).

The function space (U → C(Rn)) has a basis consisting
of step functions, each generated by a bounded finite set
of single-step functions of the form bχa where a ⊂ U is
a basic convex open set and b ∈ C(Rn) has non-empty
interior. Consider a basic open set c ⊂ U and a basic open set
�V ⊂ C(Rn) where V ⊂ Rn is itself a basic open set.

Proposition IV.6. We have cAbχa �V iff c� a& b ∈ �V .

Definition IV.7. Given a pair (a,O), where a ⊂ U is a basic
open set and O ⊂ Rn is a basic open set, the single-step
approximable mapping η(a,O) is defined as η(a,O) = AOχa

.

V. CONSTRUCTORS OF APPROXIMABLE MAPPINGS

In this section we first formulate the product type in the
category of semi-strong proximity lattices and approximable
mappings and then present the constructors for addition and
multiplication of approximable mappings, which are specific
for App(BU , BR).

A. Product

Since SL-Compact, as a category of topological spaces,
has products, we already know by the equivalence result
that Semi-Strong PL has also product. Given semi-strong
proximity lattices B1 and B2 the product B1 × B2 is given
by the Cartesian product of B1 and B2 generated by a1 × a2

for a1 ∈ B1 and a2 ∈ B2 so that an element of B1 × B2

is of the form
∨
i∈I(ai1 × ai2) for a finite set I . The semi-

strong proximity lattice properties are generated component-
wise, e.g., a1×a2 ≺ a′1×a′2 if a1 ≺ a′1 and a2 ≺ a′2. It is clear
that this gives the product of two objects in Semi-Strong PL
with B1 ×B2 = A(X1 ×X2).

Definition V.1. Given approximable mappings R1 : B → B1

and R2 : B → B2 their product is an approximable mapping
of type 〈R1, R2〉 : B → B1 ×B2, where

a (〈R1, R2〉)
∨
i∈I

(ai1 × ai2)

if there exist ai ∈ B for i ∈ I , such that a ≺
∨
i∈I ai and

aiR1 ai1 and aiR2 ai2.

We will prove that 〈R1, R2〉 actually gives the categorical
product of R1 and R2. This can be done either directly
by showing that 〈R1, R2〉 has the universal property of the
product or by using Stone duality. We opt for the latter method.
Let f1 : X → X1, f2 : X → X2 be continuous functions of
stably locally compact spaces with A(X) = B, A(X1) = B1,
A(X2) = B2, Af1 = R1 and Af2 = R2.

Proposition V.2.

A〈f1,f2〉 = 〈Af1 , Af2〉
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It remains to define the projection approximable mappings.
Let Pi : B1×B2 → Bi for i = 1, 2 be defined by (a1×a2)Pia
if ai ≺ a for i = 1, 2. It is easy to check that Pi is an
approximable mapping for i = 1, 2. Let πi : X1 ×X2 → Xi,
for i = 1, 2 be the projection maps, i.e, πi(x1, x2) = xi.

Proposition V.3. We have Aπi
= Pi for i = 1, 2.

B. Addition

We now define addition as an approximable mapping R+ :
BR ×BR → BR. The sum of two open intervals a1 and a2 is
defined as a1 + a2 := (a−1 + a−2 , a

+
1 + a+

2 ). For a ∈ BR×BR
and O ∈ BR, define the binary relation R+ as follows: aR+O
if there exist ai1, ai2 ∈ B0

R, i ∈ I , with I a finite indexing
set, such that a ≺

∨
i∈I ai1 × ai2 and ai1 + ai2 ≺ O. Let

sum : R× R→ R be the addition of two real numbers given
by sum(x, y) = x+ y.

Proposition V.4. Asum = R+.

We can now define sum of two approximable mappings. Let
R1, R2 : BU → BR be approximable mappings.

Definition V.5. The sum R1 + R2 : BU → BR is defined as
R1 +R2 := R+ ◦ (〈R1, R2〉).

By Proposition V.4, Proposition V.2 and Theorem III.5, we
obtain:

Corollary V.6. R1 +R2 = AGR1
+GR2

.

C. Multiplication, constant and subtraction

The approximable mapping for multiplication R× : BR ×
BR → BR is defined as follows. For a ∈ BR × BR and O ∈
BR, define the binary relation R×, we put: aR×O if there
exist ai1, ai2 ∈ B0

R, i ∈ I , a finite indexing set, such that
a ≺

∨
i∈I ai1 · ai2 and ai1 · ai2 ≺ O, where a1 · a2 = (m,M)

is the product of the open intervals a1 and a2 with

m = min{a−1 a
−
2 , a

−
1 a

+
2 , a

+
1 a
−
2 , a

+
1 a

+
2 }

M = max{a−1 a
−
2 , a

−
1 a

+
2 , a

+
1 a
−
2 , a

+
1 a

+
2 }.

If multip : R2 → R is the multiplication map multip(x, y) =
x · y, then similar to Proposition V.4, we obtain:

Proposition V.7. Amultip = R×.

Definition V.8. Given R1, R2 : BU → BR, their multi-
plication R1 · R2 : BU → BR is defined as R1 · R2 :=
R× ◦ (〈R1, R2〉).

By Proposition V.7, Proposition V.2 and Theorem III.5, we
obtain:

Corollary V.9. R1 ·R2 = AGR1
·GR2

.

The constant approximable mapping Rc : BR → BR with
constant value c ∈ R is defined as aRcO if c ∈ O. Let the
constant function with value c ∈ R be given by constc : R→
R with x 7→ c for all x ∈ R. Then we have Aconstc = Rc.

We will also need to define the constant approximable
mapping of type RcIR : BU → BIR, where U ⊂ R and c ∈ R,
by aRcIR �O iff c ∈ O.

Finally, multiplication with −1 is obtained as R−1× = R×◦
(R−1× Id), from which we can construct subtraction by using
addition.

VI. LIPSCHITZIAN APPROXIMABLE MAPPINGS

In this section, we introduce the notion of a Lipschitzian
approximable mapping of type BU → BR, which corresponds
to locally Lipschitz maps. First, we define a predicate to imply
that two basic open sets are separated in the sense that their
closures are disjoint.

Definition VI.1. We say a pair of elements a1, a2 ∈ B0
U , are

separated, denoted as (a1, a2) ∈ Sep, if there exist a′1, a
′
2 ∈

B0
U such that a1 ≺ a′1, a2 ≺ a′2 and a′1 ∧ a′2 = 0.

For two points x1, x2 ∈ U , if x1 6= x2, then, by the
Hausdorff separation property, there are open sets O1 and O2

such that x1 ∈ O1, x2 ∈ O2 and O1 ∩O2 = ∅. Therefore, the
notion of separated open sets is precisely the dual concept of
Hausdorff separation for points.

We now define a notion of Lipschitzian constant for two
approximable mappings, which in this localic form is quite
similar to the definition of a set-valued Lipschitz constant for
locally Lipschitz maps.

Definition VI.2. We say an approximable mapping R : BU →
BR has Lipschitzian constant O ∈ B0

Rn in a ∈ B0
U , a,O 6= 0

and O 6= 1, denoted by R ∈ ∆(a,O), if

∀a1∀a2 ∈ B0
U . a1, a2 ≺ a& (a1, a2) ∈ Sep ⇒

∃a′1∃a′2 ∈ B0
R.a1Ra

′
1 & a2Ra

′
2 & a′1 − a′2 ≺ O · (a1 − a2).

We call ∆(a,O), as a family of approximable mappings, the
knot of (a,O).

Observe that ∆(a,O) is only defined locally for basic open
sets a and O, which is analogous to the definition of δ(a, b)
referred to in Section II-B. Note also that, given the predicate
Sep, the formula in the Definition VI.2 has quantifier rank
four, i.e., it uses two instances of ∀ and two instances of
∃. In contrast, the formula in the Definition II.3 of a tie
has quantifier two, i.e., it uses two instances of ∀. From
the definition, we immediately obtain the following inclusion
property.

Proposition VI.3. If a ⊂ a′ and O′ ⊂ O, then ∆(a′, O′) ⊂
∆(a,O).

Our next task is to show that the point map of any
Lipschitzian approximable mapping is Lipschitz.

Proposition VI.4. If R : BU → BR is an approximable
mapping such that R ∈ ∆(a,O) then:

∀x, y ∈ a,GR(x)−GR(y) ∈ O · (x− y)

Corollary VI.5. If R ∈ ∆(a,O) then GR ∈ δ(a,O) and GR
is Lipschitz.

We note that the compact and convex set O in Corol-
lary VI.5 is tight in the following sense. Assuming that
R ∈ ∆(a,O) there may be no compact and convex b ⊂ O with
GR ∈ δ(a, b). The following example illustrates this point.
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Example VI.6. Let f : (0, 1) → R be the square function
x 7→ x2. Then, Af ∈ ∆((0, 1), (0, 2)). But there is no compact
interval b ⊂ (0, 2) for which f ∈ δ((0, 1), b). In fact, f ∈
δ((0, 1), [0, 2]) where [0, 2] is minimal, i.e., if f ∈ δ((0, 1), b)
then [0, 2] ⊆ b.

We now need several lemmas to deduce a type of converse
for Corollary VI.5 with respect to single-knots of approx-
imable mappings and single-ties of continuous function.

Lemma VI.7. If O and a are bounded convex open sets in
Rn with 0 /∈ a, then O · a = O · a.

Lemma VI.8. Suppose O, O′ and a are open and convex
subsets of Rn such that O ⊂ O′ and suppose 0 /∈ a then
O · a ⊂ O′ · a.

Lemma VI.9. If a1, a2 are bounded open subsets of Rn and
a1 ∩ a2 = ∅ then 0 /∈ a1 − a2.

We can finally deduce a type of converse for Corollary VI.5.

Theorem VI.10. If f ∈ δ(a, b) then for all open convex
subsets a0 ∈ B0

Rn with a0 ⊂ a and for all open convex sets
O ∈ B0

Rn with b ⊂ O we have Af ∈ ∆(a0, O).

The following example shows that Theorem VI.10 fails if
we replace the separation condition (a1, a2) ∈ Sep with the
weaker condition a1 ∩ a2 = ∅.

Example VI.11. Let f : (−1, 4) → R be the identity map.
Then f ∈ δ((−1, 3), {1}). Take any open set O = (1−r, 1+s),
with r, s > 0 and r < 1, that contains b = {1}. If a1 =
(1, 3) and a2 = (0, 1), then a1Af a

′
1 and a2Af a

′
2 imply that

a′1 − a′2 = (−t, 3 + u) for some t, u > 0. On the other hand,
a1 − a2 = (0, 3) and O · (a1 − a2) = (0, 3(1 + s)). Thus, we
cannot have a′1 − a′2 ⊂ O · (a1 − a2).

Example VI.6 also shows that the condition a0 ⊂ a in the
statement of Theorem VI.10 cannot be replaced with a0 ⊂ a.

Example VI.12. Let f : R→ R be the absolute value function
f(x) = |x|. If 0 ∈ a, then Af ∈ ∆(a,O) iff [−1, 1] ⊂ O. If
a+ ≤ 0, then Af ∈ ∆(a,O) iff −1 ∈ O. And if 0 ≤ a−, then
Af ∈ ∆(a,O) iff 1 ∈ O.

We have established a close connection between δ(a, b)
and ∆(a,O) in Corollary VI.5 and Theorem VI.10. However,
as we can see from the statements of these two results the
connection is not completely symmetric: The statement of
Theorem VI.10 requires a0 � a whereas Corollary VI.5
has no such condition. Moreover, the conclusions of the two
statements are not really symmetric. We strive to redress
this anomaly in the next section in order to obtain a duality
between the single-ties and the single-knots.

VII. GRADIENT STONE DUALITY

In this section, we will sharpen the close connection be-
tween the differential properties of Lipschitz maps and Lips-
chitzian approximable mappings and establish a Stone duality
for differentiation by introducing a stronger notion of single-
ties and a stronger notion of single-knots.

Let us digress to re-examine the property of single-ties as
presented in Section II-B. Recall that the notion of a single-
tie δ(a, b) was used to define the L-derivative of a Lipschitz
function, which can be written as

bχa v Lf ⇐⇒ f ∈ δ(a, b). (4)

We see that the single-tie δ(a, b) induces a single-step function
bχa v Lf , where v is the partial order provided by pointwise
ordering in the function space of type: U → C(Rn). While the
use of these single-ties and the induced single-step functions
with the partial order on the function space (U → C(Rn))
has enabled us to develop a domain-theoretic account of
differential calculus, it falls short of allowing us to develop
Stone duality in a symmetric fashion.

The solution lies in using what we call a strong single-tie
so that the partial order v in Relation (4) is replaced with the
way-below relation � of the function space (U → C(Rn)).
Let a non-empty convex open set a ⊂ U and a compact convex
set b ∈ C(Rn) with non-empty interior be given.

Definition VII.1. We say f : U ⊂ Rn → R has a strong set-
valued Lipschitz constant b in a, denoted by f ∈ δs(a, b), if
there exist a′ with a�Ω(U) a

′ and b′ ∈ C(Rn) with b�C(Rn)

b′ such that f ∈ δ(a′, b′). We call δs(a, b) the strong single-tie
of a with b.

Observe that the formula used in the definition of a strong
single-tie has now quantifier rank four in total, since there
are two instances of ∃ in addition to the two instances of ∀
in Definition II.3 of a single-tie. The following properties are
immediate from the definition of a strong single-tie and the
interpolation property of � in ΩU and C(Rn):

Proposition VII.2. (i) If a ⊂ a′ and b v b′ then δs(a′, b′) ⊂
δs(a, b).

(ii) δs(a, b) ⊂ δ(a, b).
(iii) If f ∈ δs(a, b) then there exist a′ with a �ΩU a′ and

b′ ∈ C(Rn) with b� b′ such that f ∈ δs(a′, b′).

Proposition VII.2(ii) justifies the word strong in the defini-
tion of a strong tie. In addition, we have:

Proposition VII.3. If f : U ⊂ Rn → R, then:

f ∈ δs(a, b) ⇐⇒ bχa � Lf

Example VII.4. Let f : R→ R be the absolute value function
f(x) = |x|. If 0 ∈ a then f ∈ δs(a, b) iff [−1, 1] ⊆ b◦. If
0 < a− then f ∈ δs(a, b) iff 1 ∈ b◦. Finally, if a+ < 0 then
f ∈ δs(a, b) iff −1 ∈ b◦.

Corollary VII.5. If f : U ⊂ Rn → R be locally Lipschitz,
then we have:

Lf = sup{bχa|bχa � Lf} = sup{bχa|f ∈ δs(a, b)}

Next, we define a stronger notion of single-knots to match
with that of strong single-ties.

Definition VII.6. We say an approximable mapping R :
BU → BR has strong Lipschitzian constant O ∈ B0

Rn in
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a ∈ B0
U , denoted by R ∈ ∆s(a,O), if there exist a′ ∈ B0

U with
a ≺ a′ and O′ ∈ B0

Rn with O′ ≺ O such that R ∈ ∆(a′, O′).

The formula in Definition VII.6 of a strong single-knot has
quantifier rank six in total since there are two instances of
∃ in addition to the four quantifiers in Definition VI.2 of a
single-knot.

Proposition VII.7. (i) If we have a ⊂ a′ and O′ ⊂ O, then
∆s(a

′, O′) ⊂ ∆s(a,O).
(ii) ∆s(a,O) ⊆ ∆(a,O).

(iii) If f ∈ ∆s(a,O), then there exist a′ with a ≺ a′ and O′

with O′ ≺ O such that R ∈ ∆s(a
′, O′).

The inclusion in the Proposition VII.7(iii) is strict. This can
be seen from Example VI.6 again. Let f(x) = x2 then Af ∈
∆(a,O) for a = (0, 1) and O = (0, 2). But if a′ > a and
O′ < O then there exists x ∈ a′ such that x > 1. Therefore:

f(x)− f(1)

x− 1
/∈ O

and thus f(x)−f(1)
x−1 /∈ O′ ⊂ O which implies Af /∈ ∆(a′, O′).

We conclude that Af /∈ ∆s(a,O).
We can now improve the results in the previous section.

Theorem VII.8. (i) If f ∈ δs(a, b) then for all basic convex
open sets O with b ⊂ O we have Af ∈ ∆s(a,O).

(ii) If Af ∈ ∆s(a,O), then there exists a convex and compact
subset b ⊂ O such that f ∈ δs(a, b).

We can finally make the correspondence in Theorem VII.8
sharper and obtain the duality result we have aimed at. Let
O ⊂ U be a basic convex open set.

Corollary VII.9. We have R ∈ ∆s(a,O) iff GR ∈ δs(a,O).
Dually, we have f ∈ δs(a, b) iff Af ∈ ∆s(a, b

◦).

Example VII.10. Let f : R → R be the absolute value
function f(x) = |x|. If 0 ∈ a, then Af ∈ ∆s(a,O) iff
[−1, 1] ⊂ O. If a+ < 0, then Af ∈ ∆(a,O) iff −1 ∈ O.
And if 0 < a−, then Af ∈ ∆(a,O) iff 1 ∈ O.

Having found the proper duality between strong single-
ties and strong single-knots, we can define the dual notion
of the L-derivative for Lipschitzian approximable mappings
by dualising the definition of the L-derivative for Lipschitz
maps as in Corollary VII.5. Recall the definition of η(a,O)

from Definition IV.7.

Definition VII.11. Let R ∈ App(BU , BR) be a Lipschitzian
approximable mapping. The Lipschitzian derivative of R is
defined as

L(R) = sup{η(a,O) : R ∈ ∆s(a,O)}
We need to ensure that L(R) is well-defined by check-

ing that the supremum in Definition VII.11 is bounded
so that L(R) is indeed an approximable mapping in
App(BU , BC(Rn)). By now, we have developed all the tools
required to show, using Stone duality, that in fact L(R) is the
approximable mapping for the point map LGR.

Theorem VII.12. The Lipschitzian derivative of a Lipschitzian
approximable mapping is an approximable mapping and we
have: L(R) = ALGR

.

The Lipschitzian derivative of the constant approximable
map is the constant approximable map with value zero as
expected, i.e., L(Rc) = R0

IR.

VIII. CONTINUOUSLY DIFFERENTIABLE FUNCTIONS

In this section, we formulate a duality theory for the class
C1(U) of continuously differentiable functions f : U ⊂ Rn →
R. Any function in C1(U) is locally Lipschitz and is in fact
Lipschitz on any compact subset of U . We therefore need a
stricter notion of a strong single-knot in order to represent
C1(U) functions by approximable mappings. We will use a
basic property of the Clarke subgradient, equivalently the L-
derivative, as in Proposition II.2(iv). Thus, our aim will be
to formulate an axiom such that the L-derivative of f(x)
everywhere in U is a singleton, equivalently, that it has
diameter zero.

Definition VIII.1. Given a map f : U → R, we say f ∈
δ1(U) if for all a0 � U and all ε > 0 there exists δ > 0 such
that whenever a � a0 and diam(a) < δ, there exists a basic
convex compact set b with diam(b) < ε and f ∈ δs(a, b).

For a computable theory, we can as usual restrict ε and δ
to be rational numbers.

Proposition VIII.2. f ∈ δ1(U) iff f ∈ C1(U).

It is now straightforward to formulate the dual notion
corresponding to δ1(U) for approximable mappings.

Definition VIII.3. We say an approximable mapping R ∈
App(BU , BC(Rn)) is differentiable in U , denoted R ∈ ∆1(U),
if for all a0 ≺ 1 and all ε > 0 there exists δ > 0 such that
whenever a ≺ a0 and diam(a) < δ, there exists a basic convex
open set O ∈ B0

Rn with diam(O) < ε and R ∈ ∆s(a,O).

We can now show that ∆1(U) is dual to δ1(U):

Proposition VIII.4. We have f ∈ δ1(U) iff Af ∈ ∆1(U).

Corollary VIII.5. R ∈ ∆1(U) iff GR ∈ C1(U).

IX. LIPSCHITZIAN DERIVATIVE OF CONSTRUCTORS

In this section, we derive a calculus for the Lipschitzian
derivative of the basic constructors we have defined in Sec-
tion V and show that the calculus is dual to the calculus of
the Clarke subgradient as in Proposition II.2(vi-viii).

Proposition IX.1. (Sum) Let R1, R2 : BU → BR, where
U ⊆ Rn are approximable mappings. Then:

L(R1) + L(R2) ⊆ L(R1 +R2)

and equality holds if at least one of R1 or R2 is in ∆1(U).

A similar result holds for the product as follows.

Proposition IX.2. (Product) Let R1, R2 : BU → BR be
approximable mappings. Then:

R1 · L(R2) +R2 · L(R1) ⊆ L(R1 ·R2)

and equality holds if one of R1 or R2 is in ∆1(U).
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Proposition IX.3. (Chain rule) Let R1 : BU1
→ BR and

R2 : BU2 → BR be approximable mappings, where U1 ⊆ Rn,
U2 ⊆ R and Im(R1) ⊆ BU2 . Then:

(L(R2) ◦R1) · L(R1) ⊆ L(R2 ◦R1)

and the equality holds if at least one of the following predi-
cates holds: R1 ∈ ∆(U1) or R2 ∈ ∆(U2). Here by Im(R1)
we mean the image of R1.

X. CONCLUSION AND FURTHER WORK

We have developed a localic representation of the Clarke
subgradient of locally Lipschitz maps and a localic represen-
tation of the classical gradient of continuously differentiable
maps. There are clear similarities between the way strong
single-ties and strong single-knots construct the subgradient
in the spatial theory and in the localic theory respectively. If
the quantifier rank of formulas is considered as a measure of
complexity of definitions, then for the subgradient this rank
has increased from four, with respect to strong single-ties
for the spatial theory, to six, with respect to strong single-
knots for the localic theory. The advantage of using the locale
theory is clearly marked out when we use Dr which generates
countable semi-strong proximity lattices. We envisage that the
localic representation would then allow an implementation of
the Clarke subgradient in theorem provers.

We have worked out all our proofs using topological spaces
and continuous maps as we often had to deal with open
sets and compact sets at the same time in a proof. What
will happen if, instead of using semi-strong proximity lattices
and approximable mappings, we actually use strong proximity
lattices and sequent calculi as in the subsequent work of Jung
and his collaborators [21] in which both compact sets as well
as open sets are integrated in the representation of the stably
locally compact space by the strong proximity lattice? Would
we be able to carry out most of our proofs in strong proximity
lattices without going to the stably locally compact spaces
represented by them?

There are a number of themes for further work:
1) extending the set of constructors to include division, min,

max and basic logical predicates,
2) extension to maps with imprecise input represented as

hyper-rectangles in Rn and imprecise output, i.e., ele-
ments in IR.

3) extension to locally Lipschitz vector maps of type Rn →
Rm to develop a localic representation of the generalised
Jacobian [4],

4) extension to locally Lipschitz complex maps to develop
a localic representation of analytic maps using the L-
derivative for complex maps [10], and,

5) a localic representation of the initial value problem for
solving ODE’s.
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APPENDIX

Proposition I.2
The three maps

(i) (−) + (−) : Ω(Rn)× Ω(Rn)→ Ω(Rn),
(ii) (−) · (−) : Ω(Rn)× Ω(Rn)→ Ω(R) ,and,

(iii) r · (−) : Ω(Rn)→ Ω(Rn).

are well-defined, Scott continuous and preserve convex sets.
Proof: (i) Note that for any vector x ∈ Rn the set x+B,

the translation of B by x is open for any non-empty open set
B. Therefore, for any non-empty set A and any non-empty
open set B ⊂ Rn, the set A + B =

⋃
x∈A(x + B) is the

union of open sets and is thus open, and in particular it is
open for A open. Suppose A and B are both convex as well
as non-empty and open. If x = x1 + x2 ∈ A + B and y =
y1 + y2 ∈ A + B with x1, y1 ∈ A and x2, y2 ∈ B, then
cx+ (1− c)y = c(x1 + x2) + (1− c)(y1 + y2) = (cx1 + (1−
c)y1) + (cx2 + (1− c)y2) ∈ A+B since cx1 + (1− c)y1 ∈ A
and cx2 + (1 − c)y2 ∈ B as a consequence of convexity of
A and B. To show Scott continuity, it is sufficient to prove
Scott continuity separately for the two input open sets. Let
u ∈ A+

⋃
i∈I Bi where Bi is a directed family of open sets

in σΩRn . Then u = x + y with x ∈ A and y ∈
⋃
i∈I Bi.

Then y ∈ Bi for some i ∈ I and thus u ∈
⋃
i∈I(A + Bi).

Hence, A +
⋃
i∈I Bi ⊂

⋃
i∈I(A + Bi). Since (−) + (−) is

clearly monotone, it follows that A+
⋃
i∈I Bi ⊃

⋃
i∈I(A+Bi).

Thus, A+
⋃
i∈I Bi =

⋃
i∈I(A+Bi). By symmetry (−)+(−)

is Scott continuous with respect to the first argument as well
when the second argument is fixed.

(ii) The inner product map (−) · (−) : Rn × Rn → R is
continuous as it can be written as (x, y) 7→

∑n
i=1 πi(x)πi(y)

where the projections map πi : Rn → R with (x1, · · · , xn) 7→
xi is continuous for 1 ≤ i ≤ n. Since a continuous map sends
connected sets to connected sets, it follows that for nonempty
and convex A,B ∈ Ω(Rn), the image A ·B ⊂ R is connected
and hence is an interval. To see that it is in fact an open interval
when A and B are convex, consider x ∈ A and y ∈ B. Let
r > 0 be small such that Or(x) ⊂ A and Or(y) ⊂ B, where
Or(u) is the open ball with radius r centred at u ∈ Rn. Then,
x · y ∈ Or(x) · Or(y) ⊂ A · B and Or(x) · Or(y) is an open
interval. We conclude that A ·B is open.

(iii) Straightforward.
Proposition III.1 The domain C(Rn) is a stably locally
compact space as is any open set U ⊂ Rn with its subspace
topology.

Proof: We check that the lattice of open sets of U and
C(Rn) are both arithmetic. If O � O1, O2 for O,O1, O2 ⊂ U
then O ⊂ O1, O2 and hence O ⊂ O1∩O2, which implies O �
O1 ∩O2. For C(Rn) we use basic open sets of the form �O
to verify the arithmetic property. Suppose �O � �O1,�O2.
Then O �ΩRn O1, O2 and hence O �ΩRn O1 ∩ O2, by the
first part. Thus, �O � �O1 ∩O2 = �O1 ∩�O2.

Proposition IV.1
(i) For f1, f2 : U ⊂ Rn → C(Rn) we have:

f1 v f2 ⇐⇒ Af1 ⊆ Af2

(ii) For R1, R2 : BU → BC(Rn) for U ⊂ Rn we have:

R1 ⊆ R2 ⇐⇒ GR1 v GR2

Proof:
(i) Suppose f1 v f2 and let aAf1 O. Then a � f−1

1 (O).
Since any Scott open set O ⊂ C(Rn) is upwards
closed, it follows that f−1

1 (O) ⊂ f−1
2 (O) and thus

a� f−1
1 (O) ⊂ f−1

2 (O), i.e., aAf2 O.
Next, let Af1 ⊆ Af2 . Since aAf O iff a � f−1

1 (O) it
follows that

G−1
Af1

(O) =
⋃

aAf1
O

a ⊂
⋃

aAf2
O

a = G−1
Af2

(O).

Hence, for any Scott open set O ⊂ C(Rn), we have
G−1
Af1

(O) ⊂ G−1
Af2

(O) and therefore f1(x) v f2(x).
(ii) This follows from the previous part as a result of the

equivalence of the two categories.

Corollary IV.3
(i) If fi is a directed set in (U → C(Rn)), with

supremum f = supi∈I fi, then
⋃
i∈I Afi = Af in

App(BU , BC(Rn)).
(ii) If Ri for i ∈ I , is a directed set in App(BU , BC(Rn)),

then supi∈I GRi
= GR in (U → C(Rn)), where R =

supi∈I Ri.
Proof: (i) If a

⋃
i∈I Afi O, then there exists i ∈ I such

that aAfi O which implies a � f−1
i (O) ⊂ f−1(O) since

fi v f . Thus, aAf O. Conversely, if aAf O, then there exists
a′ with a� a′ � f−1(O). Since f = supi∈I fi we have for
their frame maps f−1 = supi∈I f

−1
i . In particular, f−1(O) =⋃

i∈I f
−1
i (O) and thus there exists i ∈ I such that a� a′ ⊂

f−1
i (O), which implies aAfi O.

(ii) We already know by monotonicity that supi∈I GRi
v

GR. For the reverse, note that for basic open sets a and O
we have: a � G−1

R (O) iff a
⋃
i∈I RiO iff ∃i ∈ I.aRiO iff

a � G−1
Ri

(O). Thus, G−1
R (O) ⊂ supi∈I G

−1
Ri

(O) and, hence,
GR v supi∈I GRi .

Proposition IV.6
We have cAbχa �V iff c� a& b ∈ �V .

Proof: By the definition of an approximable mapping
and the definition of bχa, we obtain: cAbχa �V iff c �
(bχa)−1(�V ) iff c� a& b ∈ �V .

Proposition V.2

A〈f1,f2〉 = 〈Af1 , Af2〉

Proof: Suppose aA〈f1,f2〉(
∨
i∈I ai1 × ai2) . By M-1, let

a′ be a basic open set with a ≺ a′A〈f1,f2〉(
∨
i∈I ai1 × ai2).

i.e.,

a′ �
⋃
i∈I

(〈f1, f2〉)−1(ai1 × ai2) =
⋃
i∈I

f−1
1 (ai1) ∩ f−1

2 (ai2).

Let x ∈ a. Then, there exists i ∈ I with x ∈ (f−1
1 (ai1) ∩

f−1
2 (ai2)). Let Ox ∈ B be an open set containing x such that
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Ox � a′, Ox � (f−1
1 (ai1) ∩ f−1

2 (ai2)). By compactness of
a, there exists a finite set of points {xj : j ∈ J} with xj ∈ a
such that a ⊂

⋃
j∈J Oxj � a′. Let

ai =
⋃
{Oxj

: j ∈ J,Oxj
� f−1

1 (ai1) ∩ f−1
2 (ai2)}.

Note that the union above can be empty which means that ai is
the empty set. Then ai ∈ B for each i ∈ I with a�

⋃
i∈I ai

and ai � f−1
1 (ai1) ∩ f−1

2 (ai2), i.e., aiAf1ai1 and aiAf2ai2.
Thus, a(〈Af1 , Af2〉)

∨
i∈I ai1 × ai2.

Conversely, suppose a(〈Af1 , Af2〉)(
∨
i∈I ai1 × ai2). Then,

by definition, there exists ai for each i ∈ I with a ≺
∨
i∈I ai

such that aiAf1ai1 and aiAf2ai2 for each i ∈ I . Thus,
ai � f−1

1 (ai1) and ai � f−1
2 (ai2). Hence ai � f−1

1 (ai1) ∩
f−1

2 (ai2), i.e., aiA〈f1,f2〉(ai1× ai2) for each i ∈ I . It follows
that aA〈f1,f2〉(

∨
i∈I ai1 × ai2).

Proposition V.3
We have Aπi = Pi for i = 1, 2.

Proof: Let (a1 × a2)Aπ1
a then a1 × a2 � (π1)−1(a).

But (π1)−1(a) = a× 1. Thus, a1×a2 � a× 1 which implies
a1 � a. Hence, (a1×a2)P1a. Next suppose a1×a2P1a. Then
a1 � a and hence a1×a2 � a×1. This means (a1×a2)Aπ1

a.
The same holds for Aπ2

.
Proposition V.4
Asum = R+.

Proof: Let aAsumO. Then, we have:

a� (sum)−1(O) =⋃
{ai1 × ai2 : ai1 + ai2 � O, ai1, ai2 ∈ B0

R}

By compactness of a, there is a finite indexing set I such that:

a�
⋃
{ai1 × ai2 : ai1 + ai2 � O, ai1, ai2 ∈ B0

R, i ∈ I}

i.e, aR+O. Next, suppose aR+O. Thus, there exist ai1, ai2 ∈
B0

R, for i ∈ I , with I a finite indexing set, such that a ≺∨
i∈I ai1 × ai2 and ai1 + ai2 ≺ O. Therefore:

a�
∨
i∈I

ai1 × ai2 � (sum)−1(O)

Hence, aAsumO.

Lemma VI.7
If O and a are bounded convex open sets in Rn with 0 /∈ a,
then O · a = O · a.

Proof: Note that for any non-zero vector v ∈ Rn, the set
O · v ⊂ R is an open interval (which is in fact the projection
of the open set O in the direction of v scaled by ‖v‖). It
follows that the convex set O · a =

⋃
v∈aO · v is an open

interval. We have sup(O · a) = SO(x) for some x ∈ a. Let
xn ∈ O (n ≥ 0) be a sequence with x = limn→∞ xn. Then
SO(xn) ≤ sup(O.a) and SO(x) = limn→∞ SO(xn) since the
support function SO is continuous. It follows that SO(x) ≤
sup(O.a) and hence sup(O · a) ≤ sup(O · a), which means
sup(O · a) = sup(O · a), as O · a ⊂ O · a. Similarly, using
inf O · v = − supO · (−v), we obtain inf(O · a) = inf(O · a)
and therefore O · a and O · a are the same open intervals.

Lemma VI.8
Suppose O, O′ and a are open and convex subsets of Rn such
that O ⊂ O′ and suppose 0 /∈ a then O · a ⊂ O′ · a.

Proof: We know from lemma VI.7 that O · a = O · a and
thus there exists x ∈ a such that sup(O · a) = sup(O) · x =
SO(x). But SO(x) < SO′(x) ≤ sup(O′ · a), because O ⊂ O′.
Thus, sup(O ·a) < sup(O′ ·a). Similarly, inf(O ·a) > inf(O′ ·
a), and we conclude that O · a < O′ · a.

Lemma VI.9
If a1, a2 are bounded open subsets of Rn and a1 ∩ a2 = ∅

then 0 /∈ a1 − a2.
Proof: Assume for the sake of a contradiction that 0 ∈

a1 − a2. Then there exists a sequence xn ∈ a1 − a2 such
that xn → 0. This implies that there exist sequences sn ∈ a1

and tn ∈ a2 such that xn = sn − tn. Because a1 and a2 are
compact sets, there exist convergent subsequences snk

and
tnk

with limits s ∈ a1 and t ∈ a2 respectively. But then
s − t = limk→∞ snk

− tnk
= limk→∞ xnk

= 0, which is a
contradiction since a1 ∩ a2 = ∅.
Theorem VI.10
If f ∈ δ(a, b) then for all open convex subsets a0 ∈ B0

Rn with
a0 ⊂ a and for all open convex sets O ∈ B0

Rn with b ⊂ O we
have Af ∈ ∆(a0, O).

Proof: Suppose a1, a2 ∈ B0
Rn with a1, a2 ⊂ a0 and

(a1, a2) ∈ Sep. From f ∈ δ(a, b), we obtain:

f [a1]− f [a2] ⊂ b · (a1 − a2).

Since a1 − a2 = a1 − a2 and b ⊂ O, we deduce:

f [a1]− f [a2] ⊂ O · (a1 − a2).

By Lemma VI.9, 0 /∈ a1 − a2, and, hence, by Lemma VI.7,
we have: O · (a1 − a2) = O · (a1 − a2). It follows that

f [a1]− f [a2] ⊂ O · (a1 − a2).

Since f is continuous, the set f [a1] − f [a2] is compact and
convex. Thus, we can find open convex sets a′1, a

′
2 such that

f [ai] ⊂ a′i for i = 1, 2, and a′1 − a′2 ⊂ O · (a1 − a2). Hence
Af ∈ ∆(a0, O).
Proposition VII.3
If f : U ⊂ Rn → R, then:

f ∈ δs(a, b) ⇐⇒ bχa � Lf

Proof: Suppose bχa � Lf . Then a� (Lf)−1(↑↑b) which
in particular implies that ↑↑b 6= ∅, i.e., b◦ 6= ∅. Take an open
convex set a′ ⊂ U with a � a′ � (Lf)−1(↑↑b). Let Dδ(x)
denote the closed disk of radius δ > 0 centred at x ∈ Rn. We
have

↑↑b =
⋃
n≥1

↑↑b−1/n,

where, for r > 0, b−r := {x ∈ b : Dr(x) ⊂ b}, which is a
compact, convex set, and is non-empty for sufficiently small
r. Since the frame map (Lf)−1 : σC(Rn) → Ω(U) is Scott
continuous, there exists n ≥ 1 such that a′ ⊂ (Lf)−1(b−1/n).
i.e., f ∈ δ(a′, b′) with b′ = b−1/n and hence f ∈ δs(a, b).
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For the converse, suppose that f ∈ δs(a, b). Therefore, there
exist a′ with a� a′ and b′ with b� b′ such that b′χa′ v Lf .
Then, bχa � b′χa′ v Lf and hence bχa � Lf .
Proposition VII.6

(i) If we have a ⊂ a′ and O′ ⊂ O, then ∆s(a
′, O′) ⊂

∆s(a,O).
(ii) ∆s(a,O) ⊆ ∆(a,O).

(iii) If f ∈ ∆s(a,O), then there exist a′ with a ≺ a′ and O′

with O′ ≺ O such that R ∈ ∆s(a
′, O′).

Proof: (i) This follows immediately from the definition.
(ii) Let R ∈ ∆s(a,O) so that there exist a0 with a � a0

and O0 with O0 � O such that R ∈ ∆(a0, O0). Assume
a1, a2 � a with (a1, a2) ∈ Sep. From a � a0, we have
a1, a2 � a0. Since R ∈ ∆(a0, O0) there exist a′1, a

′
2 such

that aiRa′i for i = 1, 2 and a′1 − a′2 � O0 · (a1 − a2). By
Lemma VI.8 and Lemma VI.9 a′1 − a′2 � O0 · (a1 − a2) ⊂
O · (a1 − a2). Hence R ∈ ∆(a,O).

(iii) This is straightforward using the interpolation property.

Theorem VII.7

(i) If f ∈ δs(a, b) then for all basic convex open sets O with
b ⊂ O we have Af ∈ ∆s(a,O).

(ii) If Af ∈ ∆s(a,O), then there exists a convex and compact
subset b ⊂ O such that f ∈ δs(a, b).
Proof: (i) Let f ∈ δs(a, b) and O ⊃ b. Then, by the

definition of a strong tie, there exist a0 with a � a0 and b0
with b0 � b such that f ∈ δ(a0, b0). By the interpolation
property, there exist a′ with a� a′ � a0, and O′ with O′ �
O and b ⊂ O′. By Theorem VI.10, Af ∈ ∆(a′, O′) and hence
Af ∈ ∆s(a,O).

(ii) Suppose Af ∈ ∆s(a,O). Then, by the definition of a
strong single-knot, there exist a′ with a � a′ and O0 with
O0 � O such that Af ∈ ∆(a′, O0). From Corollary VI.5,
f ∈ δ(a′, O′). By the interpolation property, there exists O′

such that O0 � O′ � O. Put b′ := O0 and b := O′. Then
b� b′ and f ∈ δ(a′, b′) and it follows that f ∈ δs(a, b).
Corollary VII.8
We have R ∈ ∆s(a,O) iff GR ∈ δs(a,O). Dually, we have
f ∈ δs(a, b) iff Af ∈ ∆s(a, b

◦).
Proof: Suppose R ∈ ∆s(a,O). Then, by Theorem VII.8,

there exists b ⊂ O such that GR ∈ δs(a, b), which im-
plies GR ∈ δs(a,O). Next assume GR ∈ δs(a,O). By
Proposition VII.2(iii), there exists b with O � b such that
GR ∈ δs(a, b). Hence, by Theorem VII.8, R ∈ ∆s(a,O)
since b ⊂ O. The dual statement follows immediately from
the property of a basic convex open set O and a basic convex
compact set b, namely that (b◦) = b and (O)◦ = O.

Theorem VII.10
The Lipschitzian derivative of a Lipschitzian approximable
mapping is an approximable mapping and we have: L(R) =
ALGR

.
Proof: We have, by Corollary VII.9, Corollary VII.5

and Definition IV.7 of η(a,O), the following three equivalent
statements: R ∈ ∆s(a,O) iff GR ∈ δs(a,O) iff Oχa � LGR.

Thus, since A : (U → C(Rn)) → App(BU , BC(Rn)) is an
isomorphism, we obtain:

L(R) = sup{AOχa
: Oχa � LGR} = ALGR

Proposition VIII.2
f ∈ δ1(U) iff f ∈ C1(U).

Proof: Let f ∈ δ1(U) and x ∈ U . Take a basic convex
open set a0 � U with x ∈ a0 and let ε > 0 be given. Assume
δ > 0 is the witness for f ∈ δ1(U) with a� a0 satisfying x ∈
a and diam(a) < δ. Then there exists a basic convex compact
set b with diam(b) < ε and f ∈ δs(a, b). Hence bχa � Lf
and in particular b� Lf(x). It follows that diam(Lf(x)) < ε.
Since ε > 0 is arbitrary, we conclude that Lf(x) is a singleton.
This is true for all x ∈ U . Thus, by Proposition II.2(iv), f ∈
C1(U).

For the other direction, assume f ∈ C1(U) and let a0 � U
and ε > 0. Then a0 ⊂ U and hence∇f is continuous, and thus
uniformly continuous, on the compact set a0. Therefore, there
exists δ > 0 such that ‖∇f(x) − ∇f(y)‖ < ε for x, y ∈ a0

with ‖x − y‖ < δ. Let a � a0 with diam(a) < δ. Take
a1 with a � a1 � a0 and diam(a1) < δ. The convex set
b1 := conv{∇f(x) : x ∈ a1} is compact with diam(b1) < ε.
Thus, there exists a convex compact basic set b with b ⊂ b◦1 and
diam(b) < ε. Since ∇f = Lf on U , it follows that bχa � Lf
and thus f ∈ δs(a, b), yielding f ∈ δ1(U).
Proposition VIII.4
We have f ∈ δ1(U) iff Af ∈ ∆1(U).

Proof: Suppose f ∈ δ1(U), a0 � U and ε > 0. Then,
there exists δ > 0 such that whenever a� a0 and diam(a) <
δ, there exists a basic convex compact set b with diam(b) <
ε and f ∈ δs(a, b). From Corollary VII.9, we have Af ∈
∆s(a, b

◦). Since diam(b◦) = diam(b) < ε, we deduce that
Af ∈ ∆1(U). Next, assume R ∈ ∆1(U), a0 � U and ε > 0.
There exists δ > 0 such that whenever a� a0 and diam(a) <
δ, there exists a basic convex open set O with diam(O) < ε
and R ∈ ∆s(a,O). By Corollary VII.9 again, we have GR ∈
δs(a,O). Since diam(O) = dima(O) < ε, we deduce that
f ∈ δ1(U).
Corollary VIII.5
R ∈ ∆1(U) iff GR ∈ C1(U).

Proof: Combine Proposition VIII.2 and Corollary VIII.4.

Proposition IX.1
Let R1, R2 : BU → BR, where U ⊆ Rn are approximable
mappings. Then:

L(R1) + L(R2) ⊆ L(R1 +R2)

and equality holds if at least one of R1 or R2 is in ∆1(U).
Proof: We have:

L(R1) + L(R2)

= ALGR1
+ALGR2

Theorem VII.12
= ALGR1

+LGR2
Corollary V.6

⊆ AL(GR1
+GR2

) Propositions II.2(vi), IV.1(i)
= L(AGR1

+GR2
) Theorem VII.12

= L(R1 +R2) Theorem III.5
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If, for example, R1 ∈ ∆(U) then GR1
∈ C1(U) and by Propo-

sition II.2(vi), we have L(GR1) + L(GR2) = L(GR1 +GR2)
and we obtain equality in the above derivation:

L(R1) + L(R2) = L(R1 +R2)

Proposition IX.2
Let R1, R2 : BU → BR be approximable mappings. Then:

R1 · L(R2) +R2 · L(R1) ⊆ L(R1 ·R2)

and equality holds if one of R1 or R2 is in ∆1(U).
Proof: We have:

R1 · L(R2) +R2 · L(R1)

= AGR1
·ALGR2

+AGR2
·ALGR1

Theorems III.5, VII.12
= A(GR1

·LGR2
+GR2

·LGR1
) Corollaries V.6, V.9

⊆ AL(GR1
·GR2

) Prop. II.2(vii), IV.1(i)
= L(AGR1

·GR2
) Theorem VII.12

= L(R1 ·R2) Theorem III.5

If R1 ∈ ∆1(U) then GR1 ∈ C1(U) and Proposition II.2(vii)
yields: GR1 · LGR2 +GR2 · LGR1 = L(GR1 ·GR2). Thus:

R1 · L(R2) +R2 · L(R1) = L(R1 ·R2)

Proposition IX.3
Let R1 : BU1 → BR and R2 : BU2 → BR be approximable
mappings, where U1 ⊆ Rn, U2 ⊆ R and Im(R1) ⊆ BU2 .
Then:

(L(R2) ◦R1) · L(R1) ⊆ L(R2 ◦R1)

and the equality holds if at least one of the following predi-
cates holds: R1 ∈ ∆(U1) or R2 ∈ ∆(U2). Here by Im(R1)
we mean the image of R1.

Proof:

(L(R2) ◦R1) · L(R1)

= (ALGR2
◦GR1

) ·ALGR1
Theorems III.5, VII.12

= A(LGR2
◦GR1

)·LGR1
Corollary V.9

⊆ AL(GR2
◦GR1

) Prop. II.2(viii), IV.1(i)
= L(AGR2

◦GR1
) Theorem VII.12

= L(AGR2
◦AGR1

) Theorem III.5
= L(R2 ◦R1) Theorem III.5

If at least one of two predicates R1 ∈ ∆(U1) or R2 ∈ ∆(U2)
holds, then, by Proposition II.2(viii), we have the equality
L(GR2

◦ GR1
) = (LGR2

◦ GR1
) · LGR1

and we obtain:
L(R1) · (L(R2) ◦R1) = L(R1 ◦R2).


